
SURVEY OF JOB SHOP SCHEDULING TECH-
NIQUES

INTRODUCTION

In the United States today, there are approximately 40,000
factories producing metal-fabricated parts. These parts
end up in a wide variety of products sold here and abroad.
These factories employ roughly 2 million people and ship
close to $3 billion worth of products every year. The vast
majority of these factories are what we call “job shops”,
meaning that the flow of raw and unfinished goods through
them is completely random. Over the years, the behavior
and performance of these job shops have been the focus of
considerable attention in the Operations Research (OR) lit-
erature. Research papers on topics such as factory layout,
inventory control, process control, production scheduling,
and resource utilization can be found in almost every issue
of every OR journal on the market today. The most pop-
ular of these topics is production (often referred to as job
shop) scheduling. Job shop scheduling can be thought of as
the allocation of resources over a specified time to perform
a predetermined collection of tasks. Job shop scheduling
has received this large amount of attention, because it has
the potential to dramatically decrease costs and increase
throughput, thereby, profits.

A large number of approaches to the modeling and so-
lution of these job shop scheduling problems have been re-
ported in the OR literature, with varying degrees of suc-
cess. These approaches revolve around a series of techno-
logical advances that have occurred over that last 35 years.
These include mathematical programming, dispatching
rules, expert systems, neural networks, genetic algorithms,
and inductive learning. In this article, we take an evo-
lutionary view in describing how these technologies have
been applied to job shop scheduling problems. To do this,
we discuss a few of the most important contributions in
each of these technology areas and the most recent trends.

MATHEMATICAL TECHNIQUES

Mathematical programming has been applied extensively
to job shop scheduling problems. Problems have been for-
mulated using integer programming (Balas 1965, 1967),
mixed-integer programming (Balas 1969, 1970), and dy-
namic programming (Srinivasan 1971). Until recently, the
use of these approaches has been limited because schedul-
ing problems belong to the class of NP-complete problems.
To overcome these deficiencies, a group of researchers be-
gan to decompose the scheduling problem into a number
of subproblems, proposing a number of techniques to solve
them. In addition, new solution techniques, more powerful
heuristics, and the computational power of modern com-
puters have enabled these approaches to be used on larger
problems. Still, difficulties in the formulation of material
flow constraints as mathematical inequalities and the de-
velopment of generalized software solutions have limited
the use of these approaches.

Decomposition strategies

Davis and Jones 1988 proposed a methodology based on
the decomposition of mathematical programming prob-
lems that used both Benders-type (Benders 1960) and
Dantzig/Wolfe-type (Dantzig and Wolfe, 1960) decomposi-
tions. The methodology was part of closed-loop, real-time,
two-level hierarchical shop floor control system. The top-
level scheduler (i.e., the supremal) specified the earliest
start time and the latest finish time for each job. The lower
level scheduling modules (i.e., the infimals) would refine
these limit times for each job by detailed sequencing of all
operations. A multicriteria objective function was specified
that included tardiness, throughput, and process utiliza-
tion costs. The decomposition was achieved by first reorder-
ing the constraints of the original problem to generate a
block angular form, then transforming that block angular
form into a hierarchical tree structure. In general, N sub-
problems would result plus a constraint set that contained
partial members of each of the subproblems. The latter was
termed the “coupling” constraints, and included precedence
relations and material handling. The supremal unit ex-
plicitly considered the coupling constraints, while the infi-
mal units considered their individual decoupled constraint
sets. The authors pointed out that the inherent stochastic
nature of job shops and the presence of multiple, but of-
ten conflicting, objectives made it difficult to express the
coupling constraints using exact mathematical relation-
ships. This made it almost impossible to develop a general
solution methodology. To overcome this, a new real-time
simulation methodology was proposed in (Davis and Jones,
1988) to solve the supremal and infimal problems.

Gershwin 1989 used the notion of temporal decomposi-
tion to propose a mathematical programming framework
for analysis of production planning and scheduling. This
framework can be characterized as hierarchical and multi-
layer. The problem formulations to control events at higher
layers ignored the details of the variations of events oc-
curring at lower layers. The problem formulations at the
lower layers view the events at the higher layers as static,
discrete events. Scheduling is actually carried out in bot-
tom three layers so that the production requirements im-
posed by the planning layers can be met. First, a hedging
point is found by solving a dynamic programming prob-
lem. This hedging point is the number of excess goods that
should be produced to compensate for future equipment
failures. This hedging point is used to formulate a linear
programming problem to determine instantaneous produc-
tion rates. These rates are then used to determine the ac-
tual schedule (which parts to make and when). A variety of
approaches are under investigation for generating sched-
ules.

Enumerative techniques and Lagrangian relaxation

Two popular solution techniques for integer-programming
problems are branch-and-bound and Lagrangian relax-
ation. Branch-and-bound is an enumerative technique
(Agin 1966, Lawler and Wood 1966). Summarizing Morton
and Pentico 1993, “The basic idea of branching is to con-
ceptualize the problem as a decision tree. Each decision
choice point—a node—corresponds to a partial solution.
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From each node, there grow a number of new branches,
one for each possible decision. This branching process con-
tinues until leaf nodes, that cannot branch any further, are
reached. These leaf nodes are solutions to the scheduling
problem”. Although efficient bounding and pruning proce-
dures have been developed to speed up the search, this
is still a very computational intensive procedure for solv-
ing large scheduling problems. If the integer constraint is
the main problem, then why not remove that constraint. A
technique called Lagrangian relaxation, which has been
used for more than 30 years, does just that (Shapiro
1979). Lagrangian relaxation solves integer-programming
problems by omitting specific integer-valued constraints
and adding the corresponding costs (due to these omis-
sions and/or relaxations) to the objective function. As with
branch and bound, Lagrangian relaxation is computation-
ally expensive for large scheduling problems.

Recent trends

Model-Based Optimization (MBO) is an optimization ap-
proach that uses mathematical expressions (e.g., con-
straints and inequalities) to model scheduling problems as
mixed integer (non) linear programs (MINLP’s) (Zentner
et al., 1994). A set of methods such as linear programming,
branch-and-bound, and decomposition techniques are used
to search the scenario space of solutions. Due to the ad-
vances in computer technologies, the computation times
are becoming very practical. According to Subrahmanyam
et al. 1996 “For problems of moderate size, solutions of type
D are given.” Solutions of type D are optimal solutions of
the maximum desirability possible within the constraints
of operation. These approaches are being enhanced by the
development of English-like “scheduling languages” and
high-level graphical interfaces. The scheduling languages
support the developing of the mathematical formulations
with minimum intervention from the user.

DISPATCHING RULES

Dispatching rules have been applied consistently to
scheduling problems. They are procedures designed to pro-
vide good solutions to complex problems in real-time. The
term dispatching rule, scheduling rule, sequencing rule,
or heuristic are often used synonymously (Panwalker and
Islander 1977, Blackstone et al., 1982, Baker 1974). Dis-
patching rules have been classified mainly according to
the performance criteria for which they have been devel-
oped. Wu (1987) categorized dispatching rules into several
classes. Class 1 contains simple priority rules, which are
based on information related to the jobs. Sub-classes are
based on the particular piece of information used. Exam-
ple classes include those based on processing times (such
as shortest processing time (SPT)), due dates (such as
earliest due date (EDD)), slack (such as minimum slack
(MINSLACK)), and arrival times (such as first-in first-out
(FIFO)). Class 2 consists of combinations of rules from class
one. The particular rule that is implemented can now de-
pend on the situation that exists on the shop floor. A typical
example of a rule in this class is, for example, SPT until the
queue length exceeds 5, then switch to FIFO. This prohibits

jobs with large processing times from staying in the queue
for long periods. Class 3 contains rules that are commonly
referred to as Weight Priority Indexes. The idea here is to
use more than one piece of information about the jobs to
determine the schedule. Pieces of information are assigned
weights to reflect their relative importance. Usually, an ob-
jective function f(x) is defined. For example, f(x) = weight1 ×
Processing Time of Job(x) + weight2 × (Current Time—Due
Date of Job(x)). Then, any time new sequence is needed, the
function f(x) is evaluated for each job x in the queue. The
jobs are ranked based on this evaluation.

During the last 30 years, the performance of a large
number of these rules has been studied extensively us-
ing simulation techniques (Montazer and Van Wassenhove,
1990). These studies have been aimed at answering the
question: If you want to optimize a particular performance
criterion, which rule should you choose? Most of the early
work concentrated on the shortest processing time rule
(SPT). Conway and Maxwell (1967) were the first to study
the SPT rule and its variations. They found that, although
some individual jobs could experience prohibitively long
flow times, the SPT rule minimized the mean flow time for
all jobs. They also showed that SPT was the best choice for
optimizing the mean value of other basic measures such
as waiting time and system utilization. Many similar in-
vestigations have been carried out to determine the dis-
patching rule which optimizes a wide range of job-related
(such as due date and tardiness) and shop-related (such as
throughput and utilization) performance measures. This
problem of selecting the best dispatching rule for a given
performance measure continues to be a very active area of
research. However, the research has been expanded to in-
clude the possibility of switching rules to address an impor-
tant problem: error recovery. Two early efforts to address
error recovery were conducted by Bean and Birge (1986)
and Saleh (1988). Both developed heuristic rules to smooth-
out disruptions to the original schedule, thereby creating a
match-up with that schedule. Bean and Birge (1986) based
their heuristic on Turnpike Theory (McKenzie 1976) to op-
timize a generalized cost function. Saleh showed that he
could minimize duration of the disruption by switching the
objective function from mean flow time to makespan based
on disjunctive graphs (Adams et al., 1988).

ARTIFICIAL INTELLIGENCE (AI) TECHNIQUES

Starting in the early 80s, a series of new technologies were
applied to job shop scheduling problems. They fall under
the general title of artificial intelligence (AI) techniques
and include expert systems, knowledge-based systems,
and several search techniques. Expert and knowledge-
based systems were quite prevalent in the early and mid
1980s. They have four main advantages. First, and perhaps
most important, they use both quantitative and qualitative
knowledge in the decision-making process. Second, they
are capable of generating heuristics that are significantly
more complex than the simple dispatching rules described
above.Third, the selection of the best heuristic can be based
on information about the entire job shop including the cur-
rent jobs, expected new jobs, and the current status of re-
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sources, material transporters, inventory, and personnel.
Fourth, they capture complex relationships in elegant new
data structures and contain special techniques for power-
ful manipulation of the information in these data struc-
tures There are, however, serious disadvantages. They can
be time consuming to build and verify, as well as difficult to
maintain and change. Moreover, since they generate only
feasible solutions, it is rarely possible to tell how close that
solution is to the optimal solution. Finally, since they are
tied directly to the system they were built to manage, there
is no such thing as a generic AI system.

Expert/knowledge-based systems

Expert and knowledge-based systems consist of two parts:
a knowledge base, and inference engine to operate on
that knowledge base. Formalizations of the “knowledge”
that human experts use—rules, procedures, heuristics, and
other types of abstractions—are captured in the knowl-
edge base. Three types of knowledge are usually included:
procedural, declarative, and meta. Procedural knowledge
is domain-specific problem solving knowledge. Declarative
knowledge provides the input data defining the problem
domain. Meta knowledge is knowledge about how to use
the procedural and declarative knowledge to actually solve
the problem. Several data structures have been utilized to
represent the knowledge in the knowledge base including
semantic nets, frames, scripts, predicate calculus, and pro-
duction rules. The inference engine selects a strategy to ap-
ply to the knowledge bases to solve the problem at hand. It
can be forward chaining (data driven) or backward chain-
ing (goal driven).

ISIS (Fox 1983) was the first major expert system aimed
specifically at job shop scheduling problems. ISIS used
a constraint-directed reasoning approach with three con-
straint categories: organizational goals, physical limita-
tions and causal restrictions. Organizational goals consid-
ered objective functions based on due-date and work-in-
progress. Physical limitations referred to situations where
a resource had limited processing capability. Procedural
constraints and resource requirements were typical exam-
ples of the third category. Several issues with respect to
constraints were considered such as constraints in con-
flict, importance of a constraint, interactions of constraints,
constraint generation and constraint obligation. ISIS used
a three level, hierarchical, constraint-directed search. Or-
ders were selected at level 1. A capacity analysis was per-
formed at level 2 to determine the availability of the re-
sources required by the order. Detailed scheduling was per-
formed at level 3. ISIS also provided for the capability to
interactively construct and alter schedules. In this capac-
ity, ISIS utilized its constraint knowledge to maintain the
consistency of the schedule and to identify scheduling de-
cisions that would result in poorly satisfied constraints.

Wysk et al. (1986) developed an integrated expert sys-
tem/simulation scheduler called MPECS. The expert sys-
tem used both forward and backward chaining to select
a small set of potentially good rules from predefined set
of dispatching rules and other heuristics in the knowledge
base. These rules optimized a single performance measure,
although that measure could change from one scheduling

period to the next. The selected rules were then evaluated
one at a time using a deterministic simulation of a lab-
oratory manufacturing system. After all of the rules were
evaluated, the best rule was implemented on the laboratory
system. Data could be gathered about how the rule actually
performed and used to update the knowledge base off-line.
They were able to show that periodic rescheduling makes
the system more responsive and adaptive to a changing en-
vironment. MPECS was important for several reasons. It
was the first hybrid system to make decisions based on the
actual feedback from the shop floor. It incorporated some
learning into its knowledge base to improve future deci-
sions. The same systems could be used to optimize several
different performance measures. Finally, it utilized a new
multi-step approach to shop floor scheduling.

Other examples of expert/knowledge-based scheduling
systems developed OPIS (Opportunistic Intelligent Sched-
uler) (Smith 1995), and SONIA (Le Pape 1995).

Distributed AI: agents

Due to the limited knowledge and the problem solving abil-
ity of a single expert or knowledge based system, these AI
approaches have difficulty solving large scheduling prob-
lems as well. To address this, AI researchers have also be-
gun to develop distributed scheduling system approaches
(Parunak et al., 1985). They have done this by an applica-
tion of their well-known “divide and conquer” approach.
This requires a problem decomposition technique, such
as those described above, and the development of differ-
ent expert/knowledge-based systems that can cooperate to
solve the overall problem (Zhang and Zhang, 1995). The AI
community’s answer is the “agent” paradigm. An agent is
a unique software process operating asynchronously with
other agents. Agents are complete knowledge-based sys-
tems by themselves. The set of agents in a system may
be heterogeneous with respect to long-term knowledge,
solution-evaluation criteria, or goals, as well as languages,
algorithms,hardware requirements. Integrating agents se-
lected from a “library” creates a multi-agent system.

For example, one such multi-agent system could involve
two types of agents: tasks and resources. Each task agent
might be responsible for scheduling a certain class of tasks
such as material handling, machining, or inspection, on
those resources capable of performing those tasks. This can
be done using any performance measure related to tasks,
such as minimize tardiness, and any solution technique.
Each resource agent might be responsible for a single re-
source or a class of resources. Task agents must send their
resource requests to the appropriate resource agent, along
with the set of operations to be performed by that resource
(Daouas et al., 1995). Upon receipt of such a request, the
resource agent must generate a new schedule using its
own performance measures, such as maximize utilization,
which includes this request. The resource agent will use
the results to decide whether to accept this new request
or not. To avoid the situation where no resource will ac-
cept a request, coordination mechanisms must be devel-
oped. There are, now, no general guidelines for the design
and implementation of this coordination. Therefore, the de-
bates about centralized vs. decentralized approaches to job
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shop scheduling go on. The agents’ formalism may provide
an answer to these debates.

ARTIFICIAL NEURAL NETWORKS

Neural networks, also called connectionist or distributed
parallel processing models, have been studied for many
years in an attempt to mirror the learning and prediction
abilities of human beings. Neural network models are dis-
tinguished by network topology, node characteristics, and
training or learning rules. An example of a three-layer,
feed-forward neural network is shown in Figure 1.

Supervised learning neural networks

Through exposure to historical data, supervised learning
neural networks attempt to capture the desired relation-
ships between inputs and the outputs. Back-propagation is
the most popular and widely used supervised training pro-
cedure. Back-propagation (Rumelhart et al., 1986, Werbos
1995) applies the gradient-descent technique in the feed-
forward network to change a collection of weights so that
some cost function can be minimized. The cost function,
which is only dependent on weights (W) and training pat-
terns, is defined by:

C(W) = 1
2

∑
(Ti j − Oi j) (1)

where the T is the target value, O is the output of the net-
work, i represents the output nodes, and j represents the
training patterns.

After the network propagates the input values to the
output layer, the error between the desired output and ac-
tual output will be “back-propagated” to the previous layer.
In the hidden layers, the error for each node is computed
by the weighted sum of errors in the next layer’s nodes. In
a three-layered network, the next layer means the output
layer. The activation function is usually a sigmoid function
with the weights modified according to

�Wi j = η Xj(1 − Xj)(Tj − Xj)Xi (2)

or

�Wi j = η Xj(1 − Xj)(
∑

δkWjk)Xi (3)

where Wjk is weight from node i to node (e.g., neuron) j, η is
the learning rate, Xj is the output of node j, Tj is the target
value of node j, and δk is the error function of node k.

If j is in the output layer, Eq. (2) is used. If j is the hidden
layers, Eq. (3) is used. The weights are updated to reduce
the cost function at each step. The process continues until
the error between the predicted and the actual outputs is
smaller than some predetermined tolerance.

Rabelo (1990) was the first to use back-propagation neu-
ral nets to solve job shop scheduling problems with sev-
eral job types, exhibiting different arrival patterns, process
plans, precedence sequences and batch sizes. Training ex-
amples were generated to train the neural network to se-
lect the correct characterization of the manufacturing en-
vironments suitable for various scheduling policies and the
chosen performance criteria. In order to generate training
samples, a performance simulation of the dispatching rules

available for the manufacturing system was carried out.
The neural networks were trained for problems involving
3, 4, 5, 8, 10, and 20 machines. To carry out this training,
a special, input-feature space was developed. This space
contained both job characteristics (such as types, number
of jobs in each type, routings, due dates, and processing
times) and shop characteristics (such as number of ma-
chines and their capacities). The output of the neural net-
work represented the relative ranking of the available dis-
patching rules for that specific scheduling problem and the
selected performance criteria. The neural networks were
tested in numerous problems and their performance (in
terms of minimizing Mean Tardiness) was always better
than each single dispatching rule (25% to 50%).

Relaxation models

Neural networks based on relaxation models are defined
by energy functions. They are pre-assembled systems that
relax from input to output along a predefined energy con-
tour. Hopfield neural networks (Hopfield and Tank 1985)
are a classical example of a relaxation model that has
been used to solve some classic, textbook scheduling prob-
lems (Foo and Takefuji, 1988). Two-dimensional Hopfield
networks were used to solve 4-job, 3-machine problems
and 10-job, 10-machine problems (Zhou et al., 1990). They
were extended in (Lo and Bavarian, 1991) to 3 dimensions
to represent jobs (i=1,. . . ,I), machines j=1,. . . ,J), and time
(m=1,. . . ,M). In each case, the objective was to minimize the
makespan, total time to complete all jobs, which is defined
as

E =
∑

j=1

∑

i=1

∑

m=1

(vi jm)(m + Ti j − 1) (4)

where vijm is the output (1 or 0) of neuron ijm, and Tij is the
time required by jth resource (e.g., machine) to complete
the ith job.

Due to a large number of variables involved in generat-
ing a feasible schedule, these approaches tend to be com-
putationally inefficient and frequently generate infeasible
solutions. Consequently, they have not been used to solve
realistic scheduling problems.

Temporal reinforcement learning

It was noted above that supervised learning neural net-
works attempt to capture the desired relationships be-
tween inputs and the outputs through exposure to training
patterns. However, for some problems, the desired response
may not always be available during the time of learning.
When, the desired response is obtained, changes to the neu-
ral network are performed by assessing penalties for the
scheduling actions previously decided by the neural net-
work. As summarized by Tesauro (1992), “In the simplest
form of this paradigm, the learning system passively ob-
serves a temporal sequence of input states that eventually
leads to a final reinforcement or reward signal (usually a
scalar). The learning system’s task in this case is to predict
expected reward given an observation of an input state or
sequence of input states. The system may also be set up
so that it can generate control signals that influence the
sequence of states.” For scheduling, the learning task is to
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Figure 1. An example of a three-layer, feed-
forward neural network.

produce an scheduling action that will lead to minimizing
(or maximizing) the performance measure (e.g., makespan,
tardiness) based on the state of the system (e.g., invento-
ries, machine status, routings, due dates, layouts). Several
procedures have been developed to train neural networks
when the desired response is not available during the time
of learning. Rabelo et al. (1994) utilized a procedure devel-
oped by Watkins (1989), denominated Q-learning, to im-
plement a scheduling system to solve dynamic job shop
scheduling problems. The scheduling system was able to
follow trends in the shop floor and select a dispatching rule
that provided the maximum reward according to perfor-
mance measures based on tardiness and flow time. On the
other hand, Zhang and Dietterich (1996) utilized a proce-
dure developed by Sutton (1988) called TD(λ) to schedule
payload processing of NASA’s space shuttle program.

NEIGHBORHOOD SEARCH METHODS

Neighborhood search methods are very popular. Neigh-
borhood search methods provide good solutions and offer
possibilities to be enhanced when combined with other
heuristics. Wilkerson and Irwin (1971) developed one of
the first neighborhood procedures. This method iteratively
added small changes (“perturbations”) to an initial sched-
ule, which is obtained by any heuristic. Conceptually sim-
ilar to hill climbing, these techniques continue to perturb
and evaluate schedules until there is no improvement in
the objective function. When this happens, the procedure
is ended. Popular techniques that belong to this family in-
clude Tabu search, simulated annealing, and genetic algo-
rithms. Each of these has its own perturbation methods,
stopping rules, and methods for avoiding local optimum.

Tabu search

The basic idea of Tabu search (Glover 1989, 1990) is to ex-
plore the search space of all feasible scheduling solutions

by a sequence of moves. A move from one schedule to an-
other schedule is made by evaluating all candidates and
choosing the best available, just like gradient-based tech-
niques. Some moves are classified as tabu (i.e., they are for-
bidden) because they either trap the search at a local opti-
mum, or they lead to cycling (repeating part of the search).
These moves are put onto something called the Tabu List,
which is built up from the history of moves used during the
search. These tabu moves force exploration of the search
space until the old solution area (e.g., local optimum) is left
behind.Another key element is that of freeing the search by
a short term memory function that provides “strategic for-
getting”. Tabu search methods have been evolving to more
advanced frameworks that includes longer term memory
mechanisms. These advanced frameworks are sometimes
referred as Adaptive Memory Programming (AMP, Glover
1996).

Tabu search methods have been applied successfully to
scheduling problems and as solvers of mixed integer pro-
gramming problems. Nowicki and Smutnicki (Glover 1996)
implemented tabu search methods for job shop and flow
shop scheduling problems. Vaessens (Glover 1996) showed
that tabu search methods (in specific job shop scheduling
cases) are superior over other approaches such as simu-
lated annealing, genetic algorithms, and neural networks.

Simulated annealing

Simulated annealing is based on the analogy to the phys-
ical process of cooling and recrystalization of metals. The
current state of the thermodynamic system is analogous
to the current scheduling solution, the energy equation for
the thermodynamic system is analogous to the objective
function, and the ground state is analogous to the global op-
timum. In addition to the global energy J, there is a global
temperature T, which is lowered as the iterations progress.
Using this analogy, the technique randomly generates new
schedules by sampling the probability distribution of the
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system (Kirkpatrick et al., 1983):

Pj ∝ exp(−T (�Jbest − �Jj)/K) (5)

where Pj represents the probability of making move j from
among the neighborhood choices. �Jbest represents the im-
provement of the objective function for the best choice, and
�Jj represents the improvement for choice j. K is a normal-
ization factor. Since increases of energy can be accepted,
the algorithm is able to escape local minima.

Simulated annealing has been applied effectively to job
shop scheduling problems. Vakharia and Chang (1990) de-
veloped a scheduling system based on simulated annealing
for manufacturing cells. Jeffcoat and Bulfin (1993) applied
simulated annealing to a resource-constrained scheduling
problem. Their computational results indicated that the
simulated annealing procedure provided the best results
in comparison with other neighborhood search procedures.

Genetic algorithms

Genetic algorithms (GA) are an optimization methodol-
ogy based on a direct analogy to Darwinian natural se-
lection and mutations in biological reproduction. In prin-
ciple, genetic algorithms encode a parallel search through
concept space, with each process attempting coarse-grain
hill climbing (Goldberg 1988). Instances of a concept cor-
respond to individuals of a species. Induced changes and
recombinations of these concepts are tested against an
evaluation function to see which ones will survive to the
next generation. The use of genetic algorithms requires five
components:

1. A way of encoding solutions to the problem—fixed
length string of symbols.

2. An evaluation function that returns a rating for each
solution.

3. A way of initializing the population of solutions.
4. Operators that may be applied to parents when they

reproduce to alter their genetic composition such as
crossover (i.e., exchanging a randomly selected seg-
ment between parents), mutation (i.e., gene modifi-
cation), and other domain specific operators.

5. Parameter setting for the algorithm, the operators,
and so forth.

A number of approaches have been utilized in the appli-
cation of genetic algorithms (GA) to job shop scheduling
problems (Davis 1985, Goldberg and Lingle 1985, Stark-
weather et al., 1992):

1. Genetic algorithms with blind recombination opera-
tors have been utilized in job shop scheduling. Their
emphasis on relative ordering schema, absolute or-
dering schema, cycles, and edges in the offsprings will
arise differences in such blind recombination opera-
tors.

2. Sequencing problems have been addressed by map-
ping their constraints to a Boolean satisfiability prob-
lem using partial payoff schemes. This scheme has

produced good results for very simple problems.
3. Heuristic genetic algorithms have been applied to

job shop scheduling. In these genetic schemes, prob-
lem specific heuristics are incorporated in the recom-
bination operators (such as optimization operators
based).

Starkweather et al. (1993) were the first to use genetic al-
gorithms to solve a dual -criteria job shop scheduling prob-
lem in a real production facility. Those criteria were the
minimization of average inventory in the plant and the
minimization of the average waiting time for an order to
be selected. These criteria are negatively correlated (The
larger the inventory, the shorter the wait; the smaller the
inventory, the longer the wait.). To represent the produc-
tion/shipping optimization problem, a symbolic coding was
used for each member (chromosome) of the population. In
this scheme, customer orders are represented by discrete
integers. Therefore, each member of the population is a per-
mutation of customer orders. The Genetic Algorithm used
to solve this problem was based on blind recombinant op-
erators. This recombination operator emphasizes informa-
tion about the relative order of the elements in the permu-
tation, because this impacts both inventory and waiting
time. A single evaluation function (a weighted sum of the
two criteria) was utilized to rank each member of the pop-
ulation. That ranking was based on an on-line simulation
of the plant operations. This approach generated schedules
that produced inventory levels and waiting times that were
acceptable to the plant manager. In addition, the integra-
tion of the genetic algorithm with the on-line simulation
made it possible to react to system dynamics.

These applications have emphasized the utilization of
genetic algorithms as a “solo” technique. This has limited
the level of complexity of the problems solved and their
success. Recent research publications have demonstrated
the sensitivity of genetic algorithms to the initial popula-
tion. When the initial population is generated randomly,
genetic algorithms are shown to be less efficient that the
annealing-type algorithms, but better than the heuristic
methods alone. However, if the initial population is gener-
ated by a heuristic, the genetic algorithms become as good
as, or better than the annealing-type algorithms. In addi-
tion, integration with other search procedures (e.g., tabu
search) has enhanced the capabilities of both. This result
is not surprising, as it is consistent with results from non-
linear optimization. Simply stated, if you begin the search
close to the optimal solution you are much more likely to
get the optimum than if you begin the search far away.

FUZZY LOGIC

Fuzzy set theory has been utilized to develop hybrid
scheduling approaches. Fuzzy set theory can be useful in
modeling and solving job shop scheduling problems with
uncertain processing times, constraints, and set-up times.
These uncertainties can be represented by fuzzy numbers
that are described by using the concept of an interval of
confidence. These approaches usually are integrated with
other methodologies (e.g., search procedures, constraint re-
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laxation). For example, Slany (1994) stresses the impreci-
sion of straight-forward methods presented in the math-
ematical approaches and introduces a method known as
fuzzy constraint relaxation, which is integrated with a
knowledge-based scheduling system. His system was ap-
plied to a steel manufacturing plant. Grabot and Gen-
este (1994) use fuzzy logic principles to combine dispatch-
ing rules for multi-criteria problems. On the other hand,
Krucky (1994) addresses the problem of minimizing setup
times of a medium-to-high product mix production line us-
ing fuzzy logic. The heuristic, fuzzy logic based algorithm
described helps determine how to minimize setup time by
clustering assemblies into families of products that share
the same setup by balancing a product’s placement time be-
tween multiple-high-speed placement process steps. Tsu-
jimura et al. (1993) presented a hybrid system, which uses
fuzzy set theory to model the processing times of a flow shop
scheduling facility. Triangular Fuzzy Numbers (TFNs) are
used to represent these processing times. Each job is de-
fined by two TFNs, a lower bound and an upper bound.
A branch and bound procedure is utilized to minimize
makespan.

HLA Scheduling

Linn, et. al (2002) developed a research tool to facilitate
the development of distributed simulations that will then
be used to analyze and solve various manufacturing re-
lated problems. They use the High Level Architecture/Run
Time Infrastructure (HLA/RTI) software (developed by the
Defense Modeling and Simulation Office), the Distributed
Manufacturing Simulation (DMS) Adapter (developed by
the National Institute of Standards and Technology) and
ARENA simulation tool.

Their goal is to develop a transporter simulation model
that can be easily integrated with other simulators through
Internet using the DMSAdaptor that will handle the trans-
mission, receipt and internal updates to all the federation
object model (FOM) objects used by a federate. They aim
at describing the development of a distributed simulation
model for a transportation system that includes multiple
transporters. DMS Adapter is imbedded in order to estab-
lish information flow exchange between simulation models.

The basic problem in Production Planning is to deter-
mine the type and quantity of the products to produce, to
meet uncertain demand in the future time periods. Hierar-
chical production planning (HPP) provides a formal bridge
between long-term plans and short-term schedules. HPP
was proposed first by Hax and Meal (1975) to solve this
problem. Venkateswaran et. al (2005) confirm that the ba-
sic advantages of the hierarchical approach to production
planning (Vicens et al. 2001) include reduction in complex-
ity, gradual absorption of random events, increased insight
due to the use of aggregated figures, reduced need for de-
tailed information, and better forecasting.

The solution techniques depend on the scope and
the specific manufacturing scenario (Venkateswaran et
al 2005). They include heuristics based on linear pro-
gramming (LP), stochastic programming, Enterprise Re-
source Planning (ERP) tools, and optimization coupled
with simulation-based evaluation. Those techniques have

their drawbacks; using deterministic data at the aggregate
level, for example, does not account for the stochastic na-
ture of the system. A major drawback of these techniques
is that they require reruns in the case of unexpected exter-
nal or internal events so any exception (such as machine
failures, new order arrivals) leads to the regeneration of
the entire plan.

Venkateswaran, et al (2004) looked at the impacts of
planning level decisions on the scheduling function and
scheduling level decisions on the planning function. They
focused on developing an integrated production plan and
schedule for an enterprise. HPP as proposed by Hax and
Meal (1975) separates the planning problem into differ-
ent sub-problems based on the length of planning horizon,
time and cost. Hence,Venkateswaran, et al (2004) proposed
a two level HPP architecture in which Systems Dynamics
(SD) is used to model the behavior of the system while Dis-
crete Event Simulation (DES) is used to study its design
and operations. In their approach, SD provides a frame-
work to understand the operations of complex dynamic
systems and view the impact of decisions on the entire
enterprise. DES models the uncertainty in the manufac-
turing systems. The decision maker outputs two weights:
the weight for the WIP factor (α), and the weight for the in-
ventory factory (ß), that is then supplied to the SD model
to calculate the weekly production order quantities.

Venkateswaran, et al (2004) used High Level Architec-
ture (HLA) RunTime Infrastructure (RTI) to enable the in-
terfacing between the SD (PowerSim®) and DES (Arena®)
models. The distributed Manufacturing Simulation (DMS)
adapter developed by NIST has been employed to interface
the simulation models with the HLA/RTI.

In the past decade, there has been a renewed interest in
the development of a feasible yet optimal production plan
and schedule, given the uncertainties of the production en-
vironment (Venkateswaran et al. 2005). Those, however,
lacked the interaction between planning and scheduling.

Venkateswaran et al. (2005) build on the work of
Venkateswaran,et al (2004).They provide a novel approach
in solving the hierarchical production planning problem
using system dynamic and discrete event simulations cou-
pled with optimization.

They use Meta-heuristics coupled with simulation to de-
termine the optimal queue rule to be used within the shop.
Meta-heuristics are employed to find near-optimal solu-
tions for complex optimization problems, such as schedul-
ing. The decision variables of the meta-heuristics are the
queue rules that control the part release to each machine.
The best set of queue rules is determined by evaluating
the rules using a simulation model. Rule-based heuristic
is employed to measure the actual performance against the
expected performance.

DES is used to describe the most complex manufac-
turing systems, include stochastic elements which cannot
be described easily by mathematical or analytical models,
track the status of individual entities and resources in the
facility and estimate numerous performance measures as-
sociated with those entities. These are highly important
for the detailed scheduling level. Moreover, the models can
be changed easily and run quickly to reflect changes that
occur in the real shop.
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The HLA establishes common simulation architecture
to facilitate the interoperability of all types of models and
simulations. The RTI software implements the specifica-
tion and represents one of the tangible products of the
HLA. RTI provides Object data exchange and time man-
agement services.

SWARM

Veeramachaneni et al. (2004) presented a swarm intel-
ligence based approach for optimal scheduling in sensor
networks. Sensors are characterized by their transaction
times and interdependencies. They used particle swarm
optimization (PSO) to solve the problem and reach an op-
timal schedule. Given a set of sensors for a particular mis-
sion, their goal was to find the optimal sensor schedule
in sensor networks, constrained by many practical issues
such as communication concurrency constraints, interde-
pendencies, and limited computational power at sink. The
PSO generates the optimal schedule off-line, which is used
by the sensor manager to schedule the sensors in real
time. The optimal schedule can then be determined by find-
ing the maximum clique and partitioning the graph into
cliques. A clique is a complete subgraph of the graph, where
each vertex pair is joined by an edge. Veeramachaneni et al.
(2004) designed a cost function to evaluate the maximum
cliques and hence select the optimal clique for the specific
application. The evaluation is closely attached to reducing
the overall transaction time.

The particle swarm optimization algorithm has come to
be widely used as a problem solving method in engineering
and computer science and has since proven to be a powerful
competitor to genetic algorithms (Veeramachaneni et al.
2004).

The particles are entered into a multidimensional
search space where each particle represents a possible
solution to the multidimensional problem. The particles
move based on two factors: its own best solution and any
particle’s best solution. As the particles traverse though
the search space, each particle stores its own best solution
in memory and experiences a pull towards this position
(called pbest). Each particle also stores the global best so-
lution in memory and experiences a pull towards that po-
sition (called gbest). The pbest and gbest are updated after
each iteration if a more dominating solution, in terms of
fitness, is found by the particle and by the population, re-
spectively. The process continues until either the desired
result is achieved or the computational power is exhausted.

According to Veeramachaneni et al. (2004), the PSO for-
mulae define each particle in the D-dimensional space as
Xi = (xi1, xi2, . . . xiD) where the subscript i represents the
particle number, and the second subscript is the dimen-
sion. The memory of the previous best position is repre-
sented as Pi = ( pi1, pi2, . . . piD) and a velocity along each
dimension as Vi = (vi1, vi2, . . . viD). After each iteration, the
velocity term is updated, and the particle is pulled in the
direction of its own best position, Pi, and the global best
position, Pg, found so far. The PSO algorithm takes the de-
pendencies and the transaction times as inputs.

Veeramachaneni et al. (2004) report that the algorithm
has successfully found the optimal solutions leading to
minimum overall transaction times for the system.

Schill, Zimmer, and Trumpf (2005) Schill et al. (2005)
study a new TDMA scheduling problem that tries to min-
imize the duration of total information exchange through-
out a multi-hop wireless network. Their goal is to achieve
an algorithm for a robust, decentralized ad hoc net-
work that minimizes latency,maximizes usable bandwidth,
and allows exchanging control parameters throughout the
swarm in minimal time. Communication in swarms of
robots is a continuous flow of messages and updates, to
distribute control parameters, environmental information,
and to fuse sensor data.

Schill et al. (2005) state that one of the biggest advan-
tages of swarms is that they do not require collision detec-
tion, which allows the use of simpler hardware. Swarms
also maximize the usage of the available bandwidth. A very
important problem especially in swarm control and forma-
tion control is the exchange of certain parameters through-
out the entire network.

Schill et al. (2005) claim that the results for the om-
nicast problem, a new problem that implements many-to-
many communication and is similar to a concurrent multi-
ple broadcast from every node to every other node, can be
applied to TDMA scheduling, in order to achieve informa-
tion dissemination in minimal time. The most important
next step is to apply the results of the global analysis of
optimal omnicast to distributed, local TDMA scheduling
algorithms.

REACTIVE SCHEDULING

Reactive scheduling is generally defined as the ability to
revise or repair a complete schedule that has been “over-
taken” by events on the shop floor (Zweben et al., 1995).
Such events include rush orders, excessive delays, and
broken resources. There are two approaches: reactive re-
pair and the proactive adjustment. In reactive repair, the
scheduling system waits until an event has occurred be-
fore it attempts to recover from that event. The match-up
techniques described in section 3 fall into this category.
Proactive adjustment requires a capability to monitor the
system continuously,predict the future evolution of the sys-
tem, do contingency planning for likely events, and gener-
ate new schedules, all during the execution time of the cur-
rent schedule. The work of Wysk et al. (1986) and Davis and
Jones (1988) fall into this category. Approaches that are
more recent utilize artificial intelligence and knowledge-
based methodologies (Smith 1995). Still most of the AI ap-
proaches propose a quasi-deterministic view of the system,
i.e., a stochastic system featuring implicit and/or explicit
causal rules. The problem formulation used does not rec-
ognize the physical environment of the shop floor domain
where interference not only leads to readjustment of sched-
ules but also imposes physical actions to minimize them.
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LEARNING IN SCHEDULING

The first step in developing a knowledge base is knowl-
edge acquisition. This in itself is a two step process: get
the knowledge from knowledge sources and store that
knowledge in digital form. Much work has been done in
the area of knowledge acquisition, such as protocol anal-
ysis and interactive editing (Shaw et al., 1992). Knowl-
edge sources may be human experts, simulation data, ex-
perimental data, databases, and text. In scheduling prob-
lems, the knowledge sources are likely to be human ex-
perts or simulation data. To extract knowledge from these
two sources, the machine learning technique that learns
from examples (data) becomes a promising tool. Inductive
learning is a state classification process. If we view the
state space as a hyperplane, the training data (consisting
of conditions and decisions) can be represented as points on
the hyperplane. The inductive learning algorithm seeks to
draw lines on the hyperplane based on the training data to
divide the plane into several areas within which the same
decision (conclusion) will be made.

One algorithm that has been implemented in inductive
aids and expert system shells is that developed by Quinlan
(1986), called Iterative Dichotomister 3 or ID3. ID3 uses
examples to induce production rules (e.g. IF . . .THEN . . . ),
which form a simple decision tree. Decision trees are one
way to represent knowledge for the purpose of classifica-
tion.The nodes in a decision tree correspond to attributes of
the objects to be classified, and the arcs are alternative val-
ues for these attributes. The end nodes of the tree (leaves)
indicate classes to which groups of objects belong. Each
example is described by attributes and a resulting deci-
sion. To determine a good attribute to partition the objects
into classes, entropy is employed to measure the informa-
tion content of each attribute, and then rules are derived
through a repetitive decomposition process that minimizes
the overall entropy. The entropy value of attribute Ak can
be defined as

H(Ak) =
Mk∑

j=1

P(ak j){−
N∑

i=1

P(ci|ak j)log2P(ci|ak j)} (6)

where H(Ak) is the entropy value of attribute Ak, P(akj) is
the probability of attribute k being at its jth value, P(ci|akj)
is the probability that the class value is ci when attribute
k is at its jth value, Mk is the total number of values for
attribute Ak, and N is the total number of different classes
(outcomes).

The attribute with the minimum entropy value will be
selected as a node in the decision tree to partition the ob-
jects. The arcs out of this node represent different values
of this attribute. If all the objects in an arc belong to one
class, the partition process stops. Otherwise, another at-
tribute will be identified using entropy values to further
partition the objects that belong to this arc. This partition
process continues until all the objects in an arc are in the
same class. Before applying this algorithm, all attributes
that have continuous values need to be transformed to dis-
crete values.

In the context of job shop scheduling, the attributes rep-
resent system status and the classes represent the dis-

patching rules. Very often, the attribute values are continu-
ous. Yih (1988) proposed a trace-driven knowledge acquisi-
tion (TDKA) methodology to deal with continuous data and
to avoid the problems occurring in verbally interviewing
human experts. TDKA learns scheduling knowledge from
expert schedulers without a dialogue with them. There are
three steps in this approach. In Step 1, an interactive sim-
ulator is developed to mimic the system of interest. The ex-
pert will interact with this simulator and make decisions.
The entire decision making process will be recorded in the
simulator and can be repeated for later analysis. The se-
ries of system information and the corresponding decision
collected is called a “trace.” Step 2 analyzes the “trace” and
forms classification rules to partition the trace into groups.
The partition process stops when most of the cases in each
group use the same dispatching rule (error rate is below
the threshold defined by the knowledge engineer). Then,
the decision rules are formed. The last step is to verify the
generated rules. The resulting rule base is used to sched-
ule jobs in the simulator. If it performs as well as or better
than the expert, the process stops. Otherwise, the thresh-
old value is increased, and the process returns to Step 2.

As the job shop operates over time, it is important to be
able to modify the knowledge contained in these rule bases.
Chiu (1994) looks at knowledge modification for job shop
scheduling problems by a framework of dynamic schedul-
ing schemes that explores routing flexibility and handles
uncertainties. The proposed methodology includes three
modules: discrete-event simulation, instance generation,
and incremental induction. First, a simulation module is
developed to implement the dynamic scheduling scheme, to
generate training examples, and to evaluate the methodol-
ogy. Second, in an instance-generation module, the search-
ing of good training examples is successfully fulfilled by
a genetic algorithm. Finally, in an incremental-induction
module, a tolerance-based incremental learning algorithm
is proposed to allow continuous learning and facilitate
knowledge modification. This algorithm uses entropy val-
ues to select attributes to partition the examples where
the attribute values are continuous. The tolerance is used
to maintain the stability of the existing knowledge while
the new example is introduced. The decision tree will not
be reconstructed unless there is enough momentum from
the new data, that is, the change of the entropy value be-
comes significant. The experimental results showed that
the tolerance-based incremental learning algorithm can-
not only reduce the frequency of modifications, but also en-
hances the generalization ability of the resulting decision
tree in a distributed job shop environment.

THEORY OF CONSTRAINTS

The Theory of Constraints (TOC) developed by Eliyahu
Goldratt (1990, 1992) is the underlying philosophy for syn-
chronized manufacturing. Goldratt (1990) defined synchro-
nized manufacturing as any systematic method that at-
tempts to move material quickly and smoothly through the
production process in concert with market demand. A core
concept to TOC is the idea that a few critical constraints
exist. Goldratt contends that there is only one constraint in
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a system at any given time. As defined by Dettmer (1997),
a constraint is “any element of a system or its environment
that limits the output of the system”. A constraint will pre-
vent increases in throughput regardless of improvements
made to the system. The best schedule is obtained by focus-
ing on the planning and scheduling of these constraint op-
erations. In essence, the constraint operations become the
basis from which the entire schedule is derived. TOC has
several important concepts and principles. Among them
(Goldratt 1990, 1992):

1. Systems function like chains.
2. The system optimum is not the sum of the local op-

tima.
3. The effect-cause-effect method identifies constraints.
4. System constraints can be either physically or policy.
5. Inertia is the worst enemy of a process of ongoing

improvement.
6. Throughput is the rate at which the entire system

generates money through sales.
7. Inventory is all the money the system invests in

things it intends to sell.
8. Operating expense is all the money the system

spends turning inventory into throughput.

The general process of TOC is as follows (Goldratt 1990):

1. Identify the systems’ constraints.
2. Decide how to exploit the system’s constraints.
3. Subordinate everything else to the above decision.
4. Elevate the system’s constraints.
5. If in the previous steps a constraint have been bro-

ken, go back to Step1, but do not allow inertia to cause
a system constraint.

TOC has been successfully applied to scheduling prob-
lems (Academic and Industrial) (Advanced Manufacturing
Research, Inc. 1996). Its tools that comprised five distinct
logic trees (explained extensively in (Dettmer 1997)) are
the Current Reality Tree, the Evaporating Cloud Diagram,
the Future Reality Tree, the Prerequisite Tree, and the
Transition Tree. These trees are tied to the Categories of
Legitimate Reservation (that provide the logic to guide the
construction of the trees). These tools have not only been
used in production scheduling but also in other enterprise
functions such as marketing and sales.

SUMMARY AND CONCLUSIONS

Since job shop scheduling problems fall into the class of
NP-complete problems, they are among the most difficult
to formulate and solve. Operations Research analysts and
engineers have been pursuing solutions to these problems
for more than 35 years, with varying degrees of success.

While they are difficult to solve, job shop scheduling
problems are among the most important because they im-
pact the ability of manufacturers to meet customer de-
mands and make a profit. They also impact the ability of

autonomous systems to optimize their operations, the de-
ployment of intelligent systems, and the optimizations of
communications systems. For this reason, operations re-
search analysts and engineers will continue this pursuit
well into the next century.
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