
404 CRITICAL PATH ANALYSIS

products such as computer systems and telecommunication
hardware. It should be mentioned that critical path analysis
of digital circuit design is different from the critical path anal-
ysis method used in PERT networks, which is commonly ap-
plied to describe and control the workflow of engineering proj-
ects. The critical path analysis of a digital circuit may lead to
the modification of the topology and structure of the circuit,
as well as changes in the underlying algorithm that the cir-
cuit is implementing. These changes, when needed, are de-
signed to decrease the overall critical path of the circuit, its
implementation cost, and sometimes its power consumption.

The recent technological revolution in areas such as semi-
conductor processing, very large scale of integration (VLSI)
circuit design, and computer-aided design (CAD) of electronic
circuits motivated the development of several state-of-the-art
methods for critical path analysis and minimization for digi-
tal circuit design. As a consequence of the present revolution
in integration techniques, the area of an integrated circuit
(IC) or chip is no longer the most critical design parameter.
The throughput (i.e., the rate of processing of input samples)
and the latency of a digital circuit (i.e., time needed to com-
pute an output sample after all necessary inputs samples are
available) have both become key design parameters. Figure 1
illustrates the concepts of latency and throughput of digital
hardware in more detail, where the initiation interval is de-
fined as the inverse of throughput of a digital circuit.

There is a direct relationship between the critical path
(CP) of a digital circuit and the maximal possible throughput
[i.e., the length of the critical path is a lower bound on the
initiation interval (TI) that is equal to the inverse of the
throughput]. To find the critical path of a digital circuit with
N input and M outputs and K delay elements (memory/regis-
ters), the following definitions are necessary:

1. A primary input (PI) is any one of the N inputs of the
circuit, where N is greater or equal to 1.

2. A primary output (PO) is any one of the M outputs of
the circuit, where M is greater or equal to 1.

3. Each output from a delay element of the circuit is called
a pseudo primary input (PPI). A circuit without delay
elements (K � 0) is called a memory-less (combinato-
rial) circuit and it has no PPIs.

4. Each input to a delay element of the circuit is called a
pseudo primary output (PPO). A memory-less circuit
has no PPOs.

The length of a path from a PI/PPI to a PO/PPO is mea-
sured by the number of clock cycles to perform the operations
(e.g., additions, multiplications) in the path. The critical path
of a circuit is the path with the longest length, where only
paths without delay elements (memory/register) are consid-
ered (i.e., delay elements are either source or sink nodes to a
path). The length of the critical path of a digital circuit can
be computed, for example, by using variations of the all-pairs
shortest paths algorithm, where each PI or PPI will be a
source node and each PO or PPO a sink node. Figure 2 illus-CRITICAL PATH ANALYSIS
trates these concepts, where it is assumed that each operation
is computed in one clock cycle for the sake of simplicity.Critical path analysis and minimization are relevant consid-
Therefore, there is an understood delay after each operationerations when designing digital circuits (e.g., application-spe-

cific integrated circuits, ASIC) to be incorporated in electronic and a corresponding delay in all parallel paths of the circuit.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

CRITICAL PATH ANALYSIS 405

Figure 1. Latency and throughput of a

Digital
circuit

in[0]
In

In Out

initiation
interval

Throughput = (Ti)
 –1

Out

in[1] in[2] in[3] in[4] in[k]

Time (clock cycles)* * *

out[0]
Ti =

out[1] out[2] out[3]

LT = latency

out[4] out[k]

* * *

digital circuit.

The latency (LT) of a digital circuit is a function of the representations of an algorithm specifying the circuit to be
implemented. These transformations are widely recognized bylength of the longest direct path from a PI to a PO, where

explicit delay elements are included in the path. In this case the digital design community to be effective techniques in in-
creasing the competitive advantages of the final chip design.the length of a path is measured as the product of the number

of delay elements in the path times the initiation interval There is an abundance of published transformation tech-
niques that efficiently make a tradeoff between latency and(critical path) measured in number of clock cycles. The la-

tency of a memory-less circuit is equal to the critical path of throughput (e.g., pipelining, Fig. 3). However, many real-time
applications in areas such as flight, numerical control, ro-the circuit.

Critical path minimization methods are, therefore, essen- botics, and telecommunications have strict limits on the maxi-
mum allowed latency. This fact restricts the application oftial in throughput optimization. Proper module selection and

scheduling are the basic design activities which apart critical transformations, leading to additional latency in exchange for
higher throughput.path length. Module selection involves the assignment of

modules (e.g., adders, multipliers) to each operation (e.g., ad- In those situations, retiming (Fig. 3), a transformation
technique introduced by Leiserson and Saxe, has proven toditions, multiplications) in such a way that the length of the

critical path length is traded against area and power con- be a useful optimization technique to maximize throughput
without an increase in latency. Retiming involves moving thesumption (i.e., faster modules usually require more area and

power). Scheduling involves the proper time assignment of delay (memory/register) elements in the circuit in such a way
that the intended original computation is preserved, but pa-operations sharing the same module (i.e., deciding their order

of execution whenever sharing of modules and other resources rameters such as critical path length are optimized. However,
the power of retiming is often limited by the structure of theis a necessity due to constraints in the implementation cost

[e.g., area]). computation to be mapped into the digital circuit being de-
signed (i.e., by the particular description being used to specifyHowever, these two techniques have a limited efficacy be-

cause both assume that the algorithm underlying the digital the algorithm to be mapped in hardware). Also, algebraic and
redundancy elimination transformations have been proposedcircuit being designed is fixed. Increasing requirements for

chips with higher throughputs and reasonable implementa- several times, most often in the tree-height reduction frame-
work, as an efficient technique for throughput optimization,tion costs have led to the development of algorithm transfor-

mation techniques (i.e., transformations to be applied at the without additional latency introduction. However, the power
of algebraic and redundancy manipulation transformations ishigh level, such as the register transfer level, RTL), which are

Figure 2. Relationship among critical

In

Primary
input (PI)

A pseudo primary input (PPI) A pseudo primary output (PPO)

b4 b3 b2 b1

D

+

D

+

D

+

In

Out

Out

CP = critical path = 5 clock cycles

LT = latency = 4 * CP = 20 clock cycles

CP = critical path = 2 clock cycles

LT = latency = 4 * CP = 8 clock cyclesb4 b3 b2 b1

+ +

b0

b0

+

+

D

D D D

+

Primary
output (PO)

D

path, latency, and throughput of a circuit.

406 CRITICAL PATH ANALYSIS

Figure 3. Pipelining and retiming.

+

In

Out

CP = 4
LT = 16

Delays elements are movedDelays elements are inserted

After pipelining After retiming

Initial circuit

b3 b2 b1 b0

D

+

D

+

D

+

D

+

In

Out

CP = 2
LT = 10

b3 b2

b1 b0

D

+

D

+

D

+

D

+

In

Out

CP = 2
LT = 8

b3 b2 b1 b0

D

+

D

+

D

+

D

D D

D D D D

limited by the initial position of delay (memory/register) ele- However, if the transformation steps are applied, as shown
ments. Only by targeting both functional restructuring of the in Figs. 4(c) to 4(e), we can obtain a significantly more drastic
computation to be mapped in hardware and retiming can the reduction in the length of the critical path. The idea is to iden-
maximal possible throughput improvement be achieved. The tify the specific reasons why retiming is ineffective and how
linear predictor example (Fig. 4) illustrates this point, provid- the structure of the computation has to be transformed, and
ing key insights about several issues addressed in this chap- then directly target and restructure those places in the con-
ter. Figure 4(a) shows the original design, and Figs. 4(b), 4(c), trol data flow graph structure, using algebraic transforma-
4(d), and 4(e) show variations in the computation structure. tions, so that retiming for critical path reduction is enabled.

There has been rapid evolution of semiconductor pro- As we already mentioned, although there are eight delays in
cessing technology, improvements in integrated devices de- the linear predictor example, none of them can be used to
sign methodology, and a widespread availability of CAD tools reduce the critical path. The reason behind this situation is
in the last two decades. This has created a climate in many the fact that there is no delay on edges x and y, so no delay
application domains in which the importance of area as the can be moved across the addition operation to the critical
most critical parameter of a design has been reduced. This path. In this situation associativity and commutativity may
(r)evolution has simultaneously elevated the optimization of help. We applied associativity and commutativity on two
throughput to the position of a key design parameter. The smaller chains of additions in the example. This application
majority of optimization problems associated with throughput of associativity and commutativity can be denoted, respec-
optimization in high-level synthesis are trivial as long as the tively, in algebraic form as (�1 � �2 � �3 � �4 � �5 � �2 �
implementation cost (e.g., area) is not a factor. For example, �3 � �4 � �5 � �1) and (�6 � �7 � �8 � �9 � �10 � �7 � �8 �
during module selection it is obviously sufficient to select the �9 � �10 � �6). The critical path is unchanged nine control
fastest components; in scheduling, any proper technique that steps long. However, now retiming is enabled and it reduces
honors the critical path is equally good for this goal. However, the critical path to four control steps. We see that associativ-
improvements due to this type of optimization are often not ity and commutativity are better utilized in this way than in
sufficient to meet ever-increasing requirements for higher the tree height minimization framework, although they did
throughput. In this situation, transformations have been not directly reduce the critical path at all. The retiming that
widely recognized as an efficient way to provide a competitive transforms the structure in Fig. 4(c) to the structure shown
advantage in design. in Fig. 4(d) can be done in polynomial time using the Leiser-

son-Saxe retiming algorithm for critical path reduction.
The two-phase process, where algebraic transformationsALGORITHMIC TRANSFORMATIONS AND RETIMING

enable retiming, can be iterated to increase throughput fur-
ther. This iteration brings even further throughput increase.For simplicity, we will assume that each operation (either a
After the application of associativity and commutativity formultiplication with constant denoted as a triangle on the fig-
algebraic speedup (explained later in this article), we obtainures or an addition) in the linear predictor example takes one
the structure shown in Fig. 4(e). The critical path is reducedcontrol cycle. The initial critical path is nine control cycles
to three cycles. The Leiserson–Saxe retiming algorithm can-long [see Fig. 4(a)]. It is easy to conclude that retiming is not
not bring an additional improvement but can reduce the num-effective on this example and cannot reduce the critical path,
ber of delay elements, which correlates well with register re-because no delay can be moved along the critical path from
quirements. So total improvement by a factor of 3 is achievedthe input through multiplication with constant b4 and the
using retiming, associativity, and commutativity in the linearchain of additions to the output. Associativity and commuta-
predictor example.tivity, as used in several tree-reduction-based techniques, are

As we already saw in the iterated application of the basicslightly more effective: The critical path can be reduced to
seven control cycles, as shown in Fig. 4(b). procedure, in the general case, it will not be sufficient to use

CRITICAL PATH ANALYSIS 407

only associativity and commutativity in order to enable retim- nipulation techniques so that retiming can reduce the critical
path length provably in the transformed computational struc-ing. Also, although it is possible to address this small example

manually, when the examples are large it is not possible to ture. A key component of the approach is the algebraic
speedup technique, which combines the power of all alge-use simple ad hoc analysis to identify goals during the alge-

braic manipulation and redundancy manipulation phase. braic and redundancy manipulation transformations to
maximize the probability that an arbitrary set of requiredThe approach presented in this article generalizes the ERB

(eliminating retiming bottlenecks) (1) method from logic syn- and arrival times are satisfied. An iterative improvement
framework significantly enhances the power of the initialthesis research, which shows how to identify conditions that

are sufficient to be met using algebraic and redundancy ma- ERB algorithm.

Figure 4. The linear predictor example:
(a) the initial CDFG; (b) CDFG after ap-
plication of tree height reduction; (c) after
application of associativity and commuta-
tivity; (d) after retiming; (e) after reiter-
ated application of algebraic transforma-

In

Out

L = 9

(a)

(b)

(c)

(d)

(e)

L = 7

b4
x

b3 b2 b1

D

+

D

+ +

D

+

Z

y
b1' b2' b3'

D D

+

D

b4'

+

D

+

X

b4 b3 b2 b1

D

+

D

+

D

+

D

D

+

+

b1' b2' b3'

D D

b4'

+

D

+

D

+

+

L = 9

Z

X

b3 b2 b1

+ ++

DD

+

b1' b2' b3'

D D

b4'

+ +

DD

++

b4

D D

L = 4

Z

X

b3 b2 b1

+ ++

D

+

b1' b2' b3'

D D

b4'

+ +

D

++

b4

D D

D D

D D D

L = 3

X

b3 b1

+

D

b1' b2' b3'

D D

b4'

D

+
+

+

+

b4

D D

D D

D D D

++

+

b2

tions.

408 CRITICAL PATH ANALYSIS

most elaborate sets of transformations are given in several
references (11–15). Trickey (11) strongly concentrated on sev-
eral transformations in the Flamel system, including five
variants of loop merging, loop unrolling, and tree height re-
duction and constant folding. He targeted the minimization
of the critical path under area constraints, and although his
optimization strategy was mainly greedy, Flamel achieved ex-
cellent experimental results on a benchmark set of 15 ex-
amples.

Walker and Thomas used in-line expansion, dead code
elimination, several types of select transformations (condi-
tional transformations in which code is moved across bound-
aries imposed by the control structure), and pipelining during
preprocessing for both structural and behavioral partitioning
in the System Architecture Workbench (SAW) (16). Haroun,
in SPAID (13), used retiming for critical path reduction, pipe-
lining, interleaving, substitution of multiplication by a con-
stant with shifts and additions, associativity, commutativity,
and distributivity. Hyper (15) combines more than 20 basic
transformations in an optimization-intensive framework for
optimization of both throughput and area. See Fig. 6.

In Out+

+
D

D

+

+

+

+
D

D

+

+

In
Out

+

+

+

DD

D

+

+ +
+

+

D

+ +

+

+

D D

Y[n]

k1

k2 k4

k3

X[n]

D

D

*

*

D

+

Hyper-LP (16) modifies this framework and, by exploring
Figure 5. Fourth-order IIR filter: (a) The initial structure, (b) the the relationship between power consumption and transforma-final structure after the application of an iterative ERERB technique.

STATE OF THE ART IN TRANSFORMATION APPROACHES
FOR HIGH-LEVEL SYNTHESIS

Recently, transformations have been rapidly establishing
themselves as one of the most effective ways to improve a
design’s parameters. Transformations have been investigated
and regularly used for performance enhancement is several
engineering areas, most vigorously in software compilers and
logic synthesis. Optimizing software compilers usually em-
ploy a set of transformations for speed improvement and code
size reduction. More recently, compilers for parallel pro-
cessing systems have been augmented with a set of transfor-
mations that explicitly target concurrency exploration. De-
tailed surveys of most popular transformations in compiler
research and engineering can be found in diverse publica-
tions (2,3).

Transformations in logic synthesis are most often studied
in two frameworks, combinational and sequential optimiza-
tion. Combinational optimization uses algebraic, Boolean, and
redundancy manipulation techniques, while sequential opti-
mization augments the set of transformations with retiming.
Besides the use of the Leiserson–Saxe algorithm for the mini-
mization of the critical path and the number of delay ele-
ments, other important sequential optimization work includes
research done by De Micheli (4), in which a subset of combina-
tional transformations is combined with retiming; Bartlett
(5), which addressed retiming of sequential circuits with level
sensitive latches; Malik (6), who used peripheral retiming for
optimization of pipelined circuits; and Shenoy (7), who ex-
tended retiming to cover circuits with level-sensitive latches.
Finally, recently Dey (1) introduced the ERB algorithm,
which efficiently uses combinational optimization to enable

+

+

**

*

*

*

e

d

c

b

(a)

(b)

(c)

(d)

a

e

f g

+

*

*

*

* *

+

+

**

edcba
e

f g

+

+

**

edcba
e

f g

+

**

e

e

e f

f g

*

e fdcba

+

**

e e f

*

e fdcb

d

f g

cb

e

a

a

+

*

*

dcba

e

f g

+

*

*

dcba

more effective retiming. See Fig. 5. Figure 6. Various intermediate stages in the algebraic restructuring
Although several high-level synthesis papers that describe process: (a) common level extraction, (b) application of distributivity,

research done in late 1970s addressed transformations (8– (c) common subexpression elimination, and (d) application of associa-
tivity.10), the use of transformations gained impetus recently. The

CRITICAL PATH ANALYSIS 409

tions, achieves an order of magnitude improvement on a large there has been surprisingly little effort to explore this rela-
tionship by adapting methods of one area and applying themset of examples. Several researchers, including Gyrczyc (17),

Devadas (18), Goossens (19), and Hwang (20), addressed soft- to another. The major reason is that regardless of the men-
tioned similarities, there are also several sharp differences inware pipelining during high-level synthesis. Wolf (21) ad-

dressed the use of several transformations in high-level syn- computations done in the logic synthesis domain and the
high-level synthesis domain, which prevent direct sharing ofthesis for control-dominated designs. Functional pipelining,

due to its extraordinary power to change dramatically the methodologies and give a different flavor to the problems. We
discuss some of the similarities and differences between thequality of design (in particular when there are no feedback

loops), received special attention in high-level synthesis. Most two domains that need to be addressed to adapt a perfor-
mance optimization technique like ERB from logic synthesisoften pipelining is addressed separately from the majority of

transformations (note that since it introduces additional la- to high-level synthesis.
tency it is actually not a transformation in the strict sense).
Several excellent in-depth studies of many important aspects 1. Logic synthesis techniques like ERB (eliminating retim-
of pipelining are available (22,23). ing bottlenecks) are usually applied to Boolean net-

works or gate-level circuits, while high-level synthesis
Retiming techniques are most commonly applied to control data

flow graphs (CDFG). While the nodes of CDFGs repre-Retiming is a computation technique in which delays are
sent algebraic operations and conditional operations,added at some places and removed from others in a such way
the nodes of logic circuits represent Boolean functions.that the input-output relationship of the circuits is not altered
The delay elements in a CDFG represent iteration(24,25). Initially, retiming in high-level synthesis was strictly
boundaries, whereas the corresponding latches in aused for the optimization purposes (critical path and register
logic circuit are physical entities representing storageminimization) outlined in the seminal Leiserson–Saxe paper
elements. Note that the values of both delays and(26,27). Initially, the Hyper system (15) addressed retiming
latches represent the state of the computation. Thefor resource utilization by using a probabilistic sampling algo-
structure of logic circuits and CDFGs are usually veryrithm (28). Later, the same optimization algorithm and
different. A CDFG may usually display a high level offramework were generalized so that other transformations,
regularity and modularity. Many logic circuits, in con-such as associativity, commutativity, and inverse element
trast, are either highly complex and random, as in con-law, are efficiently handled (29).
trol circuits, or the information about regularity and

Algebraic and Redundancy Manipulation Transformations structure is lost at the logic level.
2. The length of a path in a data flow graph is the numberDue to their simplicity of application, associativity and com-

of cycles required to execute the operations along themutativity are two most often applied algebraic transforma-
path. The length of a path in a logic circuit reflects thetions in high-level synthesis. Several researchers applied
time taken by a signal to propagate along the path. Thethem in the tree height reduction framework (27). Interest-
length of a critical path in a CDFG determines the sam-ingly enough, common subexpression replication got earlier
pling period of the design. The length of a critical pathand more extensive coverage (30,31) than common subexpres-
of a sequential circuit determines the clock period of thesion elimination. Recently Potkonjak (31) showed an ap-
circuit. Consequently, the performance goal of high-proach that guarantees the optimal application of all alge-
level synthesis is to optimize the sampling period of abraic and redundancy manipulation transformations for
given design, while the goal of logic synthesis is to mini-critical path reduction. However, the application domain was
mize the clock period of a sequential circuit.restricted to the class of linear computations. Though that pa-

3. During the application of optimizing transformations inper presented a heuristic that efficiently treats an arbitrary
logic synthesis and high-level synthesis, the delay mod-computation, the present approach has a significant advan-
els are different. Gates in logic circuits can have moretage since it combines the power of algebraic transformations
than two inputs, while most of the operations in CDFGswith retiming. Also, the proposed algebraic speedup algo-
are assumed to be either unary or binary. While therithm is more general in the sense that it can be used not only
simplest delay models of both domains consider each op-to minimize the critical path, but also to satisfy an arbitrary
eration (node) to have unit delay, each domain has morespecification of required and available times.
elaborate delay models. High-level synthesis algorithms
recognize the fact that fixed-point multiplication, for ex-EXTENDING THE ERB TECHNIQUE
ample, takes more units of time than fixed-point addi-TO HIGH-LEVEL SYNTHESIS
tion. Elaborate delay models for gate-level circuits, on
the other hand, have to consider factors like the numberThe ERB technique to enable retiming by changing the com-
of fanouts and the output load of a gate, not usuallyputational structure was introduced and applied in the logic
considered during high-level synthesis.synthesis domain by Dey (1). This section shows an applica-

tion of the technique to minimization of the critical path of 4. While hardware sharing is a standard methodology in
digital circuits in the domain of high-level synthesis. high-level synthesis, it is not used in logic synthesis.

5. The functional operations in logic synthesis obey both
Differences between High-Level Synthesis and Logic Synthesis Boolean and algebraic axioms. While algebraic axioms

are also valid in high-level synthesis, Boolean laws areAlthough there are striking similarities in optimization tasks
done in the logic synthesis and high-level synthesis domains, not applicable. Also, the different nature of primitive

410 CRITICAL PATH ANALYSIS

operations in the two domains dictates sometimes dif- forward (retimed) to achieve the desired critical path length
(L � r).ferent transformations.

Let the inputs (outputs) of the CDFG be partitioned into6. Retiming is the only common transformation used in
those with FSDs and all other inputs (outputs) that do notlogic synthesis to exploit the sequential behavior of the
have forward slack delays (NFSD). If a path beginning withcircuit. In high-level synthesis, a variety of loop and
an FSD, X [whose movement can decrease its length byconditional transformations are used, besides retiming.
(si(X) � r)] and ending with an FSD, Z [whose movement may7. Increase in latency is sometimes allowed in high-level
increase its length by (si(Z) � r)] has length no greater thansynthesis to achieve various synthesis goals. In logic
(L � r � (si(X) � r) � (si(Z) � r)), the length of the path cansynthesis, latency is usually considered fixed.
be reduced to the desired (L � r) by moving delay X forward
during retiming. Similarly, any path beginning with an FSD,The ERB Technique
X, and ending with an NFSD must have length no greater

The basic idea of the ERB technique is to identify the bottle- than (L � r � (si(X) � r)). Any path beginning with an NFSD
necks that prevent retiming from achieving the desired clock and ending with an FSD, Z, must have length no greater
period of a sequential circuit, and eliminate the bottlenecks than (L � r � (si(Z) � r)). Finally, paths between NFSDs
by satisfying a set of sufficient conditions. The sufficient con- must have length no greater than (L � r), because retiming
ditions are satisfied using combinational transformations. may not be used to reduce these paths. The following condi-
Eliminating the bottlenecks ensures that retiming is enabled tions are applicable to the CDFG before retiming:
to achieve the desired clock period. In this section, we briefly
describe the ERB technique, modified to be applicable to BFF. All paths from any FSD X to any FSD Z have length
CDFGs in the high-level synthesis domain. no greater than (L � r � si(X) � si(Z)).

BFN. All paths from any FSD X to any NFSD j have length
Retiming Bottlenecks. Let d(p) denote the length of a path no greater than (L � si(X) � 2r).

p or, equivalently, the number of cycles required to execute
BNF. All paths from any NFSD i to any FSD Z have lengthall the operations along path p. Let w(p) denote the number

no greater than (L � si(Z)).of delays on the path p. Let L be the length of the critical
BNN. All paths from any NFSD i to any NFSD j have lengthpath in the CDFG. Let the desired reduction in the critical

no greater than (L � r).path length be r. In the following discussion, we will use path
to denote a simple path with no delays.

Timing Constraints to Enable Retiming. In this section, weRetiming cannot achieve the desired critical path length
outline our approach to satisfy the conditions BFF to BNN to(L � r) if and only if at least one of the following retiming
eliminate the retiming bottlenecks and enable retiming. Webottlenecks exists in the CDFG (1):
identify a set of nodes �v�, called cnodes, such that each path
longer than (L � r) has a cnode on it. We extract the cone ofB1. A path p from PI to PO, such that d(p) � (L � r)
each cnode v, cone(v), which is the part of the CDFG compris-B2. A path p from PI to PO, such that d(p) � (L �
ing all paths from cnode v to the PI/PPIs. Our approach tor)�(w(p) � 1), where w(p) � 1
satisfy conditions BFF to BNN is to identify the set of cnodes

B3. A critical loop C, such that d(C) � (L � r)�w(p), where and satisfy a set of timing constraints for the corresponding
w(p) � 0 cones.

For each cnode v, the timing constraints for cone(v) areSufficient Conditions for Eliminating Retiming Bottlenecks.
specified in terms of the arrival times of its inputs (PIs andEliminating the retiming bottlenecks from a CDFG would en-
PPIs) and the required time of its output v.able retiming to achieve the desired critical path length. How-

For each input X of cone(v), the new arrival time a(X) is asever, there may be an exponential number of retiming bottle-
follows:necks in a CDFG. Enumerating each bottleneck and

eliminating it explicitly may be prohibitive. Instead, we iden-
tify a set of conditions that, if satisfied, eliminate all the re-
timing bottlenecks simultaneously.

â(X) =
{

2r − si[X] is a forward slack delay (FSD) input
r otherwise

A delay X is a forward slack delay (FSD) if the slack at its
input, si(X), is greater than the desired reduction r. An FSD The new required time for cnode v is set to be its original

required time. If the timing constraints are satisfied, allX can be moved forward by a distance of (si(X) � r) without
making any path to X longer than the desired (L � r). Moving nodes and edges in cone(v), which are not in the transitive

fanin of any other node besides v, are eliminated. The coneFSD X forward by (si(X) � r) increases the lengths of paths to
X by (si(X) � r) and decreases the lengths of paths from X by for v is now replaced by a new CDFG cone Scone(v), which

satisfies the constraints. This operation preserves the func-(si(X) � r).
Similarly, a latch whose output slack, so(X), is greater than tionality of the circuit.

The algorithm to identify the appropriate cnode and satisfyr can be moved backward by (so(X) � r) without making any
path from X longer than the desired (L � r). However, to the timing constraints of the cnode is outlined in Ref. 1. The

timing constraints of each cone are satisfied by an algorithmguarantee that the final circuit after retiming has an equiva-
lent initial state, we choose to use only the forward movement using several algebraic transformations, and will be described

in the next section.of FSDs during retiming. We derive a set of conditions on the
paths of the circuit such that satisfying the conditions en- It has been shown that for a set of cnodes �v� that forms a

cutset of the paths longer than (L � r), if the timing con-sures that the FSDs in the transformed circuit can be moved

CRITICAL PATH ANALYSIS 411

straints are satisfied for each cone(v), then the conditions such an increase meets the required time constraints (see the
truncated Volterra example).BFF to BNN are satisfied (1). Hence, satisfying the timing con-

straints of all the cones ensures that all retiming bottlenecks The algorithm can also be used as a critical path reduction
technique. In this case the inputs are assigned unit arrivalhave been eliminated, and a subsequent retiming step is en-

abled to achieve the desired critical path length (L � r). Dur- times and the algorithm tries to minimize the critical paths
to get the least arrival times at the outputs.ing the application of the ERB algorithm, the maximal value

of r is determined by using binary search. The arrival and required times are assigned by the retim-
ing timing constraints. The critical inputs are those that must
be moved forward during algebraic resynthesis, and they areIterative High-Level Synthesis ERB Algorithm. From the seven
assigned higher (later) arrival times. The other inputs are as-aforementioned differences that influence the need for a dif-
signed lower (earlier) arrival times, providing the algorithmferent ways for the application of transformations in high-
freedom for restructuring the CDFG. Also, the common fac-level synthesis and logic synthesis, hardware sharing, loop,
tors in the computation are pushed to a later stage in theand conditional transformations do not represent a problem
computation process to make use of common subexpressionduring the application of the ERB algorithm in high-level syn-
elimination.thesis. Also, since our primary goal is throughput optimiza-

The algorithm begins by constructing an expression treetion without introduction of additional latency, pipelining is
for the dataflow graph that preserves the order of computa-not an attractive option. However, the different delay models,
tions in the dataflow graph. The next step is the extraction ofand in particular the different nature of functional transfor-
common levels of the computation. This process helps to eval-mations applicable in the two CAD domains, requires exten-
uate the level of flexibility in the dataflow graph and thesive modifications and enhancement of the logic synthesis
amount of freedom available to schedule the critical inputs.ERB algorithm for application to high-level synthesis. The

The next step is the application of distributivity to the da-difference in types of applicable transformations required the
taflow graph, which further increases the chances for commondevelopment of a new algebraic speedup technique for
subexpression elimination and the scheduling of the criticalCDFGs, which can satisfy given timing constraints. The alge-
inputs. At this stage, we are able to make a tradeoff betweenbraic speedup technique, which is described in the next sec-
the choice of signals (inputs) for common subexpression elimi-tion, checks and ensures during its application that retiming
nation and the critical inputs that directly affect the requiredis not disabled due to nonunit delay of various types of opera-
times of the outputs. The critical signals take preference astions.
they determine the satisfaction of the arrival (required) tim-Both the more regular and less involved structure of a
ing constraints, so in the case of a tie the critical inputs usu-CDFG compared to logic circuits make iterative application of
ally get the preference. However, if a candidate for commonthe ERB algorithm feasible. As shown in the linear predictor
subexpression elimination still enables the timing require-example and in the next section on the truncated Volterra
ments of the output to be met, then it is chosen, as the processfilter, iterative application of the ERB is beneficial. Due to
eventually leads to a reduction of operations in the dataflowregularity, the iterative ERB improved results significantly
graph.on all tested examples.

The common subexpression elimination process involvesFinally, note that the iterative ERB algorithm can be
identifying inputs that are common to multiple operations atadapted easily to treat combination functional pipelining with
the same level of computation and moving them to the nextalgebraic and redundancy manipulation transformations. A
higher level. This process results in a considerable reductionsimple, well-known formulation of pipelining such that pipe-
in the number of operations in the CDFG. Consider, for exam-lining with N stages is equivalent to retiming, where the
ple, an input that appears in three different operations at thenumber of delays on all inputs is increased by N, directly im-
same level of computation. Since operation will eventuallyplies that the only needed modification is to add an appro-
have only two inputs, the identification and subsequent trans-priate number of delays to all inputs. The simple prepro-
fer of the input to the next level of computation results in thecessing step, the application of the Leiserson–Saxe algorithm
reduction of instances of the particular operation from threefor critical path reduction, most often significantly reduces
to one.the number of needed iterations of the ERB algorithm for

After applying level reduction, distributivity, and commonpipelining.
subexpression elimination, associativity is applied to restruc-
ture the CDFG into two-input operations, keeping in view the
arrival and required time constraints. In the case of applyingTHE ERB-BASED ALGEBRAIC SPEEDUP ALGORITHM
the algorithm to reduce critical paths, this process simply re-
structures the various inputs at the same level of computa-To enable retiming, the ERB technique requires satisfaction

of timing constraints on parts of the CDFG. In this section, tion as balanced binary trees so as to minimize their height.
In the case where the goal is to satisfy a set of arrival andwe present a technique that uses an ensemble of different

algebraic transformations to satisfy an arbitrary set of timing required time constraints, the inputs are restructured ac-
cording to their arrival times: The inputs with earlier arrivalconstraints on the CDFG. The technique can also be used to

optimize the throughput of a CDFG. times (having maximum freedom) are assigned first and the
inputs with the latest arrival times (least freedom) are as-The algorithm takes as input a dataflow graph along with

the arrival times for the primary and pseudoprimary inputs, signed in the end so as to meet the required time constraints
of the output signals.and tries to restructure the computation to meet the required

time constraints of the outputs. The restructuring technique The truncated Volterra filter example serves to illustrate
effectively the application of the ERB algorithm and the alge-may even lead to an increase in the critical path length if

412 CRITICAL PATH ANALYSIS

+In
h1[0]

h1[1]

h1[2]

h2[0,0]

h2[0,1]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

*

+

+

+

* +

* +

* +

* +

* +

+In OutOut

In Out

L = 10 L = 8

L = 6 L = 4

h1[1]

h1[2]

h2[0,0]

h2[0,1] h1[0]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

+

+

+

+

+

+

* +

*

*

+

*

h1[0]

h1[1]

h1[2]

h2[0,0]

h2[0,1]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

*

+

+

+

* +

* +

* +

* +

* +

In Out

h1[1]

h1[2]

h2[0,0]

h2[0,1] h1[0]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

+

+

+

+

+

+

* +

*

*

+

*

(a) (b)

(c) (d)

Figure 7. Truncated Volterra filter: the application of iterative ERB algorithm; (a) initial; (b)
after application of retiming; (c) after algebraic speedup; (d) after repeated retiming; (e) after
second algebraic speedup; (f) final structure.

braic restructuring algorithm on a real-life example. The par- path further because of the presence of a path from primary
input to the primary output of length 8.ticular example was chosen to illustrate effectively the pro-

cess of restructuring of logic and the computation of the The ERB algorithm applied to the graph with an r (desired
reduction) value of 4 produces the dataflow graph as shownarrival time constraints that meet the retiming requirements.

The original example, shown in Fig. 7(a), has a critical in Fig. 7(c). Note that although the critical path has been re-
duced by 2, this was by no means the objective of the transfor-path of 10 and contains 15 multiplications and 8 additions.

The example, when retimed, has its critical path reduced to mation. The transformation was aimed at, and actually does,
enable the CDFG for further retiming. Fig. 4(d) shows the8, as shown in Fig. 7(b). Retiming cannot improve the critical

CRITICAL PATH ANALYSIS 413

In Out

L = 6

h1[1]

h1[2]

h2[0,0]

h2[0,1] h1[0]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

+

+

+

+

+

+

* +

*

*

+

*

(e)

In Out

L = 3

h1[1]

h1[2]

h2[0,0]

h2[0,1] h1[0]

h2[0,2]

h2[1,1]

h2[1,2]

h2[2,2]

+

+

+

+

+

+

* +

*

*

+

*

(f)

Z–1

Figure 7. (Continued)

retimed flowgraph with a critical path of 4. It is worth noting EXPERIMENTAL RESULTS
that the transformed CDFG, Fig. 4(c), has 12 multiply opera-
tions as opposed to 15 in the original example, and 7 addition Table 1 shows a set of six examples on which the proposed

technique was tested. All examples properly simulate beforeoperations as compared to 8 in the original examples. The
number of delays in the transformed graph [Fig. 7(c)] remains and after the application of the iterative ERB algorithm. IIR

filters are used in speech processing, the linear predictor isthe same, though retiming reduces the number of delays by
often used as generalization of FIR filters, nonlinear second-1. Thus the increase/decrease in the number of delay ele-
order Volterra filters are common in telecommunications (inments in the dataflow graph is purely a function of the retim-
particular for echo cancellation), and eighth-order Avenhausing process.
bandpass filters are a standard benchmark in the digital filterThe CDFG shown in Fig. 7(d) has multiple paths from the
design community. We excluded the popular fifth-order waveprimary inputs to the primary output and from delays to the
digital elliptical filter from benchmark suite since the properprimary output, which restrict the retiming algorithm from
set of coefficients was not available for simulation.further optimizations in critical path length. The application

The average improvement in the length of the critical pathof the ERB algorithm (with r of 1) on the CDFG represented
in the final design was by a factor of 2.4 times. The averageby Fig. 7(d) yields a transformed graph, as shown in Fig. 7(e).
improvement over Leiserson–Saxe retiming is by a factor ofThe transformations in this particular case actually increase

the length of the critical path from 4 to 6 while increasing the
number of multiplication from 12 to 13, whereas the number
of addition operations goes up from 7 to 8. Although the
transformed flowgraph has a critical path length of 6, it guar-
antees the reduction of critical path by the r value of 1. Upon
retiming, the resultant flow graph has a critical path of 3, as
guaranteed by the ERB algorithm.

Hence, the final CDFG, shown in Fig. 7(f), has a critical
path length of 3 as compared to the optimally retimed CDFG
with critical path of length 8, and has 13 multiplication oper-
ations as compared to 15 in the original example. The reduc-
tion in the number of multiplication operations was made pos-

+

+

+

*

**

*

*

P1(1)

Z3(–2)

Z1(–1)

P1(1) K1(–1)
X(1)

Z1(–2)

K2(1)

Z5(5)

+

+

+

*

*

*

K1

Z1

K7

Z6
Z5X1

P1(1)

Z3

sible due to common subexpression elimination by the
algebraic speedup technique while satisfying timing con- Figure 8. Application of algebraic transformation technique for sat-

isfying arrival times (inputs) and required time (outputs) constraints.straints. See Figs. 8 and 9.

414 CRITICAL PATH ANALYSIS

+
+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

*

*

*

*

*

P7

Xn P8

P1

P9

P1

P1

P4

Q0

C1

P8

P3

P5

P2

P9

P1

Xn

Xn

P6
P5

P1

C1

P2

Xn

Q0

*

Figure 9. Application of algebraic restructuring technique for minimization of critical path.

2.16. This validates our initial assertion that a technique that number of operations is rather small, only 22% and 6% for
additions and multiplications, respectively.utilizes the relationship between retiming and algebraic and

redundancy manipulation techniques has a significant advan-
tage over retiming alone. Recently, it has been shown that
dramatic improvement in both throughput and parallelism is FUTURE WORK AND CONCLUSIONS
often correlated with a significant increase in the number of
operations (29,30,32). Potkonjak and Rabaey (29) showed the An iterative ERB algorithm for critical path reduction in

high-level synthesis was presented, using an algebraicsurprising result that the throughput can be efficiently traded
for latency, with no hardware overhead. The experimental re- speedup approach combining the power of all algebraic (asso-

ciativity, commutativity, distributivity, zero, and identity ele-sults shows that even when latency is not introduced, the
product of the number of operations and the critical path ments laws) transformations with redundancy manipulation

transformations. Experimental results show that the iterativelength (NC product), and therefore also AT (area–time) prod-
uct, can be improved simultaneously with the throughput. ERB algorithm supported by an algebraic speedup subroutine

outperforms the Leiserson–Saxe retiming algorithm by a fac-Notice that the AT product is directly proportional to the
product of the number of operations and the length of the tor greater than 2, with very small increase in hardware re-

quirements, so that in all examples the product of the numbercritical path, for designs with no hardware sharing. When
hardware sharing is involved, the correlation between the of operations and the length of the critical path is improved

significantly simultaneous with the throughput.products is more involved, but still very strong. As shown in
Table 1, the NC product is improved on average by 129%. Many interesting and influential ideas come from compiler

research and technology to both logic synthesis and high-levelThe average improvement in the length of the critical path
in the final design was by a factor of 2.4 times. The average synthesis. Interestingly, previously no effort was made to ex-

plore the relationship between logic synthesis and high-levelimprovement over the Leiserson–Saxe algorithm is by a fac-
tor of 2.16. This validates our initial assertion that a tech- synthesis. Since the algebraic speedup algorithm is capable of

addressing an arbitrary set of required and arrival times, itnique that utilizes the relationship between retiming and al-
gebraic and redundancy manipulation techniques has a is expected that the modified ERB algorithm will find a wide

range of application not only with retiming, but with othersignificant advantage over retiming alone. The increase in the

Table 1. Experimental Results

Initial Retimed Iterative ERB NC Product

Example A M CP CP A M CP I R ERB

4th-Order IIR filter 8 8 6 4 13 8 3 96 64 63
Adaptive IIR filter (4th Order) 8 8 6 6 10 8 5 96 96 90
Linear predictor 8 8 9 9 12 12 3 144 144 72
Volterra filter 10 17 12 12 10 13 4 324 324 92
Truncated Volterra filter 8 15 10 8 8 13 3 236 184 63
8th-Order Avenhaus bandpass filter 16 13 10 9 16 19 5 290 261 175

A—number of additions, M—number of multiplications, CP—critical path, NC—product number of operations and critical path. Note that retiming does not
change the number of operations.

CROSSED-FIELD AMPLIFIER 415

20. C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, Scheduling for functionalloop and conditional transformations. Also, the first experi-
pipelining and loop winding, ACM/IEEE Des. Autom. Conf., Sanments demonstrate the strong potential to solve, using alge-
Francisco, 1991, pp. 764–769.braic speedup and the iterative ERB algorithm, not only criti-

21. M. E. Wolf and M. S. Lam, A loop transformations theory and ancal path reduction but also other optimization objectives in
algorithm to maximize parallelism, IEEE Trans. Parallel Distrib.high-level synthesis, such as area and power minimization
Syst., 2: 452–471, 1991.problems.

22. N. Park and A. C. Parker, Sehwa: A software package for synthe-
sis of pipelines from behavioral specifications, IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst., 7: 356–370, 1988.BIBLIOGRAPHY

23. P. G. Paulin and J. P. Knight, Force-directed scheduling for the
behavioral synthesis of ASIC, IEEE Trans. Comput.-Aided Des.1. S. Dey, M. Potkonjak, and S. Rothweiler, Performance optimiza-
Integr. Circuits Syst., 8: 661–679, 1989.tion of sequential circuits by eliminating retiming bottlenecks,

24. C. E. Leiserson and J. B. Saxe, Optimizing synchronous systems,Proc. ICCAD-92, paper 10C-1, 1992.
J. VLSI Comput. Syst., 1 (1): 41–67, 1983.2. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Read-

25. C. E. Leiserson and J. B. Saxe, Retiming synchronous circuitry,ing, MA: Addison-Wesley, 1977.
Algorithmica, 6: 5–35, 1991.3. C. N. Fischer and R. J. Le Blank, Crafting a Compiler, Menlo

26. G. Goossens et al., An optimal and flexible delay managementPark, CA: Benjamin/Cummings, 1985.
technique for VLSI, in C. I. Byrnes and A. Lindquist (eds.), Com-4. G. De Micheli, Synchronous logic synthesis: Algorithms for cycle-
putation and Combinational Methods in System Theory, Amster-time minimization, IEEE Trans. Comput.-Aided Des. Integr. Cir-
dam: North Holland, 1986, pp. 409–418.cuits Syst., 10: 63–73, 1991.

27. R. Hartley and A. Casavant, Tree-height minimization in pipe-
5. K. Bartlett, G. Borriello, and S. Raju, Timing optimization of

lined architectures, IEEE Int. Conf. CAD, 112–115, 1989.
multiphase sequential logic, IEEE Trans. Comput.-Aided Des. In-

28. M. Potkonjak and J. Rabaey, Retiming for scheduling, VLSI Sig-tegr. Circuits Syst., 10: 51–62, 1991.
nal Process. Workshop, San Diego, CA, 1990, pp. 23–32.

6. S. Malik et al., Retiming and resynthesis: Optimizing sequential
29. M. Potkonjak and J. Rabaey, Optimizing resource utilization us-networks with combinatorial techniques, IEEE Trans. Comput.-

ing transformations, IEEE Trans. Comput. Aided Des. Integr. Cir-Aided Des. Integr. Circuits Syst., 10: 74–84, 1991.
cuits Syst., 13: 277–292, 1994.

7. N. Shenoy and R. K. Brayton, Retiming of circuits with single
30. D. A. Lobo and B. M. Pangrle, Redundant operation creation: Aphase transparent latches, Int. Workshop Logic Synthesis, MCNC,

scheduling optimization technique, 28th ACM/IEEE Des. Autom.Research Triangle Park, NC, 1991.
Conf., 1991, pp. 775–778.

8. E. A. Snow, D. P. Siewiorek, and D. E. Thomas, A technology-
31. M. Potkonjak and J. Rabaey, Maximally fast and arbitrarily fastrelative computer-aided design system: Abstract definition,

implementation of linear computations, IEEE Int. Conf. Comput.-transformations and design tradeoffs, 15th ACM/IEEE Des. Au-
Aided Des., paper 6c.4, Santa Clara, CA, 1992.tom. Conf., 1978, pp. 220–226.

32. N. Jouppi and D. Wall, Available instruction-level parallelism for
9. A. E. Casavant, D. D. Gajski, and D. J. Kuck, Automatic design super-scalar and super-pipelined machines, Proc. 3rd Int. Conf.

with dependence graphs, 17th ACM/IEEE Des. Autom. Conf., Architectural Support Programming Languages Operating Sys-
1980, pp. 506–515. tems, Boston, 1989, pp. 272–282.

10. M. C. McFarland and A. C. Parker, An abstract model of behavior
for hardware descriptions, IEEE Trans. Comput., 32: 621–636, SUJIT DEY
1983. University of California at San

11. H. Trickey, Flamel: A high-level hardware compiler, IEEE Trans. Diego
Comput.-Aided Des. Integr. Circuits Syst., 6: 259–269, 1987. YOSEF G. T. GEFEN

12. R. A. Walker and D. E. Thomas, Behavioral transformation for Virginia Tech
algorithmic level IC design, IEEE Trans. Comput.-Aided Des. In- ALICE C. PARKERtegr. Circuits Syst., 8: 1115–1127, 1989.

University of Southern California
13. B. S. Haroun and M. I. Elmasry, Architectural synthesis for DSP

MIODRAG POTKONJAKsilicon compilers, IEEE Trans. Comput.-Aided Des. Integr. Circuits
University of California at LosSyst., 8 (4): 431–447, 1989.

Angeles
14. J. Bhaskar and H. Lee, An optimizer for hardware synthesis,

IEEE Des. Test Comput., 7 (5): 20–36, 1990.

15. J. Rabaey et al., Fast prototyping of data path intensive architec-
ture, IEEE Design and Test, 8 (2): 40–51, 1991.

16. A. P. Chandrakasan et al., Hyper-LP: A design system for power
minimization using architectural transformations, IEEE Int.
Conf. Comput.-Aided Des., paper 6c.3, Santa Clara, CA, 1992.

17. E. Gyrczyc, Automatic generation of microsequenced data paths to
realize ADA circuit description, Ph.D. thesis, Carleton Univ.,
1984.

18. S. Devadas and A. R. Newton, Algorithms for hardware allocation
in data path synthesis, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 8: 768–781, 1989.

19. G. Goossens et al., An efficient microcode compiler for application
specific DSP processors, IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., 9: 925–937, 1990.

