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AIRCRAFT MAINTENANCE

Wireman (1) in his book entitled World Class Maintenance
Management refers to maintenance planning as the last fron-
tier for organizations. Many firms are realizing a critical need

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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for effective maintenance of production facilities and op- pair, replacement, and overhaul can be recommended. There
erating systems. It is vital that maintenance management be- may be delays in inspections due to coordination and schedul-
comes integrated with corporate strategy to ensure equip- ing conflicts. Expertise is required in diagnosing potential
ment availability, quality products, on-time deliveries, and safety problems and in making probability assessments.
competitive pricing. The changing needs of modern organiza- There is increased emphasis on the capturing and systematiz-
tions necessitate a reexamination of the role that improved ing of existing aircraft inspection and maintenance
maintenance management plays in achieving key cost and knowledge.
service advantages. Replacement inspections focus on a specific component or

The common trends from Scandinavian (2) and US (1) components that have been scheduled for replacement at spe-
benchmarking studies for maintenance suggest that there ex- cific intervals. The component that was in service may un-
ists a need to develop clear maintenance objectives and goals, dergo further testing in the supply area and repaired if neces-
to define key variables for measuring and controlling mainte- sary and returned as a usable spare. If it is determined that
nance activities, to ensure better linkages between mainte- it is not cost effective to repair the worn component, it will be
nance and production, to move toward computer-based main- discarded. Also, a replacement inspection may result in the
tenance systems, to decentralize some maintenance activities, maintenance inspector making a decision to defer replace-
to instill better training, and to investigate modern mainte- ment of the inspected component.
nance methods. For modern aircraft systems, there is a high degree of re-

Effective and efficient maintenance management is essen- liability built in which means that there are infrequent fail-
tial not only for production systems but for large-scale service ures. When failures are infrequent, it becomes difficult to
systems, such as air and surface transport systems. These re- quickly detect and isolate the problem. The development of a
pairable systems are subject to aging mechanisms, such as knowledge base for fault detection and isolation for aircraft
wear, fatigue, creep, and stress corrosion. Inspection and di- will enable the codification of existing inspection expertise be-
agnostic activities are integral components of an effective fore this expertise leaves the organization. Once captured,
maintenance strategy in an attempt to ensure aircraft system this knowledge can be efficiently applied on a continuous ba-
safety, reliability, and availability. sis via an expert system to enhance the decision making pro-

In the United States, the number of domestic passengers ductivity and consistency of both novice and experienced air-
for all airlines increased from 250 million to 450 million an- craft maintenance inspectors.
nually between 1977 and 1987 (3). The Federal Aviation Ad- Technological advances in engine performance and reliabil-
ministration (FAA) anticipates that the number of domestic

ity, materials, air traffic control, cockpit automation, andpassengers will reach 800 million in the year 2000, and ex-
training have contributed significantly to the current safetyceed a billion by 2010 for a 128% and 272% increase (3). This
levels of the aviation industry. As technological advancessteady growth of air transport and air traffic density places
have fostered aviation product development, new advances inincreasing pressure on airlines and their maintenance inspec-
information management and decision support technologiestion activities. Recently, the FAA established a fourth na-
have made possible improvements in aviation safety monitor-tional aviation research center called the Air Transportation
ing, analyzing, and alerting. Such advances in informationCenter of Excellence for Airworthiness Assurance, which con-
management will lead to more proactive aviation safety ac-sists of 31 universities, 68 industry partners, and 12 govern-
tions. This article reports on the development of an advancedment laboratories.
decision support system to assist inspectors with aircraft in-Efficient inspection activities will facilitate timely aircraft
spection and maintenance diagnostics.maintenance and minimize the cost of aircraft unavailability.

The next section of this article provides a brief, generalOne of the critical issues identified by the aviation industry
overview of the evolutionary nature of maintenance manage-is the need to examine the effects of repairs on the structural
ment and modeling. This article focuses on presenting newintegrity of aircraft. During the past five years, the US Air
diagnostic methods that use an artificial intelligence (AI) ap-Force and the FAA have jointly developed the Repair Assess-
proach for aircraft inspection and maintenance. An expertment Procedure and Integrated Design (RAPID) to address
system is described that is based on a model of Bayesian net-this issue. RAPID is a repair tool to perform static strength
works that may be helpful in uncertainty resolution for prob-and damage tolerance analyses of aircraft structural skin re-
lem diagnostics. The model is demonstrated with three exam-pairs. The damage tolerance analysis module in RAPID can
ples from aircraft inspection and maintenance that illustratecalculate fastener loads, perform simplified crack growth com-
diagnostic procedures for troubleshooting aircraft tire condi-putations, determine residual strength, and estimate an in-
tion, navigation, and hydraulic problems.spection schedule (4).

The inspection of aircraft involves a number of complex
technical, social, political, economic, and human issues. The Trends in Maintenance Knowledge
main purpose of inspection activity is to determine the state

Maintenance modeling is inherently evolutionary in nature.of the equipment, system, etc. This diagnostic activity may
As equipment complexity increases, and as the need for highuncover faults which will lead to corrective maintenance ac-
equipment availability becomes paramount in today’s com-tion. Inspection frequencies, procedures, and criteria may
plex, dynamic systems, there has been a corresponding in-vary for alternative types of aircraft. Alternative safety equip-
crease in maintenance modeling sophistication. The idea ofment and measurement accuracies are required for different
reactionary corrective maintenance progressed to predeter-components. During an inspection, once the state values of
mined preventive maintenance, then to large scale industrialthe system, equipment, etc. have been identified by the in-

spector, then an appropriate maintenance action, such as re- maintenance, to condition-based maintenance determined by
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inspection, to expert maintenance systems, and now towards (10) discuss two general categories of expert maintenance sys-
tems: associative diagnosis and model-based diagnosis. In thea futuristic view of intelligent or self maintenance.

Blanchard (5) and Lyonnet (6) provide overviews of the former, conclusions are reached based on an analysis of fault
possibilities that are verified by testing. The search tree usesevolving maintenance categories. Corrective maintenance in-

volves all unscheduled maintenance actions performed as a coded knowledge from domain experts. In the latter, the real
performance of equipment is compared with the simulatedresult of system/product failure to restore the system to a

specified condition. Corrective maintenance includes failure performance of a computer model, and faults are inferred
from the differences between the two.identification, localization and isolation, disassembly, item re-

moval, and replacement or repair in place, reassembly, check- The applications of expert systems in maintenance are
quite diverse. Representative industries include automotive,out, and condition verification. Preventive maintenance in-

cludes all scheduled maintenance actions performed to retain aerospace, electronics, process, computers, and telecommuni-
cations. CATS is an expert maintenance system developed bya system or product in a specified condition. These actions

involve periodic inspections, condition monitoring, critical General Electric Company with a knowledge base of 550 rules
to detect sudden failures in diesel-electric locomotive systems.item replacements, and calibration.

Predictive maintenance is a relatively new concept in main- IN-ATE is an expert system used for electronic circuit diagno-
sis. FSM is an expert system Boeing uses for continuous con-tenance planning. This category of maintenance occurs in ad-

vance of the time a failure would occur if the maintenance dition monitoring of aircraft alarms. Lockheed developed
RLA, an expert system for repair level analysis for majorwere not performed. The time when this maintenance is

scheduled is based upon data that can be used to predict ap- parts in an aerospace system (11). Bajpal (12) uses an expert
system architecture to troubleshoot general problems withproximately when failure will occur if certain maintenance is

not undertaken. Data such as vibration, temperature, sound, machine tools in manufacturing industries. Bao (13) develops
an expert system to assist in the manufacturing and main-and color have usually been collected off-line and analyzed

for trends. tainability of surface mount technology (SMT) printed cir-
cuit board (PCB) assembly. Khan et al. (14) discuss GEMS-With the emergence and use of programmable logic con-

trollers (PLCs) in production systems, equipment and process TTS, an expert system used by AT&T maintenance specialists
to isolate faults in communication links. Corn et al. (15) de-parameters can now be continually monitored. With condi-

tion-based maintenance, the PLCs are wired directly to an on- scribe TOPAS, an expert system that diagnoses transmission
and signaling problems in real time that may arise online computer to monitor the equipment condition in a real

time mode. Any deviation from the standard normal range switched circuits. One of the most successful expert systems
is CHARLEY, which was developed by General Motors andof tolerances will cause an alarm (or a repair order) to be

automatically generated. Installation costs for such a mainte- based on the knowledge of Charley Amble, an experienced
maintenance engineer (16). This expert system is used to di-nance system can be high, but equipment service levels can

be significantly improved. agnose problems with broken machine tools and to instruct
less experienced individuals by providing explanations. It isIntelligent maintenance or self-maintenance involves auto-

matic diagnosis of electronic systems and modular replace- reported by GM that CHARLEY has reduced training costs
by as much as $500,000 per year per plant.ment units (7). Sensor data from remote facilities or machines

would be provided on a continuous basis to a centralized Although the idea of utilizing expert systems in mainte-
nance held early promise, the use of rule-based programmingworkstation. From this workstation, the maintenance special-

ist could receive intelligent support from expert systems and has led to practical problems in implementation. For example,
XCON, an expert system developed by Digital Equipmentneural networks for decision making tasks. Commands would

then be released to the remote sites to begin a maintenance Corporation for product configuration has over 10,000 rules.
Issues such as maintainability of the knowledge base, test-routine that may involve adjusting alarm parameter values,

initiating built-in testing diagnostics, or powering stand-by or ability of the program, and reliability of the advice have lim-
ited the practical use of most expert systems in maintenancesubsystems, for instance. The FAA in the United States is

developing the Remote Maintenance Monitoring System (17). Other approaches, such as constraint-based reasoning,
are being developed as alternatives to rule-based systems(RMMS) that is an example of the future direction in mainte-

nance automation (8). In some cases, robotics may be used for (18). Also, the reconsideration of Bayesian theory to support
probabilistic reasoning and maintenance diagnostics is beingremote modular replacements.
reexamined (19).

Neural networks are computing systems that incorporateEmergence of New Maintenance Methods
a simplified model of the human neuron, organized into net-

Developments in the area of AI have led to the emergence of works similar to those found in the human brain (20). Instead
expert systems and neural networks. These solution tech- of programming the neural network, it is taught to give ac-
niques have found numerous applications in maintenance ceptable results. The ability of artificial neural networks to
planning. Milacic and Majstorovic (7) report on a survey that capture complex trends has been researched and documented
identified a list of 60 different expert maintenance systems as in a significant number of research papers since 1982, when
of 1987. Frequently, the reasons for the use of expert systems researchers rediscovered their important characteristics (21–
in maintenance are the increasing complexity of equipment, 23). The large number of research papers available on these
the interdisciplinary nature of modern maintenance prob- characteristics prohibits their documentation here, but as
lems, the departure of maintenance expertise from an organi- an indication of their diverse cognitive powers, there have
zation due to retirements, the reduced training time of novice been applications of neural networks in varied areas from

stock market price prediction and credit rating approvaltechnicians, and consistently good decisions (9). Spur et al.
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to engineering applications such as pattern/image recogni- ences about the beliefs of users in response to observations.
Hence, the terminology of belief network, Bayesian network,tion, digital signal processing, and automated vehicle guid-

ance (24). and causal probabilistic network have also been used in the
past.Luxhøj and Shyur (25), Luxhøj et al. (26), and Shyur et al.

(27) report on the use of artificial neural networks to capture A Bayesian belief network is a directed acyclic graph
formed by a set of variables and directed links between vari-and retain complex underlying relationships and nonlineari-

ties that exist between an aircraft’s maintenance data and ables (29). Each variable represents an event and has count-
able or continuous states. Formally, a Bayesian belief net-safety inspection reporting profiles. Neural networks will be

used to implement condition-based maintenance because real work has the following properties:
time sensor data can be trended to predict out-of-tolerance
conditions for critical equipment parameters. Maintenance • Each node in the directed acyclic graph represents a ran-
actions can then be initiated for an adaptive response to these dom variable.
anticipated system perturbations. An oil and gas company in

• Each node representing a variable A with parent nodesDenmark is examining the use of artificial neural networks
representing variables B1, B2, . . ., Bn is assigned a con-to predict the meter factor (pulses/unit volume) or k factor for
ditional probability table:turbine flow meters. By predicting the k factor in future time

periods, significant deviations from the usable flow range can
be anticipated so that maintenance technicians can make ad- P(A|B1, B2, . . ., Bn)

justments and prevent the expensive shutdown of a turbine
for pumping oil or gas. Although the use of neural networks An essential concept for Bayesian belief networks is condi-
in maintenance will undoubtedly increase in the future, their tional independence. Two sets of variables, A and B, are con-
solution potential is constrained by our current understand- sidered to be conditionally independent given a third set C of
ing of human reasoning capabilities and the limits of avail- variables if when the values of the variable C are known, then
able computing power. knowledge of the values of B provides no further information

about the values of the variables of A:

DEVELOPMENT OF A BAYESIAN MODEL
P(A|B,C) = P(A|C)FOR AIRCRAFT FAULT DIAGNOSTICS

Inference in a Bayesian belief network involves computingAs noted in the previous section, there have been numerous
the conditional probability for some variables given informa-expert systems developed in the maintenance and fault diag-
tion (evidence) on other variables. When all available evi-nosis problem area. Maintenance of complex equipment in-
dence is on variables that are ancestors of the variables ofvolves a number of diagnostic procedures that utilize rules
interest, this computation becomes easy. However, when evi-and judgments. The large number of rule-based expert sys-
dence is available on a descendant of the variable(s) of inter-tems developed for fault diagnosis prohibit their documenta-
est, then inference must be performed against the direction oftion here, but a survey of applications is provided in Badiru
the probabilistic dependencies. In this case, Bayes’ Theorem(16). However, classical rule-based expert systems for diag-
is used:nostics have been recently criticized since the large number

of rules for commercial applications results in knowledge
bases that frequently are unmaintainable, untestable, and
unreliable (17). P(A|B) = P(B|A)P(A)

P(B)
With the increased computational power of modern com-

puters, the use of Bayesian probability theory to construct ex- A Bayesian belief network is analogous to an influence dia-
pert systems has been revived. As reported in Kumara et al. gram in which the causal impacts between events are con-
(28), current expert systems for fault diagnosis suffer from an nected by arrows. An influence diagram is used instead of a
inability to handle new faults, an inability to recognize when Bayesian belief network when dealing with decision making,
a fault is beyond the consultation system’s scope, inadequate since a Bayesian belief network does not explicitly treat the
explanation of the final diagnosis, excessive requests for new concepts of utility (probabilistic value assessment) and deci-
information, and difficulties in construction. sions. An influence diagram is simply a Bayesian belief net-

work extended with utility and decision nodes. The certainty
Bayesian Belief Networks of each state is described by its probability of occurrence, and

the relations between events are described by conditionalA Bayesian belief network is used to model a problem domain
probabilities. The change of the certainty of an event affectsthat contains uncertainty. Bayesian learning views the prob-
the certainty of other events. When evidence enters into thelem of constructing hypotheses from data as a subproblem of
network, the certainty of events, that is, the probabilities ofthe prediction problem. Essentially, the idea is to use the
the states of events, can be obtained by propagating the evi-hypotheses as intermediate steps between data and predic-
dence. Therefore, Bayesian networks create a very useful lan-tions. However, the hypotheses are made in the context of
guage in building models of domains with inherent uncer-uncertainty. This uncertainty may be due to an imperfect un-
tainty. The probabilities of events provided by the networkderstanding of the problem domain, incomplete knowledge of
model are used to support the decision making. In this article,the state of the domain at the time when a given task is to be
Bayesian networks are modeled as decision support tools forperformed, randomness in the system, or a combination of the

foregoing factors. Bayesian networks are used to make infer- aviation safety diagnostics.
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Bayesian Belief Network Technology in the HUGIN System The use of such a model-based expert system is being in-
vestigated as a possible computerized technique to support

The calculations for the propagation of probabilities in a
aircraft safety inspectors. Such a system would provide the

Bayesian belief network are usually tedious (30). We used
ability to consider alternative hypotheses under uncertainty

HUGIN (29) as a Bayesian network programming environ-
when diagnosing aircraft systems. The use of a Bayesian

ment for modeling and calculations.
model could provide two types of assistance to the safety in-

HUGIN is a software for the construction of knowledge
spector. First, information related to the status of the aircraft

based systems based on causal probabilistic networks (CPNs). could be presented, and safety alert information could be dis-
The software was developed as part of an European ESPRIT played. Second, the conditional reasoning properties of the
project on diagnosing neuromuscular diseases. The software Bayesian network will enable the safety inspector to formu-
incorporates new, efficient algorithms to support Bayesian late ‘‘What if?’’ questions on the current condition of the air-
probability calculations and offers an alternative to tradi- craft and experiment with possible causes for the observed
tional rule-based programming (31). As noted previously, symptoms.
these CPNs, also known as belief networks or influence dia- The creation of a complete HUGIN model requires three
grams, represent a possible means to efficiently model the un- steps. Initially, the nodes of the belief network or the influ-
certain relationships among components of a system. More- ence diagram must be mapped out. Second, the states of the
over, model-based expert systems incorporate causal nodes must be defined. Third, the probabilities of each state
knowledge by including a representation of a system’s struc- must be determined. Each of these phases requires ample
ture, function, and behavior. The HUGIN algorithm, a simpli- planning, or else the model will be compromised during a sub-
fication of the Lauritizen–Spieglehalter (32) algorithm, is a sequent point of development. While developing the influence
novel application of Bayes’ Theorem that reduces the proba- diagram is only the first step, it is the basis for all future
bility computations to a series of local calculations using only algorithmic computations.
variables obtainable from one object and its neighbors in a The computerized diagnostics model is not intended to re-
graph structure, thus avoiding a calculation of the global joint place the expertise of the inspector, but it is designed to pro-
probability distribution (31). vide advanced decision support. A decision support system

The HUGIN model uses a number of statements about the that uses Bayesian probability computations will not only re-
problem domain (e.g., ‘‘The patient has lung cancer’’) and a tain the human in the decision making process but also pro-
number of causal relationships between such statements. vide systematic guidance in identifying causal factors for air-
Each statement is assigned a number of states (e.g., ‘‘yes’’ and craft maintenance problems, evaluating likelihoods of these
‘‘no’’), and each state is assigned a probability. Causal de- factors, and decomposing complex combinations of causal fac-
pendencies are given as conditional probabilities for a state tors based upon historical data and/or expert judgments.
given the states of the parent node. Three prototype Bayesian belief networks are presented

In a safety diagnostics model, for example, the knowledge for safety diagnostics of aircraft subsystems. Since the actual
embedded in the cause-effect links between nodes in the CPN initial probabilities for events and the conditional probabili-
will be answers to questions such as ‘‘If the direct cause repre- ties between events are not provided in this study, a session
sented by node X is known to have a given value, what is the with a domain expert on aviation safety was conducted. How-
probability that the effects, given in node Y, will have a cer- ever, the model structures are based upon fault reporting and
tain outcome?’’ With a CPN, one could ask ‘‘If the engine in maintenance manuals from a major aircraft manufacturer.
the car gets hot, what is the probability that the carburetor
will stop working?’’ In normal rule-based systems, the ques-
tion would probably be ‘‘If the carburetor stops working, will HUGIN PROTOTYPE: AIRCRAFT
the engine then get hot (yes/no)?’’ With HUGIN, the inference TIRE CONDITION ASSESSMENT
engine allows evidence to be entered into nodes and the effect
of such evidence to be propagated to other nodes, which pro- Luxhøj and Williams (33) model aircraft tire condition assess-
vides for a very efficient reasoning process, thus confirming ment as an example of a Bayesian belief network application
or refuting beliefs. The model could be used in either moving to aviation. This topic was selected because it is reasonably
from observed symptoms to causes (i.e., a diagnostic/analysis complex and has a direct link to aircraft safety. Many factors
mode) or from causes to symptoms (i.e., a design mode). Data affect the performance of an aircraft tire, including weather
for the probabilities of the states at each node is typically and pavement conditions. Often, a tire is serviceable even if
obtained from historical information and/or expert judg- it has several cuts or a bald patch. Each airline has defined
ments. tolerances for when a tire must be replaced. The Federal Avi-

Horvitz et al. (19) describe an application of HUGIN to de- ation Administration (FAA) approves the airlines’ mainte-
velop a probabilistic diagnostic model for NASA’s space shut- nance tolerances and procedures. The FAA inspector must be
tle propulsion-system engines. The belief network shows how able to identify when a tire has deviated from the airline’s
the values of helium pressure affect the pressure readings as requirements and must inform airline maintenance per-
reported by the two independent pressure sensors on the sonnel.
space shuttle’s orbital maneuvering system (OMS) helium The criteria for removing tires are complex. Tires can fail
tank. However, these pressure readings can also be affected, in several different modes. The inspector must be able to rap-
with uncertainty, by the errors in the sensor mechanisms idly assess the condition of the tires on an aircraft during a
themselves. An experienced user in sensor failures can code a ramp inspection. Uncertainties may exist as to the causal fac-
belief about the relative rate of failure of alternative critical tors of an aircraft tire problem. Since the actual initial proba-

bilities for events and the conditional probabilities betweensensors in the system.
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events are not provided in this study, a session with a domain placed if any three cuts are grouped into one quarter of the
tire’s surface area.expert on aviation safety was conducted. However, the tire

Chevron cutting is caused by operation on grooved runwaycondition model structure is based upon the maintenance
pavements. Some of the reasons for replacement are chunkingmanual from a major aircraft manufacturer.
of the tire down to the fabric of the tire and chunking that
affects wheel assembly balance.Reasons for Tire Replacement

Tires must be replaced when their tread has worn to ���
There are many different types of tire damage. Some common inch or less at any single spot. In some instances involving
problems include deep cuts, long shallow cuts, multiple small tread wear, tire changes may be scheduled for maintenance if
cuts in a small area of the tire, Chevron cuts, tread wear, a flight will be delayed.
bulges, flat spots, tread separation, and ozone checking. The Flat spots are a reason for tire replacement if the cord is
foregoing problems, depending on their severity, may require exposed. Other, less severe flat spots may cause the tire to be
immediate removal of the tire. Other problems may allow the scheduled for maintenance at the next base. Tread separa-
plane to continue flight, but maintenance must be scheduled tion, defined as any condition where the tread separates from
for the next maintenance base or programmed for tire re- the tire, can occur in both new and recapped tires. Ozone
placement at the next scheduled maintenance. The mainte- cracks, caused by environmental conditions, require replace-
nance procedures of an airline set the following criteria for ment only if the cracks enter the fabric.
tire replacement.

Some general guidelines for aircraft tire service and dam- Bayesian Belief Network Development
age limits of a typical airline are provided below. For this

The first step in developing the maintenance diagnostics ex-
typical airline, tire cuts can be classified as shallow, deep, pert system is to formulate the problem in the form of a
sidewall, and multiple cuts. A cut exceeds the shallow cut cri- Bayesian belief network. Figure 1 shows the tire replacement
teria if the cut is more then two inches long, and its depth network. The network is composed of three layers. The top
goes through more then two tread breakers. The deep tread layer nodes are the tire problems that can be observed during
cut removal criteria is satisfied if the cut is greater then 1.5 aircraft inspection. These are the problems described above.
inches long, and its depth exceeds two tread breakers and one The bottom layer consists of one node that provides as an
cord ply. A shallow tread cut requires replacement if the cut output the action required for the tire problems identified.
depth is through two breakers, and the cut length exceeds The intermediate layer represents additional information nec-
two inches. If a sidewall cut extends into the cord ply, removal essary to make a specific diagnosis.
of the tire is required. If more then six cuts extend through
two breakers and are greater then 1 inch in length, then the Nodal States. The second step in developing the decision

support system is to determine the possible states for eachtire requires replacement. Additionally, the tire must be re-

Figure 1. Influence diagram showing causal relationships for aircraft tire condition assessment.
[Source: Luxhøj and Williams (33)].
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Figure 2. Possible states of several nodes. [Source: Luxhøj and Williams (33)]

node in the Bayesian belief network. For example, the ‘‘Cut cuts) � 0.3, and P(OK�3 through 6 cuts) � 0.7. The next node,
Depth’’ node has three possible states. The cut can be through surface area, is used to determine the probability of any three
two breakers and the cord ply, it can extend through two cuts being grouped into more than one-fourth of the tire’s sur-
breakers, or the cut depth could be acceptable. If the cut is face area conditioned on the length and depth requirements
less the two breakers deep, cut depth is not deep enough to and the number of cuts [or P(3 cuts in one-fourth surface
require maintenance. Figure 2 provides a listing of the possi- area�length and depth exceeds requirements and the number
ble states of several nodes. of cuts is between 3 and 6)].

These probabilities were defined through the available lit-
Defining Probabilities. The third phase in developing the erature (34) and in consultation with an aviation safety ex-

HUGIN model is determining the numerical part of each link. pert. The safety expert was shown an initial version of the
This is accomplished through the use of conditional probabil- probabilities and suggested revisions based on his prior expe-
ity tables. For each node, a conditional probability is input for rience.
each node given the state of its parent nodes. The sum of the
probabilities of the states of a node must equal one. Figure 3

Interactive Problem Solving. The HUGIN program allowsshows an example of the conditional probabilities entered for
the model user to adjust the probabilities of states of nodesthe ‘‘Length and Depth’’ node (the node is highlighted in
based on observed information. The software propagates thisbold). In reviewing the conditional probability table for this
change through the network and updates the conditionalnode, note that if the number of cuts from the previous node
probabilities at each node based on the new information.is between 3 and 6, then the probability that the length and

Figure 4, a computer screen snapshot from the HUGINdepth exceeds requirements is 0.3, and the probability that
program, shows the unperturbed conditional probabilities. Ifthe requirements are satisfactory is 0.7. In Bayesian termi-

nology, P(length and depth exceeds requirements�3 through 6 we observe a deep, long cut in the tire (i.e., we have found
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Figure 3. Conditional probability table for ‘‘Length and Depth’’ node. [Source: Luxhøj and Wil-
liams (33)]

evidence of a cut), the software can propagate the effects of
this new knowledge through the network.

Figure 5 shows the changes in conditional probabilities.
Note that the probability for a diagnosis of tire replacement
at the ‘‘action’’ node increases to one. Figure 6 shows a situa-
tion where a flat spot has been observed that does not require
immediate replacement, and the new information has been
propagated through the system. The diagnosis at the bottom
level action node now indicates that the tire should be re-
placed at the next maintenance base. An inspector observing
aircraft on the ramp could use this model to get a better under-
standing of the severity of a maintenance problem. A diagnosis
of this type can assist the inspector in determining whether the
carrier is adhering to its maintenance procedures.

HUGIN PROTOTYPE: AIRCRAFT NAVIGATION SYSTEM

Luxhøj (35) develops a HUGIN prototype to diagnose prob-
lems with an aircraft’s navigation system. An accurate navi-
gation system in an aircraft is important to aviation safety in
autopilot, communications, and navigation. The inspection of
the navigation system for a large aircraft is performed by
comparing the readings of the altimeters on the pilot’s panel
and on the flight officer’s (F/O) panel. The navigation system
is normal when both altimeters are operative. That is, the
readings from two altimeters are identical. Otherwise, a
search for the faulty component is initiated. A typical altime-
ter consists of a meter system, a barometer indicator, and an
alternative air data. The meter displays the flight altitude.Figure 4. Unperturbed conditional probabilities. [Source: Luxhøj

and Williams (33)] The barometer indicator signals when the barometer has
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Figure 5. Propagation of ‘‘Evidence’’ of
cut depth and cut length. [Source: Luxhøj
and Williams (33)]

failed. If the barometer has failed, the altimeter is inopera- alternative air data is selected. The alternative air data can
also correct some of fluctuating meter problems. The influ-tive. An influence diagram displaying these causal relation-

ships is presented in Figure 7. However, it is possible that ence diagram with probabilities is shown in Fig. 8. The
conditions of components which affect the altimeter’s read-the altimeter is inoperative when the barometer is normal.

Some of these types of altimeter errors can be corrected if the ing are shown in the left. Each component is subject to one

Figure 6. Observation of flat spot and
maintenance recommendation. [Source:
Luxhøj and Williams (33)]
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Table 1. Descriptions of Fault Codes for Aircraft
Navigation System

Fault Codes Descriptions

34-12-01-01 Inoperative barometer on captain’s altimeter
34-12-02-01 Rectifiable nonbarometer related error on captain’s

altimeter
34-12-03-31 Not rectifiable nonbarometer related error on cap-

tain’s altimeter
34-12-07-01 Captain’s meter is sticking
34-12-70-01 Rectifiable fluctuation on captain’s meter
34-12-71-01 Not rectifiable fluctuation on captain’s meter
34-12-04-02 Inoperative barometer on flight officer’s altimeter
34-12-05-02 Rectifiable nonbarometer related error on flight offi-

cer’s altimeter
34-12-06-02 Not rectifiable nonbarometer related error on flight

officer’s altimeter
34-12-07-02 Flight officer’s meter is sticking
34-12-70-02 Rectifiable fluctuation on flight officer’s meter
34-12-71-02 Not rectifiable fluctuation on flight officer’s meter

Source: Luxhøj (35).

Captain’s
meter Capt. meter

operation
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Other
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Figure 7. Influence diagram showing causal relationships for air-
craft navigation system. [Source: Luxhøj (35)]

Note that there are three observations for the inspection:
the condition of the metering system (normal, sticky, or fluc-
tuating), the barometer indicator, and the comparison result.or more failure modes. The status of the altimeters is indi-

cated by the fault codes in the middle. The descriptions of In addition, the selection of the alternative air data is an ac-
tion. By propagating the evidence of the observations, the net-the fault codes are listed in Table 1. The comparison result

and the selection of the alternative air data is displayed in work would provide the possible fault codes of the navigation
system. As illustrated in Fig. 8, if an inspection shows thatthe right.

Figure 8. Navigation system model with
probabilities given that all observations are
known. (HUGIN Result). [Source: Luxhøj (35)]
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sure is monitored by a dual system: the pressure gauge dis-
plays the pressure level, and a sensor lights up a warning
signal when the pressure is out of the normal range. How-
ever, the monitoring results will be in error if the sensor or
the pressure gauge has failed. An influence diagram with
probabilities or a causal probabilistic network is shown in
Fig. 10.

Usually, the only information for the hydraulic system is
obtained from the pressure display and the state of the warn-
ing signal. If the information suggests that the hydraulic sys-
tem is in error, knowing the most possible factor that causes
the error would facilitate the identification of the problem ef-
ficiently. A case in Fig. 10 shows that we can almost ensure

Relief
valve Leakage

Fluid
quality

Pump
system

Pressure
sensor

Pressure
gauge

Warning
signal

Pressure
display

Pressure
level

that the actual pressure level is lower than the normal range
Figure 9. Influence diagram showing causal relationships for air- when the pressure gauge displays low pressure level and the
craft hydraulic system. [Source: Luxhøj (35)] warning signal is on. The network also shows several candi-

dates to cause the malfunction: the relief valve fails in open-
ing, the quality of the fluid has degraded, or the system hasthe readings from two altimeters are different with the alter-
leaks. Since both the relief valve and the fluid quality havenative air data selected, but both meters are normal and none
the highest probabilities to fail, the most efficient inspection

of the barometer indicators is on, the inspector would know or maintenance is to start the diagnosis with these two
the most possible fault is a not rectifiable altimeter error on causes.
the pilot’s panel from the information provided by the An inspector who found that the fluid of the hydraulic sys-
network. tem was just serviced so that the fluid quality should be good

can enter this evidence into the network and obtain the new
HUGIN PROTOTYPE: AIRCRAFT HYDRAULIC SYSTEM findings from the network as in Fig. 11. Now, the probability

of the leakage increases, but the relief valve that fails in
Luxhøj (35) also reports on a HUGIN prototype to diagnose opening is even more evident. The inspector should check the
technical problems with an aircraft’s hydraulic system. The relief valve first and probably would identify it as the cause

for the low hydraulic pressure.hydraulic system of an aircraft should maintain its pressure
in a normal range, that is, a working level, in order to support
the control surface to function. A hypothetical example in Fig. CONCLUSIONS
9 shows that the pressure level in the hydraulic system is
affected by the presence of leakage, the fluid quality, and the After observing a problem, the aircraft inspector begins to

identify the causes for the problem quickly. Therefore, theconditions of the relief valve and the pump system. The pres-

Figure 10. Hydraulic system model with probabilities given that the pressure display shows
low level and warning signal is on. (HUGIN Result). [Source: Luxhøj (35)]
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Figure 11. Hydraulic system model with probabilities given that the pressure displays low level,
warning signal is on, and fluid quality is good. (HUGIN Result). [Source: Luxhøj (35)]

probabilities of the possible causes are important references to the search to identify the safety problems. Knowledge elic-
itation is less than in rule-based systems, since the knowledgeto prioritize the search and to identify the causes precisely

and efficiently. Such probabilities can be provided by a Bayes- is embedded in the structure of the Bayesian belief network.
Such a network also has potential to function as an intelligentian network, as described in the previous examples. The in-

fluence diagram that identifies causes in a malfunctioning tutoring system for novice aviation safety inspectors who are
learning about inspection diagnostic procedures.system is modeled by a Bayesian network. When any problem

is detected, the posterior probabilities of possible causes can
be determined after the observations are entered into the
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