
GEOPHYSICAL SIGNAL AND IMAGE PROCESS-
ING

The science of geophysics is concerned with the application
of principles from physics to the study of the earth. Explo-
ration geophysics involves the investigation of properties
of the subsurface layers of the earth by taking measure-
ments at or near the earth’s surface. Processing and anal-
ysis of these measurements may reveal how the physical
properties of the earth’s interior vary vertically and later-
ally. Information of this type is extremely important in the
search for hydrocarbons, minerals, and water in the earth.
This article summarizes some of the basic results that deal
with the application of signal and image processing tech-
niques to the field of exploration geophysics, specifically as
it relates to the search for hydrocarbons.

Hydrocarbons are typically found in association with
sedimentary sequences in major sedimentary basins in the
earth. Thus scientific methods for hydrocarbon exploration
depend heavily on our ability to image the earth’s subsur-
face geological structures down to about 12,000 m. Poten-
tial hydrocarbon deposits, in the form of petroleum or natu-
ral gas, are often associated with certain geological forma-
tions such as faults, anticlines, salt domes, stratigraphic
traps, and others (Fig. 1). Such formations may be detected
on a seismic image, also called a seismic section, only if so-
phisticated data acquisition and processing methods are
used to generate this image.

One of the most popular and successful methods for
imaging the earth’s subsurface is the seismic exploration
method. This method involves generating a disturbance of
the surface of the earth by means of the detonation of an
explosive charge placed either on the ground, in the case of
land exploration, or in water, in the case of offshore marine
exploration (Fig. 2). The resulting ground motion propa-
gates downwards inside the earth, gets reflected at the
various interfaces of the geological strata, and finally is
recorded as a time series, or trace, by sensors placed at
some distance from the source of the disturbance. An ex-
ample of many such traces placed side by side is shown in
Fig. 3.

Geophysical signal processing is a field which deals pri-
marily with computer methods for analyzing and filtering
a large number of such time series for the purpose of ex-
tracting the information necessary to develop an image
of the subsurface layers (or geology) of the earth (1–12).
In order to give the reader an idea about the volume of
geophysical data available for processing, it is estimated
that in the 1990s, on the average, approximately 2 million
traces are recorded everyday for the purpose of exploring
for petroleum and natural gas. Thus careful processing of
this enormous amount of data must take advantage of the
state of the art in computer technology and make full use of
the most advanced techniques in digital signal and image
processing.

SEISMIC DATA GENERATION AND ACQUISITION

The first step in any application of a geophysical data-
processing method is to understand the process by which

the signals to be processed have been generated and
recorded. Seismic data for imaging the subsurface lay-
ers of the earth down to possibly 12,000 m, are typically
generated by a source of seismic energy and recorded by
an array of sensors placed on the surface of the earth at
some distance from the source. There are several types of
seismic sources. The most common are dynamite explo-
sives or vibroseis for land data, or air guns for offshore
marine data. Land dynamite explosives and marine air
guns, which inject a bubble of highly compressed air into
the water, are short-duration (about 0.5 s or less) sources,
usually referred to as wavelets (see Fig. 4). Vibroseis land
sources, on the other hand, are long-duration (typically 8
s or more) low-amplitude sinusoidal waveforms whose fre-
quency varies continuously from about 10 Hz to 80 Hz. The
sweep signal is matched filtered to give the equivalent of a
short duration correlation function for the outgoing signal.
The waveform created by the seismic source propagates
downward into the earth, gets reflected, and returns to the
surface carrying information about the subsurface struc-
ture. Each sensor on the receiving array is a device that
transforms the reflected seismic energy into an electrical
signal. In the case of land data, recording is done by a geo-
phone, which typically measures particle velocity. In the
case of marine data, recording is done by a hydrophone,
which typically measures pressure. The recording of every
sensor (geophone or hydrophone) is a time series called
a seismic trace. Each trace may consist of 1,000 to 12,000
samples of data representing 4 s to 6 s of earth motion sam-
pled at periods which could vary anywhere between 0.5 ms
and 8 ms. Typical spacing between the sensors is 10 m to
200 m.

The recorded traces can then be sorted so that all
traces corresponding to some criterion, such as common-
shot-point or common-midpoint, are displayed side-by-
side to form what is known as a shot gather. Several
source–receiver configurations for recording/sorting seis-
mic traces are illustrated in Fig. 5. A sample common-
midpoint (CMP) shot gather is shown in Fig. 3. A seismic
survey typically consists of a large number of shot gathers
collected by moving the combination of source and array
of receivers along specified survey lines and repeating the
data collection process (see Fig. 2). The ultimate goal of
geophysical signal processing is to extract information on
the physical properties and construct an image of the sub-
surface structure of the earth by processing these recorded
data. Until about the mid-1980s, emphasis was mostly on
2-D imaging along specified survey lines. However, the ad-
vent of very powerful data acquisition, storage, and pro-
cessing capabilities has made it possible to construct 3-D
images of subsurface structures (12). Most of the geophys-
ical signal processing work in the mid-1990s and beyond
has been focused on 3-D imaging. Surveys that yield 3-D
data, however, are more complicated and costly than those
that yield 2-D data. For example, 3-D surveys normally
utilize methods in which seismic sensors are distributed
along several parallel lines and the seismic sources along
other lines, hence building a dense array of seismic data.
A typical 3-D survey could involve collecting anywhere be-
tween several hundred thousands to a few millions traces
(12).
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Figure 1. Some geological forma-
tions associated with hydrocarbon
deposits (2, 5).

Figure 2. A typical land seismic data
acquisition experiment (9).

SEISMIC WAVE PROPAGATION

A seismic wave propagates outwards from the source at a
velocity that is typically determined by the physical proper-
ties of the propagation medium (surrounding rocks). Seis-
mic rays are thin pencils of seismic energy traveling along
raypaths that are perpendicular to the wavefronts. At the
interface between two rock layers, there is a change in the
physical properties of the media, which results in a change
in the propagation velocity. When encountering such an
interface, the energy of an incident seismic wave is parti-
tioned into a reflected wave and a transmitted wave. The
relative amplitudes of these waves are determined by the

velocities and densities of the two layers. Thus, in order to
understand the nature of the recorded seismic data, it is
essential to understand the propagation mechanism of a
seismic signal through a multilayered medium. Note that,
as mentioned earlier, in the case of land seismic data, a geo-
phone records vertical displacement velocity, while in the
case of marine data, a hydrophone records water pressure.

Consider a simple model of the earth, which consists of
a horizontally layered medium (8) where the seismic prop-
agation velocity α(z) and medium density ρ(z) vary only as
a function of depth z. In the case of land data, it is known
that the vertical stress component σ(z, t) is related to ver-
tical displacement velocity v(z, t) by the standard equation
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Figure 3. An example of a common depth point (CDP) shot
gather.

of motion

and Hooke’s law

Figure 5. Various source–receiver configurations.

In the Fourier transform domain, these expressions are
written as

where S(z, ω) and V(z, ω) are the Fourier transforms of σ(z,
t) and v(z, t), respectively.The propagating waveform can be
decomposed into its upcoming and downgoing components

Figure 4. An example of a marine, single air gun, wavelet.
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Figure 6. Reflection and transmission coefficients at interface zk.

U and D using the linear transformation

where λ(z) = ρ(z)α(z) is the acoustic impedance. Combining
Eq. (5) with Eqs. 4, it can be shown that U and D must
satisfy the equations

In the above expressions γ(z) is the reflectivity function,
which is related to the acoustic impedance λ(z) by the ex-
pression:

The above equations can be used to derive synthetic seis-
mograms at any depth. As such, they are necessary pre-
requisites for solving the inverse problem where the re-
quirement is to determine the reflectivity function from
the available seismogram.

If one applies the boundary conditions at the interface
between the kth and k + 1st layers, as illustrated in Fig. 6,
the reflectivity coefficient ck and transmission coefficient
tk at the interface zk can be expressed as:

where λk is the acoustic impedance above the interface and
λk+1 is the acoustic impedance below the interface. The
seismic trace s(t) recorded at the surface is often modeled
as a convolution of the source waveform w(t) and a reflec-
tivity function r(t),

The reflectivity function r(t) is related to λ(z) by observing
that two-way travel time t is related to depth z through the
seismic propagation velocity.

DETERMINATION OF SEISMIC PROPAGATION
VELOCITY

The recorded seismic trace can be processed to estimate the
travel times of the reflected ray paths from the source to the

receiver. If one knows the velocity distribution as a func-
tion of depth between the surface and reflecting planes, the
travel times information can be transformed into informa-
tion on the depths of the reflecting boundary planes. In or-
der to illustrate how this is done, consider the simple model
of a single horizontal reflector at a depth z beneath a ho-
mogeneous layer with constant velocity V, as shown in Fig.
7. This simple case will probably never occur in practice,
but its understanding will make it easier to understand
the more complicated cases that are encountered in real
situations. Using simple triangle geometry, the travel time
from the source, to the reflector, to a receiver at a distance
x from the source can be easily computed as

This expression can be rewritten in the form

where t0 = 2z/V is the two-way travel time obtained
from Eq. (10) by setting x = 0. This is called the
zero-offset travel time and corresponds to a hypothet-
ical source–receiver combination placed exactly at the
common-midpoint (CMP). The above expression shows
that the relationship between tx and x is hyperbolic, as il-
lustrated in Fig. 8. The difference in travel time between a
ray path arriving at an offset distance x and one arriving
at zero-offset is called normal move-out (NMO). For cases
where offset is much smaller than depth (i.e., x < z), which
is normally the case in practice, Eq. (11) can be approxi-
mated as follows:

and NMO can be expressed as:

The above expression can be rearranged as follows:

which means that the velocity of the medium above the re-
flector can be computed from knowledge of the NMO �tx

and the zero-offset travel time t0. In practice, however, this
calculation is made using a large number of reflected ray
paths to obtain a statistical average of the velocity. As men-
tioned earlier, once t0 is known, the depth of the reflector
can be computed as z = Vt0/2.

The above analysis may be easily extended to the case of
a multilayer medium, as illustrated in Fig. 9. In this case,
it can be shown that the two-way travel time of the ray
path reflected from the nth interface at a depth z is given
by
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Figure 7. Travel time versus offset.

Figure 8. Travel time versus offset.

where t0,n is the zero-offset two-way travel time down to the
nth layer, and Vrms,n is the root-mean-square velocity of the
section of the earth down to the nth layer. The expression
for Vrms,n is

where Vi is the interval velocity of the ith layer and τi is
the one-way travel time of the reflected ray through the ith
layer. As in the single reflector case, the NMO for the nth
reflector can be approximated as

and this expression can be used to compute the rms velocity
value of the layers above the reflector. Once, the rms veloci-
ties down to different reflectors have been determined, the
interval velocity Vn of the nth layer can be computed using
the formula (known as Dix’ formula)

where Vrms,n and Vrms,n−1 are the rms velocities for layers n
and n − 1, respectively, and tn and tn−1 are the correspond-
ing two-way zero-offset travel times (5).

Figure 9. Ray path from source to receiver in a multilayered
medium.

STACKING AND VELOCITY ANALYSIS

As mentioned earlier, the most common configuration for
collecting and arranging seismic data is the common-
midpoint (CMP) reflection profiling shown in Fig. 8. A typ-
ical CMP gather is shown in Fig. 3. It is important to point
out that a CMP gather represents the best possible data-
sorting configuration for using Eq. (15) to estimate seismic
velocities from the effects of NMO. To illustrate how this is
done, assume that one wishes to estimate the velocity at a
given zero-offset time t0,j (where j refers to a sample posi-
tion on the zero-offset trace). For each value of rms velocity
Vrms,j that may be guessed, there is a hyperbola defined by
Eq. (15). The sum (stack) of the trace samples falling on
this hyperbola can therefore be computed and a measure
of coherent energy (the square of the sum) can be deter-
mined as illustrated in Fig. 10. The hyperbola that pro-
duces the maximum coherent energy represents the best
fit to the data and the corresponding velocity represents
the best estimate of the rms velocity at time t0,j . This ve-
locity, denoted by Vs,j , is called the stacking velocity at time
t0,j . If this process is repeated for all possible sample loca-
tions j, a three-dimensional plot of coherent energy as a
function of velocity and time on the zero-offset trace can
then be produced. An example of such a plot is shown in
Fig. 11. The peaks on this, what is often referred to as “ve-
locity spectrum” are used to determine a stacking velocity
profile versus two-way travel time. This velocity profile can
be used to perform NMO corrections for all times t0,j . In-
terval velocities can then be calculated from the stacking
velocities by means of Dix’ formula [Eq. (18)].

Once accurate velocity information is available, it be-
comes possible to correct for the effects of NMO. This is
achieved by shifting the samples on each trace (i.e., flatten
the hyperbola that corresponds to the stacking velocity)
to obtain an estimate of a corresponding zero-offset trace
at the CMP of the gather. If done correctly, all reflections
coming from the same horizontal reflector will line-up at
the same zero-offset time on the corrected traces, as illus-
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Figure 10. Computation of stacking velocity from a CDP gather.

Figure 11. An example of a velocity spectrum plot.

trated in Fig. 12. Other coherent events such as multiples,
which have different rms velocities, and random noise, will
not be aligned. These traces can therefore be summed al-
gebraically to produce one trace, that corresponds to the
CMP, in which the reflected aligned events have been rein-
forced and the other effects reduced. This process is called
stacking and the output is called a stacked trace. When a
large number of stacked traces corresponding to successive
common-midpoints are placed side-by-side, the resulting
image is called a stacked seismic section. An example of a
stacked seismic section is shown in Fig. 13. A stacked sec-
tion represents an image showing geologic formations that
would be exposed if the earth were to be sliced along the

Figure 12. NMO corrected traces of data in Fig. 10.

line of the survey that produced the section.

SEISMIC DECONVOLUTION

A very important step in geophysical signal processing that
is often (but not always) performed prior to stacking is de-
convolution. Deconvolution is a process by which the ef-
fect of the source waveform is compressed so as to improve
temporal resolution. In order to understand the concept of
deconvolution, go back to the basic model described ear-
lier in Eq. (9), which represents a seismic trace s(t) as a
convolution of a source waveform w(t) and a reflectivity se-
quence r(t); that is, s(t) = r(t)*w(t). Note that, for the sake
of brevity, the effects of random noise, which are almost
always present, have not been included in this model. The
reflectivity sequence r(t) is also called the earth impulse re-
sponse. It represents what would be recorded if the source
waveform were purely an impulse function δ(t) (a spike).
Recall that the reflectivity sequence r(t) contains informa-
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Figure 13. An example of a stacked seismic section. Note the
folded and thrust-faulted structure (9).

tion about the subsurface characteristics of the earth. The
source waveform w(t) is therefore a blurring (or smearing)
function that makes it difficult to recognize the reflectivity
sequence by directly observing the trace s(t). If it were pos-
sible to generate a source waveform that corresponds to an
impulse function δ(t), then, except for the effects of random
noise, each trace will indeed be a recording of the reflectiv-
ity sequence. Generating a seismic source that is a close
approximation of the impulse function (i.e., where most of
the energy is concentrated over a very short interval of
time) has been a dilemma that has, for years, received con-
siderable attention in the geophysical industry and related
literature.

Estimating the reflectivity sequence r(t) from s(t) =
r(t)*w(t) has probably been one of the most studied prob-
lems in geophysical signal processing and much research
effort has been devoted to the development of methods for
carrying out this operation. Among the most popular such
methods are the optimum Wiener filtering, predictive de-
convolution, spiking deconvolution, homomorphic deconvo-
lution, and numerous others (15). For the sake of concise-
ness, the Wiener filtering method will be discussed in some
detail, while the others will be briefly summarized.

Wiener Filtering Method

Assume that one has a signal x(t) and that one wishes to
apply a filter f(t) to this signal in order to make it resemble a
desired signal d(t). The Wiener filtering method, illustrated
in Fig. 14, involves designing the filter f(t) so that the least-
squares error between the actual output y(t) = x(t)*f(t) and
the desired outputs d(t) is minimized. For simplicity, the
steps for deriving the filter f(t) (for the deterministic case)
will be carried out using discrete rather than continuous
signals and with matrix notation. Assume that the input
sequence has n samples x0, x1, . . . , xn−1 and the unknown
filter has m samples f0, f1, . . . , fm−1 and let

be the n- and m-dimensional vectors of these samples, re-
spectively. The actual output vector which is the convolu-
tion of the input sequence and the filter coefficients can be
expressed in matrix form as:

or

where X is an (n + m − 1) × m lower diagonal matrix whose
entries are derived from the input sequence, and y is the (n
+ m − 1) vector of actual output samples. The error vector
can now be defined as

where d is the vector of desired output samples. The opti-
mum filter is derived by minimizing the norm of the error,
that is,

It can be easily shown that the optimum vector f* that
minimizes er is the solution of the linear matrix equation

Note that upon computing the entries of the m × m matrix
X′X, the above equation can be written as:

where φi are the autocorrelation lags of the input signal
and gi are the crosscorrelations between the input signal
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and the desired output; that is,

It is important to mention that the autocorrelation matrix
is Toeplitz in nature, and hence the optimum filter coeffi-
cients can be calculated using the Levinson recursion al-
gorithm (3). Also, note that in the above analysis, the only
requirement for the derivation of the filter coefficients is
an a priori knowledge of the autocorrelation coefficients of
the input signal and the crosscorrelation coefficients of the
input signal with the desired output signal. Clearly, the
filter length m needs to be specified a priori and cannot
be changed during or after the computation of the filter
coefficients without repeating the entire computations.

Prediction Error Filtering

A special case of the above derivation is when the desired
output signal is an advanced version of the input signal;
that is, dk = xk+p . In such a case, the filter is called a p-step
ahead predictor. That is, at sample k, it predicts xk+p from
past values of the input. The derivation of such a filter is
essentially the same as described above except that xk+p

should be used in place of dk in Eq. (26). That is,

The desired output in this case is the predictable part of the
input series. This, for example, could include events such
as multiples. The error signal contains the unpredictable
part, which is the uncorrelated reflectivity sequence that
we are trying to extract from the measurements. Of special
interest is the one step ahead predictor (p = 1). In that case,
it can be shown that the minimum error can be added as an
additional unknown to Eq. (24), which can then be solved
for, along with the filter coefficients. Also, the error series
(or reflectivity sequence) can now be computed using Eq.
(22) as:

where the vector h = [1 − f∗0 − f∗1 .. − f∗m−1]′. It should
be noted that this (deconvolution) approach for estimat-
ing the reflectivity sequence, also known as predictive de-
convolution, is based on two important assumptions. First,
the reflectivity sequence represents a random series (i.e.,
no predictable patterns) and second the wavelet must be
minimum phase.

Spiking Deconvolution Method

Assume that it is possible to find a filter f(t) such that when
applied to the seismic source waveform w(t), one gets the
impulse function δ(t); that is,

Then, if one applies this filter to the seismic trace s(t) =
r(t)*w(t), one gets:

which means that it would be possible to recover the re-
flectivity sequence r(t). The filter f(t), if it exists, is called
the inverse filter of the seismic source w(t). The nature of
this inverse filter can also be examined in the frequency
domain. Taking the Fourier transform of both sides of Eq.
(29), one obtains

where

From this, it follows that:

This means that the amplitude spectrum of the inverse fil-
ter is the inverse of that of the seismic wavelet and the
phase spectrum of the inverse filter is the negative of that
of the seismic wavelet. A problem therefore will immedi-
ately arise if the amplitude spectrum of the wavelet has
frequencies at which it is equal to zero. Clearly, at those
frequencies the amplitude spectrum of the inverse filter
becomes infinite (or undefined) and hence the filter will be
unbounded in the time domain. Similar problems will also
arise even if at some frequencies the values of the ampli-
tude spectrum of w(t) are very small. Clearly, using Eq.
(33) for calculating the inverse filter f(t) is not feasible in
almost all realistic applications.

Suppose instead, the Wiener filtering approach is used
and a filter f(t) is designed which, when applied to the
source waveform w(t), will produce an output which is as
close as possible to a desired impulse function (a spike).
In other words, referring to the Wiener Filtering approach
discussed earlier, suppose the source waveform has n sam-
ples, w0, w1, . . . , wn−1, the unknown filter has m samples f0,
f1, . . . , fm−1, and the desired output is an impulse which has
n + m −1 samples δ0, δ1, . . . , δn+m−1 and whose entries are
all 0 except for 1 at one location; say the jth location. Then
the filter coefficients are determined so as to minimize the
error function:

where

As discussed in the derivation of the Wiener Filter, and
using Eq. (24), the optimum vector that minimizes er is
given by the expression:
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Figure 14. The Wiener filtering method.

This can be written as:

where φi are the autocorrelation lags of the source wave-
form and gi are the crosscorrelations between the source
waveform and the desired output:

Note that it is also possible to choose the optimal location j*
of the spike in the δ vector in order to achieve the smallest
possible error. This can be done by noting that, when Eq.
(36) is substituted in Eq. (34), the minimum value of er will
reduce to the quadratic expression emin = δ′Mδ where M is
an m × m matrix equal to M = I − W(W′W)−1W′. Given that
the δ vector is all zeroes except for the number 1 in one lo-
cation, emin will be smallest when j* is chosen to correspond
to the location of the smallest term on the diagonal of the
matrix M.

Homomorphic Deconvolution

In the late 1960s a class of nonlinear systems, called ho-
momorphic systems (16, 17), which satisfy a generaliza-
tion of the principle of superposition has been proposed.
Homomorphic filtering is essentially the use of a homo-
morphic system to remove an undesired component from
a signal. Homomorphic deconvolution involves the use of
homomorphic filtering for separating two signals that have
been convolved in the time domain. An important aspect of
the theory of homomorphic deconvolution is that it can be
represented as a cascade of three operations. The follow-
ing will summarize how this theory can be used to separate
the reflectivity sequence r(t) and the source waveform w(t)
from the seismic trace s(t) = r(t)*w(t).

The first operation involves taking the Fourier trans-
form of s(t). That is, S(ω) = R(ω)W(ω). The second operation
involves taking the logarithm of S(ω):

Note that since the Fourier transform is a complex func-
tion, it is necessary to define the logarithm of a complex
quantity. An appropriate such a definition for a complex
function X(ω) is:

In the above expression, the real part, log|X(ω)|, causes no
problem. Problems of uniqueness, however, arise in defin-
ing the imaginary part since,�x(ω) is defined only to within
±π. One approach to dealing with this problem is to re-
quire that �x(ω) be a continuous odd function of ω. That
is, the phase function �x(ω) must be unwrapped. It is im-
portant to point out that Eq. (39) shows that the multi-
plication operation in the frequency domain has now been
changed to an addition operation in the log-frequency do-
main. The third operation is to take the inverse Fourier
transform of log[S(ω)]. The resulting function is called the
complex cepstrum of s(t). Now if the characteristics of the
two signals r(t) and w(t) are such that they appear nonover-
lapping in this domain, then they can be separated by an
appropriate window function. This operation is essentially
the filtering operation. In general, it is very unlikely to
have a seismic trace where there is complete nonoverlap-
ping in the complex cepstrum of s(t). However, once this is
achieved, the reverse process can be applied on each of the
separated signals. That is, Fourier transform, followed by
inverse logarithm, followed by inverse Fourier transform.
The first applications of homomorphic systems were in the
area of speech processing (18). Homomorphic deconvolu-
tion of seismic data was introduced by Ulrych (19) in the
early 1970s and later on extended byTribolet (20). It should
be pointed out that one of the major problems encountered
in using homomorphic deconvolution is the problem of un-
wrapping of the phase.

CONCLUSION

The field of geophysical signal processing deals primarily
with computer methods for processing geophysical data
collected for the purpose of extracting information about
the subsurface layers of the earth. In this article, some
of the main steps involved in acquiring, processing, dis-
playing, and interpreting geophysical signals have been
outlined. Clearly, many other important steps have not
been covered and considerably more can be said about
each of the steps that were covered. For example, ac-
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quisition of geophysical data also involves issues in geo-
phone/hydrophone array design and placement, field op-
erations, noise control, and digital recording systems. Pro-
cessing the data is typically an iterative process which also
involves issues in static corrections, multiple suppression,
numerous deconvolution applications, migration, imaging
beneath complex structures, and F-K filtering, to mention
several. Displaying and interpreting geophysical data also
involves issues in data demultiplexing and sorting, am-
plitude adjustments and gain applications, 2-D and 3-D
imaging, geological modeling, as well as identification of
stratigraphic boundaries and structural features on the fi-
nal image.
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