
DISPATCHING

INTRODUCTION

Electricity is a secondary form of energy in so far as it
has to be transformed from one of the naturally-occurring
primary sources of energy, such as coal, oil, natural gas,
nuclear power or hydro power. Transmission of electricity
is mainly a national problem but international transmis-
sion of electricity is now becoming a matter of some impor-
tance. For example, an international electricity network
now links most of the European countries. Electricity has to
be generated as it is consumed since it cannot be stored ex-
cept in limited quantities. The rate at which electricity has
to be supplied to the system from the generating stations
to meet the requirements of all the consumers simultane-
ously is known as the system demand. The total amount of
generating plant capacity to be provided, therefore, has to
match the estimated maximum system demand. Due to the
daily routine of the public and the seasonal effects of the
weather the system demand varies, normally being high in
winter and low in summer and, furthermore, the demand
at night is low relative to the daytime demands. For dif-
ferent system demand levels, the task of dispatching is to
allocate the output of units to meet the demand of electric-
ity energy in the area served by the system at the lowest
possible cost.

Economic dispatch ranks high among the major
economy-security functions in power systems operations.
Successful operation of power systems requires attention
to: (1) safety for personnel and equipment, which have sev-
eral recognized constraints imposed by the requirements
of reliable service and equipment limitations and (2) pro-
vision of service to utility customers at the lowest feasible
cost.

The problem of providing low-cost electrical energy is in-
fluenced by such items as efficiencies of power generating
equipment, cost of installation, and fuel costs for thermal-
electric plants. The factors involved in the cost of producing
electrical energy can be divided into fixed costs and vari-
able costs. Fixed costs include capital investment, inter-
est charges on borrowed money, labor, taxes, and other ex-
penses that continue irrespective of the load on the power
system. Persons responsible for the operation of a power
system have little control over these costs. Variable costs
include those costs which are affected by reactive flows, the
combination of hydro and thermal generation to meet daily
load requirements, and purchase or sale of power. These
costs are materially controlled by power system operators.
The savings that can be achieved by appropriate operation
of power resources are very significant and may amount to
several thousand dollars a day on a large power system.

A power system operates subject to many restrictions;
those usually taken into account include:

1. Capacity restrictions of individual generators. These
constraints are determined mainly by thermal re-
strictions, boiler capabilities and hydro turbine rat-
ing.Also involved is the start-up time of a unit,as well

as the rate at which the unit can pick up load after
start-up. There is a limit on the amount of real and
reactive power which a generator can deliver. These
limits are imposed by both the armature winding and
the field winding.

2. Reserve requirements for system security. This will
account for such emergencies as outages on lines,
generators, or transformers. See Transformers. The
amount of power transferred from the generator bus
to the system could be limited by stability consid-
erations. See Power system stability. Excess spin-
ning reserve is required as a margin to account for
such forced outages in addition to possible forecast er-
rors. Some regard must also be given to geographic
scheduling of reserve in the cases where transmis-
sion line outages would create the partial isolation of
an area.

Power system economic operation consists of two as-
pects: active power regulation and reactive power dispatch.
Active power regulation is also called economic dispatch.
For any specified load condition economic dispatch deter-
mines the power output of each plant (and each generating
unit within the plant) which will minimize the overall cost
of fuel needed to serve the system load. Thus, the economic
dispatch focusses upon coordinating the production costs at
all power plants operating in the system. Reactive power
dispatch is to control voltages of generator buses, tap set-
tings of the on-load tap changing transformers and volt-
age compensators to minimize network power loss. Solv-
ing these problems is subject to a number of constraints,
such as limits on bus voltages, the range of tap settings of
transformers, reactive and active power capacity of power
resources and transmission lines, and the number of con-
trollable devices.

CLASSIC ECONOMIC DISPATCH

Dispatch with Transmission Losses Neglected

Economic dispatch is a computational process whereby the
total generation required is allocated among the generat-
ing units available so that the constraints imposed are sat-
isfied and the energy requirements in terms of J/h or $/h
are minimized. Prior to 1930, various methods were in use
such as the “base load method” and “best point loading”.
In these methods, as load increased, power would be sup-
plied by the most efficient plant until the point of maxi-
mum efficiency of that plant was reached. Then, for fur-
ther increase in load the next most efficient plant would
start to feed power to the system and a third plant would
not be called upon until the point of maximum efficiency
of the second plant was reached. Even with transmission
losses neglected, these methods fail to minimize the total
cost. It was recognized as early as 1930, that the incremen-
tal method, later known as the equal incremental method,
yielded the most economic results.

To determine the economic distribution of load between
the various generating units, the variable operating costs
of the unit must be expressed in terms of the power output.
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Let Fi denote the input to unit i, (GJ/h), and Pi denote the
output of unit i, (MW). Usually assume the output curve of
unit i is quadratic, we can write

Table 1 shows the typical values of the coefficients αi ,βi and
γ i obtained by simple least square estimation for different
sized units (1).

The criterion for distribution of the load between any
two units is based on whether increasing the load on one
unit as the load is decreased on the other unit by the same
amount results in an increase or decrease in the total cost.
Thus, we are concerned with incremental fuel cost, which
is determined by the slopes of the input-output curve in
dollars per hour. The incremental fuel cost of the unit i in

(GJ/MWh) is
dFi
dPi

, can be written:

Neglecting the transmission losses, the economic dispatch
problem can be described as follows:

where Pi are the individual active power generations, NG

is the set of operational thermal units. PD is the total load
demand and FT is the total fuel cost of generation. The
objective is to find the optimal active power generations
minimizing the fuel cost Eq. (3) and satisfying Eq. (4).

Such minimization problems can be solved using the
method of Lagrange multipliers (11, 12). The new cost func-
tion L* is formed by combining the total fuel cost and the
equality constraint of Eq. (4) in the following manner:

The augmented cost function L∗ is often called the La-
grangian, and the parameter λ is called the Lagrange mul-
tiplier. For finding the minimum cost we require the deriva-
tive of L∗ with respect to each Pi to equal zero. This leads
to

Since PD is fixed and the fuel cost of any one unit varies
only if the power output of that unit is varied, Eq. (6) yields

Because Fi depends only on Pi , the partial derivative of
Fi can be replaced by full derivative, and Eq. (7) then gives

for every i ∈ NG . This equation implies that for optimal-
ity, individual units should share the load such that their
incremental costs are equal. This is known as equal incre-
mental method. When the fuel cost function takes the form
of Eq. (1), then λ and optimal generations are:

λ = [2PD +
∑

i∈NG

βi

γi
]/

∑

i∈NG
(

1
γi

)

Pi = (λ− βi)/(2γi).

Dispatch with Transmission Losses Included

Including the transmission losses in the active power bal-
ance equation, the economic dispatch problem can then be
described as follows:

where PL is the active power loss. The Lagrangian function
for the above problem is:

L∗ = FT + λ(PD + PL −
∑

i∈NG
Pi). (13)

The optimality conditions turn out to be:

and

where Li is called the penalty factor of plant i and is given
by

The result of Eq. (15) means that minimum fuel cost
is obtained when the incremental fuel cost of each unit
weighted by its penalty factor is the same for all gener-
ating units in the system. The penalty factor Li depends
on ∂PL /∂Pi , which is a measure of the sensitivity of the
transmission-system losses to the changes in Pi alone.

Equation (15) governs the coordination of transmission
losses into the problem of economic loading of units in the
plants which are geographically dispersed throughout the
system. Accordingly, the penalty factors of the different
plants need to be determined, which requires that the to-
tal transmission losses of the system are expressed as a
function of plant loading. This is formulated as follows:

or in a general vector-matrix formulation

PL = PTGBPG +PTGB0 + B00. (18)
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Table 1. Typical cost coefficients

Fuel Coal Gas

Unit size (MW) α β γ α β γ α β γ

50 52.87 10.47 0.01160 49.92 10.06 0.0103 53.62 10.66 0.01170
200 180.68 9.039 0.00238 173.61 8.67 0.0023 182.02 9.19 0.00235
400 312.35 8.52 0.00150 300.84 8.14 0.0015 316.45 8.61 0.00150
600 483.44 8.65 0.00056 462.28 8.28 0.00053 490.02 8.73 0.00059
800 793.22 7.74 0.00107 751.39 7.48 0.00099 824.4 7.73 0.00117
1200 1194.6 7.72 0.00072 1130.8 7.47 0.00067 1240.32 7.72 0.00078

where Bij are called loss coefficients or B-coefficients, B is
an |NG | × |NG | square matrix, which is formed by the loss
coefficients Bij and known simply as the B-matrix, B0 is a
|NG | × 1 row vector of linear loss coefficients Bi0 and B00 is a
constant. Derivation of the B-coefficients and B-matrix can
be referred to Refs. (<xref target="W3316-bib-0001 W3316-
bib-0003" style="unformatted">1,3</xref>).

Based on the incremental fuel cost in Eq. (2) and power
loss formula, Eq. (17), the optimality condition, Eq. (14),
becomes:

The power balance requirement for the Eq. (12) becomes:

The economic dispatch strategy is concerned with solv-
ing Eq. (19) for those values of power outputs which also
satisfy the power loss and load requirement of Eq. (20).
There are many different ways to solve Eqs. (19) and (20)
for the unknown Pi , i ∈ NG and λ. When an initial value
of λ is chosen in Eq. (19), the set of resulting equations be-
comes linear. The values of Pi , i ∈ NG can be found using
the following iterative procedure:

1. Choose initial values for the system.
2. Compute the transmission loss of Eq. (17) with the

initial values of Pi .
3. Compare the quantity (

∑
i∈NG Pi − PL) with PD to

check the power balance of Eq. (20). If power balance
is not achieved within a specified tolerance, update λ
by setting

One possible formula for the increment �λ(k) is

where k is the iteration step of computation.
4. Return to step 2 and continue the calculations of

steps 2 and 3 until the final convergence is achieved.

Dispatch with Active-Reactive Power Balance Included

The above two subsections deal with active power regula-
tion. Actually, a detailed electric network is described by
both active power and reactive power balance equations.
Thus the inclusion of reactive power in the optimization
process is desired. This is treated by minimizing the com-
bined objective function

The function FT takes the form of Eq. (3) and FQ is con-
cerned with the reactive capability function, which is given
as:

where Q is the vector of reactive power generation, the
constants FQ0, the vector K̃ and the matrix K are assumed
to be known a priori (1, 2). The network balance equations
are:

The two Lagrangian multipliers λp and λq are applied to
Eq. (25) and Eq. (26), respectively.The augmented objective
function is written as:

The decision variables are the active power generations
Pi and the reactive power generations Qi . The optimality
conditions are:

∂FQ

∂Qi

+ λp(
∂PL

∂Qi

) + λq(
∂QL

∂Qi

− 1) = 0 i∈NG (29)

along with Eqs.(25) and (26).
It should be pointed out that conventional economic dis-

patch uses models with far lower dimension and less so-
phistication. Some relevant variables such as generator
voltage magnitudes are not included in the conventional
optimization procedure. As a result, the constraints im-
posed by considering system security are not easily han-
dled in the procedure which involves the power balance or
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traditional models, whilst the optimal load flow technique
can include security constraints in the formulation.

Dispatch with Hydro Plants Included

This section is devoted to a treatment of the economic dis-
patch of electric power systems which include both ther-
mal and hydro generation. See Hydrothermal power sys-
tems. Consider a power system with hydro plants which
are assumed to have reservoirs large enough to satisfy the
assumption of fixed head. Assume that the fuel cost of the
thermal generation is given by

where PTi and NG are the output of thermal plant i and
the set of thermal plants in the system. It is desired to
minimise the total fuel cost during the time interval Tf

J =
∫ T f

0

FT dt. (31)

The minimization is carried out under the following two
constraints:

1. The total system generation matches the power de-
mand PD (t) and the transmission loss PL (t). The out-
put of hydro plant i and the set of all hydro plants in
the system are denoted by PHi and NH :

2. The volume of water available for generation at each
hydro plant is a prespecified amount bi :

This kind of problem stated can be solved using the vari-
ational calculus principle, which leads to the celebrated
coordination equations. The volume of water constraints
are included in the cost functional by using the constant
multipliers vj , thus it is to minimize

subject to satisfying Eq. (32). The latter is included in J1 via
the use of its multiplier function λ(t). Thus the problem is
transformed into an unconstrained problem of minimizing

J =
∫ T f

0

{FT +
∑

j ∈NH
vjq j + λ(t)[PD(t) + PL(t)

−
∑

i∈NG
PTi (t) −

∑

i∈NH
PHi (t)]}dt (35)

The optimality conditions are obtained using varia-
tional calculus as

Both Eqs. (36) and (37) together with the active power bal-
ance Eq. (32) and the volume of water constraints are the
desired optimality equations.

The water conversion coefficient v can be obtained from
the coordination Eqs. (36) and (37) as follows: Define the
penalty factors LTi and LHi by

Hence, the coordination Eqs. (36) and (37) become

and

thus

The coordination Eqs. (36) and (37) for a hydrothermal sys-
tem are similar in form to those for an all-thermal system.
This shows that it might be advantageous to consider re-
placing the hydro plants by their thermal equivalent. The
thermal equivalent will have an incremental cost given by

Once the equivalent thermal cost is determined, the prob-
lem can be solved as an all-thermal one.

REACTIVE POWER DISPATCH

As active-reactive power dispatch is a complex problem,
this section discusses only reactive power dispatch to
demonstrate a solution of the problem. The objective of re-
active power dispatch is often to minimize the active power
loss in the transmission network which can be described as
follows:

fQ =
∑

k ∈NE
PkLoss =

∑

k ∈NE
gi j(V 2

i + V 2
j − 2ViVjcos θi j) (44)
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where NE denotes the number of network branches, gij and
θij are the conductance of the transmission line between
buses i and j and the voltage angle difference between
buses i and j, respectively. The minimization of the above
function is subject to a number of constraints:

�Pi = Pi − PDi − Vi

∑

j ∈Ni
Vj(Gij cos θi j + Bi j sin θi j) = 0;

i∈N0 (45)

�Qi = Qi −QDi − Vi

∑

j ∈Ni
Vj(Gij sin θi j − Bi j cos θi j) = 0;

i∈NPQ (46)

and

Vimin ≤ Vi ≤ Vimax, i∈NB
Tkmin ≤ Tk ≤ Tkmax, k ∈NT (47)

QGimin ≤ QGi ≤ QGimax, i∈ {NPV , n}
|Qk| ≤ Qkmax, k ∈NE (48)

where bus n is selected as the slack bus; Gij is the transfer
conductance between buses i and j; NB , N0, Ni and NT are
the sets of total buses, total buses excluding slack bus, the
buses adjacent to bus i, and the transformer buses, respec-
tively; NPQ and NPV are the numbers of PQ and PV buses;
Tk is the tap position of transformer k.

OPTIMAL POWER FLOW

The optimal power flow (OPF) problem was introduced by
Carpentier 5–7 in 1962 as a network constrained economic
dispatch problem. Since that time, much of the work un-
dertaken has been based on their formulation (8)–(10).

Traditionally, a power flow is characterized by the in-
puts to the network, and injected real and reactive powers
(denoted by P and Q) at the buses. Three types of buses ex-
ist: load buses, generator buses, and swing or slack buses.
At a load bus, the P and Q are given, and the voltage V
and angle θ are unknown; at a generator bus, P and V are
given, a range in Q is specified Qmin ≤ Q ≤ Qmax, and Q and
θ are unknown; at a swing or slack bus, both the voltage
and angle are specified. The objective of a power flow anal-
ysis is to determine the voltages and angles at all buses of
the network from which all other quantities can be calcu-
lated. An optimal power flow is a power flow in which the
fuel costs or some other quantities are minimized, with the
ordinary load flow constraints at all buses and additional
constraints such as bus voltage limits specified. When the
fuel costs are minimized, the optimal power flow actually
serves in the capacity of economic dispatch, determines the
real and reactive output of all generators and that all of
other VAR sources, and sets the autotransformer taps to
the requested positions. The term “optimal” implies that
the solution is obtained when security, economy and other
operational considerations are applied.

The OPF problem aims to achieve an optimal solution of
a specific power system objective function, such as fuel cost,
by adjusting the power system control variables, while sat-
isfying a set of operational and physical constraints. Car-
pentier’s major contribution is in leading to a general for-

mulation of the economic dispatch problem based on the
Kuhn and Tucker theorem of nonlinear programming (11,
12), see Nonlinear Programming, and placing it on a firm
mathematical basis.

The Kuhn-Tucker theorem states that a minimum of a
given function F(x) of a vector variable x under the inequal-
ity and equality constraints

Gi(x) ≤ 0 i = 1,2, . . . , (49)

Hk(x) = 0 k = 1,2, . . . , (50)

can be achieved, with the assumption of proper convexity
for the function, under the condition that dL = 0, where

L = F (x) +
∑

i

°
αiGi(x) +

∑

k

°
βkHk(x) (51)

The multipliers
°
αi and

°
βk are the dual variables associated

with the inequality and the equality constraints such that

°
αi ≥ 0 and

°
βk arbitrary (52)

and
°
αiGi(x) = 0. (53)

For optimal power dispatch, it is required to minimize
the cost I given by

I = F (P) (54)

where P is the active power generation vector, subject to
the equality and inequality constraints:

1. Injection Relation:The net active and reactive powers
injected into the system are functions of the voltage
magnitudes Vi and the corresponding phase angles
θi . They are expressed as:

Ii(θ,V) =
∑

j ∈A
ViVjYi jcos(θi − θ j + θoi j), i∈NB (55)

Ki(θ,V) =
∑

j ∈A
ViVjYi jsin(θi − θ j + θoi j), i∈NB (56)

where the set Ai includes all buses connected to the
ith bus, and Yij and θoi j are the magnitude and phase
angle, respectively, which are assigned as the (i, j)th
element of the nodal admittance matrix. The injec-
tion relations are given by the following equations:

Hi = Ii(θ,V) − Pi + PDi i∈NB (57)

Ri = Ki(θ,V) −Qi +QDi i∈NB (58)

where Pi and Qi are the active and reactive power
generations, PDi and QDi are the specific active and
reactive power demands, respectively.

2. Inequality Type Constraints:They are imposed as the
equipment rating limitations:

πi = P2
i +Q2

i − (SMi )2 ≤ 0 (59)

π′
i = Pmi − Pi ≤ 0 (60)

ψi = Qi −QM
i ≤ 0 (61)



6 Dispatching

ψ′
i = Qm

i −Qi ≤ 0 (62)

εi = Vi − VMi ≤ 0 (63)

ε′i = Vmi − Vi ≤ 0 (64)

τi j = θi − θ j − Ti j ≤ 0 (65)

where SMi is the maximum apparent power of the ith
generating node, Pmi is the minimum active power
generation, the maximum and minimum reactive
power generation at the ith node are QM

i and Qm
i ,

respectively, VMi and Vmi are the maximum and mini-
mum allowable voltage levels respectively, at all sys-
tem nodes with the exception of the slack buses. The
last inequality is imposed by the maximum power
transfer capability of lines and transformers and is
concerned with an approximation of the real power
flow between nodes given by

The dual variables λi and µi are applied to Eqs. (57) and
(58), and the following dual variables are associated with
the inequalities (59) – (65)

According to the Kuhn-Tucker theorem, the augmented La-
grangian function L takes the following form

L = F (P) +
∑

i∈NB
λiHi +

∑

i∈NB
µiRi +

∑

i∈NG
miπi +

∑

i∈NG
m′
iπ

′
i

+
∑

i∈NG
eiψi +

∑

i∈NG
e′iψ

′
i +

∑

i∈NB
uiεi +

∑

i∈NB
u′
iε

′
i +

∑

i, j ∈NB
ti jτi j

(66)

Equation (53) can then be written

miπi = m′
iπ

′
i = eiψi = e′iψ

′
i = uiεi = u′

iε
′
i = ti jτi j = 0 (67)

In order for dL to be zero, the partial derivatives with
respect to Pi , Qi , θi and Vi are set to zero:

∂L

∂Pi
= ∂F

∂Pi
= −λi + 2miPi −m′

i = 0. (68)

that is

λi = ∂F

∂Pi
= +2miPi −m′

i = 0; (69)

and
∂L

∂Qi

= −µi + 2miQi + ei − e′i = 0, (70)

that is

µi = 2miQi + ei − e′i; (71)

Equations (70) and (73) are applicable to the generating
nodes.

∂L

∂θi
=

∑

j

λ j
∂I j

∂θi
+

∑

j

µj

∂Kj

∂θi

∑

j �= i
(t ji − ti j) = 0 (72)

that is

λi
∂Ii

∂θi
+

∑

j �= i
λ j
∂I j

∂θi
+ µi

∂Ki

∂θi
+

∑

j �= i
µ j

∂Kj

∂θi
+

∑

j

(t ji − ti j) = 0;(73)

and

∂L

∂Vi
=

∑

j

λ j
∂I j

∂Vi
+

∑

j

µj

∂Kj

∂Vi
+ ui − u′

i = 0 (74)

that is

λi
∂Ii

∂Vi
+

∑

j �= i
λ j
∂I j

∂Vi
+ µi

∂Ki

∂Vi

∑

j �= i
µ j

∂Kj

∂Vi
+ ui − u′

i = 0 (75)

Equations (74)–(77) are applicable to every node or bus of
the system.

In addition, the equality constraints Eqs. (57) and (58),
the inequality constraints Eqs. (59) and (65) and the ex-
clusion Eq. (69) are to be all satisfied. The solution can be
obtained by employing numerical techniques, such as the
Gauss-Seidel algorithm and Newton-Raphson algorithm
(4). However, ensuring the convergence behavior of the al-
gorithms has proven to be much more difficult. Many re-
searchers have tried to develop reliable and efficient algo-
rithms to solve the above problem. One of most important is
the work of Dommel and Tinney (8), who simplified the so-
lution procedure by dividing the variables into an unknown
vector ‘x’ which consist of V and θ on (P, Q) buses, and θ on
(P, V) buses; fixing parameters P, Q on (P, Q) buses and θ
on the slack bus, denoted by parameter “p’; controlling volt-
age magnitudes on generator buses, generator real power
P, and transformer tap ratios denoted by ‘u’. Recently, Lin,
Chen and Huang have developed a direct Newton-Raphson
algorithm for real-time economic dispatch, eliminating the
penalty factor calculation. The method results in a very
fast solution and maintains high accuracy (13). In defin-
ing thermal cost models in common use, the assumption
of monotonically increasing cost curves is employed. This
leads to polynomial cost models which serve as the basis
of most dispatch algorithms. However, this assumption is
not valid everywhere because of the throttling losses near
valve points. These losses introduce negative slopes into
the incremental cost curves. The study of economic dis-
patch considering valve characteristics may be referred to
references (9, 37). The problem of network security has al-
ready been included in an approximate form by Carpen-
tier using a constraint based on the bus angles. But over
the years additional security constraints have been applied
which include the inequality constraints of line flow, cur-
rent, or complex power, under normal conditions and con-
tingency conditions, generator losses, regulating margins
and voltage ranges during contingencies (14, 18).

To solve the OPF problem, a number of conventional
optimization techniques have been applied. They include
nonlinear programming (NLP) (20) (69), quadratic pro-
gramming (QP) (21) (22), linear programming (LP) (23)
(24), and interior point methods (25–27). All these tech-
niques rely on convexity to find the global minimum. But
due to the non-differential, nonlinearity and non-convex
nature of the OPF problem, the methods based on these
assumptions do not guarantee to find the global optimum.
These traditional techniques also suffer from bad starting
points and frequently converge to local minimum or even
diverge.
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GRADIENT-BASED METHODS

In conventional optimization methods, the gradients of the
function are used to search for the optimum. The gradient
of the power loss in the network with respect to voltage
changes of PV buses can be given as follows:

∇ fQ|VPV = (
∂VPQ

∂VPV
)T
∂ fQ

∂VPQ
+ (

∂θ

∂VPV
)T
∂ fQ

∂θ
+ ∂ fQ

∂VPV
(76)

From Eqs. (45) and (46), the following equations hold:
∂�P

∂θ
�θ + ∂�P

∂VPQ
�VPQ + ∂�P

∂VPV
�VPV = 0

∂�Q

∂θ
�θ + ∂�Q

∂VPQ
�VPQ + ∂�Q

∂VPV
�VPV = 0

(77)

Rearranging the above equations gives:

[

∂�P

∂θ

∂�P

∂VPQ
∂�Q

∂θ

∂�Q

∂VPQ

][�θ
�VPQ

] = −[

∂�P

∂VPV
∂�Q

∂VPV

]�VPV (78)

The deviations of angles and voltages at PV buses can be
obtained from the above equation, and in most power sys-
tem computations, the influences of voltage changes on ac-
tive power and angle changes on reactive power are usually
omitted, which gives:

[�θ
�VPQ

] = −[

∂�P

∂θ

∂�P

∂VPQ
∂�Q

∂θ

∂�Q

∂VPQ

]−1[

∂�P

∂VPV
∂�Q

∂VPV

]�VPV

� −[
(
∂�Q

∂θ
)−1 ∂�P

∂VPV

(
∂�Q

∂VPQ
)−1 ∂�Q

∂VPV

]�VPV

(79)

Substituting the above equations into Eq. (78), a computa-
tion formula of the gradient is obtained as follows:

∇ fQ|VPV = ∂ fQ

∂VPV
−(
∂�P

∂VPV
)T (
∂�PT

∂θ
)−1 ∂ fQ

∂θ

−(
∂�Q

∂VPV
)T (
∂�QT

∂VPQ
)−1 ∂ fQ

∂VPQ

(80)

For simplicity and based on the same assumption that volt-
age and angle changes do not affect active power and re-
active power respectively, in conventional optimal reactive
power dispatch:

(
∂VP

∂VPV
)T (
∂�PT

∂θ
)−1 ∂ fQ

∂θ
(81)

is usually omitted, which leads to:

∇ fQ|VPV = ∂ fQ

∂VPV
− (

∂�Q

∂VPV
)T (
∂�QT

∂VPQ
)−1 ∂ fQ

∂VPQ
(82)

This is used to update the controlled voltages in the follow-
ing way:

�VPV = −H∇ fQ (83)

where H is the Hessian matrix. In the optimal reactive
power dispatch problem, updating the gradients of the ob-
jective function, Eq. (84), at each iteration involves a large
amount of computation. This is not numerically reliable
due to the differentiating functions and the need to invert
matrices in a high dimension space.

In practical computation, minimization of the active
power loss in the transmission network is equivalent to
minimization of the injected active power at the slack-bus.
This is because:∑

k ∈NE
PkLoss =

∑

i∈NG
PGi −

∑

i∈ND
PDi

= Ps(V, θ) − Pconst

(84)

where Pconst includes all unchanged load and generated
active power in the power system. Thus the optimization
problem, Eq. (44), can be redefined as follows:

min fQ ⇔ minPs(V, θ), (85)

where Ps is the injected active power at slack bus. On the
other hand, consideration of the constraints applied to the
voltages, reactive power, and control variables in the net-
work complicates the optimization procedure. In most non-
linear optimization problems, the constraints are consid-
ered by generalizing the objective function using penalty
terms. In the reactive power dispatch problem, the PV-
and Vθ-bus (slack-bus) voltages, VPV and Vs , are control
variables which are self-constrained. Voltages of PQ-buses,
VPQ , and injected reactive power of PV-buses, QG , are con-
strained by adding them as penalty terms to the objective
function, Eq. (87). The above equation is generalized as fol-
lows:

fQ = Ps(V, θ) +
∑

i∈NV lim

λi(Vi − Vilim)2

+
∑

i∈NQlim

λi(QGi −QGilim)2
(86)

where

Vilim = {Vimax; Vi >Vimax

Vimin; Vi <Vimin

QGilim = {QGimax; QGi >QGimax

QGimin; QGi <QGimin.

(87)

It can be seen that the generalized fQ is a nonlinear
and non-smooth function. The conventional gradient-based
optimization algorithms (11, 12) have been widely used to
solve this problem for decades.

EVOLUTIONARY COMPUTATION

Both active power regulation and reactive power dispatch
are global optimization problems which may have sev-
eral local minima, and conventional optimization meth-
ods easily lead to a local optimum. On the other hand, in
conventional optimization algorithms, many mathematical
assumptions, such as analytic and differential properties
of the objective functions and unique minima existing in
problem domains, have to be given to simplify the prob-
lem. Without such assumptions, it is very difficult to calcu-
late the gradient variables in conventional methods. Fur-
thermore, in practical power system operation, the data
acquired by the SCADA (Supervisory Control And Data
Acquisition) system are contaminated by noise. Such noisy
data may cause difficulties in computation of the gradi-
ents. Consequently, the optimization cannot be carried out
in many situations.

In the last decade, many new search methods have
been developed, such as neural networks, see (Neural net
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architecture), simulated annealing, see Simulated An-
nealing, genetic algorithms, see (Genetic Algorithms),
and evolutionary programming. These methods have been
widely applied to power system dispatch problems. Inter-
ested readers may refer to references (31, 71). In the follow-
ing, we introduce evolutionary computation techniques.

Evolutionary Algorithms (EAs) are inspired by natural
phenomena and derived from simulating Darwinian evolu-
tionary theory. It includes three broadly similar avenues:
Genetic Algorithms (GAs), Evolution Strategies (ES), and
Evolutionary Programming (EP). All these algorithms op-
erate on a population of candidate solutions, subject these
solutions to alterations, and employ a selection criterion
to determine which solutions to maintain for future gen-
erations. Their characteristics make them very different
from traditional optimization algorithms. The key point of
evolutionary computation is that successive populations of
the feasible solutions are generated in a stochastic manner
following laws similar to that of natural selection. Multi-
ple stochastic solution trajectories proceed simultaneously,
allowing various interactions among them toward one or
more regions of the search space, whilst nonlinear pro-
gramming techniques normally follow just one determin-
istic trajectory, perhaps repeated many times until a sat-
isfactory solution is reached.

In the past few decades, EAs have been applied to
global optimization problems become attractive because
they have better global search abilities over conventional
optimization algorithms.

Genetic Algorithms

GAs are search algorithms for finding the global optimum
solution for an optimization problem, in which the search
is conducted using information of a population of candidate
solutions so that the chance of the search being trapped in
a local optimum solution can be significantly reduced. A
GA carries out three basic operations: crossover, mutation
and selection. An initial population of strings is randomly
selected in the domain of control variables. The strings are
randomly selected with their probabilities proportional to
the ratio of the fitness of each string to the total fitness
of the population, to form a mating pool of strings for the
generation of offsprings. The strings with larger fitness get
higher chances to be selected (for maximization problems).
Each pair of strings in the mating pool undergoes crossover
and mutation, with given crossover and mutation probabil-
ities, to reproduce two offspring strings in the next gener-
ation. After all pairs of mates have finished crossover and
mutation, a new population has been reproduced. The fit-
ness of each new string will be computed and the new pop-
ulation will become the parent population and be ready to
reproduce. The standard procedure of a GA is sketched as
follows:

Choose an initial population
determine the fitness of each individual
perform selection
repeat

perform crossover

perform mutation
determine the fitness of each individual
perform selection

until some stopping criterion applies.

Coding structure. The coding for a solution, termed a
chromosome in GA literature, is usually described as a
string of symbols from (0,1). These components of the chro-
mosome are then labeled as genes. The number of bits that
must be used to describe the parameters is problem depen-
dent. Let each solution in the population of m such solu-
tions, xi , i = 1, 2,. . . , m, be a string of symbols (0,1) of length
l. Typically, the initial population of m solutions is selected
completely at random, with each bit of each solution having
a 50 percent chance of taking the value 0.

Selection. There are two main selection operators in
GAs: elitist selection and proportional selection. The elitist
selection is that the best individual (with highest fitness)
survives with probability one. It is provable that GAs us-
ing elitist selection or modified elitist selection probabilisti-
cally converge to the global optimum. But the convergence
rate may be slow. When using so-called proportional selec-
tion, the population of the next generation is determined
by n independent random experiments, the probability that
individual bi is selected from the tuple (b1, b2,. . . , bn ) to be
a member of next generation at each experiment is given
by

P{bi is selected} = f (bi)∑n

j=1 f (bj)
>0

It has been shown that GAs using proportional selection do
not necessarily converge to the global optimum and may be
trapped in the local optimum. However, many numerical
experimental simulations have shown their convergence
seems faster than with elitist selection.

Crossover. Crossover is an important random operator
in GAs and the function of the crossover operator is to gen-
erate new or ‘child’ chromosomes from two ‘parent’ chro-
mosomes by combining the information extracted from the
parents. By this method, for a chromosome of a length l, a
random number c between 1 and l is first generated. The
first child chromosome is formed by appending the last l −
c elements of the first parent chromosome to the first c ele-
ments of the second parent chromosome. The second child
chromosome is formed by appending the last l − c elements
of the second parent chromosome to the first c elements of
the first parent chromosome. Typically, the probability for
crossover ranges from 0.6 to 0.95.

Mutation. Mutation is a means to avoid the loss of im-
portant information at a particular position in the string of
a chromosome. It operates independently on each individ-
ual by probabilistically perturbing each bit string. A usual
way to mutate is to generate a random number v between
1 and l and then make a random change in the vth ele-
ment of the string with probability pm ∈ (0,1). Typically,
the probability for bit mutation ranges from 0.001 to 0.01.
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The probability that string bi resembles string b′
i after mu-

tation can be described as:

whereH(bi, b′
i) denotes the Hamming distance between the

strings bi and b′
i.

GAs have the following features: (1) they work with a
coding of the parameter sets instead of the parameters
themselves; (2) they search with a population of points,
not a single point; (3) they use the objective function in-
formation directly, rather than the derivatives or other
auxiliary knowledge, to find a minima; (4) they process in-
formation using probabilistic transition rules, rather than
deterministic rules. These features make GAs robust to
computation, readily implemented with parallel process-
ing and powerful for global optimization. Without deriving
the gradients, GAs are more suitable to use in the optimiza-
tion problems of large-scale systems and have been widely
applied to both economic dispatch problems and reactive
power dispatch problems; interested readers may refer to
references (34)–(38) and (39)–(40), respectively.

Evolutionary Programming

Evolutionary programming is another efficient global op-
timization technique. The EP is carried out mainly with
three operations: mutation, competition and reproduction.
These can be described as follows.

The initial population is determined by selecting pi ,
where pi is an individual, i = 1, 2,. . . , k, from the set of
U(a,b)n, where k is the population size and U(a,b)n denotes
a uniform distribution ranging over [a, b] in n dimensions.
Each pi , i = 1, 2,. . . , k, is assigned a fitness score fi . fi = F(pi ),
F: pi → R. F can be as complex as required and usually re-
garded as an objective function. Statistical methods are
then used to get the maximum fitness, minimum fitness,
average fitness and sum of fitnesses of the population. The
mutation operation is carried out based on the statistics to
double the population size from k to 2k. Each pi , i = 1, 2,. . . ,
k, is mutated and assigned to pi+k in the following way:

pi+k, j := pi, j + N(0, βj
fi

f�
), ∀ j; = 1, . . . , n (88)

where pi,j denotes the jth element of the ith individ-
ual; N(µ, σ2) represents a Gaussian random variable with
mean µ and variance σ2; f� is the sum of fitnesses; βj is

a constant of proportionality to scale
fi

f�
and 0 < βj ≤ 1.

Each pi+k , i = 1, 2,. . . , k, is again assigned a fitness score
fi+k . Based on the mutated population with the size of 2k, a
competition is conducted to reproduce offsprings. For each
pi , i = 1, 2,. . . , 2k, a value wi is assigned to weight the
individual according to the following equation:

and

where s is the number of competitors, r=int(2ku2 + 1),
int(x) denotes the greatest integer less than x, and u1, u2

∼ U(0,1). The individuals pi , i = 1, 2,. . . , 2k, are ranked
in descending order of their corresponding value wi . The
first k individuals are transcribed along with their corre-
sponding fitnesses fi to be the basis of the next generation.
The process will be carried out repeatedly until the given
conditions are satisfied.

EP has been shown as an efficient global algorithm in
solving both economic dispatch for units with non-smooth
fuel cost functions (42) and optimal reactive power dispatch
(71). In the next subsection,an example is given to show the
potential for application of EP to optimal reactive power
dispatch and voltage control of power systems.

Particle Swarm Optimizer with Passive Congregation

Particle Swarm Optimizer (PSO) is a newly proposed popu-
lation based stochastic optimization algorithm which was
inspired by the social behaviors of animals such as fish
schooling and bird flocking (44). Compared with other
stochastic optimization methods, PSO has comparable or
even superior search performance for some hard optimiza-
tion problems with faster convergence rates (45). It re-
quires only few parameters to be tuned which makes it
attractive from an implementation view point. However,
recent studies of PSO indicated that although the PSO out-
performs other evolutionary algorithms in the early itera-
tions, it does not improve the quality of the solutions as the
number of generations is increased. In (64), passive congre-
gation, a concept from biology, was introduced to the stan-
dard PSO to improve its search performance. Experimen-
tal results show that this novel hybrid PSO outperforms
standard PSO on multi-model and high dimensional opti-
mization problems. In this paper, we present a PSO with
passive congregation (PSOPC) for the solution of OPF.

The PSO is a population-based optimization algorithm.
Its population is called swarm and each individual is called
a particle. For the ith particle at iteration k, it has the fol-
lowing two attributes:

1. A current position in an N-dimensional search space
Xki = (xki,1, . . . , x

k
i,n, . . . , x

k
i,N ), where xki,n ∈ [ln, un],1 ≤

n ≤ N, ln and un is the lower and upper bound for the
nth dimension, respectively.

2. A current velocity Vki , Vki = (vk1,i, . . . , v
k
n,i, . . . , v

k
N,i),

which is clamped to a maximum velocity Vkmax =
(vkmax,1, . . . , v

k
max,n, . . . , v

k
max,N ).

At each iteration, the swarm is updated by the following
equations:

Vk+1
i = ωVki + c1r1(pki −Xki ) + c2r2(Pkg −Xki ) (90)

Xk+1
i = Xki + Vk+1

i (91)

where Pi is the best previous position of the ith particle
(also known as pbest) and Pg is the global best position
among all the particles in the swarm (also known as gbest).
They are given by the following equations:

Pi = {Pi : f (Xi) ≥Pi
Xi : f (Xi)<Pi

(92)
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Pg ∈ {P0, P1, . . . , Pm}| f (Pg)
= min( f (P0), f (P1), . . . , f (Pm))

(93)

where f is the objective function, m is the number of par-
ticles, r1 and r2 are elements from two uniform random
sequence on the interval [0,1]: r1 ∼ U(0,1); r2 ∼ U(0,1) and
ω is inertia weight (52) which is typically chosen in the
range of [0,1]. A larger inertia weight facilitates the global
exploration and a smaller inertia weight tends to facili-
tate the local exploration to fine-tune the current search
area (49). Therefore the inertia weight ω is critical for the
PSO’s convergence behavior. A suitable value for the iner-
tia weight ω usually provides balance between global and
local exploration abilities and consequently results in a bet-
ter optimum solution. c1 and c2 are acceleration constants
(53) which also control how far a particle will move in a
single iteration. The maximum velocity Vmax is set to be
half of the length of the search space.

The foundation of the development of PSO is based on
the hypothesis: social sharing of information among con-
specifics offers an evolutionary advantage (44). The PSO
model is based on (44):

1. the autobiographical memory which remembers the
best previous position of each individual (pbest) in
the swarm and

2. the publicized knowledge which is the best solution
(gbest) currently found by the population.

From biology point of view, the sharing of information
among conspecifics is achieved by employing the publicly
available information gbest. There is no information shar-
ing among individuals except that gbest give out the in-
formation to the other individuals. Therefore, for the ith

particle, the search direction will only be affected by 3 fac-
tors: the inertia velocity ωVki , the best previous position
pbest, and the position of global best particle gbest. The
population is more likely to lose diversity and confine the
search around local minima. From our experimental re-
sults, the performance of standard PSO is not sufficiently
good enough to solve the OPF problem due to its high-
dimensional and multi-model nature.

Biologists have proposed four types of biological mech-
anisms that allow animals to aggregate into groups: pas-
sive aggregation, active aggregation, passive congregation,
and social congregation (54). There are different informa-
tion sharing mechanisms inside these forces. We found
that the passive congregation model is suitable to be in-
corporated in the PSO model to improve the search per-
formance. Passive congregation is an attraction of an indi-
vidual to the entire group but do not display social behav-
ior. It has been discovered that in spatially well-defined
congregations, such as fish schools, individuals may have
low fidelity to the group because the congregations may be
composed of individuals with little to no genetic relation to
each other (55). In these congregations, information may
be transferred passively rather than actively (57). Such
asocial types of congregations can be referred as passive
congregation.

Biologists have discovered that group members in an
aggregation can react without direct detection of an in-

Figure 1. IEEE 30-bus power system

coming signals from the environment, because they can
get necessary information from their neighbors (54). Indi-
viduals need to monitor both environment and their imme-
diate surroundings such as the bearing and speed of their
neighbors (54). Therefore each individual in an aggrega-
tion have a multitude of potential information from other
group members which may minimize the chance of missed
detection and incorrect interpretations (54). Such informa-
tion transfer can be employed in the model of passive con-
gregation. Inspired by this result, and to keep the model
simple and uniform with the PSO, the PSOPC is given as
follows:

Vk+1
i = ωVki + c1r1(Pki −Xki ) + c2r2(Pkg −Xki ) + c3r3(Rki −Xki )(94)

Xk+1
i = Xki + Vk+1

i (95)

where Ri is a particle randomly selected from the swarm,
c3 the passive congregation coefficient and r3 a uniform
random sequence in the range (0,1): r3 ∼ U(0,1).

SIMULATION STUDIES

Optimal Reactive Power Dispatch using Evolutionary
Programming

The IEEE 30-bus system is shown in Fig. 1 and the system
data is given in the reference (30). Six buses are selected
as PV-buses and V θ-bus as follows: PV-buses: Bus 2, 5, 8,
11, 13. Vθ-bus: Bus 1, The others are PQ-buses.

The network loads are given as follows:

PLoad = 2.834 p.u. QLoad = 1.0445 p.u. cosϕLoad = 0.938

Two capacitive loads at two buses are included in the
QLoad, which are voltage-dependent loads. Voltages of PV-
buses and V θ-bus are set to be 1.0 p.u. Based on the above
initial conditions, the voltages outside the limits on three
PQ-buses are calculated and given as follows:

V26 = 0.932; V29 = 0.940; V30 = 0.928;

The generated power and network power loss are obtained
as follows:
PG� = 2.893857 p.u. QG� = 0.980199 p.u. PLoss = 0.059879 p.u.
cosϕG� = 0.947 QLoss = −0.064327 p.u.



Dispatching 11

(1) Optimal solution obtained by EP
The EP method has been evaluated on the IEEE 30-bus

system. The control variables of the transmission network
are arranged as elements of an individual in populations
during evolutionary search. The individuals are expressed
as follows:

where vj , j = 1, 2,. . . , n, are the PV-bus and V θ-bus volt-
ages. The population size, k, is chosen to be 50. The individ-
uals in the initial population, p0

i = {p0
i, j| j = 1,2, . . . , n}(i =

1,2, . . . , k), are constructed with random values assigned
for their elements, p0

i, j.The objective function with the volt-
age and reactive power penalty, Eq. (88), is used for reac-
tive power dispatch. The constraints of PV-bus and V θ-bus
voltages are set to be 0.9 and 1.1 p.u. and PQ-bus voltage
constraints are set to be 0.95 and 1.05 p.u. The value of the
objective function, fi , is obtained with each individual pi ,
which is used for mutation, competition and reproduction
according to Eqs. (88)–(93). For generating populations, the
number of competitors is chosen to be 20.

After a successful search using the EP, the PV-bus volt-
ages and the V θ-bus voltage are obtained as follows:

Only the voltage of Bus 3 is slightly outside the limits,V3

= 1.0502. It should be mentioned that the voltages of PQ-
buses are constrained by the penalty terms in the objective
function, Eq. (88).

The generated power and network power loss are ob-
tained as follows:
PG� = 2.884145 p.u. QG� = 0.876552 p.u. PLoss = 0.050159 p.u.
QLoss = −0.139324 p.u. cosϕG� = 0.955 QLoad = 1.015874 p.u.

Power saving is:

and

(2) Optimal solution obtained using BFGS method
The nonlinear programming method, BFGS (Broyden,

Fletcher, Goldfarb and Shanno) method (12), has also been
evaluated on the IEEE 30-bus system. It is a quasi Newton
method and does not require the second-order derivatives
of the objective function directly and is able to approach
the inverse Hessian matrix through iterations. With this
method, the control variables are updated in the optimiza-
tion process as follows:

where

sk = Vk+1 − Vk
yk = ∇ fQk+1 − ∇ fQk.

In the above equations,V is the vector including the PV-
bus andV θ-bus voltages,k indicates the iteration steps and

λ is the optimum step length. ∇ fQ is obtained from Eq. (88).
The process starts with H = I and ends at H−1

k = ∇2 fQk.
After successful optimization using the method, the PV-

bus voltages and the V θ-bus voltage are obtained as fol-
lows:

Only the voltage of Bus 9 is slightly outside the limits,
V9 = 1.0503. The generated power and network power loss
are obtained as follows:
PG� = 2.888121 p.u. QG� = 0.901599 p.u. PLoss = 0.054122 p.u.
QLoss = −0.114644 p.u. cosϕG� = 0.955 QLoad = 1.016241 p.u.

Power saving is:

and

As mentioned earlier, the generalized fQ is a noncontin-
uous function, and the control variables are limited. The
optimization for reactive power dispatch using the BFGS
method is carried out with hard constraints, limits on con-
trol variables, and soft constraints, penalty on the volt-
ages and reactive power outside the limits. This causes a
poor convergence during the optimization procedure. By
trial and error, many results have been obtained using the
BFGS method. In the BFGS method, the range of optimum
step length is chosen to be very small, otherwise, oscil-
lations will occur and the algorithm will diverge. It has
been noted that in gradient-based optimization methods,
the convergence is sensitive to the network topology, load
distribution, system initial conditions, penalty factors, a
priori parameters in the algorithm and convergence crite-
ria.

Optimal Power Flow using PSOPC

The PSOPC algorithm has also been tested on the standard
IEEE 30-bus test system. The system line and bus data for
30-bus system were adopted from (20). For all problems a
population of 50 individuals is used. A time decreasing in-
ertia weight ω which starts from 0.9 and ends at 0.4 was
used. The default value of acceleration constants c1, c2 are
typically set to 2.0. However with a setting of c1 = c2 = 0.5
better results were obtained. For each problem, 100 inde-
pendent runs were carried out. The maximum generation
was set to 500.

Case 1: Minimization of fuel cost. The objective of this
example is to minimize the total fuel cost.

FT =
∑

i∈NG
Fi(Pi) (96)

where Fi (Pi ) is the fuel cost ($/h) of the ith generator:

Fi(Pi) = αi + βiPi + γiP
2
i

αi , βi and γ i are the fuel cost coefficients, Pi is the real
power output generated by the ith generator.
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Table 2. Best values of PSOPC, PSO, Gradient-based approach and EGA for Case 1

Case 1

PSOPC PSO Gradient (20) EGA (19)

Fuel cost ($/h) 802.0477 802.41 813.74 802.6087∑
voltage deviations 0.8089 0.8765 1.4602 0.8073

Tmax 0.1383 0.1381 0.1384 0.1394

Table 3. Best values of PSOPC and PSO for Case 2

Case 2

PSOPC PSO

Fuel cost ($/h) 804.0650 804.1426∑
voltage deviations 0.0954 0.1011

This problem was tackled using a gradient-based opti-
mization method (20). The best-known result was obtained
by Bakirtzis et al. (19) using an enhanced GA (EGA). The
PSO was implemented based on the algorithm presented
in (49). The best result of the PSOPC from 100 runs is tab-
ulated in Table 2 in comparison to those obtained from the
techniques mentioned above.

Case 2: Voltage profile improvement. This example aims
at minimizing fuel cost with a flatter voltage profile.The ob-
jective function is modified to minimize the fuel cost while
at the same time to improve voltage profile by minimiz-
ing the load bus voltage deviations from 1.0 per unit. The
objective function can be expressed as:

FT =
∑

i∈NG
Fi(Pi) + ω

∑

i∈NPQ
|Vi − 1.0| (97)

where ω is the weighting factor.
The best result of the PSOPC from 100 runs is tabulated

in Table 3 in comparison to the result obtained from the
standard PSO.

Case 3: Voltage stability enhancement. This example min-
imizes fuel cost and enhances voltage stability profile
through out the whole network. T is the stability indica-
tors at every bus of the system and Tmax is the maximum
value of T-index defined as (28):

Tmax = max{Tk|k = 1, . . . , NL} (98)

And T can be calculated from the following equation:

Tj = |1 + V0 j

V j
| = | S+

j

Y+∗
j j · V 2

j

| (99)

where Y+
j j is the transformed admittance, Y+

j j = 1/Zj j; Vj

is the consumer node voltage; S+
j is the transformed power

S+
j = Sj + Scor

j ; and Scor
j is given by:

Scor
j = [

∑

i∈α
(
Z∗
ji

Z∗
i j

) · (
Si

Vi
)] · Vj (100)

and αL is the set of consumer nodes.
One way of determining T is:

T = max
j ∈αL

|1 −
∑

i∈αG Mi j · Vi
Vj

| (101)

Table 4. Best values of PSOPC and PSO for Case 3

Case 3

PSOPC PSO

Fuel cost ($/h) 802.0638 802.1190
Tmax 0.1379 0.1382

where αL is the set of load buses; αG is the set of generator
buses. Vj is the voltage at load bus j; Vi is the complex
voltage at generator bus i; Mij is the element of matrix [M]
determined by

[M] = − [YLL]
[YLG]

(102)

where [YLL ] and [YLG ] are sub-matrices of the Y-bus ma-
trix.

The objective function can be expressed as:

FT =
∑

i∈NG
Fi(Pi) + ωTmax

The best results of the PSOPC and the stand PSO from 100
runs are tabulated in Table 4.

In this study, the PSOPC was applied to tackle OPF
problems. By introducing the passive congregation, infor-
mation can be transferred among individuals which will
help individuals to avoid misjudging information and trap-
ping by poor local minima. Numerical experiments were
carried out on an IEEE 30-bus for three different fuel cost
minimization problems.

CONCLUSION

Power system dispatching consists of two aspects: economic
dispatch and reactive power dispatch. The economic dis-
patch problem is to determine the power output of each
unit to minimize the overall cost of fuel needed to meet the
system load. Reactive power dispatch aims to control volt-
ages of PV-buses, tap settings of the on-load tap changing
transformers and voltage compensators to minimize net-
work power loss. These two aspects have also been consid-
ered as an optimal power flow problem which have been
extended in the recent years to include the problems of
fuel cost, voltage profile and voltage stability. The solu-
tions of these problems are conventionally provided using
nonlinear optimization techniques which were briefly ad-
dressed in the article. A high level of research activities
on applying the evolutionary algorithms to power system
dispatching problems have been undertaken over the past
decade. The most popular evolutionary algorithms, such as
genetic algorithm, evolutionary programming and particle
swarm optimizer with passive congregation, have been in-
troduced and their applications to the above problems have
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been presented in this article, together with the results of
the simulation studies which were obtained based on the
IEEE 30-bus power system, in comparison with the con-
ventional optimization techniques.
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