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MODM studies decision problems in which the decision
space is continuous. A typical example is mathematical pro-
gramming problems with multiple objective functions. The
first reference to this problem, also known as the vector-maxi-
mum problem, is attributed to Kuhn and Tucker (2). It also
deals with problems in which the decision space is not contin-
uous but discrete. However, it is of very large size. A typical
example is integer programming with multiple objectives. On
the other hand, MADM concentrates on problems with dis-
crete decision spaces. In these problems the set of decision
alternatives has been predetermined.

Although MADM methods may be widely diverse, many of
them have certain aspects in common (3). These are the no-
tions of alternatives, and attributes (or criteria, goals) as de-
scribed next.

Alternatives

Alternatives represent the different choices of action available
to the decision maker. Usually, the set of alternatives is as-
sumed to be finite, ranging from several to hundreds. They
are supposed to be screened, prioritized, and eventually
ranked as result of the process of decision making.

Multiple Attributes

Each MADM problem is associated with multiple attributes.
Attributes are also referred to as goals or decision criteria.
Attributes represent the different dimensions from which the
alternatives can be viewed.

In cases in which the number of attributes is large (e.g.,
more than a few dozens), attributes may be arranged in a
hierarchical manner. That is, some attributes may be major
attributes. Each major attribute may be associated with sev-
eral subattributes. Similarly, each subattribute may be asso-
ciated with several sub-subattributes and so on. For example,
in the problem of buying a car, one may consider as main
attributes the cost, horsepower, and appeal. Cost may be sub-
divided into maintenance cost, running cost, spare-parts cost,
etc. Appeal may also be subdivided: car shape, interior com-OPERATIONS RESEARCH DECISION MAKING
fort, and amenities (stereo, air conditioning, etc.). More com-
plex attribute compositions may exist in more complex prob-The core of operations research is the development of ap-
lems. Although some MADM methods may explicitly considerproaches for optimal decision making. A prominent class of
a hierarchical structure in the attributes of a problem, mostsuch problems is multicriteria decision making (MCDM). The
of them assume a single level of attributes (e.g., no hierarchi-typical MCDM problem deals with the evaluation of a set of
cal structure).alternatives in terms of a set of decision criteria. This article

provides a comprehensive survey of some methods for elic-
iting data for MCDM problems and also for processing such Conflict Among Attributes
data when a single decision maker is involved.

Since different attributes represent different dimensions of
the alternatives, they may conflict with each other. For in-

MULTIATTRIBUTE DECISION MAKING: stance, cost may conflict with profit.
A GENERAL OVERVIEW

Incommensurable Units
Multicriteria decision making is a well-known branch of deci-
sion making. It is a branch of a general class of operations Different attributes may be associated with different units of

measure. For instance, in the case of buying a used car, theresearch (OR) models which deal with decision problems un-
der the presence of a number of decision criteria. According attributes cost and mileage may be measured in terms of dol-

lars and thousands of miles, respectively. It is this nature ofto many authors [see, for instance, Zimmermann (1)] MCDM
is divided into multiobjective decision making (MODM) and having to consider different units which makes MADM intrin-

sically hard to solve.multiattribute decision making (MADM).
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cess. Hence, we have single decision maker MCDM methods
and group decision making MCDM. For some representative
articles in this area, see George et al. (4), Hackman and
Kaplan (5), DeSanctis and Gallupe (6), and Shaw (7). For a
comprehensive presentation of some critical issues in group
decision making, the interested reader may want to consult
the survey in Faure et al. (8) and also the papers regularly
published in the journal Group Decision Making. In this arti-
cle we concentrate our attention on single decision maker de-
terministic MCDM methods.

Criteria

C1 C2 C3 
 
 
 CN

Alt. W1 W2 W3 
 
 
 WN

A1 a11 a12 a13 
 
 
 a1N

A2 a21 a22 a23 
 
 
 a2N

A3 a31 a32 a33 
 
 
 a3N

. . . . . .. . . . . .. . . . . .

AM aM1 aM2 aM3 
 
 
 aMN

In Chen and Hwang (3), deterministic—single decision
Figure 1. For example: A typical decision matrix. maker—MCDM methods were also classified according to the

type of information and the salient features of the informa-
tion. The weighted sum model (WSM), the analytic hierarchy

Decision Weights process (AHP), the revised AHP, the weighted product model
(WPM), and the ELECTRE (elimination and choice translat-Most of the MADM methods require that the attributes be
ing reality; English translation from the French original) andassigned weights of importance. Usually, these weights are
TOPSIS (technique for order preference by similarity to idealnormalized to add up to one. How these weights can be deter-
solution) methods are the ones which are used mostly in prac-mined is described later in ‘‘Problem 2: Processing Reciprocal
tice today and are described in later sections. Finally, itMatrices with Pairwise Comparisons.’’
should be stated here that there are many other alternative
ways for classifying MCDM methods (3). However, the previ-Decision Matrix
ous ones are the most widely used approaches in the MCDM

An MADM problem can be easily expressed in matrix format. literature.
A decision matrix A is an (M � N) matrix in which element
aij indicates the performance of alternative Ai when it is eval-

SOME MCDM APPLICATION AREASuated in terms of decision criterion Cj, (for i � 1, 2, 3, . . .,
M, and j � 1, 2, 3, . . ., N). It is also assumed that the deci-

Some of the engineering applications of MCDM include thesion maker has determined the weights of relative perfor-
use of decision analysis in integrated manufacturing (9), inmance of the decision criteria (denoted as Wj, for j � 1, 2, 3,
the evaluation of technology investment decisions (10), in. . ., N). This information is best summarized in Fig. 1. Given
flexible manufacturing systems (11), layout design (12), andthe previous definitions, then the general MADM problem can
also in other engineering problems (13). As an illustrative ap-be defined as follows (1).
plication consider the case in which one wishes to upgrade
the computer system of a computer integrated manufacturingDefinition 1: Let A � �Ai, for i � 1, 2, 3, . . ., M� be a (finite)
(CIM) facility. There is a number of different configurationsset of decision alternatives and G � �gi, for j � 1, 2, 3, . . .,
available to choose from. The different systems are the alter-N� a (finite) set of goals according to which the desirability of
natives. A decision should also consider issues such as cost,an action is judged. Determine the optimal alternative A*
performance characteristics (i.e., CPU speed, hard disk capac-with the highest degree of desirability with respect to all rele-
ity, and RAM size), availability of software, maintenance, andvant goals gi. expendability. These may be some of the decision criteria for
this problem. In the previous problem we are interested inVery often, however, in the literature the goals gi are also
determining the best alternative (i.e., computer system). Incalled decision criteria, or just criteria (since the alternatives
some other situations, however, one may be interested in de-need to be judged (evaluated) in terms of these goals). An-
termining the relative importance of all the alternatives un-other equivalent term is attributes. Therefore, the terms
der consideration. For instance, if one is interested in fundingMADM and MCDM have been used very often to mean the
a set of competing projects (which now are the alternatives),same class of models (i.e., MADM). For these reasons, in this
then the relative importance of these projects is required (soarticle we will use the terms MADM and MCDM to denote
the budget can be distributed proportionally to their relativethe same concept.
importances).

MCDM plays a critical role in many real life problems. It is
CLASSIFICATION OF MCDM METHODS not an exaggeration to argue that almost any local or federal

government, industry, or business activity involves, in one
As it was stated in the previous section, there are many way or the other, the evaluation of a set of alternatives in
MCDM methods available in the literature. Each method has terms of a set of decision criteria. Very often these criteria
its own characteristics. There are many ways one can classify are conflicting with each other. Even more often the pertinent
MCDM methods. One way is to classify them according to the data are very expensive to collect.
type of the data they use. That is, we have deterministic, sto-
chastic, or fuzzy MCDM methods (for an overview of fuzzy

MULTICRITERIA DECISION MAKING METHODS
MCDM methods, see Chen and Hwang (3). However, there
may be situations which involve combinations of all of these

Background Information
(such as stochastic and fuzzy) data types.

Another way of classifying MCDM methods is according to With the continuing proliferation of decision methods and
their modifications, it is important to have an understandingthe number of decision makers involved in the decision pro-



OPERATIONS RESEARCH DECISION MAKING 177

of their comparative value. Each of the methods uses numeric Example 1: Suppose that an MCDM problem involves four
criteria, which are expressed in exactly the same unit, andtechniques to help decision makers choose among a discrete

set of alternative decisions. This is achieved on the basis of three alternatives. The relative weights of the four criteria
were determined to be: W1 � 0.20, W2 � 0.15, W3 � 0.40, andthe impact of the alternatives on certain criteria and the rela-

tive weights of importance of these criteria. W4 � 0.25. The corresponding aij values are assumed to be as
follows:Despite the criticism that multidimensional methods have

received, some of them are widely used. The weighted sum
model (WSM) is the earliest and probably the most widely
used method. The weighted product model (WPM) can be con-
sidered as a modification of the WSM, and has been proposed

A =


25 20 15 30

10 30 20 30
30 10 30 10




in order to overcome some of its weaknesses. The analytic hi-
erarchy process (AHP), as proposed by Saaty (14–17), is a

Therefore, the data (i.e., decision matrix) for this MCDMlater development and it has recently become increasingly
problem are as follows:popular. Professors Belton and Gear (18) suggested a modifi-

cation to the AHP that appears to be more powerful than the
original approach. Some other widely used methods are the
ELECTRE (19) and TOPSIS (20). In the subsection that fol-
lows these methods are presented in detail.

Description of Some MCDM Methods

There are three steps in utilizing any decision-making tech-

Criteria
C1 C2 C3 C4

Alt. (0.20 0.15 0.40 0.25)

A1 25 20 15 30
A2 10 30 20 30
A3 30 10 30 10

nique involving numerical analysis of alternatives:
When Eq. (1) is applied on the previous data, the scores of the

1. Determining the relevant criteria and alternatives. three alternatives are:
2. Attaching numerical measures to the relative impor-

tance of the criteria and to the impacts of the alterna-
tives on these criteria.

A1(WSM score) = 25 × 0.20+ 20 × 0.15+ 15 × 0.40+ 30 × 0.25

= 21.50
3. Processing the numerical values to determine a ranking

Similarly,of each alternative.

This section is only concerned with the effectiveness of the A2(WSM score) = 22.00
four methods in performing step 3. The central decision prob-

andlem examined in this article is described as follows. Given is
a set of M alternatives A1, A2, A3, . . ., AM and a set of N

A3(WSM score) = 20.00decision criteria C1, C2, C3, . . ., CN and the data of a decision
matrix as the one described in Fig. 1. Then the problem is to

Therefore the best alternative (in the maximization case) isrank the alternatives in terms of their total preferences when
alternative A2 (because it has the highest WSM score, 22.00).all the decision criteria are considered simultaneously.

Moreover, the following ranking is derived: A2 � A1 � A3The Weighted Sum Model. The weighted sum model (WSM)
(where � stands for ‘‘better than’’).is probably the most commonly used approach, especially in

single dimensional problems. If there are M alternatives and
The Weighted Product Model. The weighted product modelN criteria then, the best alternative is the one that satisfies

(WPM) is very similar to the WSM. The main difference is(in the maximization case) the following expression (21).
that instead of addition in the model there is multiplication.
Each alternative is compared with the others by multiplying
a number of ratios, one for each criterion. Each ratio is raisedA∗

WSM = max
i

N∑
j=1

aijwj, for i = 1,2, 3, . . ., M (1)

to the power equivalent to the relative weight of the corre-
sponding criterion. In general, in order to compare the alter-where A*WSM is the WSM score of the best alternative, N is the
natives AK and AL, the following product (22,23) has to be cal-number of decision criteria, aij is the actual value of the ith
culated:alternative in terms of the jth criterion, and Wj is the weight

of importance of the jth criterion.
The assumption that governs this model is the additive

utility assumption. That is, the total value of each alternative
R(AK/AL) =

N∏
j=1

(aKj/aLj)
w j (2)

is equal to the sum of products given as Eq. (1). In single-
dimensional cases, in which all the units are the same (e.g., where N is the number of criteria, aij is the actual value of

the ith alternative in terms of the jth criterion, and Wj is thedollars, feet, seconds), the WSM can be used without diffi-
culty. Difficulty with this method emerges when it is applied weight of importance of the jth criterion.

If the term R(AK/AL) is greater than one, then alternativeto multidimensional decision-making problems. Then, in com-
bining different dimensions, and consequently different units, AK is more desirable than alternative AL (in the maximization

case). The best alternative is the one that is better than or atthe additive utility assumption is violated and the result is
equivalent to adding apples and oranges. least equal to all the other alternatives.
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The WPM is sometimes called dimensionless analysis be- N � N reciprocal matrix which is determined by pairwise
comparisons of the impact of the M alternatives on the ithcause its structure eliminates any units of measure. Thus, the

WPM can be used in single- and multidimensional decision- criterion. (For more on this, and some other related tech-
niques, see the section on ‘‘Data Estimation for MCDMmaking problems. An advantage of the method is that instead

of the actual values it can use relative ones. This is true be- Problems.’’)
Some evidence is presented in Ref. 14 which supports thecause:

technique for eliciting numerical evaluations of qualitative
phenomena from experts and decision makers. However, we
are not concerned here with the possible advantages and dis-
advantages of the use of pairwise comparisons and the eigen-
vector method for determining values for aij. Instead, we ex-
amine the method used in AHP to process the aij values after

aKj

aLj
=

aKj

/ N∑
i=1

aKi

aLj

/ N∑
i=1

aLi

= a′
Kj

a′
Lj

(3)

they have been determined. The entry aij, in the M � N ma-
trix, represents the relative value of the alternative Ai whenA relative value a�Kj is calculated by using the formula: a�Kj �
it is considered in terms of criterion Cj. In the original AHPaKj/�

N
i�1 aKi where aKj are the actual values.

the sum �N
i�1 aij is equal to one.

According to AHP the best alternative (in the maximiza-Example 2: Consider the problem presented in the previous
tion case) is indicated by the following relationship:example 1 (note that now the restriction to express all criteria

in terms of the same unit is not needed). For easy demonstra-
tion, suppose that the first criterion is expressed in terms of
feet, the second in terms of hours, and the third in terms of

A∗
AHP = max

i

N∑
j=1

aijwj , for i = 1, 2, 3, . . ., M (5)

dollars. When the WPM is applied, then the following values
are derived: The similarity between the WSM and the AHP is evident. The

AHP uses relative values instead of actual ones. Thus, it can
be used in single- or multidimensional decision making
problems.

R(A1/A2)= (25/10)0.20× (20/30)0.15× (15/20)0.40× (30/30)0.25

= 1.007 > 1

Similarly, Example 3: Again, consider the data used in the previous
two examples (note that as in the WPM case the restriction

R(A1/A3) = 1.157 > 1 to express all criteria in terms of the same unit is not needed).
The AHP uses a series of pairwise comparisons to determine

and the relative performance of each alternative in terms of each
one of the decision criteria. In other words, instead of the ab-

R(A2/A3) = 1.149 > 1 solute data, the AHP would use the following relative data:

Therefore, the best alternative is A1, since it is superior to all
the other alternatives. Moreover, the ranking of these alter-
natives is as follows: A1 � A2 � A3.

An alternative approach is one to use only products with-
out ratios. That is, to use the following variant of Eq. (2):

Criteria
C1 C2 C3 C4

Alt. (0.20 0.15 0.40 0.25)

A1 25/55 20/60 15/65 30/70
A2 10/55 30/60 20/65 30/70
A3 20/55 10/60 30/65 10/70

That is, the columns in the decision matrix have been normal-
P(AK ) =

N∏
j=1

(aKj)
w j (4)

ized to add up to 1. When Eq. (5) is applied on the previous
data, the following scores are derived:However, now the final score is expressed in the product of

all the units used in measuring the performances of the alter-
natives. In this example this is the product of feet times hours
times dollars. Next, these scores can be compared with each

A1(AHP score) = (25/55) × 0.20 + (20/60) × 0.15 + (15/65)

× 0.40 + (30/70) × 0.25 = 0.340
other (since they are expressed in the same units) and then
exactly the same ranking is derived. Similarly,

The Analytic Hierarchy Process. The analytic hierarchy pro- A2(AHP score) = 0.342
cess (AHP) (14–17) is based on decomposing a complex
MCDM problem into a system of hierarchies (more on these and
hierarchies can be found in Ref. 14). The final step in the AHP
deals with the construction of an M � N matrix (where M is A3(AHP score) = 0.318
the number of alternatives and N is the number of criteria).
This matrix is constructed by using the relative importances Therefore, the best alternative (in the maximization case) is

alternative A2 (because it has the highest AHP score, 0.342).of the alternatives in terms of each criterion. The vector (ai1,
ai2, ai3, . . ., aiN) for each i is the principal eigenvector of an Moreover, the following ranking is derived: A2 � A1 � A3.
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The Revised Analytic Process. Belton and Geer (18) proposed are ranked as follows: A1 � A2 � A4 � A3. The authors claim
that this result is in logical contradiction with the previousa revised version of the AHP model. They demonstrated that

an inconsistency can occur when the AHP is used. They pre- result (in which A2 � A1).
When the revised AHP is applied on the last data, the fol-sented a numerical example which deals with three criteria

and three alternatives. In that example the indication of the lowing decision matrix is derived:
best alternative changes when an identical alternative to one
of the nonoptimal alternatives is introduced now creating four
alternatives. According to the authors the root for that incon-
sistency is the fact that the relative values for each criterion
sum up to one. Instead of having the relative values of the
alternatives A1, A2, A3, . . ., AM sum up to one, they propose
to divide each relative value by the maximum value of the
relative values. In particular, they elaborated on the follow-
ing example.

Criteria
C1 C2 C3

Alt. (1/3 1/3 1/3)

A1 1/9 1 8/9
A2 1 1/9 1
A3 1/9 1/9 1/9
A4 1 1/9 1

Example 4 (from Ref. 18, p. 228): Suppose that the actual The vector with the final scores is (2/3, 19/27, 1/9, 19/27).
data of an MCDM problem with three alternatives and three That is, the four alternatives are ranked as follows: A2 �
criteria are as follows: A4 � A1 � A3. The last ranking is, obviously, the desired one.

The revised AHP was sharply criticized by Saaty (16). He
claimed that identical alternatives should not be considered
in the decision process. However, Triantaphyllou and Mann,
(24) have demonstrated that similar logical contradictions are
possible with the original AHP, as well as with the revised
AHP, when nonidentical alternatives are introduced.

Criteria
C1 C2 C3

Alt. (1/3 1/3 1/3)

A1 1 9 8
A2 9 1 9
A3 1 1 1

The ELECTRE Method. The ELECTRE (for elimination and
Observe that in real life problems the decision maker may choice translating reality; English translation from the
never know the previous real data. Instead, he/she can use French original) method was first introduced in Ref. 19. The
the method of pairwise comparisons (as described later) to de- basic concept of the ELECTRE method is to deal with out-
rive the relative data. When the AHP is applied on the previ-

ranking relations by using pairwise comparisons among alter-ous data, the following decision matrix with the relative data
natives under each one of the criteria separately. The out-is derived:
ranking relationship of Ai � Aj describes that even when the
ith alternative does not dominate the jth alternative quanti-
tatively, then the decision maker may still take the risk of
regarding Ai as almost surely better than Aj (25). Alternatives
are said to be dominated if there is another alternative which
excels them in one or more attributes and equals them in the
remaining attributes.

The ELECTRE method begins with pairwise comparisons

Criteria
C1 C2 C3

Alt. (1/3 1/3 1/3)

A1 1/11 9/11 8/18
A2 9/11 1/11 9/18
A3 1/11 1/11 1/18

of the alternatives under each criterion. By using physical or
monetary values gi(Aj) and gi(Ak) of the alternatives Aj andTherefore, it can be easily verified that the vector with the
Ak, respectively, and introducing threshold levels for the dif-final AHP scores is (0.45, 0.47. 0.08). That is, the three alter-
ference gi(Aj) � gi(Ak), the decision maker may declare thatnatives are ranked as follows: A2 � A1 � A3.
he/she is indifferent between the alternatives under consider-Next, we introduce a new alternative, say A4, which is an
ation, that he/she has a weak or a strict preference for one ofidentical copy of the existing alternative A2 (i.e., A2 � A4). Fur-
the two, or that he/she is unable to express any of these pref-thermore, it is also assumed that the relative weights of im-
erence relations. Therefore, the set of binary relations of al-portance of the three criteria remain the same (i.e., 1/3, 1/3,
ternatives, the so-called outranking relations, may be com-1/3). When the new alternative A4 is considered, it can be
plete or incomplete. Next, the decision maker is requested toeasily verified that the new decision matrix is as follows:
assign weights or importance factors to the criteria in order
to express their relative importance.

Through a series of consecutive assessments of the out-
ranking relations of the alternatives, ELECTRE elicits the so-
called concordance index, defined as the amount of evidence
to support the conclusion that Aj outranks, or dominates, Ak,
as well as the discordance, the counterpart of the concor-
dance index.

Finally, the ELECTRE method yields a whole system of

Criteria
C1 C2 C3

Alt. (1/3 1/3 1/3)

A1 1/20 9/12 8/27
A2 9/20 1/12 9/27
A3 1/20 1/12 1/27
A4 9/20 1/12 9/27

binary outranking relations between the alternatives. Be-
cause the system is not necessarily complete, the ELECTRESimilarly, it can be verified that the vector with the final AHP

scores is (0.37, 0.29, 0.06, 0.29). That is, the four alternatives method is sometimes unable to identify the preferred alterna-
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tive. It only produces a core of leading alternatives. This The complementary subset is called the discordance set and
it is described as follows:method has a clearer view of alternatives by eliminating less

favorable ones, especially convenient while encountering few
criteria with large number of alternatives in a decision mak- Dkl = { j, such that: ykj < ylj}, for j = 1, 2, 3, . . ., N

ing problem (26). The organization of the ELECTRE method
Step 4. Construct the Concordance and Discordance Matri-is best illustrated in the following steps (19).

ces. The relative value of the elements in the concordanceStep 1. Normalizing the Decision Matrix. This procedure
matrix C is calculated by means of the concordance index.transforms various units in the decision matrix into dimen-
The concordance index ckl is the sum of the weights associatedsionless comparable units by using the following equation:
with the criteria contained in the concordance set. That is,
the following is true:

ckl =
∑

j∈Ckl

wj, for j = 1, 2, 3, . . ., N
xij = aij√

M∑
i=1

a2
i j

, for i = 1, 2,3, . . ., N,

and j = 1,2, 3,. . . , M

The concordance index indicates the relative importance ofIn the previous expression the squared root of the sum of the
alternative Ak with respect to alternative Al. Apparently, 0 �squares is taken in an effort to view the aij values as Euclid-
ckl � 1. Therefore, the concordance matrix C is defined as fol-ean distances. The normalized matrix X is defined as follows:
lows:

X =




x11 x12 x13 · · · x1N

x21 x22 x23 · · · x2N

...
...

xM1 xM2 xM3 · · · xMN


 C =




− c12 c13 . . . c1M

c21 − c23 . . . c2M

...
...

cM1 cM2 cM3 . . . −




where M is the number of alternatives and N is the number
It should be noted here that the entries of matrix C are notof criteria, and xij is the new and dimensionless preference
defined when k � l.

measure of the ith alternative in terms of the jth criterion. The discordance matrix D expresses the degree that a cer-
Step 2. Weighting the Normalized Decision Matrix. The col- tain alternative Ak is worse than a competing alternative Al.umn of the X matrix is then multiplied by its associated The elements dkl of the discordance matrix are defined as fol-

weights which were assigned to the criteria by the decision lows:
maker. Therefore, the weighted matrix, denoted as Y, is:

Y = XW dkl =
max
j∈Dkl

|ykj − ylj|
max

j
|ykj − ylj|

(6)

where

The discordance matrix is defined as follows:

D =




− d12 d13 . . . d1M

d21 − d23 . . . d2M

...
...

dM1 dM2 dM3 . . . −




As before, the entries of matrix D are not defined when
k � l.

It should also be noted here that the previous two M � M

Y =




y11 y12 y13 . . . y1N

y21 y22 y23 . . . y2N

...
...

yM1 yM2 yM3 . . . yMN




=




w1x11 w2x12 w3x13 . . . wNx1N

w1x21 w2x22 w3x23 . . . wNx2N

...
...

w1xM1 w2xM2 w3xM3 . . . wNxMN




matrices are not symmetric.
Step 5. Determine the Concordance and Discordance Domi-

and nance Matrices. The concordance dominance matrix is con-
structed by means of a threshold value for the concordance
index. For example, Ak will only have a chance to dominate
Al if its corresponding concordance index ckl exceeds at least a
certain threshold value c. That is, the following is true:

W =




w1 0 0 . . . 0
0 w2 0 . . . 0
...

...
0 0 0 . . . wM


 and also

N∑
i=1

wi = 1

ckl ≥ c

The threshold value c can be determined as the averageStep 3. Determine the Concordance and Discordance Sets. The
concordance index. That is, the following relation is true:concordance set Ckl of two alternatives Ak and Al, where M �

k, l � 1, is defined as the set of all criteria for which Ak is
preferred to Al. That is, the following is true:

Ckl = { j, such that: ykj ≥ ylj}, for j = 1, 2, 3, . . ., N

c = 1
M(M − 1)

×
M∑

k=1

M∑
l=1

and k 
=1 and l 
=k

ckl (7)
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Based on the threshold value, the concordance dominance ma- method, the TOPSIS method is presented next as a series of
successive steps.trix F is determined as follows:

Step 1. Construct the Normalized Decision Matrix. This step
is the same as step 1 in ELECTRE.

Step 2. Construct the Weighted Normalized Decision Ma-

fkl = 1, if ckl ≥ c

fkl = 0, if ckl < c
trix. This step is also the same as step 2 in ELECTRE. After
this step, matrix Y has been constructed.Similarly, the discordance dominance matrix G is defined

Step 3. Determine the Ideal and the Negative-Ideal Solu-by using a threshold value d, where d is defined as follows:
tions. The ideal A* and the negative-ideal A� solution are de-
fined as follows:

d = 1
M(M − 1)

M∑
k=1

M∑
l=1

and k �=1 and l �=k

dkl (8)
A∗ = {(max

i
yij| j ∈ J), (min

i
yij| j ∈ J′)|i = 1, 2,3, . . . , M} =

= {y1∗ , y2∗ , . . ., yN∗ } (10)
and

A− = {(min
i

yij| j ∈ J), (max
i

yij| j ∈ J′)|i = 1,2, 3, . . . , M} =
= {y1− , y2− , . . ., yN− } (11)

gkl = 1, if dkl ≥ d

gkl = 0, if dkl < d

where:
Step 6. Determine the Aggregate Dominance Matrix. The ele-

ments of the aggregate dominance matrix E are defined as
follows:

J = { j = 1, 2,3, . . ., N| j associated with benefit criteria}
J′ = { j = 1, 2,3, . . ., N| j associated with cost criteria}

ekl = fkl × gkl (9)
For the benefit criteria, the decision maker wants to have

a maximum value among the alternatives. For the cost crite-Step 7. Eliminate the Less Favorable Alternatives. From the
ria, the decision maker wants to have a minimum valueaggregate dominance matrix, we could get a partial-prefer-
among alternatives. Obviously, A* indicates the most prefera-ence ordering of the alternatives. If ekl � 1, then this means
ble alternative or ideal solution. Similarly, A� indicates thethat Ak is preferred to Al by using both concordance and dis-
least preferable alternative or negative-ideal solution.cordance criteria.

Step 4. Calculate the Separation Measure. The N-dimensionalIf any column of the aggregate dominance matrix has at
Euclidean distance method is next applied to measure theleast one element equal to 1, this column is ‘‘ELECTREally’’
separation distances of each alternative to the ideal solutiondominated by the corresponding row. Therefore, we simply
and negative-ideal solution.eliminate any column(s) which have an element equal to 1.

Then, the best alternative is the one which dominates all Si∗ = (
∑

(yij − yj∗ )2)1/2, i = 1, 2,3, . . ., M (12)
other alternatives in this manner.

where Si* is the separation (in the Euclidean sense) of eachThe TOPSIS Method. TOPSIS (the technique for order pref-
alternative from the ideal solution.erence by similarity to ideal solution) was developed by

Hwang and Yoon (20) as an alternative to the ELECTRE Si− = (
∑

(yij − yj− )2)1/2, i = 1, 2,3, . . ., M (13)
method. The basic concept of this method is that the selected
alternative should have the shortest distance from the ideal

where Si� is the separation (in the Euclidean sense) of eachsolution and the farthest distance from the negative-ideal so-
alternative from the negative-ideal solution.lution in a geometrical sense.

Step 5. Calculate the Relative Closeness to the Ideal Solu-TOPSIS assumes that each attribute has a tendency of
tion. The relative closeness of an alternative Ai with respectmonotonically increasing or decreasing utility. Therefore, it
to the ideal solution A* is defined as follows:is easy to locate the ideal and negative-ideal solutions. The

Euclidean distance approach is used to evaluate the relative Ci∗ = Si− /(Si∗ + Si− ), 0 ≤ Ci∗ ≤ 1, i = 1, 2,3, . . ., M (14)
closeness of alternatives to the ideal solution. Thus, the pref-
erence order of alternatives is yielded through comparing

Apparently, Ci* � 1, if Ai � A*, and Ci� � 0, if Ai � A�.these relative distances.
Step 6. Rank the Preference Order. The best satisfied alter-The TOPSIS method evaluates the following decision ma-

native can now be decided according to preference rank ordertrix which refers to M alternatives which are evaluated in
of Ci*. Therefore, the best alternative is the one that has theterms of N criteria:
shortest distance to the ideal solution. The relationship of al-
ternatives reveals that any alternative which has the shortest
distance to the ideal solution is guaranteed to have the long-
est distance to the negative-ideal solution.

SENSITIVITY ANALYSIS IN MCDM METHODS

A =




a11 a12 a13 . . . a1N

a21 a22 a23 . . . a2N

...
...

aM1 aM2 aM3 . . . aMN




As it was stated earlier, often data in MCDM problems arewhere aij denotes the performance measure of the ith alterna-
tive in terms of the jth criterion. For a clear view of this difficult to be quantified or are easily changeable. Thus, often
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the decision maker needs to first estimate the data with some of a political impact criterion? Although information about
questions like the previous one may be vital in making theaccuracy, and later estimate more critical data with higher

accuracy. In this way, the decision maker can rank the alter- correct decision, it is very difficult, if not impossible, to quan-
tify it correctly. Therefore, many decision making methods at-natives with high confidence and not overestimate noncritical

data. These considerations lead to the need of performing a tempt to determine the relative importance, or weight, of the
alternatives in terms of each criterion involved in a given de-sensitivity analysis on a MCDM problem.

The objective of a typical sensitivity analysis of an MCDM cision making problem.
An approach based on pairwise comparisons which wasproblem is to find out when the input data (i.e., the aij and

wj values) are changed into new values, how the ranking of proposed by Saaty (14,15) has long attracted the interest of
many researchers. Pairwise comparisons are used to deter-the alternatives will change. In the literature there has been

some discussion on how to perform a sensitivity analysis in mine the relative importance of each alternative in terms of
each criterion. In this approach a decision maker has to ex-MCDM. Insua (27) demonstrated that decision making prob-

lems may be remarkably sensitive to some reasonable varia- press his/her opinion about the value of one single pairwise
comparison at a time. Usually, the decision maker has totions in the parameters of the problems. His conclusion justi-

fied the necessity of sensitivity analysis in MCDM. Evans (28) choose his/her answer among 10–17 discrete choices. Each
choice is a linguistic phrase. Some examples of such linguisticexplored a linear-programming-like sensitivity analysis in the

decision making problems consisting of a single set of decision phrases are: ‘‘A is more important than B,’’ or ‘‘A is of the
same importance as B,’’ or ‘‘A is a little more important thanalternatives and states of nature. In his method, the optimal

alternative is represented as a bounded convex polyhedron in B,’’ and so on. The focus here is not on the wording of these
linguistic statements, but, instead, on the numerical valuesthe probability state space. Using the geometric characteris-

tics of the optimal regions, he defined the confidence sphere which should be associated with such statements.
The main problem with the pairwise comparisons is how toof the optimal alternatives. The larger the confidence sphere,

the less sensitive the optimal alternative will be to the state quantify the linguistic choices selected by the decision maker
during their evaluation. All the methods which use the pair-probabilities.

Masuda (29) studied some sensitivity issues of the AHP wise comparisons approach eventually express the qualitative
answers of a decision maker into some numbers which, mostmethod. In his paper, he focused on how changes on entire

columns of the decision making matrix may affect the values of the time, are ratios of integers. A case in which pairwise
comparisons are expressed as differences (instead of ratios)of the composite priorities of the alternatives. In his method,

he generated the sensitivity coefficient of the final priority was used to define similarity relations and is described by
Triantaphyllou (32). The next section examines the issue ofvector of the alternatives to each of the column vectors in the

decision matrix. A large coefficient means that the values of quantifying pairwise comparisons. Since pairwise compari-
sons are the keystone of these decision making processes, cor-the final priorities of the alternatives will change more if

there is a slight change in the corresponding column vector of rectly quantifying them is the most crucial step in multicrite-
ria decision making methods which use qualitative data.the decision matrix. However, that does not guarantee that a

ranking reversal among the alternatives due to the change of Many of the previous problems are not bound only to the
AHP. They are present with any method which has to elicitthe column vectors is sure to happen. Finally, Triantaphyllou

and Sanchez (30) proposed a unified approach for a sensitivity information from pairwise comparisons. These problems can
be divided into the following three categories:analysis for three major MCDM methods. These methods are

the WSM, the WPM, and the AHP (original and revised).
Their approach examines the effect of the changes of a single 1. How to quantify the pairwise comparisons.
parameter (i.e., an aij or wj value) on the final rankings of the

2. How to process the resulted reciprocal matrices.alternatives. That approach can be seen as an extension of
3. How to process the decision matrices.Masuda’s method with its focus on the ranking reversal of the

alternatives which is more useful in practical applications.
Also in that paper, the authors have done some empirical Next we consider some of the main ideas related with pair-
studies to determine the most critical criterion (wj) as well as wise comparisons. In the subsections that follow, we consider
the most critical performance value (aij) in a general MCDM each one of the previous problems, and discuss some remedies
problem. which have been proposed.

Sensitivity analysis is a fundamental concept for the effec-
tive use and implementation of quantitative decision models

Problem 1: On the Quantification of Pairwise Comparisons
(31). It is just too important to be ignored in the application
of an MCDM method to a real life problem. Pairwise comparisons are quantified by using a scale. Such a

scale is a one-to-one mapping between the set of discrete lin-
guistic choices available to the decision maker and a discrete
set of numbers which represent the importance, or weight, ofDATA ESTIMATION FOR MCDM PROBLEMS
the previous linguistic choices. There are two major ap-
proaches in developing such scales. The first approach isOne of the most crucial steps in many decision making meth-

ods is the accurate estimation of the pertinent data. This based on the linear scale proposed by Saaty (14) as part of
the AHP. The second approach was proposed by Lootsmaproblem is particularly crucial in methods which need to elicit

qualitative information from the decision maker. Very often (26,33,34) and determines exponential scales. Both ap-
proaches depart from some psychological theories and developqualitative data cannot be known in terms of absolute values.

For instance, what is the worth of the ith alternative in terms the numbers to be used based on these psychological theories.
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Scales Defined on the Interval [9, 1/9]. In 1846 Weber stated merical equivalents of these linguistics choices need to satisfy
the following relations:his law regarding a stimulus of measurable magnitude. Ac-

cording to his law a change in sensation is noticed if the stim-
ulus is increased by a constant percentage of the stimulus
itself (14). That is, people are unable to make choices from an
infinite set. For example, people cannot distinguish between
two very close values of importance, say 3.00 and 3.02. Psy-
chological experiments have also shown that individuals can-
not simultaneously compare more than seven objects (plus or
minus two) (35). This is the main reasoning used by Saaty to
establish 9 as the upper limit of his scale, 1 as the lower limit,
and a unit difference between successive scale values.

en+1 − en = εen, (where ε > 0)

or:

en+1 = (1 + ε)en = (1 + ε)2en−1 = · · ·
= (1 + ε)n+1eo, (where: eo = 1)

or:

en = eγ ×n

The values of the pairwise comparisons are determined ac-
cording to the scale introduced by Saaty (14). According to In the previous expressions the parameter � is unknown (or,
this scale (which we call Scale1), the available values for the equivalently, � is unknown), since � � ln(1 � �), and e is the
pairwise comparisons are members of the set: �9, 8, 7, 6, 5, 4, basis of the natural logarithms (please note that ei is just the
3, 2, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9�. These numbers notation of a variable).
illustrate that the values for the pairwise comparisons can be Another difference between exponential scales and the
grouped into the two intervals [9, 1] and [1, 1/9]. As it was Saaty scale is the number of categories allowed by the expo-
stated, the values in the interval [9, 1] are evenly distributed, nential scales. There are only four major linguistically dis-
while the values in the interval [1, 1/9] are skewed to the tinct categories, plus three so-called threshold categories be-

tween them. The threshold categories can be used if theright end of this interval.
decision maker hesitates between the main categories. For aThere is no good reason why for a scale defined on the in-
more detailed documentation on psychophysics we refer theterval [9, 1/9] the values on the subinterval [9, 1] should be
reader to Marks (38), Michon et al., (39), Roberts (37),evenly distributed. An alternative scale could have the values
Zwicker (40), and Stevens and Hallowell Davis (41). Theevenly distributed in the interval [1, 1/9], while the values in
reader will find that that sensory systems for the perceptionthe interval [9, 1] could be simply the reciprocals of the values
of tastes, smells, and touches follow the power law with expo-in the interval [1, 1/9]. This consideration leads to the scale
nents near 1.(which we call Scale2) with the following values: �9, 9/2, 9/3,

9/4, 9/5, 9/6, 9/7, 9/8, 1, 8/9, 7/9, 6/9, 5/9, 4/9, 3/9, 2/9, 1/9�.
Evaluating Different Scales. In order for different scales toThis scale was originally presented by Ma and Zheng (36). In

be evaluated, two evaluative criteria were developed by Tri-the second scale each successive value on the interval [1, 1/9]
antaphyllou et al. (42). Furthermore, a special class of pair-is (1 � 1/9)/8 � 1/9 units apart. In this way, the values in
wise matrices was also developed. These special matricesthe interval [1, 1/9] are evenly distributed, while the values
were then used in conjunction with the two evaluative criteriain [9, 1] are simply the reciprocals of the values in [1, 1/9]. It
in order to investigate some stability properties of differentshould be stated here that the notion of having a scale with a
scales.group of values evenly distributed is followed in order to be

The most important observation of that study is that thein agreement with the same characteristic of the original
results illustrate very clearly that there is no single scaleSaaty scale. As it will be seen in the next section, other scales
which is the best scale for all cases. Similarly, the resultscan be defined without having evenly distributed values.
illustrate that there is no single scale which is the worst scaleBesides the second scale, many other scales can be gener-
for all cases. However, according to these computational re-ated. One way to generate new scales is to consider weighted
sults, the best (or worst) scale can be determined only if theversions between the previous two scales. That is, for the in-
number of the alternatives is known and the relative impor-terval [1, 1/9] the values can be calculated using the formula:
tance of the weights of the two evaluative criteria has been
assessed.NewValue = Value(Scale1) + (Value(Scale2) − Value(Scale1))

× (α/100) Problem 2: Processing Reciprocal Matrices
with Pairwise Comparisons

In the previous formula the values of � can range from 0 to
At this point it is assumed that the decision maker has deter-100. Then, the values in the interval [9, 1] are the reciprocals
mined the values of all the pairwise comparisons. That is,of the previous values. For � � 0 Scale1 is derived, while for
available are the values aij (for i, j � 1, 2, 3, . . ., N), where

� � 100 Scale2 is derived.
aij represents the relative performance of alternative Ai when
it is compared with alternative Aj in terms of a single crite-

Exponential Scales. A class of exponential scales has been rion. These aij values now are different from the aij values of
introduced by Lootsma (26,33,34). The development of these the decision matrix discussed earlier. Given these values, the
scales is based on an observation in psychology about stimu- decision maker needs to determine the relative weights, say
lus perception (denoted as ei). According to that observation, Wi (i � 1, 2, 3, . . ., N), of the alternatives in terms of the
due to Roberts (37), the difference en�1 � en must be greater single criterion. Saaty (14) has proposed a method which as-
than or equal to the smallest perceptible difference, which is serts that the desired weights are the elements of the right

principal eigenvector of the matrix with the pairwise compari-proportional to en. As a result of Robert’s observation the nu-



184 OPERATIONS RESEARCH DECISION MAKING

sons. This method has been evaluated under a continuity as- aij value was perfectly estimated. From the previous formula-
tion, we conclude that the errors involved in these pairwisesumption by Triantaphyllou and Mann (43). Moreover, other

authors have proposed alternative approaches. comparisons are given by:
For instance, Chu et al. (44) observed that, given the data

aij, the values Wi to be estimated are desired to have the fol- εij = dij − 1
lowing property:

or by using Eq. (15)
ai j ≈ Wi/Wj

εij = aij(Wj/Wi ) − 1 (16)
This is reasonable, since aij is meant to be the estimate of the
ratio Wi/Wj. Then, in order to get the estimates for the Wi When the set of alternatives (or criteria) contains N ele-given the data aij, they proposed the following constrained op-

ments, then N(N � 1)/2 total pairwise comparisons need totimization problem:
be estimated. The corresponding N(N � 1)/2 errors are (after
using relations Eqs. (15) and (16)):

εij = aij(Wj/Wi ) − 1, for i, j = 1, 2, 3, . . ., N, and j > 1
(17)

Since Wi are relative weights which (in most cases) have to

minimize S =
N∑

i=1

N∑
j=1

(aijWj − Wi )
2

subject to :
N∑

i=1

Wi = 1,

and Wi > 0, for any i = 1, 2,3, . . ., N
add up to 1, the following relation should also be satisfied:

They also gave an alternative expression S1 that is more dif-
ficult to solve numerically. Specifically, they proposed: N∑

i=1

Wi = 1.00, and Wi > 0, for i = 1,2, 3, . . ., N (18)

When the data (e.g., the pairwise comparisons) are perfectly
minimize S1 =

N∑
i=1

N∑
j=1

(aij − Wj/Wi )
2

consistent, then Eqs. (17) and (18) can be written as follows:
In Federov et al. (45), a variation of the previous least-

squares formulation was proposed. For the case of only one B × W = b (19)
decision maker the authors recommended the use of the fol-
lowing models: The vector b has zero entries everywhere, except that the last

entry is equal to 1; the matrix B has the following structure
(blank entries represent zeros):

log aij = logWi − logWj + �1(Wi,Wj )εij

and

aij = Wi/Wj + �2(Wi,Wj )εij

where Wi and Wj are the true (and thus unknown) weights;
�1(X,Z) and �2(X,Z) are given positive functions (where
X,Z � 0). The random errors �ij are assumed to be inde-
pendent with zero mean and unit variance. However, they fail
to give a way of selecting the appropriate two previous posi-
tive functions.

In the following paragraphs we present the main idea
which was originally described in Triantaphyllou et al.
(46,47). In that treatment the assumption of the human ratio-
nality is made. According to that assumption the decision
maker is a rational person. Rational persons are defined here
as individuals who try to minimize their regret (48), to mini-
mize losses, or to maximize profit (49). In the present context,
minimization of regret of losses, or maximization of profit
could be interpreted as the effort of the decision maker to
minimize the errors involved in the pairwise comparisons.

As it was stated in the previous paragraphs, in the incon-
sistent case, the entry aij of matrix A is an estimate of the
real ratio Wi/Wj. Since it is an estimate, the following is true:

aij = (Wi/Wj )dij, for i, j = 1,2, 3, . . ., N (15)

In the previous relation, dij denotes the deviation of aij from
being a perfectly accurate judgment. Obviously, if dij � 1, the

B =




1 2 3 4 5 6 7 . . . N − 1 N
−1 a1,2 1
−1 a1,3 2
−1 a1,4 3
. . .

. . .

. . .

. . .

. a1,N−1 .

−1 a1,N N − 1
−1 a2,3 1
−1 a2,4 2
−1 a2,5 3
. . .

. . .

. . .

. a2,N−1 .

−1 a2,N N − 2
. .

. .

. .

−1 aN−1,N 1
1 1 1 1 1 1 1 . . . 1 1



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The error minimization issue is interpreted in many cases numbers of decision criteria and alternatives taking the val-
ues 3, 5, 7, . . ., 21. In those experiments it was found that(for instance, in regression analysis and in the linear least-

squares problem) as the minimization of the sum of squares all the previous four MCDM methods were inaccurate. Fur-
thermore, these results were used to form a decision problemof the residual vector r � b � B � W (50). In terms of the

previous formulation (19), this means that, in a real-life situa- in which the four methods themselves were the alternatives.
The decision criteria were derived by considering the twotion (i.e., when errors are not zero any more), the real inten-

tion of the decision maker is to minimize the following expres- evaluative criteria. To one’s greatest surprise, one method
would recommend another, rival method, as being the bestsion:
method! However, the final results seemed to suggest that the
revised AHP was the most efficient MCDM method of thef 2(x) = ‖b − BWBWBW‖2

2 (20)
ones examined. This was reported in Triantaphyllou and
Mann (52) as a decision making paradox. Finally, a differentwhich, apparently, expresses a typical linear least-squares
approach of evaluating the performance of the AHP and theproblem.
revised AHP is described by Triantaphyllou and Mann (24).In Triantaphyllou et al. (46) all the previous methods were
In that treatment it was found that these two methods maytested in terms of an example originally presented by Saaty
yield dramatically inaccurate results (more than 80% of the(51) and also later used by other authors [e.g., Chu et al. (39)
time on all the problems).and Federov et al. (45)]. In that test it was found that the

proposed human rationality approach results in much smaller
residuals. Moreover, in the same study it was found, on thou-

CONCLUDING REMARKSsands of randomly generated test problems, that the eigen-
value approach may result in considerably higher residual

There is no doubt that many real life problems can be dealtvalues than the proposed least-squares approach which uses
with as MCDM problems. Although the mathematical proce-the previous human rationality assumption.
dures for processing the pertinent data are rather simple, the
real challenge is in quantifying these data. This is a nontriv-Problem 3: Processing the Decision Matrices
ial problem. In matter of fact, it is not even a well-defined

In Triantaphyllou and Mann (52) the AHP, revised AHP, problem. For these reasons, the literature has an abundance
weighted sum model (WSM) (21) and the weighted product of competing methods. The main problem is that often nobody
model (WPM) (23) were examined in terms of two evaluative can know what is the optimal alternative. Operations re-
criteria. That study focused on the last step of any MCDM search provides a systematic framework for dealing with
method which involves the processing of the final decision such problems.
matrix. That is, given the weights of relative performance of This article discussed some of the challenges facing prac-
the decision criteria, and the performance of the alternatives titioners and theoreticians in some of the methodological
in terms of each one of the decision criteria, then determine problems in MCDM theory. Although it is doubtful that the
what is the ranking (or relative priorities) of the alternatives. perfect MCDM approach will ever be found, it is always a

As it was shown in Triantaphyllou and Mann (52), how- prudent idea for the user to be aware of the main controver-
ever, these methods can given different answers to the same sies in the field. Although the search for finding the best
problem. Since the truly best alternative is the same regard- MCDM method may never end, research in this area of deci-
less of the method chosen, an estimation of the accuracy of sion making is still critical and valuable.
each method is highly desirable. The most difficult problem
that arises here is how one can evaluate a multidimensional
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OPERATIONS RESEARCH, SCHEDULING. See
SCHEDULING.

OPTICAL ACTIVITY. See CHIRALITY.


