
634 BUSINESS DATA PROCESSING

Host computing platform

Application
Data

Figure 1. Host-based processing.

BUSINESS DATA PROCESSING
for applications such as word processing, spreadsheets, desk-

Fast-moving markets, frequent technological turnover, and top publishing, and personal data-base applications. Like
rising customer expectations are examples of the many fac- host-based processing, the single-user platform model is to-
tors that continually change the basis of competition for mod- tally nondistributed. It is possible to apply local-area network
ern businesses. Faced with such challenges, an enterprise of- (LAN) technology (see LOCAL AREA NETWORKS) to give single-
ten seeks to improve its competitive position through the user applications simultaneous, shared access to data dis-
innovative use of data processing technology. Information persed across a network. While this gives the appearance of
technology (IT) has evolved from rudimentary methods of creating a distributed environment, in fact it only chains
data gathering in the 1970s to more sophisticated technolo- desktop applications together so that they seem to reside to-
gies for managing resources, sensing and monitoring market gether on a shared platform. Applications get access to re-
developments, and organizing information and human motely distributed data, but they are still designed to be exe-
knowledge. cuted on single platforms by single users.

The stunning increase in processing speed of microproces-
sors during the last few decades, coupled with the rapid Approach to Client-Server Design
growth of networking, lead to even richer technological possi-

Client-server takes a different approach to business applica-bilities for modern businesses. Recent IT advances such as
tion design. It seeks to partition functional and data compo-Web-based transaction processing and component-enabled
nents so that they can be executed on different computingsoftware give firms new means of executing core processes,
platforms that share access to services such as printing orreducing costs, and creating new value for customers. Modern
resources such as data repositories. Client-server evolvedbusiness data processing incorporates diverse technologies for
from a model of shared device processing, where single com-networking, database management, software engineering,
puting platforms such as those depicted in Fig. 2 began shar-communications, and organizational coordination, and re-
ing access to a common resource, typically a file on the hardquires a keen architectural sensibility that seeks to integrate
disk of a single computer or a printer connected to the LAN.software and hardware components into systems that perform
For example, Novell’s NetWare enabled networked computersreliably in increasingly complex business environments.
to share access to a dedicated print service located at one of
the nodes of the LAN.

As LANs grew in size and more powerful workstations be-CLIENT-SERVER ARCHITECTURE
came connected to networks, systems developers recognized
the utility of distributing more than just dedicated file andClient-server architecture is a fundamental element in the
print services across the network. They realized that applica-design and deployment of business software systems. It relies
tions themselves could be designed in a way that separatedon a simple model of cooperative processing: a client submits
and distributed core functionalities and resources. Applica-computing requests to a server, which processes the request
tion processing in such a model becomes a game of coordina-and returns the results to the client. Client and server do
tion and communication: clients request services fromnot denote hard-coded functions. Rather, they are roles that

application resources play as they interact in a computing en-
vironment.

To understand client-server as an architectural concept, it
is useful first to identify predecessors of the client-server ap-
proach. Host-based application processing is an approach
wherein all functional and data components of an application
reside and execute on a single, centralized computing plat-
form (Fig. 1). Remote users can execute the application from
‘‘dumb’’ terminals connected to the host across a network.
From an architectural perspective, host-based processing is
totally nondistributed.

Another common approach is the single-user platform

Application

Data

Application

Local area network

Data

Application

Data
model. Here all functional and data components reside on a
single computing platform dedicated to a single user. The Figure 2. Single-user platforms connected across a local-area

network.model applies to the use of personal computers and laptops

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



BUSINESS DATA PROCESSING 635

and they want their IT to grow to meet constantly changing
business needs. Clients and servers running together across
heterogeneous combinations of hardware and software re-
quire what is frequently called an open systems approach:
they adhere to common protocols for interdevice and interap-
plication communication. To scale up existing IT structures
in a captive market setting, enterprises must return to the
provider from whom they purchased their original system. If
that vendor does not provide solutions to match the enter-
prise’s current needs, then the enterprise must pay huge
switching costs to start from scratch, essentially, with an-
other vendor’s products. The client-server model encourages
the creation of products and solutions based on shared stan-
dards for networking, system management, application pro-
gramming, system services, and interfaces between applica-
tions and system services. Standards such as X/Open and

Function A

Function B

Function C Function D

Function E

Data source
2

Data source
1Server

standards bodies such as ISO (International Organization for
Figure 3. An example of a client-server environment.

Standardization) and OMG (Object Management Group) help
provide mechanisms for software interoperability, which is re-
ally the key benefit of the client-server model.

servers; servers service those requests. Application design
with client-server changes fundamentally: software develop- Technological Innovation. Open systems allow independent
ers must now carefully distribute resources and functions hardware and software providers to create products that ad-

here to the broad boundaries laid out in industry-standard
• To leverage existing computer capabilities inside the en- protocols. When coupled with the natural dynamics of market

terprise competition, open systems allow customers to experience the
• To ensure that resources (e.g., data, microprocessor cy- benefits of rapid technological innovation and product transi-

cles) required for efficient application processing are eas- tions. Rather than waiting for the technological advances cre-
ily accessible to the clients who need them ated within the walls of a single, proprietary vendor, custom-

ers get access to a much greater number of technological• To exploit the decentralization of client-server to create
advances created by multiple vendors participating in anmore powerful application experiences for the user
open systems market.

Client-server environments in which all the processing de-
vices can request and provide services on an equal basis are OBJECT-ORIENTED METHOD
examples of what is called peer-to-peer, or end-to-end, pro- FOR BUSINESS SYSTEMS DEVELOPMENT
cessing.

Object orientation (OO) is an expansive model for expressing
Benefits of the Client-Server Approach the context, requirements, and behavior of software systems.

OO evolved in response to shortcomings and difficulties sys-From an engineering management perspective, client-server
tems developers encountered in previous methodologies forarchitecture yields the following advantages over host-based
software development. The systems developed using olderapplication processing and single-user platforms.
methods frequently suffer from the following shortcomings:

More Flexible Response to Increasing Workloads. In host-
• Long Development Cycles. Because of the long develop-based application processing, response time for remote users

ment cycles associated with conventional methods of sys-running an application that resides on a mainframe computer
tems development, too often the requirements of theremains relatively fixed until the system’s capacity limit ap-
business environment have changed drastically by theproaches. When the host reaches capacity, however, expen-
time systems developed according to earlier requirementsive upgrades are needed to accommodate the increased com-
assessments are finally deployed.puting load. In single-platformed architectures, a user

• No Modifiability. Once they are designed, coded, and de-running an expensive application at one computer cannot ex-
bugged, those systems run until they are completely re-ploit slack computing cycles available on another computer.
placed.By distributing applications, client-server effectively distrib-

• High Maintenance Costs and Risks. It is difficult for newutes application workloads so that the net response time for
programmers to understand the purpose and function ofthe average user decreases.
what are often referred to as legacy systems, programs
based on older and possibly obsolete assessments of busi-Increased Scalability. Scalability refers to the ease with
ness need.which a distributed computing system can be scaled upward

to handle new computing needs, either in the form of response • Lack of Scalability. Older methods do not scale with the
increasing complexity of large software systems for dis-times, new application requirements, or even new business

directives. Enterprises worry about scalability because they tributed transaction processing (e.g., airline reservation
systems, banking systems) and sprawling data manage-want to protect and exploit their existing investments in IT,



636 BUSINESS DATA PROCESSING

ment activities (e.g., decentralized global companies with at the beginning of a program. Ambiguity about which proce-
data on bookings, backlog, shipments, and billings dures were using which pieces of data made it difficult to de-
among distributed geographical locations). The reliability bug and modify those old software systems. Encapsulation
of these systems suffers as a result. protects an object’s data from arbitrary or unintended uses

while hiding implementation details from the requestors of
OO promises to reduce development time, increase flexibility an object’s services. For this reason encapsulation is often re-
and adaptability of software, and thereby improve overall ferred to as data hiding. It enforces a clear separation be-
software quality. tween function and implementation, allowing programmers to

The primary end of OO is more modular, and thus more modify software systems by changing object implementations
extensible, software composed of what are called objects. Ob- locally without having to modify an application that uses
jects can be embodied in programming code that is ultimately those objects.
translatable into bits and bytes; but objects can also be ex- To understand how encapsulation can be useful in a busi-
pressed in purely abstract terms. The abstractions used to ness context, let us consider a brief example. Suppose we have
specify an object seem at first strange to programmers trained an object Customer Order consisting of attributes Request
in procedural languages (e.g., Pascal, Fortran, and C) because Date and Receipt Date, with an associated method called
they require software designers to separate the definition of Schedule which computes a schedule date for the order us-
software from its implementation. Such a separation is useful ing Request Date and Receipt Date. Suppose now that
because it allows developers to identify objects from an appli- shifting business conditions require a change in the schedul-
cation domain, and then to decide how to fit procedures and ing technique used to assign schedule dates to customer or-
functional behavior around those objects. OO models can be ders; the goal is now to schedule orders according to a func-
used to communicate with application experts, to model com- tion that includes Leadtime Target as well. Encapsulation
plex enterprises, to prepare documentation, and to design allows us to localize this change inside the implementation of
programs and databases. In this way OO confronts one of the Customer Order without having to rewrite interfaces to
fundamental challenges of IT systems development: develop- other objects or functions of other objects that interact with
ers and users typically lack expertise in each other’s domain, Customer Order. When Customer Order receives a
and therefore lack the vocabulary needed to specify system Schedule request, the requesting object does not need to
requirements and constraints unambiguously. By providing a know about the new formula for assigning schedule dates to
unified framework for business and software engineering, OO customer orders—all it knows (or needs to know) is that the
bridges the gap between the formulation of an enterprise so- order will be scheduled.
lution and its technical implementation. Inheritance is a way of organizing objects into groupings

that allow them to share attributes and methods. An object
OO Fundamentals and Their Implications type specifies a family of objects. A class specifies the possible
for Business Systems Development methods and attributes that apply to the objects of a fixed

type. For example, since an Employee is a type of Person, anObjects are entities defined in terms of the following simple
Employee object might inherit the attributes of a Person suchelements. (See OBJECT-ORIENTED PROGRAMMING for a more de-
Name, Age, and Address. It might also make sense to givetailed treatment.)
the Employee object access to the same methods for updating,
manipulating, and displaying this data. Employee defines a• Method/Procedure/Operation/Behavior. Action that the

object can take on data that reside inside the object. subclass that inherits the methods and attributes of the su-
Some treatments of OO draw a distinction between an perclass Person. It might also be necessary to give Employee
operation, considered to be an abstract process or service, attributes and methods that are not inherited from Person,
and a method, considered to be the specification of an what are usually called private or native methods and attri-
operation. butes. For example, Employees need to get Paychecks, and

the Employee object probably needs to have methods for dis-• Properties/Attributes. The types of data that an object
playing Paychecks. In this case, the attribute Paycheck andrecords and manipulates, sometimes simply referred to
the method for displaying it are native to the object Em-as the object’s data.
ployee.• Message. A request that an object sends to another ob-

A class library is a repository of object classes that can beject to invoke one of the receiving object’s methods. The
used to provide commonly used functionalities. A frameworkset of all such requests defines the receiving object’s in-
is a class library that provides a software developer with aterface. An object satisfies an interface if it can be speci-
set of building blocks with which he can create new applica-fied as the target object in each potential request de-
tions. For example, a framework for graphical interfacesscribed by the interface.
allows a programmer to build graphical applications by invok-
ing basic operations such as creating, bending, stretching,Two key principles shape the construction of object sys-
connecting, and deleting graphical icons, without requiringtems. Encapsulation refers to the packaging of data and
the programmer to implement those operations from scratch.methods together inside an object. For Object A to access Ob-
Class libraries or frameworks can significantly reduce theject B’s data, A must send B a message; B processes A’s re-
time it takes to develop complex software systems. The suc-quest if the request is part of B’s interface specification. Ob-
cess of new languages such as Java depends critically on theject A cannot access B’s data except through the passing of
availability of frameworks and class libraries to help businessmessages. In the old procedural style of software specification,

procedures accessed data that was typically grouped together programmers develop new applications efficiently.



BUSINESS DATA PROCESSING 637

Construction of Enterprise Software Systems Using OO is to converge on standards for the creation, linking, and exe-
cution of software components.

The OO paradigm has given rise to new mindsets and meth-
odologies for constructing large software systems. OO lan- Three-Tier Models
guages such as C��, Smalltalk, and, more recently, Java

The emergence of component-based software is evidence of ahave been used to build software applications for executing
general movement away from traditional client-server com-business transactions and for storing and manipulating large
puting to newer models of distributed object computing. In thedata sets (see OBJECT-ORIENTED PROGRAMMING). OO is useful
first generation client-server model, applications were devel-as a method for conceptualizing software design and as a lan-
oped according to a two-tier approach: data for the applicationguage that software developers and business users can use to
typically originated at the server, while user interface andcommunicate the context and function of software systems.
computational tasks were handled at the client.To date OO has been especially useful in the engineering of

The two-tier model created several problems.software systems that make intensive use of graphical user
interfaces (GUIs), but it has achieved less implementation

1. It did not allow optimal load-balancing among distrib-success in software systems that make use of more complex,
uted clients because each client was solely responsibledata-driven business rules. For example, the object model is
for performing business calculations required by the ap-fundamentally at odds with the relational model that has be-
plication.come the standard for database management [see RELATIONAL

DATABASES and OBJECT-ORIENTED DATABASES). Technologies for 2. Upgrading applications became difficult because up-
translating between relational-database and object models grades typically consist of key changes to the business
are in the nascent stages of deployment, and show promise logic of an application, unique copies of which had pro-
for connecting object-oriented tools to the essential data pro- liferated to each client on the network.
cessing challenges most organizations face. 3. Tying interface and implementation together at the cli-

Various methods for OO analysis, such as the Booch, Rum- ent led to rigid constraints on what clients could do—no
baugh, or Jacobson methods, can be used to design and deploy more and no less than what was programmed into the
complex OO systems. Such methods adopt different perspec- current application release.
tives on object design—for example, some use objects to model
organizational processes such as order fulfillment, while oth- In light of these shortcomings, software system developers
ers are better suited to the creation of class libraries for spe- began to see the advantages of decoupling interface from im-
cific types of applications. At root, however, they all help a plementation, particularly by making application upgrades in
system developer decentralized, multi-user environments easier and also by

making it possible for clients to request and fetch code chunks
• Identify software objects that correspond to concepts or from a network on an as-needed basis.

entities in the external business environment (e.g., cus- The separation of interface from implementation has led to
tomers, orders, bookings, policies) a new three-tier model (see Fig. 4), which provides the func-

• Specify attributes and behaviors for each object tional basis for components. By collecting implementation
into an isolated middle layer and by specifying standards for• Determine hierarchical, functional, and data-sharing re-
describing the behaviors, properties, and events that can acti-lationships among the objects of the system and events
vate objects in that middle layer, developers can create andthat trigger the invocation of methods among them
access generic software components that are fully interopera-

An older model of software development, where phases ble in complex IT environments with multiple operating sys-
such as Requirements Analysis, Design, Coding, Testing, De- tems, and that can be stored in local clients or downloaded
bugging, and Validation proceed in a stepwise, linear fashion, from a network to create richer application experiences for
is rendered obsolete in the OO paradigm. Rapid prototyping human users.
also known as rapid application development (RAD), is a cen- A distributed object obeys the regular properties of an ob-
terpiece of object-oriented systems development: developers ject such as inheritance and classing, but is packaged as a
create a series of trial versions for a software system and con-
tinually test and refine those versions until they converge on
the desired functionality.

DISTRIBUTED OBJECT COMPUTING

One key promise of object technology is reusability, the ability
to create, exchange, and repeatedly use software components
to build new software systems. According to such a scheme,
software development evolves from a slow, expensive, some-
times arcane process into a nimbler, more design-oriented ex-
ercise wherein objects with clearly exposed interfaces are knit

Data
source

1

Data
source

2

Client
1

Client
2

Client
3

Server

Business logic DataUser interface

together to create complex systems. Some developers and ar-
chitects envision the creation of object foundries and factories Figure 4. Three-tier models separate user interface, business logic,
which produce, manage, and distribute components to sup- and data into distinct layers, which can be distributed among multi-

ple servers and clients.port such a development approach. The immediate challenge



638 BUSINESS DATA PROCESSING

binary (or executable) software module accessible to remote
clients by means of a method invocation. In essence the OO
distinction between implementation and definition is taken a
step further: the client need not know which language or com-
piler built a particular object, or even where the object physi-
cally resides. It only needs to know the name of the object
and the interface it publishes.

Frameworks for Distributed Objects

A leading framework for distributed objects is CORBA (Core Order N *N interfaces Order N interfaces

Object Request Broker Architecture), put forth by OMG, a
Figure 6. Custom interfaces versus message broker architectures.

non-profit consortium, in 1989. CORBA is a peer-to-peer com-
puting framework wherein all applications are objects as pre-
viously defined. The central element of CORBA is what is

ORBs provide simple, efficient means of brokeringcalled an ORB, or object request broker. It is easiest to think
transactions among distributed software components.of an ORB as an object interconnection bus: it provides the
They also introduce new efficiencies in distributed soft-means for objects to locate and activate other objects on a
ware design and performance by reducing the numbernetwork, regardless of the processor or programming lan-
of unique interfaces that need to be managed amongguage used to develop those objects. ORBs also perform tasks
distributed objects. As Fig. 6 shows, the bus or hub to-such as managing connections among objects and delivering
pologies characteristic of a message broker architec-data. ORBs perform all of the intermediating functions that
tures such as CORBA reduce the number of custom in-enable objects to interoperate on a fast, flexible basis.
terfaces among N software components from a numberTo communicate object functions independently of their
on the order of N � N to a number on the order of N.implementations, distributed applications use metadata such

2. Network-Oriented Software. Frameworks for distrib-as IDL, Interface Definition Language. IDL is an abstract,
uted object computing allow applications to exploit re-declarative syntax for object encapsulations. An IDL compiler
sources that reside on a local file system or on a net-generates what are called stub and skeleton programs for each
work. In this sense distributed object computingobject’s interface. A stub allows a client to access an object
renders the distinction between client and server lesswith a local function call. Transparently, it provides an inter-
relevant: objects, components, and data can be accessedface to the ORB, which marshals the parameters of an object’s
dynamically on an as-needed basis; applications inter-method into formats suitable for transmission. The skeleton,
act on a peer-to-peer basis. Enterprise software develop-meanwhile, provides the server-side implementation of an ob-
ers can use this capability to bridge data and applica-ject’s IDL interface. When an ORB receives a request, the
tion resources that typically reside in separate systems,skeleton provides a callback to a server-supplied function im-
such as shipping, manufacturing, finance, and sales.plementation.

3. Metadata for Extensibility and Interoperability. ToolsWhen Object A requests services from Object B, the ORB
such as IDL allow objects to expose their services andlocates B’s implementation, transmits the parameters of A’s
data to all the other objects on a network. This allowsrequest, and transfers control to B. When B is finished pro-
developers to join objects together without hard-codingcessing A’s request, it passes control back to the ORB along
calls to particular objects on particular servers. Serviceswith the results. Figure 5 depicts the approach.
can be added to a software system and discovered atOther commercial frameworks such as ActiveX and Java-
runtime. If metadata are defined consistently and ubiq-Beans apply somewhat different approaches to the problem
uitously across many services and applications, the rawof modularizing and linking software components. While it is
amount of software needed to create software systemsimpossible to describe all of these frameworks in detail, it is
solutions should decrease because software chunks fromuseful to identify the following general features of any frame-
previous applications or software developed using a dif-work for distributed object computing:
ferent microprocessor or operating system architecture
can be used as building blocks for new systems.1. Coordinated Messaging. Distributed software execution

depends critically on a mechanism for coordinating mes-
sages among distinct software objects. Tools such as INTERNET/INTRANET

In the early 1990s business organizations began to recognize
the Internet, a decentralized system for linking computers
first developed by the Defense Advanced Research Projects
Agency, as a powerful means of disseminating information
and knowledge. Though the Internet had previously found
use primarily among academic institutions, around 1993 busi-
nesses and organizations began to serve World-Wide Web
pages describing their products and services, and joined their

IDL 
specification

Object B's
implementation

StubClient object A

O
rb

Skeleton

employees together via Internet services such as electronic
mail. The Internet and its enterprise counterpart, the intra-Figure 5. An ORB intermediating between stubs and skeletons.



BUSINESS DATA PROCESSING 639

net—so named to connote the linking of services and people
inside an organization—provide powerful new tools for busi-
nesses to communicate, collaborate, and transact.

The Internet is a global, heterogeneous network of comput-
ers joined together through the shared use of a computer net-
working protocol called TCP/IP (see COMPUTER NETWORKS).
HTML (HypterText mark-up language) is a simple scripting
standard for the graphical presentation of information. HTTP
(HyperText transfer protocol) is a networking standard based
on TCP/IP that allows electronic files, software, graphics, and
smaller programs called applets to be located, accessed, and
transferred over a network. Together, HTML and HTTP pro-
vide the core technical foundation for browsing the World-
Wide Web. Other related protocols such as FTP (file-transfer
protocol), NFS (network file system), MIME (multipurpose In-
ternet mail extensions), and SMTP (simple mail transfer pro-
tocol) also provide services for distributing and sharing infor-
mation in a distributed network environment. All of these
technical standards are deployed in both the Internet and In-
tranets. What distinguishes the Internet from an intranet is
use and content, not underlying technology.

Uses and Benefits of Internet/Intranet

The Internet allows an organization to

• Make information about it products and services avail-
able to a wide base of potential customers

• Gather potentially valuable information (using freely

Table 1. Key Differences between Internet and Intranet

Parameter Internet Intranet

Primary Uses Branding and electronic Workflow
commerce

Interaction Pull model wherein user Cross-functional, decen-
identifies and down- tralized collaboration
loads desired informa- and communication,
tion in the form of primarily via e-mail.
Web pages. E-mail
allows one-to-one or
one-to-many commu-
nication. Also pro-
vides forum for link-
ing users with shared
interests in virtual
communities.

Transaction Primarily electronic Support and execute in-
commerce, supported ternal processes such
by technologies for se- as human resources
curity (e.g., user au- fulfillment, manufac-
thentication, valida- turing specification,
tion of network inventory control, em-
transmissions). ployee expense re-

porting, etc.
Access For the average con- For the average corpo-

sumer, access is typi- rate user, access is
cally over 14.4 kbs/s typically over T1 or
or 28.8 kbs/s phone T3 lines that enable
lines. data transfer rates of

at least 1.5 Mbs/s.
available search engines, for example) about customer
needs and competitor movements

• Execute business transactions, such as inventory replen-
ishment and suppliers and invoicing with customers a few architectural issues. MIS managers must configure all

the desktop systems in the enterprise so that they have TCP/
An intranet, on the other hand, is an internally focused tool IP capability and a browser. They must also make decisions
that records, facilitates, and enhances workflow. For example, about what search engine to deploy. Perhaps most important,
it allows an organization to they must establish processes and policies for publishing, ac-

cessing, and exchanging information on the intranet.
• Collaborate on projects with participants from remote ge- As with the Internet, the most salient issue for intranet

ographies and different groups deployment at the time of this writing is security. Not all in-
• Record institutional rationale in the form of presenta- formation can be placed on-line—for example, payroll, engi-

tions, e-mail conversations neering prototypes, and shipment information are probably
much too sensitive for all members of an organization to ac-• Share information on processes, projects, practices, and
cess. The main device for insuring security for the Internet orpolicies
an intranet is a firewall, a software mechanism that filters

Table 1 outlines some key differences between Internet and individual packets of data as they pass into and out of speci-
intranet. fied servers and clients and screens them on the basis of

Intranets provide many benefits to an organization. They source, destination, and service types (e.g., http, e-mail, and
allow simplified information management and streamlined in- FTP).
ternal communication using the browser paradigm. Browsers
such as Mosaic, Netscape Navigator, and Internet Explorer Management Policies
all speak the same language of information exchange, primar-

Policies for intranet management must address the followingily HTML. The ability to transfer Web pages using HTTP
issues:allows information on distributed servers to flow freely

through an enterprise. Web navigation and search engines
enable organizational participants to find the information • Content. What kind of information can and cannot go on
they need to make better decisions or to interact more effec- the intranet? Who is accountable for the information that
tively with peers. gets published?

• Administration. How much usage of the intranet is al-
Challenges in Deployment of Intranet Technology

lowed? Who is responsible for updating specific Web
sites? What tools get deployed for monitoring usage andBefore an organization can exploit intranet technology to im-

prove business processes, however, it must analyze and solve for converting documents and images to formats that



640 BUSINESS GRAPHICS

allow easy access and efficient downloading (e.g., Post-
script vs. Acrobat)?

• Design. What is the uniform look and feel of sites on an
intranet?

• Security. What tools should be deployed to protect
against viruses, particularly those that can enter an in-
tranet through an Internet access point? How is confi-
dential organizational information protected?

First- and Second-Generation Intranets

Web browsing has been the primary mechanism by which or-
ganizations and individuals share and exchange information
over the Internet or the intranet. The first generation of en-
terprise intranets have concentrated primarily on publishing
information. Second-generation intranets concentrate on col-
laborating, interacting, and transacting, drawing on technolo-
gies and standards that go beyond browsers, HTTP, and
HTML.

One of the technologies that has been used extensively for
moving from first-generation intranets to second-generation
intranets is CGI (common gateway interface), a standard for
interfacing applications with information servers. CGI allows
a basic level of realtime interactivity between a user and a
Web-based application. Typically a user fills out what is fre-
quently called a web form; the CGI application processes the
information in the form by storing it to a remote database
server or by comparing it to information accessed from a re-
mote HTTP server; and finally the CGI application completes
the transaction by outputing an answer back to the user’s
browser. Commercial database applications allow easy access
to relational databases from the World-Wide Web and dy-
namic generation of HTML pages. Second-generation intranet
applications for collaboration and transaction depend criti-
cally on environments for distributed object computing and
component-enabled software.

BIBLIOGRAPHY

G. Booch, Object-Oriented Analysis and Design with Applications, 2nd
ed., Reading, MA: Addison-Wesley, 1994.

A. Goldberg, Smalltalk-80: The Interactive Programming Environ-
ment, Reading, MA: Addison-Wesley, 1983.

C. Hall, Technical Foundations of Client/Server Systems, New York:
Wiley, 1994.

T. Mowbray and R. Zahavi, The Essential CORBA: Systems Integra-
tion Using Distributed Objects, New York: Wiley, 1995.

R. Orfali and D. Harkey, Client/Server Programming with Java and
CORBA, New York: Wiley, 1997.

P. Renaud, Introduction to Client/Server Systems: A Practical Guide
for Systems Profesionals, 2nd ed., New York: Wiley, 1996.

D. A. Taylor, Object-Oriented Technology, A Manager’s Guide, 2nd ed.,
Reading, MA: Addison-Wesley, 1998.

D. Taylor and P. Harmon, Objects in Action: Commercial Applications
of Object-Oriented Technologies, Reading, MA: Addison-Wesley,
1993.

D. A. Taylor, Business Engineering with Object Technology, New York:
Wiley, 1995.

TOM CHÁVEZ

Rapt Technologies Corporation


