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change in the behavior of a parameter, but it cannot explain
what causes that change. Third, many mathematical models
are inadequate for solving problems having combinatorially
explosive search spaces. For example, models for optimizing
investment portfolios involving many securities can be im-
practical even when used with parallel computers (5).

Because of these limitations, decision makers must rely on
intuition and experience in reasoning about various financial
phenomena, at least in early stages of the decision-making
process (6). Interestingly, however, decision makers are often
interested in merely understanding the qualitative nature of
a problem before making decisions. For example, financial an-
alysts usually translate large amounts of quantitative data
into a few qualitative terms that are more insightful, which
they can use to characterize a problem and subsequently se-
lect analytical techniques and/or generate solution alterna-
tives (7,8). Thus, an early qualitative understanding of a
problem is vital and largely determines, however implicitly,
the alternatives considered. Yet, as research on human biases
(9), human bounded rationality (10), and agency theory (11)
indicates, decisions made based on intuition and experience
are likely to be suboptimal.

In light of these observations, work on techniques of quali-
tative reasoning (QR)—an artificial intelligence (AI) approach
to modeling and solving physics and engineering problems—
aims to facilitate building knowledge-based systems (KBSs)
that provide intelligent assistance to financial decision mak-
ers. QR techniques were originally developed to emulate hu-
mans’ ability to reason intuitively about physical systems. A
number of QR techniques have been used in several economic
and financial KBSs, proving to be valuable in supporting vari-
ous generic decision-making activities. These activities in-
clude

• Predicting economic behavior (12–14)
• Diagnosing deviations from a planned economic behavior

(15,16)
• Explaining economic behavior (17–20)
• Planning actions to regulate economic and financial be-INVESTMENT havior (21,22)
• Configuring investment positions providing some goal be-Economics and finance view an agent as a system operating

havior (13,20)within one or more larger systems (e.g., markets). As in physi-
cal domains, this has allowed us to model economic and fi-

This article discusses the application of QR techniques innancial phenomena in terms of system composition, interre-
support of investment decision making. It first reviews somelatedness, components’ interaction with the environment, and
aspects of the investment process and its complexities. Then,how components’ behavior is controlled by decisions and poli-
it explains the way several QR techniques are used to over-cies that act as pumps, valves, and pressure regulators on
come some of these complexities. Throughout the discussion,the flow of funds in the pipes that connect components (1,2).
the article also points out the value of using QR techniquesMathematical models developed based on this view aim to
from an organizational and strategic perspective. The articleprovide insight into the consequences of financial activities by
concludes with a brief review of recent on-going research ontranslating decisions, events, and market forces into a lan-
QR techniques for financial and economics applications inguage of cash flows.
general.Mathematical models have three general limitations. First,

we must know the value of every parameter in a model before
the model can be solved. In this sense, many financial models INVESTMENT AND QUALITATIVE REASONING
sometimes cannot be solved quantitatively because it is costly
to acquire or develop precise estimates for their parameters Investment is generally concerned with finding the best group

of securities (i.e., position, portfolio) to hold, given properties(3). Second, intuitive reasoning with formal mathematics, as
compared with prose, is difficult because of its limited inter- of the available securities, the desired risk exposure and level

of return, investor constraints and preferences, and the eco-pretability (4). A mathematical model can neither explain its
solutions nor the reasons for arriving at those solutions. For nomic and legal environment (23). Figure 1 presents a top-

down view of the investment process. The difficulty in thisexample, numeric simulation with such a model can predict a
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process is a result of the complexity inherent in two related of policies for regulating corporate behavior. Overall, devel-
oping and interpreting economic predictions is difficult forsubproblems: prediction and design.

Prediction entails identifying future economic trends and two reasons. One is the complexity brought about by the
growing universe of securities (due to globalization) and thethen selecting securities that stand to gain most from these

trends (see Fig. 1). It starts with an assessment of the overall increasing sophistication of these securities. Another is the
uncertain, incomplete, and ambiguous data available abouteconomy and its near-term outlook, to identity market trends

(e.g., excess cash supply), risks one may seek to avoid, and this universe.
Design involves constructing a portfolio using the attrac-movements in security prices. This assessment involves de-

tive securities identified (see Fig. 1). It usually entails multi-veloping predictions about economic variables (e.g., money
objective optimization. Constraints may exist for matchingsupply, interest rates) that directly affect the price, risk, and
some goal risk profile (i.e., profit and loss pattern), matchingliquidity of securities or that just signal changes in future
the desired investment time horizon, not exceeding the avail-markets. These indicators, in turn, help to identify attractive
able cash and credit in setting up the portfolio, and so on. Themarket sectors (e.g., industries) or even specific firms whose
multiple objectives could be minimizing credit risk, minimiz-securities are likely to have desired attributes (e.g., stocks
ing setup cost, maximizing liquidity, and so on. Alternativewith low price/earnings ratio). Relative to the securities is-
positions are constructed and evaluated in light of the invest-sued by a specific firm, prediction can be viewed from two
or’s objectives and constraints. Here, the major difficulty isdual perspectives—‘‘internal’’ and ‘‘external’’—taken by the
due to combinatorics. The large universe of securities pres-firm’s management and by security analysts, respectively.
ents a tremendous choice in terms of how to design positionsBoth perspectives study the financial actions of a firm (e.g.,
that exhibit some desired behavior. For investors, good pre-sales, borrowing). They try to relate the value of securities
dictions about economic factors cut down the risk associated(e.g., stock, bond) the firm issued to the behavior of this firm
with taking positions, but only to a limited degree. The realand its economic environment. The ‘‘internal’’ perspective, in
bottleneck here is complexity: when all security combinationsaddition, focuses on understanding how the firm’s past and
and the possible proportions in which each security can bepresent activities affect future strategic choices in the design
held are considered, the design problem is overwhelming.

Financial theories have yielded various formal models in
support of both prediction and design. Many of these models
have been extensively tested, and so investment specialists
find them appealing because of their credibility. Yet, surveys
show that, because these models have certain limitations,
they are not used extensively, especially in the early stages
of the prediction and design activities (24). For example, be-
cause the combinatorics involved in designing portfolios is
prohibitive, most portfolio optimization models are impracti-
cal even when used with parallel computers. Consequently,
investment specialists are often forced to rely extensively on
heuristics embodying insights and perceptions that they have
gained over years of experience. Unfortunately, as we indi-
cated earlier, decisions made largely based on experiential
heuristics are likely to be suboptimal.

Research on QR techniques focuses on enabling the devel-
opment of KBSs that can help to leverage formal models, for
example, by faciliating their use with incomplete, inconsis-
tent, and imprecise data. In what follows, we present three
general examples where QR techniques are used to deal with
the investment complexities involved in prediction and de-
sign. Each of these examples helps to see more specific com-
plexities, the significance of these complexities in light of limi-
tations of formal models, and the way that these limitations
of formal models are avoided using different QR techniques.

ANALYZING CORPORATE BEHAVIOR

Financial managers are usually interested in controlling ef-
fects of the economic environment on corporate behavior and
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in turn on securities issued by their firm. Doing so first re-

Figure 1. A top-down view of the investment process. The key com- quires understanding what causes corporate behavior and
plexities in this process are present in the prediction and design ac- how it comes about, and then making strategic choices in the
tivities. Prediction is complex because of the growing universe of design of corporate policies that ‘‘improve’’ this behavior (1).
securities and their sophistication, as well as the uncertain, incom-
plete, and ambiguous data about this universe. Design is complex be- Limitations of Corporate Planning Models
cause of the combinatorial number of design alternatives associated

Controlling corporate behavior by making strategic choiceswith all security combinations and the possible proportions in which
each security can be held. requires understanding how corporate behavior results from
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corporate structure. The complexity faced here is a result of use a qualitative causal calculus to reason about the behavior
of physical systems (27). QSIM can derive the qualitative be-the many parameters and relationships characterizing a firm.

It is difficult to trace how these parameters interact to pro- havior of a system based on that system’s structure as well
as explain this behavior in intuitive terms. The key ideas be-duce the overall corporate behavior. Unfortunately, formal

financial models simply cannot capture the volume of rela- hind how QSIM works follow:
tionships between these parameters. Even the most powerful
models are suitable for analyzing only single pieces of the 1. The structure of a system is described by structural
puzzle. As Brealey and Myers (3, p. 683) explain, ‘‘There is no equations modeling connections between its character-
model or procedure that comprehends all the complexity and izing parameters.
intangibles encountered.’’ 2. Given that the system is in some initial state, a change

Decision makers must therefore rely on intuition and expe- in the state of parameters propagates locally to other
rience in assessing the consequences of strategic choices and parameters through structural connections.
policies. However, because the human mind is simply incapa-

3. The qualitative behavior of a parameter is described byble of evaluating the implications of more than just a few in-
the transitions it makes from one state to another.teractions between parameters (1), understanding how corpo-

4. The qualitative behavior of a system is described by therate behavior results from its structure without the aid of
interaction of behaviors of its characterizing param-automated tools can be time consuming and erroneous.
eters.Formal models aimed at helping to handle this complexity

focus on providing simulation of the enterprise (1). They allow
Structure is described in terms of components and theirfinancial managers to probe the solution space of a problem

connections. A component is modeled by one or more real-so as to gain insight beyond the mere solution of a model,
valued parameters (continuous functions), each associateduntil a level of understanding is reached that would support
with a finite set of landmark values—points where somethingmaking a decision. Simulation typically involves an iterative
special happens to the parameter (e.g., an extremum). Aprocess: perturb model, identify impacts on performance mea-
structural connection is modeled by a qualitative constraintsures, and design policies to regulate behavior. This process
equation that restrict the values that the parameters can takeinvolves what-if analysis that adaptively explores a problem
on. QSIM reasons with two types of qualitative constraintby performing a preconceived set of runs that test the effect
equations. One type is for specifying simple mathematical re-of various strategic choices. Simulation is most effective when
lationships [i.e., addition (ADD), multiplication (MULT), de-the modeler understands why a particular structure produced
rivative of time (DERIV), and unary negative (MINUS)]. An-the simulated behavior. Unfortunately, conventional simula-
other type is for specifying functional relationships betweention cannot explain its solutions nor the way it arrives at
parameters [i.e., a monotonic change of two parameters in thethese solutions. The interpretation of, and insight drawn
same direction (M�) or in opposite directions (M�)]. These con-from, generated data are left to the decision maker. In effect,
straints are useful when the precise value of constants thatsimulation does not even tell which alternatives are worth
relate parameters is difficult or costly to measure [e.g., Y �examining. These limitations are compounded by the fact that

quantitative simulation cannot be directly used for problems kX, where k is a constant, is represented as (M� Y X)]. Part
of the description of structure includes information about theinvolving parameters whose precise value is unknown.

Interestingly, however, decision makers are often con- correspondence of landmark values across connected param-
eters.cerned with merely understanding the qualitative charac-

teristics of a problem, especially in the early stages of the Given the structure of a system and assuming that the sys-
tem is perturbed, QSIM generates all the behaviors of thatdecision-making process. In some cases a qualitative under-

standing is sufficient to make a decision, whereas in other system and represents them using a transition graph. In this
graph, each node represents the qualitative state of the sys-cases it is simply a prerequisite to the design and/or selection

of suitable formal models and their solution using mathemati- tem at a specific time point, every pair of adjacent nodes rep-
resent two temporally adjacent qualitative states, and everycal techniques (7,8). In either case, it largely determines, how-

ever implicitly, the alternative strategic choices considered. path from the initial state node through the graph represents
one behavior of the system. Each qualitatively distinct stateIt has been shown that QR techniques can help decision

makers develop such an understanding. For example, a QR of the system (represented by a node) is described by the qual-
itative state of every system parameter at one specific distin-technique called qualitative simulation is capable of reasoning

with imprecise knowledge and thus can help to develop quali- guished time point, a point where something special happens
to the system. A qualitative state of a parameter is the pairtative insights into a complex problem in the early stages of
�qdir, qval�, where qdir � �decreasing � � 1, steady � 0,the decision-making process. The motivation behind using QR
decreasing � 1� is the direction of change of the parametertechniques to analyze corporate behavior is grounded in the
value over a qval—a point corresponding to a landmark valuerealization that a firm is conceptually viewed as a system.
or an interval between two landmark values.This view has allowed us to model financial phenomena math-

When one or more of the parameters of a system in equilib-ematically in terms of system composition, interrelatedness,
rium are perturbed, QSIM propagates the change to other pa-and components’ interaction with their environment.
rameters so as to derive the next qualitative state of every
parameter and of the system as a whole. QSIM continues toQualitative Simulation
propagate change in this fashion, until all parameters reach

Qualitative simulation (QSIM) is the most general and com- a steady state or a boundary qval or exhibit a cyclic behavior.
monly used QR technique (25,26). As in other QR techniques, Specifically, this simulation process involves the following it-

erative steps (26):QSIM’s approach is anchored in the recognition that humans
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• Identify for each parameter its potential transitions. act as pumps, valves, and pressure regulators on flow of funds
in pipes connecting parameters.Because each parameter is a continuously differentiable

function, theorems from calculus restrict the moves that The following simplified problem illustrates how the use
of QSIM can help in making strategic choices. [Applicationsthe function can make from one point to another. For

instance, if the derivative of a function is positive over ( involving larger problems are discussed in Ref. (12).]
xi, xi�1) � �, it must become zero at xi�1 before it can
become negative. Thus, the next potential transitions of Scenario 1: Trust Ltd. is a publicly traded firm that uses
a parameter are selected from a finite set of legal transi- one part of its net operating income (NOI), the retained earn-
tions it can have from any one state to another. To illus- ings (RE), to finance a new project and the other part, the
trate, if the current state of parameter X is �inc (x1, x2)�, allocated dividends (AD), to pay dividends to its shareholders.
the potential transitions for X are ��std [x2]�, �inc [x2])�, Unless NOI and RE change, the AD � ad and the amount of
�inc (x1, x2)�, �std [x*]��. The last transition represents a dividend per share (DPS � d) remain constant over time. The
case where the previously unknown landmark value x* ( value of one part of the firm’s assets, the equity E, equals the
x1 � x* � x2) is discovered by QSIM (as a result of having number of common stock shares (CS � cs) multiplied by the
constraints that force X to become steady). stock price (P � p). The other part of the firm’s assets is

debt (D).• Filter the potential transitions for each parameter.
Eliminate combinations of transitions that are inconsis-
tent with the system’s structure. For instance, the con- The firm is considering ways to ‘‘improve’’ its image as a
straint ADD(X, Y, Z) does not allow for both X and Y to high-profit firm. One idea is to temporarily increase the
be increasing while Z is steady. This filtering process amount paid as DPS, without increasing D. Starting at some
finds only the possible transitions. For each consistent time point t0, DPS is to increase from its current level d to a
set of parameters’ qualitative stats found, QSIM adds a new level d*, for a short period of time ending at t1. At t1, DPS
node to the transition graph to represent the next quali- is to be reduced back to a level that maintains the amount of
tative state of the system. AD prior to the increase in DPS. The goal is to predict the

effects of this policy as well as understand what causes• Characterizes each derived next state of the system. The
these effects.next state can be either (1) an equilibrium (quiescent)

state where all parameters are steady, (2) a state indicat-
Based on this description, the qualitative constraint equa-ing a cyclic behavior (a state identical to some previous

tions in Fig. 2(a) describe the structure of the system (firm)state), (3) a state indicating a divergent behavior (i.e.,
under examination. Figure 2(b) offers a graphical representa-one or more parameters go to ��), or (4) a state indicat-
tion of the system’s structure, to help the reader trace QSIM’sing that one or more parameters are still changing (i.e.,
simulation results. Given that the system is initially in equi-moving toward a landmark value).
librium, its DPS is perturbed in a specific fashion, and the
goal is to understand how and why the system reacts to theStep 2 alludes to a key issue related to the pruning of ‘‘un-
change in DPS. This is the goal of Trust’s management whoreal’’ behaviors. Each path in the transition graph represents
seeks to understand behavior qualitatively, before consider-one possible behavior. In some cases, however, a path may
ing the level of increase in DPS and its duration.represent a spurious behavior. Because parameters are char-

acterized only qualitatively, sometimes there is insufficient
Solution 1: QSIM produces a transition graph. In this graph,information to determine the behavior of parameters that are
one path ends with a state where, after a long increase inaffected by competing tendencies. For example, consider the
DPS, parameters reach a state of divergence—stock price Pconstraint X � Y � Z. If at some time point X is increasing
goes to 0 and the number of common stocks goes to �. An-and Y is decreasing over the same interval in �, the behavior
other path, whose nodes are described in the table in Fig. 2(c),of Z is ambiguous. Therefore, QSIM creates a branch in the
ends with a state where, after a short increase in DPS, thegraph to account for the three possible behaviors of Z—
system reaches a state of equilibrium—DPS drops below itssteady, increasing, or decreasing (for X � Y, X � Y, and X �
initial level d and then stabilizes at a lower level d�, the num-Y, respectively). The possibility that this ambiguity may
ber of common stocks stabilizes at cs* above the initial num-never arise in reality implies that two of these alternatives
ber of stocks cs, and the stock price P stabilizes at p� belowlead to spurious behaviors. A variety of methods have been
the initial stock price p. QSIM explains the behavior thatdeveloped to help prune spurious behaviors (27). For example,
leads to equilibrium as follows:one requires the use of knowledge about the sign of higher

derivatives, whereas another incorporates numeric informa-
• During (t0, t1), as DPS increases from d to d*, the globaltion whenever an ambiguity arises.

dividends paid (GDP) exceeds AD, causing CD to become
positive (a cash deficit), which in turn causes the number

Predicting Qualitative Consequences of Policies of common stocks issued (CSI) to become positive (issue
common stocks) and CS to increase.The modeling of problems for use with QR techniques is an-

chored in a systemic view of corporate structure. This struc- • As E is steady and CS is increasing, P starts to decline
ture is modeled in terms of accounting relationships between below p. At t1, DPS reaches d* and starts declining and
the various parameters characterizing an enterprise. reaches d at t2. At t2, as DPS declines below d, GDP
Changes in the behavior of parameters are modeled by reaches a pick level (gdp*) and starts declining toward
changes in flow accumulation of funds in various fund sinks, gdp (� ad), causing CSI to pick at t3, and to start de-

clining.where this behavior is regulated by decisions and policies that



700 INVESTMENT

(defnet DIVIDEND-POLICY
(functions (DPS GDP CD CSI CS P F E D RE NOI AD))
(constraints (add E D F) % Firm value = Equity + Debt

(mult CS P E) % E = Common-Stocks * stock-Price
(add RE AD NOI) % Net-Operating-Income = Retained-Earnings + Allocated-Dividends
(add AD CD GDP) % Allocated-Dividends = Cash-Deficit + Global-Dividend-Paid
(mult CD CSI P) % Cash-Deficit = Common-Stocks-Issued * stock-Price
(mult CS D GDP) % Global-Dividend-Paid = Common-Stocks * Dividend-Per-Share
(d/dt CS CSI)) % dCS/dt = 	* CS = CSI

(landmarks (DPS (minfinity 0 d d* infinity))
(GDP (minfinity 0 gdp infinity))
(CD (minfinity 0 infinity))
(CSI (minfinity 0 infinity))
(CS (minfinity 0 cs infinity)
(P (minfinity 0 p infinity)))

(ranges (F (f *constant*))
(E (e *constant*))
(D (d *constant*))
(NOI (noi *constant*))
(AD (da *constant*))
(P ((0 inf) nil)))

(initialize (DPS (inc (d d*))))))

(a)

D

P

E
F

(b)

d/dt

++ +
+

*

*

CSI

CS

GDP

DPS
NOI

READ
CD

Time DPS GDP CD CSI CS P Explanation

(t0 , t1) �inc (d, d*)� �inc (gdp, �)� �inc (0, �)� �inc (0, �)� �inc (cs, �)� �dec (0, p)� policy
[t1] �std (d, d*)� �inc (gdp, �)� �inc (0, �)� �inc (0, �)� �inc (cs, �)� �dec (0, p)� policy
(t1, t2) �dec (d, d*)� �inc (gdp, �)� �inc (0, �)� �inc (0, �)� �inc (cs, �)� �dec (0, p)� policy
[t2] �dec d� �std gdp*� �std cd*� �inc (0, �)� �inc (cs, �)� �dec (0, p)� change state
(t2, t3) �dec d� �dec (ad, gdp*)� �dec (0, cd*)� �inc (0, �)� �inc (cs, �)� �dec (0, p)� change state
[t3] �dec d� �dec (ad, gdp*)� �dec (0, cd*)� �std csi*� �inc (cs, �)� �dec (0, p)� change state
(t3, t4) �dec d� �dec (ad, gdp*)� �dec (0, cd*)� �dec (0, csi*)� �inc (cs, �)� �dec (0, p)� change state
[t4] �std d�� �std ad� �dec 0� �std 0� �std cs*� �std p�� equilibrium state

(c)

Figure 2. QSIM’s application to the dividend policy problem. (a) A specification of the problem
using QSIM’s constraint equations formalism. (b) A graphical representation of the constraint
equations can help the reader to manually trace QSIM’s simulation. (c) The qualitative states on
one of the paths in QSIM’s transition graph indicates that the system reaches a new equilib-
rium—DPS drops and then stabilizes at d* below the initial dividend per share level d, CS
stabilizes at cs* above the initial number of common stocks cs, and P stabilizes at p* below the
initial stock price p.

• At t4, when GDP becomes steady, CD and CSI reach zero identify how certain publicly announced corporate policies af-
fect the value of securities issued by the corporation. The ana-and become steady, causing CS to reach a pick level cs*

and to become steady, which in turn causes P to reach a lyst would use QSIM to conduct the same analysis summa-
rized previously. Alternately, we can think of intelligentlower level p� and become steady. Because all parame-

ters become steady, QSIM concludes that the system programs that intercept a live news wire to read and interpret
news in order to detect qualitative changes in economic vari-reached a new equilibrium.
ables like trade balances and government expenditure (28)
and in turn activate QSIM on prestored models in order toThis same scenario can be analyzed from the ‘‘external’’

perspective, by an independent security analyst who wants to identify interesting market events (12). These programs
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would act as ‘‘bell ringers’’ that can have a strategic impact In light of these complexities and limitations of quantita-
tive design models, it seems that QR techniques can play anon the ability of a financial institution to rapidly react to the

news signaling market changes. important support role in the design endeavor. Two factors
indicate that these techniques can be used for this purpose.
First, qualitative abstraction is a powerful means that invest-
ment specialists use to cope with the complexity involved inMAKING ACTUAL INVESTMENT DECISIONS
assessing the large number of investment possibilities (7,8).
Additionally, a systemic view of the design endeavor can beWe saw how QR techniques can help in financial analysis, for
used here as well, because investment models are usually de-example, for the purpose of assessing the value and sensitiv-
veloped based on principles from cybernetics and control the-ity of securities to corporate policies and economic changes.
ory [e.g., the Black-Scholse model (23)].We next show how these techniques can also assist in making

actual investment decisions based on such qualitative assess-
Designing Simple Positionsments.

The next small example illustrates how QR techniques can be
useful in the early design stages, where alternative portfoliosComplexities in the Design of Positions
are configured, prior to their extensive evaluation using quan-

Investment specialists are usually interested in designing titative analysis.
portfolios (i.e., combinations of stocks, options, bonds, or fu-
ture contracts) that exploit profit opportunities in the market Scenario 2: Trust Ltd. decided to finance its new project us-
place and meet the investor’s requirements. In principle, for- ing a floating rate long-term loan, tied to the 6 month Euro-
mal financial models aim to support this design endeavor, for dollar rate. The loan rate is 7%—current 4��% LIBOR (London
example, by helping to understand how the behavior of a port- InterBank Offer Rates) plus 2��% stamping fee. Trust’s man-
folio results from its structure. Because investment involves agement believes that there is a good chance that the risk-
complex strategies, where returns on most strategies are con- free interest rate would rise in the next 6 months, and this
tingent on future uncertain market states, such an under- can significantly affect the cost of the loan. At the same time,
standing is vital to the ability to design portfolios that are Trust’s management believes that there is a possibility that
robust to deviations from forecasted economic trends (23). the risk-free interest rate will decline, in which case the inter-

As with corporate planning models, formal design models est rate paid on the loan will decline as well. Trust’s manage-
have two key limitations. First, they cannot explain their re- ment hence seeks to protect against the risk of increase, while
sults. Investment specialists typically use quantitative what- preserving the ability to benefit from a decline, in interest
if analysis to understand the contingent nature of returns and rates.
their effect on the value (behavior) of a portfolio, in terms of
the value of its components and their relationships to eco- In this scenario, Trust Ltd. seeks to hedge interest rate
nomic parameters. More importantly, these models often can- risk, by holding a position that has the ‘‘cap’’ risk profile seen
not handle the large number of investment possibilities and in Fig. 3(d). Hedging is an investment problem that is con-
their sophistication. McInnes and Carlton (6, p. 568) explain: cerned with the design of controls that minimize the adverse
‘‘Computationally, an exhaustive analysis of all the possible affects of possible losses or their consequences (29). In this
investment combinations rapidly becomes intractable as the article, we consider hedging to deal only with controls that
number of investment programs increases. Human judgment involve the purchase and/or sale of securities, not actions con-
has to intervene to reduce the number of possibilities to be cerning real assets (e.g., relocating production facilities to the
explored by formal analysis to a manageable set.’’ Yet, as we foreign markets where finished goods are sold in order to
mentioned earlier, because of human cognitive limitations, avoid foreign exchange risk).
unaided analysis in the early design stages can have critical Investment positions having the cap risk profile can be
implications on later stages. This problem is magnified by the configured using cash securities and their derivatives. These
fact that investment specialists typically specialize only in securities include Treasury securities (T-bond, T-notes, and
subsets of the many types of securities that can be used to T-bills); futures on Eurodollar securities (i.e., dollar deposits
construct portfolios. This exposes them to a tunnel vision outside the United States); future contracts on LIBOR; and
problem that leads to suboptimal investment decisions. call and put options on the previously mentioned securities,

The last problem is aggravated by the current tendency of on short-term and long-term interest rate, and on the MUNI
financial institutions to gain a strategic advantage by moving (Municipal) bond index. One specific position is explained
toward integration, as more information is becoming avail- here.
able about securities traded in domestic and global markets.
Under this scenario, investment specialists would seek to de- Solution 2: Trust Ltd. can purchase put options on some bond

B with strike price b. A put option on B provides its buyer thesign portfolios that exploit intricate opportunities present in
the marketplace, as long as there are intelligent tools to help right to sell, and obligation its seller to buy, units of B for an

agreed-upon strike price b at some future expiration date. Anthem manage the additional complexity brought about by con-
sidering a larger set of securities. For the most part, such increase in interest rate will cause the price of B to decline

below b, allowing the firm to profit from selling bonds for btools need to do a lot of screening and to present only the
most promising alternatives for further quantitative analysis. and to thus offset the extra cost paid for the loan. Alternately,

a decline in interest rate will make the put option worthlessOf course, such tools must first be able to configure automati-
cally alternative portfolios that meet certain investor require- but allow the firm to benefit from a lower loan cost that off-

sets, and more, the purchase cost of the put option.ments which are usually specified qualitatively.
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Parameters

LC—loan cost R—interest rate
HLC—hedged loan cost B—bond value
P—value of put option X—strike price of the put option

(constant)

Constraints Explanation

1. ADD(HLC, LC, P) HLC � LC � P
2. M�(R, LC) R �� LC
3. ADD(X, P, B � (0, x)) P � max(X � B, 0)
4. M�(R, B) R �� B

(a)

B  (0, x)

++ +M+ M– 

D P

HLC

LC R B

(b)

X

R LC B X P HLC

Initial state �inc [0]� �std []� �std [�]� �std [x]� �std [0]� �std []�
State 1 �inc [0, rc]� �inc (, lc)� �dec (x, �)� �std [x]� �std [0]� �inc (�, lc)�
State 2 �inc [rc]� �inc lc)� �dec [x]� �std [x]� �std [0]� �inc [lc]�
State 3 �inc (rc, �)� �inc (lc , �)� �dec (0, x)� �std [x]� �inc (0, �)� �std [lc]�
Terminal state �std [�]� �std [�]� �std [0]� �std [x]� �std [�]� �std [lc]�

(c)

Unhedged
loan cost

Hedged
loan cost

Cap risk profile

Cost of
put option

=+

(Profit)

(d)

R R R

Figure 3. QSIM configures a position with a cap risk profile. (a) The parameters and qualitative
constraint equations provided as input to QSIM. (b) A graphical representation of the constraint
equations can help the reader to manually trace QSIM’s simulation. (c) Qualitative states on one
of the paths in QSIM’s transition graph, where states 1 and 3 constitute the derived risk profile.
(d) Graphically plotting the derived risk profile shows that it matches the goal (cap) risk profile.

How can QR techniques help configure such a position? model. This model’s analytic solution, called the pricing
model, is used to compute the fair market price of that secu-When the composition of a position is known, QSIM can de-

rive the position’s risk profile (behavior) under the market rity. Because different types of securities are sensitive to dif-
ferent sets of economic variables, they each have a differentscenario of concern and compare it against the goal risk pro-

file. The simplest position is one containing a single compo- valuation model.
To illustrate how QSIM derives the scenario-specific risknent (security) in addition to the asset being hedged (e.g.,

loan). Its ‘‘structure’’ is described by two things. One is the profile of a position, consider the example of using a ‘‘pur-
chase put option on bond’’ position to cap Trust’s loan cost.structural equation POS � UA � S, stating that the value of

the POSition is the value of the Unhedged Asset plus (minus) The cap risk profile is expressed symbolically as the sequence
of pairs:the value of the security sold (purchased). The other thing is

the valuation model of the security purchased or sold. Causal
relationships between economic variables and the value of a
specific security are each modeled by a structural equation

{[(R〈inc(0, rc)〉)(HLC〈inc(0, lc)〉)]
[(R〈inc(rc,∞)〉)(HLC〈std[lc]〉)]}

that specifies how a certain economic variable affects the
value of that security (23). The set of equations modeling where R is the risk-free interest rate, HLC is the hedged loan

cost, and rc is the risk-free interest rate level correspondingthese relationships for a specific security is called a valuation
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to the cap level lc on the cost. The input for QSIM includes Because all securities of the same class have the same valua-
the qualitative structural equations in Fig. 3(a), and the ini- tion model, the natural grouping of securities can be used in
tial state of every parameter when R is zero. To allow the two ways. First, QSIM can be applied collectively for all secu-
reader to trace QSIM’s simulation results with greater ease, rities of the same class. Second, QSIM can be applied only for
Fig. 3(b) offers a graphical representation of the qualitative each class of securities whose valuation model is a generaliza-
structural equations describing the system’s structure. In the tion of the valuation models of other security classes. In the
initial state, interest rate is zero, the price of a yield-bearing specialization hierarchy, the qualitative valuation model of
bond is high and positive (infinite in the limit), the value of a one class of securities can be a specialization of the valuation
put on that bond is zero, and the loan cost (hedged and un- model of other classes. For example, the valuation model of
hedged) is an infinitesimally small  (because theoretically a bond options is a specialization of the Black-Scholes model
firm can offer to pay little interest to get the loan). We then used to derive the valuation model of other types of options
run QSIM upon letting R increase over the range (0, �). A (30).
trace of the states QSIM derives is presented in Figure 3(c) Two sample heuristics for making the use of QSIM even
(ignoring the time dimension for simplicity). In state 1, R’s more tractable follow. First, because the sale/purchase of a
increase causes B to start declining and LC to start increas- security that is insensitive to the relevant risky variable (e.g.,
ing, in compliance with constraints 4 and 2, respectively. Be- interest rate) is meaningless from the standpoint of Trusts
cause B has not yet reached x, the put’s strike price P remains Ltd., QSIM must be applied only for security classes whose
zero, complying with constraint 3, and HLC starts increasing valuation model references this variable. Second, as the risk
to comply with LCs increase in constraint 1. In state 3, as R profiles derived upon buying and selling a certain security are
continues to rise, B declines below x, and P begins to increase symmetrical (because investment is a zero-sum game), QSIMin compliance with constraint 3. In turn, HLC becomes steady

can be used to derive the risk profile only for selling a se-at the cap level lc because QSIM is pre-told to assume that
curity.the increase in P balances off LC’s increase in constraint 1.

This assumption is based on the notion that a hedging posi-
tion is constructed to balance off changes in the value of the

DESIGNING COMPLEX INVESTMENT POSITIONSunhedged position. This is possible by controlling in later de-
sign stages the precise number of units of the security

Realistically, the goal risk profile of an investor such as Trustpurchased/sold. The risk profile of the position being analyzed
Ltd. can be more complex, in which case it is necessary tois embedded in the sequence of states QSIM derives. These
configure multisecurity positions. For example, consider thestates are printed in bold in the table in Fig. 3(c). A compari-
long-term loan we discussed in scenario 2. Suppose that afterson of this derived risk profile with the goal risk profile would
rethinking the opportunities that a hedge position can pro-thus conclude that a ‘‘purchase put option on bond’’ position
vide, Trust’s management agrees that the interest rate is notcan cap Trusts’ loan cost [see Fig. 3(d)].
likely to drop below 6%. Like in scenario 2, Trust wants to

Pragmatic Issues ‘‘cap’’ the loan cost at a level that corresponds to an 8% inter-
est rate. In addition, Trust seeks to set a ‘‘floor’’ on the loanConfiguring all one-security positions that provide the goal
cost at a level that corresponds to a 6% interest rate, by sell-risk profile requires applying QSIM for every individual secu-
ing securities to another investor who believes that the inter-rity available in the marketplace in the fashion described pre-
est rate will drop below 6%. Should the interest rate remainviously. The computational intensity this involves can be in-
above 6%, Trust’s profit would be what it receives for thehibitive. To deal with this problem, we can rely on other QR
securities it sells; otherwise, Trust’s loss would be what ittechniques and exploit domain-specific heuristics.
could save from paying less than 6% interest rate on its loan.Qualitative abstraction over knowledge about securities
This rather speculative investment behavior that Trust’scan limit the application of QSIM needlessly. Specifically,
management is exhibiting might seem unusual. However, bysecurities naturally fall into classes, forming a specialization

hierarchy like the one that follows: now most sophisticated firms are using the notion of hedging
not just to protect against loss but also to generate profits
based on their understanding of the marketplace.

The next scenario illustrates the role of QR techniques in
configuring multisecurity positions. This scenario parallels
the one Trust’s management is facing, although it involves
stock options. It is easier to understand how to configure
multisecurity positions for hedging fluctuations in stock
prices, instead of fluctuations in the cost of a loan that are
brought about by fluctuations in interest rate. In other words,
where the function H( ) denotes the value of a hedge position,
it is easier to look at a case involving H(stock) rather than
H(loan(interest-rate)).

Scenario 3: An investor speculates that over the next six
months the price of some stock S will rise above sL but not
above sM. The investor decides that if S rises to somewhere
between sL and sM, he would like to make a profit; and, if S
rises above sM, he is willing to take a loss with a limit that

(Security
(Debt-Security

(Fixed-Income-Security
(Treasury-Security (T-Bill T-Bond

T-Note ...))
(Bond (Mortgage-Bond

T-Bond Foreign-Bond ...))
(...))

(Corporate-Debt-Security
(Corporate-Bond (Callable-Bond

Convertible-Bond ...))
(...))

(...))
(Stock (...))
(Option (...))
(Future-Contract (...))
(...))
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of different strike prices (n can be in the thousands). Conse-
quently, prestoring all permutations for selection is not feasi-
ble. Additionally, because each of the many thousands of
traded securities provides a different risk profile and is traded
in discrete units, the space of permutations is both discrete
and explosive. Hence, using a straightforward generate-and-
test approach (e.g., with conventional mathematical program-
ming techniques) is unlikely to work well.

To constrain the combinatorial nature of this search prob-
lem, we can abstract all elementary piecewise linear functions

A butterfly risk profile

Value of position

Stock price sL  sM  sH

Buy one call with strike price sL

Sell two with strike price sM

Buy one call with
 strike price sH

having a similar shape into one qualitative function with lin-
Figure 4. A butterfly risk profile. Configuring a multisecurity posi- ear edges having a slope of 1, 0, or �1 over qualitative ranges
tion with a butterfly-like risk profile involves searching the explosive on the real-line. For example, all functions having one edge
space of linear combinations of elementary risk profiles. Abstracting with slope 0 over (0, xi) � � and another edge with a positive
all elementary risk profiles similar in shape into one qualitative risk slope ai over (xi, �) � �, where ai and xi differ across these
profile drastically lowers the number of risk profile permutations, but

functions, are replaced by one qualitative function having oneit also results in the loss of useful information. We cannot synthesize
flat edge over (0, x) and another edge with slope 1 over (x, �),a butterfly using two similar elementary risk profiles, corresponding
where x � (0, �) is a qualitative point. This abstraction low-to the purchase of call options with strike prices sL and sH, unless we
ers drastically the number of elementary functions, renderingcan rediscover lost information about the ordering of strike prices.
the use of a simple generate-and-test approach computation-
ally feasible.

At the same time, this qualitative abstraction also resultscorresponds to price sH. Accordingly, he defines a goal risk
in the loss of important information. One implication is ap-profile called ‘‘butterfly’’ (see Fig. 4).
parent in the case of scenario 3. The butterfly goal function is
synthesized using two similar elementary functions, corre-Solution 3: One way to derive this risk profile is to trade
sponding to the purchase of two call options, one with strikecall options on the stock—buy a call option with strike price
price sL and another with strike price sH. Because these twosL, sell two calls with strike price sM, and buy a call with strike
functions are now represented by the same abstract function,price sH. A call option provides its buyer with the right to
this goal function cannot be synthesized unless we can redis-purchase, and its seller with obligation to sell, shares of the
cover lost information about the ordering of strike prices.stock for an agreed upon strike price at a future expiration
Hence, we need to use heuristic search operators capable ofdate. Based on this definition, the options’ combination works
rediscovering lost information by stretching and steepeningas follows:
edges in permutations of abstract elementary functions.

• If sL� S � sM, the investor will profit from the cash re-
Qualitative Synthesisceived for the two calls sold and from exercising the pur-

chased call with strike price sL (i.e., buying shares for sL). Qualitative synthesis (QSYN) is a QR technique that can solve
• If sM � S � sH, the investor will gain on the purchased this synthesis problem (20). The systemic concepts underlying

call with strike price sL and lose on the purchased call QSYN are as follows.
with strike price sH and on the calls sold (i.e., selling
shares for sM). 1. A security is a two-terminal component (system) whose

input node is some risky economic parameter and out-• If S � sH, the investor’s gain on the calls purchased will
put node is its value.offset the loss on the calls sold.

2. A risk profile describes the behavior of a component
Role of QR Techniques (system) over all its operational regions. It describes the

output contingent on the input only at the end of someThis example shows that a position is described in terms of
risky period. Hence, unlike QSIM, QSYN assumes thatthe securities purchased/sold and their unit proportions. This
the input and output nodes are time insensitive.description is derived from how the risk profile of a position

3. An abstract risk profile describes the qualitative behav-is composed as the algebraic sum of elementary risk profiles
ior of all components of the same type.that are each associated with buying/selling one or more

4. The qualitative behavior of a system is the sequence ofunits of a specific security.
qualitative states that the output node exhibits as theGiven the elementary risk profiles of individual securities,
input node varies over the entire range of values it canconfiguring positions involves searching for all linear combi-
take on. However, while in QSIM qdir � �1, 0, �1�, innations of elementary risk profiles that match a goal risk pro-
QSYN qdir � ��.file. In other words, given a set of elementary piecewise linear

functions with edges having a real-valued slope over some 5. Because the risk profile of a position is the algebraic
sum of risk profiles of its security components, a posi-range in (��, �), the problem is to find all ways to synthesize

a goal function using these elementary functions. This search tion is a two-terminal system made from components
connected in parallel. That is, where the behaviors of aproblem is subject to combinatorial explosion. Considering

only option-based securities, the number of possible permuta- system and its components are analogized to transfer
functions (31), given the transfer functions of any twotions of risk profiles is 24n, where 4 stands for the risk profiles

of sell call, buy call, sell put, and buy put, and n is the number components, their sum is the transfer function of a sys-
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tem made from the two components connected in par- • For the notion of match, two corresponding elements are
matching, denoted Q1[i] 	 Q2[j], if they have the sameallel.
OUT-qdir. For example, although the two preceding sam-
ple elements are corresponding because (x1, x2) � (x1, x3),Based on these concepts, the problem is one of synthesizing
they do not match because their OUT-qdirs are 1 andthe structure of two-terminal systems—identifying sets of
�1. Two behaviors are matching, Q1 	 Q2, if every pairstructurally connected components—that produce some goal
of their corresponding elements match. A behavior Q1qualitative behavior. QSYN solves this problem using the fol-
partially matches another behavior Q2, if Q1 matches thelowing basic search approach. It takes as input: the qualita-
first few consecutive elements of Q2.tive behavior G of a prospective system (e.g., butterfly risk

profile), and a set Q of n qualitative behaviors Q1, Q2, . . .,
QSYN deals with another flaw in its basic search approachQn that each abstracts the qualitative behaviors of all compo-

that relates to the loss of important information due to thenents of the same type. Upon selecting a pair of behaviors in
fact that each qualitative behavior in Q abstracts all the be-Q , Qi and Qj (i � j), a permutation is created as their sum.
haviors of components of the same type. QSYN uses two heu-This permutation is then compared against G. If it matches
ristic synthesis operators—STRETCH and STEEPEN—on el-part of G, it is added to Q with a reference to the Qi and Qj
ements of the behaviors in a permutation, to rediscover theused to create it. If it matches all of G, a parallel connection
information lost. It is easiest to understand how these opera-of components i and j is identified as one possible way to syn-
tors work by looking at the next example.thesize the prospective system. These steps are repeated for

every possible permutations involving a pair of different be-
haviors in Q , including pairs containing partially matching Applying Qualitative Synthesis
permutations newly added to Q . In so doing, QSYN finds all

Let’s go back to the problem in scenario 3, which entails thepermutations of elementary behaviors in Q that match G.
synthesis of a butterfly risk profile. One of the permutationsQSYN uses two means to deal with flaws in its basic
of risk profiles that QSYN tries includes the pair of elemen-search approach. First, to avoid an exhaustive search of the
tary risk profiles denoted Qi and Qj at the top of Fig. 5. Appar-space of combinations of behaviors in Q , QSYN uses a goal-
ent from Fig. 4, at least part of G can be synthesized usingdirected search process. Because the number of possible per-
Qi and Qj. Yet, Qi � Qj � G because Qi and Qj are each anmutations is on the order of �Q �2, QSYN constrains the gener-
abstraction of an entire class of risk profiles with the sameation of permutations using knowledge about the additivity of
qualitative shape. QSYN, hence, tries to use operatorsqualitative behaviors (implied by the transition rules QSIM
STRETCH and STEEPEN so as to synthesize G using Qiemploys). For example, if the qdir in both the first inter-
and Qj.secting states in a permutation of two behaviors is 1 (increas-

The next discussion traces QSYN’s synthesis process, cor-ing) and the qdir in the first state in the goal behavior is 0,
responding to the emphasized path in the search tree shownQSYN readily prunes that permutation because it will not
in Fig. 5. Starting with the first triplet of elements at the topyield a match. Hence, instead of computing the sum of two
of the tree, QSYN concludes that Qi[1] � Qj[1]	G[1]. For thebehaviors in Q and then comparing it against the goal, QSYN
next triplet, it concludes that Qi[2] � Qj[2] � G[2] because thecompares the goal behavior to the sum of the two combined
OUT-qdir of G[2] differs from the OUT-qdir of Qi[2] � Qj[2].behaviors as this sum is being computed gradually, one pair
But, because the OUT-qdir of G[2] is equal to the OUT-qdirof states at a time. The notions of sum and match are defined
of Qi[2] � Qj[1], a modified version of Qj, denoted Q�j in Fig. 5,as follows.
in which the first element is stretched over the IN-qval (0,
sM), is more likely to contribute to the synthesis of G. QSYN,

• For the sum of two behaviors, denoted �, consider a be- hence, uses operator STRETCH to extend Qj[1] over (0, sM)
havior to be a sequence of elements of the form [(IN �qdir and to conclude that Qi[2] � Q�j [1] 	 G[2]. For the next triplet
qval�)(OUT �qdir qval�)]. Furthermore, assume the exis- of elements QSYN concludes that Qi[2] � Q�j [2] � G[3], be-
tence of behaviors Q1 and Q2, with m and n elements, cause the OUT-qdir of G[3] differs from the OUT-qdir of
respectively, and let [ ] denote the kth element in a be- Qi[2] � Q�j [2]. However, this mismatch can be eliminated by
havior. Elements Q1[i] (1 � i � m) and Q2[j] (1 � j � n) modifying the OUT-qdir of Q�j [2] from �1 to �2. QSYN there-
are corresponding, if the IN-qval of Q1[i] is contained in fore applies operator STEEPEN to create a new version of
the IN-qval of Q2[j], or vice versa. The sum of two ele- Q�j , denoted Q
j in Fig. 5, and to conclude that Qi[2] � Q
j [2] 	
ments, Q1[i] � Q2[j], is a new element, Q3[k], in which: G[3]. At this point QSYN found a partial match. It hence
(1) IN-qval is the intersection of IN-qvals of Q1[i] and adds Qi � Q
j to Q as a new ‘‘elementary’’ behavior and then
Q2[j], and (2) OUT-qdir is the algebraic sum of OUT- continues to synthesize G in the same fashion.

How can we interpret the partially matching permutationqdirs of Q1[i] and Q2[j]. For example, assuming that
QSYN synthesized? This permutation is made from two ele-(x1, x2) � (x1, x3):
mentary risk profiles that were modified by operators
STRETCH and STEEPEN. These modified risk profiles pro-
vide information about how to configure a position whose risk
profile partially matches a butterfly. First, Qi and Q
j have the

Q1[i] = [(IN〈∗ (x1, x2)〉)(OUT〈 1 ∗〉)]
Q2[ j] = [(IN〈∗ (x1, x3)〉)(OUT〈−1 ∗〉)]
Q1[i] ⊕ Q2[ j] = [(IN〈∗ (x1, x2)〉)(OUT〈 0 ∗〉)] qualitative shape of the risk profiles of a buy call option posi-

tion and a sell call option position, respectively. Second, be-
The sum of two behaviors, Q1 � Q2, is thus the sum of cause sL � sM, the strike price of the purchased call sL must

be smaller than that of the sold call sM. Last, the absoluteevery pair of their corresponding elements.
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stretch Qi
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(all other branches are readily
pruned because the operators
are inapplicable)

G= butterfly
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'
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Figure 5. QSYN synthesizes part of a butterfly risk profile. Apparent from the tree encom-
passing only a small part of QSYN’s search space, QSYN vigorously prunes the search space
using heuristic search operators stretch and steepen.

value of the OUT-qdir of the second element in Q
j is 2, indi- nomic agents make to select between alternative courses of
action (behaviors); and uncertain parameters modeled incating the need to sell more than one call for every purchased

call. This information is identical to the one provided in the mean-variance terms, using continuous probability distribu-
tions.solution to scenario 3.

Relatedly, other research stresses the need to adapt ex-
isting QR techniques to complex economic and financial prob-

CONCLUSION lems (33). Because standard QR techniques are typically de-
veloped for physics and engineering problems, they ignore the

This article focused on the strategic role of QR techniques in significant contribution that mathematical economics has
investment decision making. QR techniques can support and made to the study of dynamics (e.g., in the area of stability)
augment the way financial decision makers reason about sys- through exploitation of the idiosyncratic structure of economic
tems involving a high degree of internal uncertainty. Even systems. This work also points out possible implications of
though external uncertainty is a result of uncontrollable fac- using QR techniques on related areas such as econometrics.
tors in the environment, internal uncertainty stems from Focusing on key concepts that make QR techniques ap-
many complex interdependencies between parameters that pealing, other recent work applies these concepts using other
must be understood in order to control the behavior of a sys- artificial intelligence technologies such as fuzzy logic (34).
tem. Quantitative financial models aim at providing insights
that can reduce the internal uncertainty. But, because of
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