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Another principle of forecasting is that forecasts are more
accurate for groups or families of items rather than for indi-
vidual items themselves. Because of pooling of variances, the
behavior of group data can have very stable characteristics
even when individual items in the group exhibit high degrees
of randomness. Consequently, it is easier to obtain a high de-
gree of accuracy when forecasting groups of items rather than
individual items themselves.

Finally, forecasts are more accurate for shorter than longer
time horizons. The shorter the time horizon of the forecast,
the lower the uncertainty of the future. There is a certain
amount of inertia inherent in the data, and dramatic pattern
changes typically do not occur over the short run. As the time
horizon increases, however, there is a much greater likelihood
that a change in established patterns and relationships will
occur. Therefore, forecasters cannot expect to have the same
degree of forecast accuracy for long range forecasts as they do
for shorter ranges.

Classification of Forecasting MethodsFORECASTING THEORY
Forecasting methods can be classified into two groups: quali-

The ability to forecast future events accurately has been tative and quantitative methods. Qualitative or judgmental
highly valued throughout time. Whether it is in business or forecasting methods are subjective in nature. They are based
in our private lives, forecasting future events helps us to plan on intuition, personal knowledge, and experience and are edu-
for them adequately. We all make forecasts daily; we develop cated guesses of forecasters or experts in the field. These fore-
them from our experiences and knowledge about certain situ- casts can be generated very informally or follow a structured
ations. The same is true in management or administrative decision-making process. Because these forecasts are based
situations. In business, industry, and government, decision upon individual opinions, they lack consistency, and different
makers must anticipate the future behavior of many variables forecasters will typically generate different forecasts for the
before they can make decisions. Based on these forecasts, same situation. Although qualitative forecasting involves a
proper planning can take place. Forecasting can therefore be nonrigorous approach, under certain circumstances these
seen as a critical aid to planning effectively for the future. methodologies may be quite appropriate and the only method

In business organizations, forecasts are made in virtually of choice.
every function and at every organizational level. For example, Quantitative forecasting methods are approaches based on
a bank manager might need to predict cash flows for the next mathematical or statistical modeling. Based on mathematics,
quarter, a control engineer may wish to control future values these models generate consistent forecasts that are reproduc-
of an output variable by manipulating a set of input variables, ible by any forecaster. Three conditions are required for quan-
a company manager might need to forecast sales, and a pro- titative forecasting methods to be applied. First, information
duction manager may need to estimate labor-hours required about the past must be available. Second, available informa-
to meet a given production schedule. In all these scenarios, tion must be quantified in the form of data. Finally, we must
statements about the future are made based on the past and be reasonably confident that past patterns will continue into
the assumption that the future will be similar to the past. the future. This last condition is known as the assumption of

Although each forecasting situation is unique, certain gen- constancy and is an underlying premise of all quantitative
eral principles are common to almost all forecasting problems. models.
A large range of forecasting methodologies vary in complexity, Quantitative forecasting models vary considerably, each
cost, and accuracy, allowing the forecaster great choice in having its own properties, accuracies, and costs that must be
model selection. Understanding the basic principles of fore- considered when choosing a specific method. Quantitative
casting and existing forecasting options is the first step in models can be divided into two major categories: time-series
being able to generate good forecasts. and causal models. The objective of time-series forecasting

methods is to discover the pattern in the historical data series
and extrapolate that pattern into the future. Causal models,

FORECASTING FUNDAMENTALS on the other hand, assume that the factor to be forecast exhib-
its a cause-effect relationship with one or more independent

Principles of Forecasting variables. For example, sales � f (income, prices, advertising,
competition). The purpose of the causal model is to discoverOne of the most basic principles of forecasting is that fore-
the form of that relationship and to use it to forecast futurecasts are rarely perfect. Forecasting future events involves
values of the dependent variable.uncertainty, and as such perfect prediction is almost impossi-

Qualitative methods, sometimes called technological meth-ble. Forecasters know that they must live with a certain
ods, do not require data in the same manner as quantitativeamount of error. Our goal in forecasting is to generate on the
methods do. The inputs required are mainly intuitive think-average good forecasts over time and minimize forecast

errors. ing, judgment, and accumulated knowledge, often developed
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by a number of specially trained people. Qualitative forecast- not increase or decrease over time. This type of pattern
may not be uncommon for products in the mature stageing methods can be further divided into two groups. These are

exploratory and normative methods (1). Exploratory methods of their life cycle or in a steady state environment.
start with the present and move toward the future in a heu- 2. Trend—When there is an increase or decrease in the
ristic manner considering all possibilities. Examples of ex- data over time, we say that the data exhibit a trend
ploratory methods include techniques such as Delphi, S- pattern. The sales of many companies and products, as
curves, analogies, and morphological research. Normative well as many business or economic indicators follow a
methods, on the other hand, start with future objectives and trend pattern in their movement over time.
work backward to see if these can be achieved, considering all 3. Seasonality—A seasonal pattern is any pattern that
known constraints. Normative methods include such tech- regularly repeats itself and is of constant length. This
niques as decision matrices, relevance trees, and system pattern exists when a series is influenced by seasonal
analysis. factors, such as the quarter or month of the year or the

Like their quantitative counterparts, qualitative tech- day of the week. An example of this could be a retail
niques vary widely in cost, complexity, and value. They can operation with high sales during the months of Novem-
be used separately but are often used in combination with ber and December or a restaurant with peak sales on
each other or in conjunction with quantitative methods. In Fridays and Saturdays.
certain situations, such as formulating strategy, developing

4. Cycles—When data are influenced by longer-term eco-new products and technologies, and developing long-range
nomic fluctuations such as those associated with theplans, they are the only techniques possible because relevant
business cycle, we say that a cyclical pattern is present.data are unavailable.
The major distinction between a seasonal and a cyclical
pattern is that a cyclical pattern varies in length and

Selecting a Forecasting Model magnitude. Because of this, cyclical factors can be much
more difficult to forecast than other patterns.A number of factors influence the selection of a forecasting

model. The first determining factor to consider is the type and
amount of available data. Certain types of data are required Any one of these patterns can be present in a time series.
for using quantitative forecasting models and, in the absence Also, many time series contain a combination of these pat-
of these, qualitatively generated forecasts may be the only op- terns. Forecasting models differ based on their ability to fore-
tion. Also, different quantitative models require different cast different data patterns. A critical issue in forecasting is
amounts of data. The amount of data available may preclude to make sure that the model selected can forecast the pat-
the use of certain quantitiative models narrowing the pool of terns present in the data set.
possible techniques.

Another important factor to consider in model selection is
A Framework of the Forecasting Processdegree of accuracy required. Some situations require only

crude forecasts, wheres others require great accuracy. In- Before we can study specific forecasting techniques, it is im-
creasing accuracy, however, usually raises the costs of data portant to understand the general process used to develop a
acquisition, computer time, and personnel. A simpler but less quantitative forecasting model and generate forecasts. There
accurate model may be preferred over a complex but highly are certain procedural steps that must be followed regardless
accurate one, if the loss in accuracy is not critical and if there of which forecasting model is used. In general, developing and
are substantial savings in cost. In general, it is best to use as using a quantitative forecasting model consists of two major
simple a model as possible for the conditions present and data stages. The first stage is model building, where the forecast-
available. This is also known as the principle of parsimony, ing model is selected based on historical data and available
which says that, when deciding among alternative models, theory. The selected model then must be fit to the known data
the simplest is preferable, all other things being equal. by carefully selecting parameters and initializing procedures.

A third factor to consider is the length of the forecast hori- For example, these parameters may be selected through an
zon. Forecasting methods vary in their appropriateness for estimation approach, such as least squares. Finally, in this
different time horizons, and short-term versus long-term fore- stage, the forecaster must check the adequacy of the fitted
casting methods differ greatly. It is essential to select the cor- model. This is done by applying the forecasting model to his-
rect forecasting model for the forecast horizon being used. For torical data and obtaining fitted values. Fitted errors that test
example, a manufacturer who is trying to forecast the sales the goodness of fit of the model are generated. Based on the
of a product for the next 3 months is going to use a vastly fitted errors, the model could be found inadequate for a num-
different forecast than an electric utility trying to forecast de- ber of reasons, such as including inappropriate parameters or
mand for electricity over the next 25 years. incorrectly specifying the functional relationship. If the fore-

Finally, an important criterion in selecting an appropriate casting model is found to be inadequate, it has to be respeci-
method is to consider the types of patterns present in the data fied. This cycle of model specification, parameter estimation,
so that the methods most appropriate to those patterns can and diagnostic checking is iterative and must be repeated un-
be selected. Four basic types of data patterns can be distin- til a satisfactory model is found.
guished: The second stage in this framework is the forecasting stage.

This is where the final model is used to obtain the forecasts.
As data patterns change over time, the forecaster must make1. Horizontal—A horizontal pattern exists when data val-

ues have no persistent upward or downward movement. sure that the specified model and its parameters are adjusted
accordingly. The adequacy of the forecasting model must beAn example of this would be a product whose sales do



666 FORECASTING THEORY

assessed continually by checking the forecasts against the Next are some of the most common relative forecast error
measures:new observations.

1. Mean Percentage Error:Measuring Forecast Accuracy

One of the most important criteria for choosing a forecasting
method is its accuracy. The model’s accuracy can be assessed
only if forecast performance is measured over time. The ade-

MPE =
nX

t=1

PEt/n

quacy of parameters and models change over time as data
wherechange. In order to account for this and respond to the need

for model change, we must track model performance. Measur-
PE = [(Xt − Ft )/Xt ](100)ing forecast accuracy also has another use. This is in the

model development stage. Evaluating the accuracy of the
2. Mean Absolute Percentage Error:model on the fitting data helps us to select a model for fore-

casting.
Many statistical measures can be used to evaluate forecast

model performance. Unfortunately, there is little consensus
MAPE =

nX

t=1

PEt /n

among forecasters as to the best and most reliable forecast-
error measures (2). Complicating this issue is that different Standard Versus Relative Forecast-Error Measures
error measures often provide conflicting results. Different

Standard error measures, such as mean error (ME) or meanforecast-error measures each have their shortcomings but
square error (MSE), typically provide the error in the sameprovide unique information to the forecaster. Knowing when
units as the data. As such, the true magnitude of the errorto rely on which measure can be highly beneficial for the fore-
can be difficult to comprehend. For example, the forecast er-caster.
ror of 50 units has a completely different meaning if the unitsMost forecast-error measures can be divided into two
are in dollars versus cartons. In addition, having the errorgroups—standard and relative error measures (1). Some of
in actual units of measurement makes it difficult to comparethe more common forecast-error measures in these categories
accuracies across time series or different time periods. In in-follow, accompanied by specific suggestions with regard to
ventory control, for example, units of measure typically varytheir use.
between series. Some series might be measured in dollars,If Xt is the actual value for time period t and Ft is the fore-
whereas others are measured in pallets or boxes. When com-cast for the period t, the forecast error for that period can be
paring accuracy between series, the results are not meaning-computed as the difference between the actual and the fore-
ful or the series with large numbers may dominate the com-cast:
parison.

Relative-error measures, which are unit-free, do not haveet = Xt − Ft
these problems. Because relative error measures are based on
percentages, they are easy to understand. Also, relative-errorWhen evaluating performance for multiple observations, say
measures make comparisons across different time series orn, there will be n error terms. We can define the following
different time intervals meaningful. However, these errorstandard forecast-error measures:
measures are not without shortcomings. Because these mea-
sures are defined as a ratio, problems arise in the computa-1. Mean Error:
tion of values that are zero or close to zero. Mean absolute
percentage error (MAPE) is one of the most popular of the
relative-error measures.ME =

nX

t=1

et/n

Error Measures Based on Absolute Values
2. Mean Absolute Deviation:

Error measures that use absolute values, such as the mean
absolute deviation (MAD) do not have the problem of errors
of opposite signs canceling themselves out. For example, a low
mean error may mislead the forecaster into thinking that the

MAD =
nX

t=1

et /n

overall error is low, when in fact, high and low forecasts may
be canceling each other out. This problem is avoided with ab-3. Mean Square Error:
solute error measures. The typical shortcomings of these error
measures is that they assume a symmetrical loss function.
The forecaster is provided with the total magnitude of errorMSE =

nX

t=1

(et )
2/n

but does not know the true bias or direction of that error.
When using error measures based on absolute values, it is

4. Root-Mean-Square Error: also beneficial to compute an error measure of bias, such as
mean error or mean percentage error (MPE). These error
measures provide the direction of the error, which is a ten-
dency of the model to over- or underforecast. It is very com-
mon for forecasters to have a biased forecast, particularly

RMSE =
�

nX
t=1

(et )
2/n

�1/2
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when qualitative forecasting methods are used. Frequently dakis (4) referred to it as ‘‘a relative measure that incorpo-
rates the best characteristics among the various accuracy cri-this may be in line with the organizational incentive system,

such as being evaluated against a quota. Measuring the de- teria.’’ MAPE provides the error in terms of percentages so
that it is an easy measure to understand. MAPE is also di-gree of bias is important because the forecast can then be

adjusted for it. The two pieces of information, the error based mensionless, allowing for comparison across different time se-
ries and time periods.on an absolute value as well as a measure of bias, work to

complement each other and provide a more complete picture
for the forecaster. Other Useful Error Measures

Theil’s U Statistic. One useful way of evaluating forecastUsing Common Error Measures
performance is to compare accuracy against a baseline fore-

Mean Square Error. Mean square error is an error measure cast. A forecasting technique that commonly serves as a base-
that has particular benefits under certain circumstances. line is the Naive model or random walk, which is nothing
Squaring of error can be advantageous in certain situations more than last period’s actual serving as next period’s fore-
as the errors are weighted based on magnitude. Larger errors cast. The idea is that a chosen forecasting model must per-
are given greater weight than smaller errors, which can be form better than Naive in order to justify its use. The accu-
quite beneficial in situations when the cost function increases racy of multiple forecasting procedures can be compared with
with the square of the error. For example, in inventory control this baseline.
or production planning, larger errors can create costly prob- One statistic that performs an automatic comparison
lems. Overforecasting can lead to higher production and in- against the Naive model and, much like MSE, considers the
ventory levels. In inventory control, MSE is popular because disproportionate cost of large errors is Theil’s U statistic. The
it can be directly tied to the variability of the forecast errors. statistic allows a relative comparison of formal forecasting
This is important for calculating safety stocks in order to methods with Naive and also squares the errors involved so
cover the variability of demand during the lead time period. that large errors are given much more weight than small er-
In general, this is a good error measure to use in situations rors. Theil’s U statistic can be difficult to understand intu-
when large errors are costly and decision making is very con- itively, and readers who are interested in the mathematical
servative (3). definition are referred to Ref. 1 and 5. For practicing forecast-

The disadvantage of MSE is that it is inherently difficult ers, the interpretation of the value of this statistic is signifi-
to understand. Sometimes using the root-mean-square error cant because it falls into easily interpreted ranges. A Theil’s
(RMSE), which is simply the square root of MSE, may be pre- U statistic equal to 1 means that the forecasting model being
ferred because the error is provided in the same units as the evaluated is equal in performance to the Naive model. A
data. Like the MSE, the RMSE penalizes errors according to Theil’s U statistic greater than 1 indicates that the Naive
their magnitude. Also, because both MSE and RMSE are not model produces better results than your model. Finally, a
unit-free, comparisons across series are difficult. Theil’s U less than 1 indicates that the forecasting model

evaluated is providing better forecasts than Naive. Most sta-
Mean Absolute Deviation. The mean absolute deviation is tistical and forecasting software packages provide Theil’s U

an error measure that provides the forecaster with the aver- statistic, and the easy range of interpretation makes this sta-
age total magnitude of error, regardless of sign. As indicated tistic quite valuable.
earlier, it is not unit-free, making comparisons across series
difficult. Also, it assumes a symmetric loss function. A num-
ber of MAD properties can make it attractive for use. First, SMOOTHING FORECASTING MODELS
the following smoothing relationship can be used to approxi-
mate the values for MAD: The first forecasting models to be discussed belong to a cate-

gory known as smoothing models. Smoothing models are
MADt = α et−1 + (1 − α)MADt−1 based on a simple weighing or smoothing of past observations

in a time series in order to obtain a forecast of the future.
where � is a constant between 0 and 1. This relationship can Through the process of averaging of historical values, random
provide computational advantages, such as requiring less his- errors are averaged in order to provide a ‘‘smooth’’ forecast.
torical data to be retained for each estimate. Also, through Smoothing models are one of the most popular groups of
the use of �, recent forecast performance can be emphasized quantitative forecasting models, finding numerous applica-
more than past performance if the forecaster deems it most tions, particularly for short to medium range forecasting.
important.

Second, if forecast errors are normally distributed with a
The Meanmean of 0, there is a simple relationship between the RMSE

and MAD. Though this is only an approximation, it makes it The simplest smoothing model available is the mean, or the
easy to switch from one error measure to the other: simple average. Given a data set covering N time periods,

X1, X2, . . ., Xn, the forecast for next time period t 	 1 is given
asRMSE = 0.8 MAD

Mean Absolute Percentage Error. The mean absolute per-
centage error is considered to be one of the most popular error
measures among both practitioners and academicians. Makri-

Ft+1 =
TX

i=1

Xi/T
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This model is useful only for horizontal data patterns. As the where Ft	1 and Ft are next period’s and this period’s forecasts,
mean becomes based on a larger and larger historical data respectively. Xt is this period’s actual observation, and � is a
set, forecasts become more stable. One of the advantages of smoothing constant that can theoretically vary between 0 and
this model is that only two historical pieces of information 1. Selection of �, which is discussed later, is a critical compo-
need to be carried, the mean itself and the number of observa- nent to generating good forecasts. The implication of exponen-
tions the mean was based on. tial smoothing can be seen if Eq. (1) is expanded to include

past components:
Simple Moving Average

When using the mean to forecast, one way to control the in-
fluence of past data is to specify at the outset how many ob-
servations will be included in the mean. This process is de-
scribed by the term moving average because as each new
observation becomes available, the oldest observation is

Ft+1 = αXt + (1 − α)[αXt−1 + (1 − α)Ft−1]

= αXt + α(1 − α)Xt−1 + (1 − α)2Ft−1

= αXt + α(1 − α)Xt−1 + α(1 − α)2Xt−2

+ α(1 − α)3Xt−3 + · · · + α(1 − α)N−1Xt−(N−1)

(2)

dropped, and a new average is computed. The number of ob-
servations in the average is kept constant and includes the
most recent observations. Like the simple mean, this model An alternative way of writing Eq. (2) follows:
is good only for forecasting horizontal, nonseasonal data and
is not able to forecast data with trend or seasonality.

Using a moving average for forecasting is quite simple.
Given M data points and a decision to use T observations for

Ft+1 = Ft + α(Xt − Ft )

Ft+1 = Ft + αet
(3)

each average, the simple moving average is computed as
follows: where et is the forecast error for period t. This provides an-

other interpretation of SES. It can be seen that the forecastTime Forecast
provided through SES is simply the old forecast plus an ad-

T Ft	1 � �T
i�1 Xi/T justment for the error that occurred in the last forecast. When

T 	 1 Ft	2 � �T	1
i�2 Xi/T � is close to 1, the new forecast includes a large adjustment

for the error. The opposite is true when � is close to 0. TheT 	 2 Ft	3 � �T	2
i�3 Xi/T

new forecast will include very little adjustment. These equa-
The decision on how many periods to include in the moving tions demonstrate that SES has a built-in self-adjusting
average is important, and several conflicting effects need to mechanism using the basic principle of negative feedback.
be considered. In general, the greater the number of observa- The past forecast error is used to correct the next forecast in
tions in the moving average, the greater the smoothing on the a direction opposite to that of the error, the same principle
random elements. However, if there is a change in data pat- used to adjust thermostats and automatic pilots.
tern, such as a trend, the larger the number of observations Equations (1) and (3) also demonstrate that the best this
in the moving average, the more the forecast will lag this forecasting model can do is to develop the next forecast from
pattern. some percentage of error. As such, SES is appropriate only

for horizontal, nonseasonal data and is not appropriate for
Exponential Smoothing Models data containing trend because the forecasts will always lag

the trended data.This section describes a class of models called exponential
smoothing models. These models are characterized by expo-
nentially decreasing weights placed on progressively older ob-

Selection of the Smoothing Constant �. As indicated earlier,servations. They are based on the premise that the impor-
the proper selection of � is a critical component to generatingtance of past data diminishes as the past becomes more
good forecasts with exponential smoothing. High values of �distant.
will generate responsive forecasts but will not offer muchExponential smoothing models are the most used of all
data smoothing. On the other hand, low � values will notforecasting techniques and are an integral part of many com-
allow the model to respond rapidly to changes in data pattern.puterized forecasting software programs. They are widely

There are a number of ways to select �. A common ap-used for forecasting in practice, particularly in production and
proach is to select � in such a way so that some criteria, suchinventory control environments. There are many reasons for
as MSE, is minimized over the initialization set in the fittingtheir widespread use. First, these models have been shown to
stage of model development (7). Another approach is to useproduce accurate forecasts under many conditions (6). Second,
what is known as adaptive-response-rate single exponentialmodel formulation is relatively easy, and the user can under-
smoothing (ARRSES), which allows � to change as changes instand how the model works. Finally, little computation is re-

quired to use the model, and computer storage requirements the data pattern occur (8). This adaptive approach allows � to
are quite small. change automatically based on the distribution of past errors,

making � more responsive or stable, based on the pattern in
Single Exponential Smoothing. The simplest case of exponen- the data. The basic equation for exponential smoothing is the

tial smoothing models is single exponential smoothing (SES). same, except that � is replaced by �t:
Forecasts using SES are generated as follows:

Ft+1 = αXt + (1 − α)Ft (1) Ft+1 = αtXt + (1 − αt )Ft (4)
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where Winters’ model is just one of several models that is appro-
priate for seasonal data. It is based on three smoothing equa-
tions—one for stationarity of the series, one for trend, andαt+1 = Et/Mt (5)
one for seasonality. The equations of this model are similarEt = βet + (1 − β)Et−1 (6)
to Holt’s model, with the addition of an equation to deal with
seasonality. The model is described as follows:Mt = β et + (1 − β)Mt−1 (7)

et = Xt − Ft (8) 1. Overall smoothing

where both � and � are parameters between 0 and 1. St = αXt/It−L + (1 − α)(St−1 + bt−1) (12)
Equation (5) shows that � is made equal to the absolute

value of the ratio of smoothed error Et over the smoothed ab- 2. Trend smoothing
solute error Mt. Et and Mt are obtained through Eqs. (6) and
(7), and the error is defined by Eq. (8). Through the distribu- bt = γ (St − St−1) + (1 − γ )bt−1 (13)
tions of past errors, � is automatically adjusted from period
to period. The reader is referred to Ref. 8 for a description of 3. Seasonal smoothing
this process.

It = βXt/St + (1 − β)It−L (14)
Holt’s Two-Parameter Model. Holt’s two-parameter model,

also known as linear exponential smoothing, is one of many 4. Forecast
models applicable for forecasting data with a trend pattern
(9). As noted earlier, horizontal models will generate forecasts Ft+m = (St + btm)It−L+m (15)
that will lag trended data. Trend models have some mecha-
nisms that allows for tracking of trend and adjusting the level

Equations (12)–(15) are similar to Holt’s equations, with aof the forecast to compensate for the trend. Holt’s model does
few exceptions. Here, L is the length of seasonality, such asthis through the development of a separate trend equation
the number of months or quarters in a year and It is the corre-that is added to the basic smoothing equation to generate the
sponding seasonal adjustment factor. As in Holt’s model, thefinal forecast. The series of equations follows:
trend component is given by bt, and the forecast for m periods
ahead is Ft	m. Equation (14) is the seasonal smoothing equa-1. Overall smoothing
tion that is comparable to a seasonal index that is found as a
ratio of the current values of the series Xt, divided by the cur-St = αXt + (1 − α)(St−1 + bt−1) (9)
rent single smoothed value for the series St. When Xt is larger
than St, the ratio is greater than 1. The opposite is true when2. Trend smoothing
Xt is smaller than St, when the ratio will be less than 1. It is
important to understand that St is a smoothed value of thebt = γ (St − St−1) + (1 − γ )bt−1 (10)
series that does not include seasonality. The data values Xt,
on the other hand, do contain seasonality, which is why they3. Forecast
are deseasonalized in Eq. (12). Xt also contains randomness,
which Eq. (14) smooths out through �, allowing us to weightFt+m = St + btm (11)
the newly computed seasonal factor with the most recent sea-
sonal number.

In Eq. (9), the last smoothed value St�1 is directly adjusted for As with other smoothing models, one of the problems in
last period’s trend bt�1 to generate next period’s trend St. This using Winters’ method is to determine the values of parame-
is the technique that helps bring up the value of St to the ters �, �, and �. The approach for determining these values
level of trend and eliminate any lagging. The level of trend is is the same as for selecting parameters for other smoothing
updated over time through Eq. (10), where the trend is ex- procedures. Trial and error on historical data is one approach
pressed as the difference between the last two smoothed val- that can be used. Another option is to use a nonlinear optimi-
ues. The form of Eq. (10) is the basic single smoothing equa- zation algorithm to give optimal parameter values that mini-
tion applied to trend. Much like �, the coefficient � is used to mize MSE or MAPE. The reader is referred to Ref. 10 for
smooth out the randomness in the trend. Finally, Eq. (11) is more information on this method.
used to generate forecasts. The trend bt is multiplied by m,
the number of periods ahead to be forecast, and added to the
base value St. AUTOREGRESSIVE/MOVING AVERAGE

FORECASTING MODELS
Winters’ Three-Parameter Trend and Seasonality Model. As

indicated earlier in this chapter, a critical part of forecasting Autoregressive/moving average (ARMA) models are another
category of forecasting models that are in many ways similaris to match the forecasting model to the characteristic pat-

terns of the time series being forecast. If the data are hori- to smoothing methods in that they are based on historical
time-series analysis. However, ARMA models have a uniquezontal and nonseasonal, then models such as the mean, mov-

ing averages, or SES would be the models of choice. If the approach to identifying the patterns in historical time series
and extrapolating those into the future. These models aredata have a trend present, then Holt’s linear model or any

one of a number of trend models (1) could be selected. fairly complex, which has, in many cases, hindered their
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widespread use. Nevertheless, ARMA models have a strong Mixed Autoregressive Moving Average Models
theoretical and statistical appeal. Over the years, many use-

AR(p) and MA(q) models can be mixed together in the same
ful guidelines for the use have been developed; the guidelines

equation to form an autoregressive moving average model.
have made using these models much easier (11–13). Auto-

ARMA models are defined by the order p and q, which is
regressive/moving average models are actually a combination

shown in the following equation:
of two separate models: autoregressive models and moving
average models. Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p

+ et − θ1et−1 − θ2et−2 − · · · − θqet−q
(19)

Autoregressive Models

An ARMA(1,1) model isThe general class of autoregressive (AR) models take on the
following form:

Xt = φ1Xt−1 + et − θ1et−1

Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + · · · + φpXt−p + εt (16)
ARMA models are quite comprehensive in nature, and their
performance is generally superior to that obtained by usingThe forecast is formed from the time-lagged values of the de-
an AR or MA model separately. Because of their accuracy,pendent variable; therefore, we have the name autoregres-
ARMA models have been used widely in practice. As with sep-sion. The general AR(p) equation can take on a number of
arate AR and MA models, optimizing parameter values usingforms depending upon the order of p. When p � 1, it is a first-
the steepest descent method can be applied to mixed ARMAorder AR model or AR(1). The first step in using an AR model
models. The adaptive filtering procedure discussed earlier canis to identify its order p, which specifies the number of terms
also be applied to mixed ARMA models. Here it is referred toto be included in the model. This is achieved through an ex-
as generalized adaptive filtering (14).amination of the autocorrelation coefficients.

Application of the autoregressive equation also requires es-
The Box-Jenkins Methodtimates for the values of the autoregressive parameters. The

method of adaptive filtering can be applied to an AR model to George Box and Gwilym Jenkins (13) have studied ARMA
estimate parameter values. Through this procedure, parame- models extensively, and their names have frequently been
ter values are estimated with a nonlinear least-squares ap- used synonymously with general ARMA processes. Box and
proach using the method of steepest descent to minimize Jenkins (13) have put together the relevant information re-
MSE. This method starts with an initial set of �i values and quired to understand ARMA processes in a comprehensive
proceeds to adjust them based on the following equation: manner. Their methodology consists of the following four

steps. The first step is model identification and involves iden-
tifying a tentative model by using autocorrelations and par-
tial autocorrelations. After a model has been identified, the
second step is estimation of model parameters. The third step

φ ′
it = φi,t−1 + 2KetXt−i

i = 1, 2, . . ., p

t = p + 1, p + 2, . . ., n
(17)

is diagnostic checking where an evaluation is made of the ade-
quacy of the model identified. Finally, the last step is the ac-where ��it is the new adapted parameter, �it�1 is the old pa-
tual forecasting. This methodology is iterative in that the cy-rameter, and K is the learning constant that controls the
cle of model identification, parameter estimation, andspeed of adaptation. As before, et and Xt�i are the residual
diagnostic checking is repeated until a satisfactory model iserror and time-series value at period t � i, respectively. The
identified (see References 11–13 for more details).method of adaptive filtering allows the parameters to adjust

over time in a similar manner that ARRES adjusts � over
time in exponential smoothing. PROBABILISTIC FORECASTING

Moving Average Models Any forecast of future events can be viewed as a hypothesis
or conjecture about the future. As such, a forecast always con-AR(p) models cannot always isolate all patterns, particularly
tains some degree of uncertainty. Many forecasts appear de-when p is fairly small. Another type of model, called a moving
terministic to their users when in fact they are highly condi-average (MA) model can be used in this case to either substi-
tional, based on the historical data and the underlyingtute or supplement an AR(p) model. In contrast to AR models,
assumptions used to generate them. Forecasts are thereforewhich express Xt as a linear function of p actual values of Xt, much more accurately described through parametrized distri-MA models use a linear combination of past errors to generate
butions rather than by fixed statements. Probabilistic fore-a forecast. The general MA model is
casting is a methodology that allows us to generate a forecast
in this manner. Although more complex, these techniquesXt = et − θ1et−1 − θ2et−2 − · · · − θqet−q (18)
allow us to more accurately capture and represent forecast-
ing problems.

Even though this equation is called a moving average model
in the literature, it has no relationship to the moving average

Bayesian Forecasting and Dynamic Models
models discussed earlier. As with AR(p) models, the issue of
parameter selection is important and; the method of adaptive Bayesian statistics is the foundation of probabilistic forecast-

ing and is based on the premise that all uncertainties arefiltering can be used to find optimal parameters for an
MA(q) model. represented and measured by probabilities. Based on the laws
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of probability, the Bayesian paradigm provides rules for man- This process can mathematically be described as follows.
Assume that Yt denotes the tth value of a series. At t � 0,aging these uncertainties. These laws of probability can be

applied to produce probabilistic inferences about any quantity which is the current time, we can assume that the initial in-
formation set available to the forecaster is denoted by D0. Theof interest. In forecasting, the quantities of interest may be

future values of a time series or values of variables used to primary objective in forecasting is to calculate the forecast
distribution for (Yt�D0) when t 
 0. As time evolves, state-model the time series. Bayesian forecasting allows us to

model forecast information as probability distributions that ments at any time t about the future are conditional on the
existing information set at that unique time Dt. To generalize,represent uncertainty. Forecasts are then derived from such

models as predictive probability distributions. Throughout forecasting ahead to any time s 
 t involves calculating the
forecast distribution for (Ys�Dt) where Dt includes both the pre-this process, keep in mind that these distributions represent

uncertain knowledge and that all probabilities are subjective vious information set Dt�1 and the observation Yt, namely
[Dt � �Yt, Dt�1�].beliefs of the forecaster or modeler responsible for providing

forecast information. A parametric model can then be used to formulate the be-
liefs of the forecaster asTo illustrate how relationships can be modeled through

Bayesian processes, assume that the output variable Y and
input variable X are related through the following general P(Yt θt , Dt−1)

form:
where �t is a defining parameter vector at time t. Information
relevant to forecasting the future is summarized through pa-Y = Xθ + ε (20)
rameter �t and used in forming forecast distributions. The se-
quential revising of the state of knowledge about such param-where � and � represent an uncertain parameter and uncer-
eters over time creates the learning process of the dynamictain random error term, respectively. The forecaster’s beliefs
model. This transfer of information through time occursabout the parameter � can be expressed through a probability
through a prior distribution P(�t�Dt�1) and posterior distribu-distribution P(�).
tion P(�t�Dt;). At time t, prior to actual observation of Yt, theHowever, Eq. 20 does not account for the dynamic nature
historical information Dt	1 is summarized through a prior dis-of processes that occur over time, and we say that the form is
tribution P(�t�Dt;�1).only locally appropriate. As time passes, � may take on differ-

The following joint distribution can be used to describe theent values, or the form defining the process may even change.
relationship of these parameters and observations:A methodology that allows us to change processes because of

the passage of time is referred to as dynamic modeling. The
most common class of dynamic models are dynamic linear P(Yt, θt Dt−1) = P(Yt θt, Dt−1)P(θt Dt−1) (22)

models (DLMs) (15,16).
Finally, the desired forecast can be developed from this asTo illustrate how dynamic models work, we can assume

that at any given time, a dynamic model M consists of possi-
ble models M and that the forecaster’s uncertainty is de- P(Yt Dt−1) = R

P(Yt , θt Dt−1) dθt (23)

scribed through a prior distribution P(M), (M � M). In pro-
Inferences about the future Yt are made by summarizing in-ducing a forecast for output Y, at any time t, each member
formation contained in the forecast distribution.model M provides a conditional forecast in terms of a proba-

bility distribution P(Y �M), where M directly relates to the pa-
Types of Dynamic Modelsrametrization �. The forecast from the dynamic model M can

then be defined as the following marginal probability distri- The First-Order Polynomial Model. The general class of dy-
bution: namic linear models can be exemplified by two simple model

structures. The first DLM is the first-order polynomial model.
For any time t, this model can be described as follows:P(Y ) =

Z
M∈M

P(Y )/(M)dP(M) (21)

Yt = µt + vt (24)

Structuring Dynamic Models
where vt � N[0, Vt]. The level of the series at time is given as

The Bayesian methodology and dynamic modeling allow for �t, and vt is the random error or noise about the underlying
changes in model form to take place as new information be- level. This system can be modeled as changing through time
comes available over time. Modeling forecasting problems us- using a random walk:
ing these methodologies first involves defining the sequential
model and structuring parametric model forms. Next, proba- µt = µt−1 + wt (25)
bilistic representation of information about parameters is
necessary. Forecasts are then derived as probability distri- where wt � N[0, Wt] and represents random changes in level
butions. As time evolves, new information relevant to fore- between time t � 1 and t. Initial information available to the
casting the future is received and may be used in revising the forecaster is assumed as
forecaster’s views. This revision can be at the quantitative
level, the model form level, or even the conceptual level of the (µ0 D0) ∼ N[m0,C0]
general model structure. This sequential approach generates
statements about future values of a time series conditional on This last formulation is a probabilistic representation of the

forecaster’s beliefs about the level at time t � 0 given avail-existing information.
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able information D0. The mean m0 and variance C0 are esti- for each time t, where
mates of the level and a measure of the uncertainty about the

1. Ft is a known (n 
 r) dynamic regression matrix.mean. The only new information becoming available at any
time is the value of the time-series observation so that Dt � 2. Gt is a known (n 
 n) state evolution matrix.
�Yt, Dt�1�. In this formulation, the error sequences vt and wt 3. Vt is a known (r 
 r) observational variance matrix.
are assumed to be independent over time, mutally indepen- 4. Wt is a known (n 
 n) evolution variance matrix.
dent, as well as independent of (�0�D0).

The components of this model are represented as distribu- Yt is related to the (n 
 1) parameter vector �t through a
tions, which are sequentially updated over time as new infor- model that is defined by this quadruple. The parameter vec-
mation becomes available. Although simple, this model type tor �t is sequentially specified through time in the following
has found wide application in short-term forecasting, such as manner:
forecasting product demand and inventory levels.

The Dynamic Regression Model. The second general DLM

(YYYt θθθ t ) ∼ N[FFF ′
tθθθ t ,VVV t ]

(θθθ t θθθ t−1) ∼ N[GGGtθθθ t−1,WWWt]
can be applied in the context of regression modeling where
we are concerned with quantitatively modeling relationships As in the scalar case, these equations are conditional on the

information set available prior to time t, namely Dt�1. Thisbetween variables, such as that existing between two time
series. If we assume that time series Xt(t � 1, 2, . . ., n) is model can be further specified through the following set of

equations:observed contemporaneously with Yt, in regression modeling
we typically focus on the extent to which changes in the
mean �t of Yt can be explained through Xt. Yt is generally re- YYYt = FFF ′

tθθθ t + vvvt , where vvvt ∼ N[0,VVV t] (30)

ferred to as the dependent or response variable and Xt, as the θθθ t = Gtθθθ t−1 + wwwt , where wwwt ∼ N[0,WWWt ] (31)
independent variable or regressor. The mean response �t is
then related to the regressor variable through a mean re- Equation (30) is the observation equation that defines the
sponse function �t � f (Xt, Xt�1,. . .). sampling distribution of Yt and is conditional on the quantity

This function can be modeled as a simple linear model of �t. Ft is a regression matrix of known values of independent
the following form: variables, and �t is the dynamic vector of regression parame-

ters known as the state vector or system vector of the model.
At time period t, the mean response is �t � F�t �t or the ex-µt = α + βXt (26)
pected value of Yt, which defines the level of the series at time
t. As in the scalar case, the term vt is the observational errorwith defining parameters � and �. However, we say that this
at time t.linear model is only adequate locally but not globally because

Equation (30) is the evolutionary equation enabling theit may not describe the change in the preceding relationships
evolution of the state vector through a one-step Markov pro-as time evolves and Xt varies. This flexibility is provided by
cess. Through this equation, the distribution of �t is deter-allowing for the probability of time variation in the coeffi-
mined solely based on �t�1 and the known values of Gt andcients, namely
wt and is determined independently of values of the state vec-
tor and data prior to time t � 1. The transition of �t over timeµt = αt + βtXt (27)
is enabled through the use of the evolution transfer matrix
Gt. Finally, the term wt is the evolution error, with the known

The formulation of Eq. (27) allows for the model to have dif-
evolution variance Wt.ferent defining parameters at different points in time. The

variation of parameters through time can be modeled through
DYNAMIC MODELING WITH BELIEF NETWORKSrandom walk-type evolutions such as

Probabilistic dependencies and nonlinearities, which areαt = αt−1 + w1 (28)
characteristic of many real-world problems, are difficult to
model with classical time-series methodologies. An approachβt = βt−1 + w2 (29)
to forecasting and decision making that has shown success
along these lines is the use of graphical models of decisionwhere w1 and w2 are zero-mean error terms. Again, the com-
theory known as influence diagrams or belief networks. Inter-ponents of this model are distributions updated sequentially
est and use of belief networks has attracted decision modelersover time. This basic linear model can be further expanded to
and forecasters, as well as designers of knowledge-based sys-include a multiple regression DLM.
tems. These models come from research in artificial intelli-
gence and decision analysis and are the basis of diagnostic

Vector Modeling. The general DLM can be expanded to a systems for many real-world applications (17,18). From a the-
multivariate DLM for a time series of vector observations Yt oretical perspective, they combine graph theory, probability
where Yt is an (r 
 1) column vector. According to West and theory, and decision theory. Many techniques for probabilistic
Harrison (15), the multivariate DLM is characterized by a inference in belief networks and for their specification have
quadruple: been developed as a response to their increased use (19–25).

Belief networks are graphical representations of probabi-{FFF,GGG,VVV ,WWW}t = {FFFt,GGGt ,VVV t ,WWWt} listic dependencies among domain variables. A belief network
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consists of a directed acyclic graph (DAG) and a set of condi- dependent variables can then be expressed in terms of sets of
causes Xi, i � 1, . . ., k, that partition the set �X1, . . ., Xp�.tional probability functions that model the conditional inter-

dependence in multivariate systems. The nodes of the DAG The isolated effects of each set Xi on Y is represented by the
conditional probability P[Y�Xi, Xj�i � x*j ].represent the variables of the belief network. The directed

arcs in the DAG represent explicit dependencies between the If we let y* denote the off state of the variable Y, an addi-
tive belief-network model is a separable model that satisfiesvariables. Let X1, . . ., Xn represent the nodes of the DAG and

let �(Xi) denote the set of parents of each variable Xi in the
DAG. Then for each variable Xi in the belief network, we can
specify a conditional probability function as

P[Xi π(Xi)]

The full joint probability distribution is then given as (26,27)

P[Y = y X1, . . ., Xp]

=
kX

i=1

φiP[Y = y XXX i,XXX j �=i = xxx∗
j ] if y �= y ∗

= 1 −
X

y′ �=y∗
P[Y = y′ XXX 1, . . .,XXX k] if y = y∗

(33)

The parameters �i � 0, for i � 1, . . ., k, must satisfyP[X1, . . ., Xn] =
nY

i=1

P[Xi π(Xi)] (32)

According to Dagum et al. (28), probabilistic inference in be-

kX

i=1

φiP[Y XXX i,XXX j �=i = x∗
j ] ≤ 1 (34)

lief networks entails the computation of an inference proba-
Dagum et al. (28) show that to specify the conditional proba-bility that is P[X� x�E � e] for any given set of nodes X in-
bilities P[Y�X1, . . ., Xp] of an additive belief-network model,stantiated to value x and conditioned on observation nodes E
like with other separable models, only the conditional proba-instantiated to value e. Even though this probabilistic infer-
bilities of the k isolated effects need to be specified. For exam-ence can be difficult for large and complex belief networks,
ple, the size of the conditional probability table for a binary-there are inference approximation procedures that can pro-
valued belief network is reduced from 2p	1 to �k

i�1 2�Xi�	1. Invide estimates of posterior probabilities.
addition to this reduction in the size of the conditional proba-In developing belief networks, two tasks are required. The
bility table, additive models improve the efficiency of the be-first is identification of the dependency structure of the model,
lief-network influence algorithm.representing the set of causal relationships between domain

variables. Here probability distributions are used to infer re-
Temporal Belief-Network Modelslationships and causality between domain variables. This is

in contrast to classical time-series models, AR models, dy- Modeling dynamic domains temporally is possible with dy-
namic linear models, or transfer-function modes, which use namic network models (DNMs), which are based on the inte-
cross correlations between the variables to construct the gration of Bayesian time-series analysis with belief-network
model. The second task in belief-network development is spec- representation and inference techniques (30). DNMs can be
ification of the conditional probabilities. These are typically used to structure forecasting models capable of capturing ex-
derived using maximum-likelihood estimates from time-se- plicit domain dependencies. DNMs have all the capabilities
ries data. inherent in belief networks and are therefore well suited for

domains with categorical variables. The causal relationships
Additive Belief-Network Models between these variables and their dependencies are repre-

sented through the graphical structure of the DNM.Using belief networks for forecasting can pose some difficult-
DNMs are additive belief-network models with variablesies. The main disadvantage has to do with large storage and

indexed by time. The conditional probabilities of the modelcomputational requirements that occur with complex prob-
can be expressed using the same additive decomposition aslems such as those containing multivariate time series with
with additive belief networks. However, after each new obser-multiple lagged dependencies. The need to overcome these
vation, the parameters of the decomposition are reestimated.problems encountered in large belief-network applications
As with belief networks, the first step in constructing a DNMhas lead to the development of additive beliefs networks mod-
is to identify the dependencies among domain variables in theels (28,29). Additive belief-network models belong to a more
model. These are then used to specify the directed acyclicgeneral class of additive models that approximate multivari-
graph of the model. For example, assuming that a single vari-ate functions by sums of univariate functions. As such, addi-
able Yt is dependent on the set of variables Xt�i � �X1,t�i, . . .,tive belief network models can reduce the specification of a
Xm,t�i�, we can specify the explicit dependencies between thelarge contingency table into the specification of a few small
domain variables. Next, the conditional probability for thetables, substantially improving the efficiency of computation.
DAG of the node Yi is specified. This conditional probabilityAdditive belief-network models possess the same proper-
can be specified using the same additive decomposition illus-ties as other separable models where the joint effect of a set
trated in Eq. (33):of causes X1, . . ., Xp on the dependent variable Y can be ex-

pressed in terms of the effects of each individual cause. Here
we can assume that for each cause Xi, there exists an off state
in which Xi has no bearing on the value of Y. If these distin-
guished states are denoted by s*i , the conditional probabilities
P[Y�Xi, Xj�i � x*j ]for i � 1, . . ., p, represent the isolated ef-
fects of each Xi on Y. The joint effects of the causes on the

P[Yt = y Xt , . . ., Xt−k]

=
X

φtiP[Yt = y XXXt−i,XXX t− j, j �=i = xxx j∗
t− j] if y �= y∗

= 1 −
X

y′ �=y∗
P[Yt = y′ XXX t , . . .,XXXt−k] if y = y∗

(35)
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Either expert assessment or maximum likelihood estimates making, qualitative forecasts are never consistent and are
prone to forecast errors. Also, because of limited informationcan be used to estimate the conditional probabilities

P[Yt�Xt�i, Xt�j, j�i � x*t�j]. processing ability of humans, qualitative forecasts cannot
consider the volume of information possible with quantita-Through reestimation of parameters �t�1, . . ., �t�k, the ad-

ditive decomposition provides a means of updating the condi- tive models.
Quantitative forecasting models, on the other hand, are al-tional probabilities with new information. Dagum et al. (28)

show that forecasting using a DNM reduces to probabilistic ways consistent. This means that, for the same set of data,
the same model will always generate the same forecast. Also,inference in the forecast model, which yields probability dis-

tributions for the forecast nodes. these models can process large amounts of information. How-
ever, quantitative forecasts will only be as good as the quality
of the data upon which they are based.Application of Belief Networks. A number of applications of

probabilistic reasoning about change over time and temporal Given the differences between qualitative and quantitative
forecasting models, it is clear that both methodologies have areasoning using belief networks and influence diagrams have

been provided. They have found great applicability in model- place in the forecasting process. However, each of these mod-
els should be used for different purposes based on theiring situations where modelers need to coordinate hard data

with data available only from expert judgment. Belief net- strengths and weaknesses. Because quantitative models are
always consistent and can incorporate much information,works have been used in many diagnostic reasoning systems

to assign probabilities to alternative hypotheses, such as they should be the primary tool for forecasting. However,
there are exceptions to using quantitative models. The first isabout a patient’s health or about a source of failure in com-

plex machinery. Real-world applications of forecasting with when meaningful data are unavailable, as is often the case
for forecasting demand for a new product, for long-range stra-belief networks have included forecasting crude-oil prices

(31,32) and predicting outcome in critically ill patients (28). tegic forecasting, or in new technology fields where qualita-
tive forecasts are the only alternative. Another reason is
when practitioners have certain inside knowledge of their en-

ORGANIZATIONAL FORECASTING
vironment, which may be difficult or overly costly to incorpo-
rate into a forecasting model. Examples may include knowl-

The vast majority of this article has been dedicated toward
edge of planned advertising campaigns by a competitor; a

quantitative or statistical models. As this article has demon-
change in management, which may call for a change in policy;

strated, many statistical forecasting procedures have been de-
changes in general purchasing patterns of customers; or

veloped and tested. They certainly provide forecasters with
something as simple as the weather, which may delay a ship-

great technique choice and better guidelines for use than ever
ment of goods. There is ample evidence to suggest that judg-

before (33). Despite these advances in the field of formal fore-
mental forecasts are successful in such circumstances (43).

casting, surveys of forecasting practices in business consis-
tently show that qualitative forecasting methods continue to
be used in practice more frequently than statistical methods CONCLUSION
(34–37). Also, these surveys show that the more sophisticated
statistical methods are used less than the simpler methods. This article covered a wide array of forecasting concepts and
When quantitative methods are used, they are frequently ad- methodologies. There are numerous forecasting models, and
justed by practitioners to include ‘‘inside knowledge’’ (36). today’s access to computer software provides the forecaster

There are a number of reasons for the heavy reliance on with options never before available. However, it should be evi-
qualitative methods. Practitioners may view a mathematical dent that the process of forecasting involves much more than
model as a ‘‘black box’’ that is not fully understood; with this merely applying a forecasting model to historical data. The
attitude users may be reluctant to use mathematical models forecaster must understand the context in which the gener-
(38). Also, practitioners may believe that qualitative methods ated forecast will be used, accuracies required, data available
provide a certain advantage because they allow the incorpora- for modeling, complexities required, as well as costs involved.
tion of outside information exogenous to the model (39,40). Decisions need to be made regarding the types of forecasting
Both qualitative and quantitative methodologies have their methodologies that need to be considered and whether judg-
advantages and shortcoming as already discussed. mental inputs through qualitative forecasts are needed. Much

thought needs to go into analyzing historical data, selecting
Qualitative Versus Quantitative Forecasting Models the correct model and parameters, and monitoring forecast

performance over time. Understanding these processes is theThe high reliance of business practitioners on qualitative
first step toward generating good forecasts.forecasting methods is often disheartening to academicians.

Qualitative methods are based on judgment and are highly
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