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This article is specifically concerned with obtaining informa-
tion about Earth through remote sensing.

Earth can be observed remotely in many ways. One of the
earliest approaches to remote sensing was observing Earth
from a hot air balloon using a camera, or just the human eye.
Today, remotely sensed Earth observational data are rou-
tinely obtained from instruments onboard aircraft and space-
craft. These instruments observe Earth through various
means, including optical telescopes and microwave devices at
wavelengths from optical through microwave, including the
visible, infrared, passive microwave, and radar.

Other articles in this series discuss the most widely em-
ployed approaches for obtaining remotely sensed data. This
article discusses methods for effectively extracting informa-
tion from the data once they have been obtained.

Most information processing of Earth remote sensing data
assumes that Earth’s curvature and terrain relief can be ig-
nored. In most practical cases, this is a good assumption. It
is beyond the scope of this article to deal with the special
cases where it is not, such as with a relatively low flying sen-
sor over mountainous terrain or when the sensor points to-
ward Earth’s horizon. This article deals with information pro-
cessing of two-dimensional image data from down-looking
sensors.

Remotely sensed image data can have widely varying char-
acteristics, depending on the sensor employed and the wave-
length of radiation sensed. This variation can be very useful,
as in most cases this variation corresponds to information
about what is being sensed on Earth. A key task of informa-
tion processing for remote sensing is to extract the informa-
tion contained in the variations of remotely sensed image
data with changes in spatial scale, spectral wavelength, and
the time at which the data are collected. Data containing
these types of variations are referred to as multiresolution or
multiscale data, multispectral data, and multitemporal data,
respectively.

In some cases, Earth scientists may find useful a combined
analysis of image data taken at different spatial scales and/
or orientations by separate sensors. Such analysis will be-
come even more desirable over the next several years as the
number and variety of sensors increase under such programs
as NASA’s Earth Observing System. This type of analysis re-
quires the determination of the correspondence of data points
in one image to data points in the other image. The process
of finding this correspondence and transforming the images
to a common spatial scale and orientation is called image reg-
istration. More information on image registration can be
found in REMOTE SENSING GEOMETRIC CORRECTIONS.

Multispectral data are often collected by an instrument
that is designed to collect the data in such a way that they
are already registered. In other cases, however, small shifts
in location need to be corrected by image registration. Multi-
temporal data must almost always be brought into spatial
alignment using image registration, as must multiresolution
data when obtained from separate sensors.

Several approaches have been developed for analyzing reg-
istered multiscale/spectral/temporal data. Because most of
these techniques were originally developed for analyzingINFORMATION PROCESSING

FOR REMOTE SENSING multispectral image data, they will be discussed in terms of
that context. However, many of these techniques can also be

Remote sensing is a technology through which information used in analyzing multiscale and/or multitemporal data. In
the following discussion, each scale, spectral, or temporalabout an object is obtained by observing it from a distance.
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manifestation of the image data is referred to as an image These are called vegetation indices. Spectral ratios are also
useful in the analysis of image data containing significantband. Figure 1 gives an example of remotely sensed multi-

spectral image data. amounts of topographic shading. The process of spectral ra-
tioing tends to reduce the effect of this shading.Sometimes important information identifying the observed

ground objects is contained in the ratios between bands. Ra- The data contained in each band of multispectral image
data are often correlated with the data from some of the othertios taken between spectrally adjacent bands correspond to

the discrete derivative of the spectral variation. Such band bands. When desirable to do so, this correlation can be re-
duced by transforming the data in such a way that most ofratios measure the rate of change in spectral response and

distinguish classes with a small rate of change in spectral the data variation is concentrated in just a few transformed
bands. Reducing the number of image bands in this way notresponse from those with a large rate of change. Other spec-

tral ratios have been defined such that they relate to the only may make the information content more apparent but
also serves to reduce the computation time required for analy-amount of photosynthetic vegetation on the Earth’s surface.

(a) (b)

(c) (d)

Figure 1. An example of remotely sensed multispectral imagery data. Displayed are selected
spectral bands from a seven-band Landsat 5 Thematic Mapper image of Washington, DC: (a)
spectral band 2 (0.52–0.60 �m), (b) spectral band 4 (0.76–0.90 �m), (c) spectral band 5 (1.55–1.75
�m), and (d) spectral band 7 (2.08–2.35 �m).
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sis; it can be used, in effect, to ‘‘compress’’ the data by dis-
carding transformed bands with low variation. There are
many such transformations for accomplishing this concentra-
tion of variation. One is called Principal Component Analysis
(PCA) or the Principal Component Transform (PCT). Other
useful transforms are the Canonical Components Transform
(CCT) and the Tasseled Cap Transform (TCT).

The process of labeling individual pixels in the image data
as belonging to a particular ground cover class is called image
classification. (An image data vector from a particular spatial
location is called an image picture element or pixel.) This la-
beling process can be carried out directly on the remotely

Table 1. Accuracy Comparison (Percent Correct
Classification) Between Classifications of the Original and
Presegmented Landsat Thematic Mapper Images [from (1)]

Original Presegmented
Ground Cover Class Image (%) Image (%)

Water/marsh 73.7 79.3
Forest 74.8 75.6
Residential 54.4 64.9
Agricultural and 81.9 83.4

domestic grasses

Overall 79.2 80.9

sensed image data, on image features derived from the origi-
nal image data (such as band ratios or data transforms), or on

by modeling each class by a union of several parallelepiped-combinations of the original image data and derived features.
shaped regions.Whatever the origin of the data, the classification feature

One of the most commonly used classification algorithmsspace is the n-dimensional vector space spanned by the data
for remotely sensed data is the Gaussian maximum likelihoodvectors formed at each image pixel.
classifier (also called the ML classifier). The ML classifier of-The two main types of image classification are unsuper-
ten performs very well in cases where the minimum-distance-vised and supervised. In unsupervised classification, an anal-
to-means classifier or the parallelepiped classifier performysis procedure is used to find natural divisions, or clusters, in
poorly. This is because the ML classifier not only accounts forthe image feature space. After the clustering process is com-
differences in variance between classes but also accounts forplete, the analyst associates class labels with each cluster.
differences in between-band correlations. An even more gen-Several clustering algorithms are available, ranging from the
eral classification approach is a neural network classifier. Thesimple K-means algorithm, where the analyst must prespecify
flexibility of the neural network classifier comes from its abil-the number of clusters, to the more elaborate ISODATA algo-
ity to generate totally arbitrary feature space partitions.rithm, which automatically determines an appropriate num-

The analysis approaches discussed to this point haveber of clusters.
treated the data at each spatial location separately. This per-In supervised classification, the first step is to define a de-
pixel analysis ignores the information contained in the spatialscription of how the classes of interest are distributed in fea-
variation of the image data. One approach that can exploitture space. Then each pixel is given the class label whose de-
the spatial information content in the data is image segmenta-scription is closest to its data value. Determining the
tion. Image segmentation is a partitioning of an image intodescription of how the classes of interest are distributed in
regions based on the similarity or dissimilarity of feature val-feature space is the training stage of supervised classification.
ues between neighboring image pixels. An image region is de-An approach commonly used in this stage is to identify small
fined as a collection of image pixels in which, for any two pix-areas throughout the image data that contain image pixels els in this collection, there exists a spatial path connecting

of the classes of interest. This is usually done using image these two pixels, which travels only through pixels contained
interpretation combined with ground reference information in the region. After an image is segmented into regions, the
(e.g., a map of the locations of areas of classes of interest ob- image can be labeled region by region using one of the classi-
tained through a ground survey, knowledge from a previous fication approaches mentioned previously. The combination of
time, or other generalized knowledge about the area in ques- image segmentation and image classification often produces
tion). Then the classes are characterized according to the superior results to per-pixel image classification (see Table 1).
model used for the next step: the classification stage. A relatively recent development in remotely sensing in-

One of the simplest classification algorithms is the mini- strumentation is imaging spectrometers, such as the Airborne
mum-distance-to-means classifier. When this classifier is used, Visible-InfraRed Imaging Spectrometer (AVIRIS). Imaging
the vector mean value of each class is calculated in the train- spectrometers produce hyperspectral data, consisting of hun-
ing stage, and each data pixel is labeled as belonging to the dreds of spectral bands taken at narrow and closely spaced
closest class by some distance measure (e.g., the Euclidean spectral intervals. Two main types of specialized analysis ap-
distance measure). This classifier can work very well if all proaches are currently under development for this type of
classes have similar variance and well-separated means. data. One approach is an attempt to match laboratory or field
However, its performance may be poor when the classes of reflectance spectra with remotely sensed imaging spectrome-
interest have a wide range of variance. ter data. The success of this approach depends on precise cali-

A relatively simple classification algorithm that can ac- bration of the remotely sensed data and careful compensation
or corrections for atmospheric, solar, and topographic effects.count for differing ranges of variation of the classes is the
The other approach depends on exploiting the unique mathe-parallelepiped classifier. When this classifier is used, the
matical characteristics of very high dimensional data. Thisrange of pixel values in each band is noted for each class from
approach does not necessarily require corrected data.the training stage, and image data pixels that do not fall

uniquely into the range values for just one class are labeled
as ‘‘unknown.’’ This classifier gets its name from the fact that FEATURE EXTRACTION
the feature space locations of pixels belonging to individual
classes form parallelepiped-shaped regions in feature space. The multispectral image data provided by a remote sensing

instrument can be analyzed directly. However, in some cases,The number of pixels in the unknown class can be reduced
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it may be beneficial to analyze features extracted from the diffuse, reflecting surface is assumed in Eq. (1). The atmo-
spheric view path radiance Lh(�) is additive and increases atoriginal data. Such feature extraction commonly takes the

form of subsetting and/or mathematically transforming the shorter visible wavelengths as a result of Rayleigh molecular
scattering. This is the effect that causes the clear sky to ap-original data. It is used to compensate for one or more of the

following problems often encountered with remotely sensed pear blue. A related, second-order effect from down-scattered
radiation (skylight) that is subsequently reflected at the sur-data: atmospheric effects, topographic shading effects, spec-

tral band correlation, and lack of optimization for a particu- face into the sensor view path is not included in Eq. (1). This
effect allows the surface-related signal in shadowed areas tolar application.
be recovered, although with a spectral bias toward shorter
wavelengths.Atmospheric Effects

Correction for atmospheric effects requires modeling or
Most remote sensing data are collected from sensors on satel- measurement of the various independent terms in Eq. (1),
lite platforms orbiting above Earth’s atmosphere. Earth’s at- namely, Ts(�), Tv(�), E0(�), and Lh(�) and, given the remotely
mosphere can have a significant effect on the quality and sensed data measurements, L(x, y, �), solution of Eq. (1) for
characteristics of such satellite-based remote sensing data. the surface spatial and spectral variations �(x, y, �). The

For this article, it is sufficient to introduce the following cos[�(x, y)] term is a topographic effect that is described in the
first-order model for the input radiance to an Earth-orbiting next section.
sensor (2): The path radiance term Lh(�) is primarily of concern at

short, blue-green wavelengths, and the transmittance terms
Ts(�) and Tv(�) are usually ignored for coarse multispectralL(x, y, λ) = 1

π
Ts(λ)Tv(λ)E0(λ) cos[θ(x, y)]ρ(x, y, λ) + Lh(λ) (1)

sensing, such as with Landsat TM, where the bands are
placed within atmospheric ‘‘windows’’ of relatively high andThe solar irradiance from the sun E0(�) provides the source
spectrally flat transmittance. For hyperspectral data, how-radiation for the remote sensing process. This is the irradi-
ever, knowledge of and correction for transmittance is usuallyance as it would be measured at the top of Earth’s atmo-
required if the data are to be compared to reflectance spectrasphere and is referred to as the exo-atmospheric solar irradi-
measured in a laboratory.ance. The atmosphere affects the signal received by the

sensor on two paths: (1) between the top of the atmosphere
Topographic Effectsand Earth’s surface (solar path) and (2) between the surface

and the sensor (view path). The spectral transmittance of the Most areas of Earth have topographic relief. The irradiance
atmosphere Ts(�) along the solar path or Tv(�) along the view from solar radiation is proportional to the cosine of the angle
path is generally high except in prominant molecular absorp- between the normal vector to the surface and the vector point-
tion bands attributable mainly to carbon dioxide and water ing to the sun. A surface element normal to the solar vector
vapor, as illustrated in Fig. 2. The cos[�(x, y)] term is the spa- receives the maximum possible irradiance. Any element at
tial variation of irradiance at the surface resulting from the some other angle will receive less. This spatially variant fac-
solar zenith angle and topography, which determine the angle tor is the same in all solar reflective bands and, therefore,
at which the incident radiation strikes the surface. The spa- introduces a correlation across these bands.
tial and spectral variations in diffuse surface reflectance are
modeled by the function �(x, y, �). A Lambertian, or perfectly Spectral Band Ratios. The pixel-by-pixel ratio of adjacent

spectral bands corresponds to the discrete derivative of the
spectral function. It therefore measures the rate of change in
spectral signature and distinguishes classes with a small rate
of change from those with a large rate of change. For exam-
ple, the ratio of a near infrared (NIR) band to a red band
will show a high value across the vegetation edge at 700 nm,
whereas a ratio of a red band to a green band will show a
small value for both vegetation and soil.

For bands where the atmospheric path radiance is small
[e.g., in the NIR or short-wave infrared (SWIR) spectral re-
gions], the spectral band ratio will be proportional to the sur-
face reflectance ratio. In this case, the spectral band ratio is
insensitive to topographic effects. If the path radiance is not
small, then it should be reduced or removed using a technique
such as Dark Object Subtraction (DOS) before spectral band
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Figure 2. Atmospheric transmittance for a nadir path as estimated
with the atmospheric modeling program MODTRAN (3). The trans- Vegetation Indices. A number of specific ratio formulae
mittance is generally over 50% throughout the visible to short-wave

have been defined in attempts to obtain features that relateinfrared (SWIR) spectral region, except for prominent absorption
to the amount of photosynthetic vegetation on the Earth’sbands resulting from atmospheric molecular constituents. Remote
surface. All depend on the red and NIR spectral reflectancessensing of the Earth is not possible at wavelengths corresponding to
(i.e., calibrated data). They are summarized in Table 2 andthe strongest absorption bands. The relatively lower transmittance

below about 0.6 �m results from Rayleigh scattering losses. plotted as isolines in the NIR-red reflectance space in Fig. 3.
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Table 2. Definition of Common Vegetation Indices

Index Formula Remarks

Ratio (R) —�NIR

�red

Normalized Difference —�NIR � �red

�NIR � �redVegetation Index (NDVI)

Soil-Adjusted Vegetation L is an empirical con-� �NIR � �red

�NIR � �red � L�(1 � L)Index (SAVI) stant, typically 0.5 for
partial cover.

Even though vegetation indices can be used as features in can introduce into remotely sensed data an apparent spectral
correlation because it affects all solar reflective bands equally.classifications, they are commonly produced as an end-prod-

uct indicating photosynthetic activity, particularly on a global
scale from Advanced Very High-Resolution Radiometer Principal Components. The Principal Component Transfor-
(AVHRR) data. mation is often used to eliminate spectral band correlation.

The PCT also produces a redistribution of spectral variance
Spectral Band Correlation into fewer components, isolates spectrally uncorrelated signal

components and noise, and produces features that, in someSpectral band correlation can result from several factors.
cases, align with physical variables. It is a data-dependent,First, the sensor spectral sensitivities sometimes overlap be-
linear matrix transform of the original spectral vectors into atween adjacent spectral bands. Second, the spectral re-
new coordinate system that corresponds to a specific coordi-flectance of most natural materials on the earth, particularly
nate axes rotation in n-dimensions (2,5).over spectral bandwidths of 10 nm or greater, change slowly

The PCT for a particular data set is derived from the ei-with wavelength. Therefore, the reflectance in one band will
genvalues and eigenvectors of the spectral covariance of thebe similar to that in an adjacent band. A notable exception is
data, which is represented in matrix form asthe ‘‘vegetation edge’’ at about 700 nm where the reflectance

of photosynthetic vegetation increases dramatically from the
red to the NIR spectral regions. Finally, topographic shading 
 = 1

N − 1

N∑
j=1

(x j − µ)(x j − µ)T (2)

where N is the number of pixels in the image, xj is the jth
image data vector (pixel), the superscript T denotes the vector
transpose, and � is the vector mean value of the image given
by

µ = 1
N

N∑
j=1

x j (3)

The eigenvalues � and eigenvectors � of � are the solutions
of the equation


φ = λφ (4)

assuming � is not the zero vector (6,7). The eigenvalues are
ordered in decreasing order, and the corresponding eigenvec-
tors are combined to form the eigenvector matrix

� = [φ1φ2 · · ·φn] (5)

The PCT is then given by
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Figure 3. Isolines for three different vegetation indices in the NIR y = �T x (6)
spectral reflectance space. The spectral ratio R and the NDVI are
redundant in that either one can be expressed in terms of the other Each output axis is a linear combination of the input axes
(see Table 2). The SAVI requires an empirically determined constant

(e.g., the spectral bands) and is orthogonal to the other output(4). A value of 0.5 is used for this graph and is appropriate under
axes (this characteristic can isolate uncorrelated noise in themost conditions of partial vegetation cover with soil background.
original bands). The weights on the inputs x are the eigenvec-SAVI has a smaller slope than does NDVI in this graph. Therefore,
tors, and the variances of the output axes y are the eigenval-SAVI is less sensitive to the ratio of the NIR reflectance than NDVI,

reflecting the former’s adjustment for soil background. ues. Because the eigenvalues are ordered in decreasing order,
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the PCT achieves a compression of data variation into fewer riving the transformation matrix. Rather, training data for
each class are used to find the transformation that maximizesdimensions when a subset of PCT components corresponding

to the larger eigenvalues is selected. A disadvantage of the the separability of the defined classes. A compression of sig-
nificant information into fewer dimensions results, but it isPCT is that it is a global, data-dependent transform and must

be recalculated for each image. The greatest computation bur- not optimal as in the case of the PCT. Selection of the first
three canonical components for a three-band color compositeden is usually the covariance matrix for the input features.

Figure 4 displays the first four principal components of the produces a color image that visually separates the classes bet-
ter than any combination of three of the original bands.Landsat 5 TM scene displayed in Fig. 1.

The CCT is a linear transformation on the original feature
space such that the transformed features are optimized andCanonical Components. The Canonical Components Trans-
arranged in order of decreasing maximum separability of theform is similar to the PCT, except that the data are not

lumped into one distribution in n-dimensional space when de- classes. The optimization is accomplished based upon max-

(a) (b)

(c) (d)

Figure 4. (a)–(d) The first four principal components from the PCT of the seven-band Landsat
5 TM image of Washington, DC (see Fig. 1). These four principal components contain 98.95% of
the data variance contained in the original seven spectral bands.
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imizing the ratio of the between-class variance to the within- order statistics), depending on the metric to be used. Various
band combinations can be compared to find the combinationclass variance. The specific quantities are
that best separates (distinguishes) the given classes.

Many separability metrics have been defined to measure
separability. Each can be interpreted as a type of distance


W =
n∑

i=1

P(ωi)
i (within-class scatter matrix) (7)

in spectral space (Table 3). The angular distance metric is
particularly interesting because it conforms to the general
shape of the scattergram between spectral bands in many
cases. Topographic shading introduces a scatter of spectral


B =
n∑

i=1

P(ωi)(µi − µ0)(µi − µ0)T

(between-class scatter matrix) (8)
signatures along a line through the origin of the spectral
space. The angular metric directly measures angular separa-
tion of two distributions and is insensitive to the distance of

µ0 =
n∑

i=1

P(ωi)µi (9)

a class distribution from the origin.
where �i, �i, and P(�i) are the mean vector, covariance matrix, To select the optimum spectral bands from a sensor band
and prior probability, respectively, for class �i. The optimality set, an exhaustive calculation is performed to find the average
criterion then is defined as interclass separability for each possible combination of bands.

For example, bands 2, 3, and 4 of Landsat TM may show the
J1 = tr(
−1

W 
B) (10) highest average transformed divergence of any three-band
combination of the seven TM bands for a vegetation and soil

The transformation results in new features that are linear classification. The full classification can then be performed
combinations of the original bands. The size of the feature using only bands 2, 3, and 4.
eigenvalues indicates the relative class discrimination value.
Thus, the size of the eigenvalues gives some idea as to how

MULTISPECTRAL IMAGE DATA CLASSIFICATIONmany features should be used.

Data classification is the process of associating a thematic la-Tasseled Cap Components. The Tasseled Cap Transform is
bel with elements of the data set. The data elements so la-a linear matrix transform, just as the PCT and CCT, but is
beled are typically individual pixels, but they may be groupsfixed and independent of the data. It is, however, sensor de-
of pixels that have been associated with one another, for ex-pendent and must be newly derived for each sensor. The TCT
ample, by having previously segmented the scene into regionsproduces a new set of components that are linear combina-
(i.e., spectrally homogeneous areas). Mathematically, the pro-tions of the original bands. The coefficients of the transforma-
cess of classification may be described as mapping the datation matrix are derived relative to the ‘‘tasseled cap,’’ which
from a vector-valued space (spectral feature space) to a scalardescribes the temporal trajectory of vegetation pixels in the
space that contains the list of final classes desired by the usern-dimensional spectral space as the vegetation grows and ma-
(i.e., mapping from the data to the desired output).tures during the growing season. The TCT was originally de-

Classification is carried out based upon ancillary informa-rived for crops in temperate climates, namely the U.S. Mid-
tion, often in terms of samples labeled by the analyst as beingwest, and is most appropriately applied to that type of data
representative of each class of surface cover to be mapped.(8–11). For the Landsat MSS (Multispectral Scanner) data,
These samples are often called training samples or designfour new axes are defined: soil brightness, greenness, yellow
samples. The development of an appropriate list of classesstuff, and non-such. For the Landsat TM (Thematic Mapper)
and the process of labeling these samples into these classes isdata, six new axes are defined, soil brightness, greenness,
a key step in the analysis process. A valid list of classes for awetness, haze, and an otherwise unnamed fifth and sixth
given data set must be, simultaneously,axes. The transformed data in the tasseled cap space can be

compared directly between sensors (e.g., Landsat MSS soil
1. exhaustive—There must be a logical and appropriatebrightness and Landsat TM soil brightness).

class to which to associate every pixel in the data set.
2. separable—It must be possible to discriminate accu-Spectral Band Selection

rately each class from the others in the list based on the
Global satellite sensors must be designed to image a wide spectral features available.
range of materials of interest in many different applications.

3. of informational value—The list of classes must containThe sensor design is thus a compromise for any particular
the classes desired to be identified by the user.application (continuous spectral sensing, such as that pro-

duced by hyperspectral sensors, is a way to provide data suit-
Training Phase

able for all applications, at the expense of large data vol-
umes). A multispectral sensor may have bands in the red and Classification is typically carried out in two phases: the train-

ing phase and the analysis phase. During the training phase,NIR suitable for vegetation mapping but lack bands in the
SWIR suitable for mineral mapping. ancillary information available to the analyst is used to define

the list of classes to be used, and, from it, to determine theIn spectral band selection, an optimal set of spectral bands
are selected for analysis. The spectral characteristics of the appropriate quantitative description of each of the classes.

How this is done is situation-dependent, based on the formmaterial classes of interest must be defined before this tech-
nique is applied. The spectral characteristics are obtained and type of ancillary information available and the desired

classification output. In some cases, the analyst may havefrom training data and may consist of the class mean vectors
or the class mean vectors and covariances matrices (second- partial knowledge of the scene contents based upon observa-
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Table 3. Separability Metrics for Classification (6,12)

Metric Formula* Remarks

City block L1 � ��i � �j� Results in piecewise
linear decision
boundaries

Normalized Normalizes for class
NL1 � �n

b�1

�mib � mjb�
(�ib � �jb)/2city block variance

Euclidean L2 � ��i � �j� � [(�i � �j)T(�i � �j)]1/2 Results in linear decision
boundaries

� ��n

b�1
(mib � mjb)2�1/2

Angular Normalizes for
ANG � acos � �T

i �j

��i� ��j�
� topographic shading

Mahalanobis Assumes normal
MH � �(�i � �j)T �	i � 	j

2 ��1

(�i � �j)�1/2

distributions;
normalizes for class
covariance; zero if
class means are equal

Divergence D � �� tr
(	i � 	j)(	
�1
i � 	�1

j )� Zero if class means and
� �� tr 
(	�1

i � 	�1
j )(�i � �j)(�i � �j)T� covariances are equal;

does not converge for
large class separation

Transformed Dt � 2
1 � e�D/8� Asymptotically converges
divergence to one for large class

separation

Bhattacharyya Zero if class means and
B � ��MH � �� ln ��(	i � 	j)/2�

(�	i��	j�)1/2 � covariances are equal;
does not converge for
large class separation

Jeffries- JM � 
2(1 � e�B)�1/2 Asymptotically converges
Matusita to one for large class

separation

In the formulae, mib is the mean value for class i and band b, �ib is the standard deviation for class
i and band b, �i is the mean vector for class i, 	i is the covariance matrix for class i, and n is the
number of spectral bands.

tions from the ground and photointerpretation of air photo- Another example of an ancillary data source that might be
used for deriving training data is more fundamental knowl-graphs of a part of the scene or from generalized knowledge

of the area that is to be made more quantitative and specific edge about the materials to be identified. For example, in a
geological mapping problem, it might be known that certainby the analysis.

For example, the data set may be of an urban area in minerals of interest have molecular absorption features as
used by chemical spectroscopists to identify specific mole-which the analyst is partially familiar and can designate in

the data areas which are used for classes such as high-density cules. If such spectral features can be extracted from the data
to be analyzed, they can be used to label training samples forhousing, low-density housing, commercial, industrial, and

recreational. The analyst would use this generalized knowl- such classes.
edge to mark areas in the data set that are typical examples
of each class. These then become the training areas from Analysis Phase
which the quantitative description of each class is calculated.

During the second phase of classification, the analysis phase,Examples of other types of ancillary data from which train-
the pixel or region features are compared quantitatively toing samples may be identified are so-called signature banks,
the class descriptions derived during the training phase towhich are databases of spectral responses of the materials to
accomplish the mapping of each of the data elements to onebe identified that were collected at another time and location
of the defined classes. Classifiers may be of two types: relativewith perhaps different instruments. In this case, the addi-
and absolute. A relative classifier is one that assigns a datational problem exists of reconciling the differences in data col-
element to a class after having compared it to the entire listlection circumstances for the database with those of the data
of classes to see to which class it is most similar. An absoluteset to be analyzed. Examples of these circumstances are the
classifier compares the data element to only one class descrip-differences in the instruments used to collect the data, the
tion to see if it is sufficiently similar to it. Generally speaking,spatial and spectral resolution, the atmospheric conditions,
in remote sensing, relative classifiers are the more commonthe time of day, the illumination and direction of view vari-

ables, and the season. and more powerful.
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Many different algorithms are used for classification in the bands have unit variance:
analysis phase (6,12). A common approach for implementing
a relative classifier is through the use of a so-called discrimi- gi(X) = (X − µi )

T (X − µi ) (14)
nant function. Designate the data element to be classified as
vector X, in which the elements of the vector are the values The decision boundary that results is linear in spectral
measured for that pixel in each spectral band. Then, for a k- feature space and is oriented perpendicular to the line
class situation, assume that we have k functions of X, �g1(X), connecting the class mean values at the midpoint of the
g2(X), . . ., gk(X) such that gi(X) is larger than all others line. This is the minimum-distance-to-means classifier.
whenever X is from class i. Let �i denote the ith class. Then • Assume that all classes have the same covariance but
the classification rule can be stated as account for correlation between bands and for different

variances in each:
Decide X is in ωi if and only if

gi(X) ≥ gj (X) for all j = 1, 2, . . ., k (11) gi(X) = (X − µi)
T
−1(X − µi) (15)

The functions gi(X) are referred to as discriminant functions. The resulting decision boundary in spectral feature space
An advantage of using this scheme is that it is easy to imple- is linear, but its orientation and location are dependent
ment in computer software or hardware. upon the common covariance �.

A common scheme for defining discriminant functions is to • Assume that classes have different covariances:
use the class probability density functions. The classification
process then amounts to evaluating the value of each class gi(X) = − 1

2 ln |
i| − 1
2 (X − µi)

T
−1
i (X − µi ) (16)

density function at X. The value of a probability density func-
tion at a specific point is called the likelihood of that value. The resulting decision boundary in spectral space is a
Such a classifier is called a maximum likelihood classifier be- second-order hypersurface whose shape and location is
cause it assigns the data element to the most likely class. dependent upon the individual mean vectors �i and co-

Another example for a classification rule is the so-called variance matrices �i. This is the maximum likelihood
Bayes rule strategy (13). Bayes’ Theorem from the theory of classifier.
probability states that

• Assume that the class densities have a more complex
structure such that a combination of a small number of
Gaussian densities is not adequate:p(ωi|X) = p(X|ωi)

p(X)
p(ωi) = p(X, ωi )

p(X)
(12)

where p(�i�X) is the probability of class �i given the data ele-
ment valued X, p(X��i) is the probability density function for

gi(X) = 1
Ni

∑
K

(X − Xji

λ

)
(17)

class �i, p(�i) is the probability that class �i occurs, p(X, �i) of
The resulting decision boundary in spectral space can bethe value X and the class �i, and p(X) is the probability den-
of nearly arbitrary shape.sity function for the entire data set. Then, to maximize the

probability of correct classification, one must select the class
that maximizes p(�i�X). Because p(X) is the same for any i, It can be seen that this list of discriminant functions has a
one may use as the discriminant function, just the numerator steadily increasing generality and a steadily increasing com-
of Eq. (12), p(X��i) p(�i). Thus, the classification rule becomes plexity, such that a rapidly increasing number of training

samples is required to adequately estimate the rapidly grow-
ing number of parameters in each. The latter one, for exam-
ple, which, though it is still parametric in form, is referred to

Decide X is in ωi if and only if

p(X|ωi) p(ωi) ≥ p(X|ω j ) p(ω j ) for all j = 1, 2, . . ., k (13)
as a nonparametric Parzen density estimator with kernel K.
The kernel function K, as well as the number of kernal termsThis classification strategy leads to the minimum error rate.
to be used Ni, is selectable by the analyst. For example, oneNote that if all the classes are equally likely, the p(�i) terms
possible selection is a Gaussian-shaped function, thus makingmay be canceled and the Bayes rule strategy reduces to the
this discriminant function a direct generalization of the previ-maximum likelihood strategy. Because, in a practical remote
ous ones.sensing problem, the prior probabilities p(�i) are not known,

There are many additional variations to this list of dis-it is common practice to assume equal priors.
criminant functions. There are also additional variations toOther factors that are significant in the analysis process
the possible training procedures. For example, one variationare the matter of how the class probability density functions
that is popular at the present time is the neural networkare modeled and, related to this, how many training samples
method. This method uses an iterative scheme for determin-are available by which to train the classifier. Parametric mod-
ing the location of the decision boundary in spectral featureels, assuming that each class is modeled by one or a combina-
space. A network is designed, consisting of as many inputs astion of Gaussian distributions, are very common and power-
there are spectral features, as many outputs as there areful. Within this framework, one can also make various
classes, and threshold devices with weighting functions con-simplifying assumptions. Some common ones, in parametric
necting the inputs to the outputs. Training samples are ap-form, and the corresponding discriminant functions follow:
plied to the input sequentially, and the resulting output for
each is observed. If the correct classification is obtained for a• Assume that all classes have the same covariance, in

which there is no correlation between bands, and that all given sample, as evidenced by the output port for the correct
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class being the largest, the weights for correct output are aug- CLASSIFICATION USING NEURAL NETWORKS
mented, and incorrect class output weights are diminished.

Unlike statistical, parametric classifiers, Artificial NeuralThe training set is reused for as many times as necessary to
Network (ANN) classifiers rely on an interative error minimi-obtain good classification results.
zation algorithm to achieve a pattern match. A network con-The advantage of this approach is its generality and that
sists of interconnected input (feature) nodes, hidden layerit can be essentially automatic. Characteristics generally re-
nodes, and output (class label) nodes. A wide range of networkgarded as disadvantages are that it is nearly entirely heuris-
architectures have been proposed (14); here a simple three-tic, thus making analytical calculations and performance pre-
layer network is considered to explain the basic operation.dictions difficult, its generality means that very large training
The input nodes do no processing but simply provide thesets are required to obtain robust performance, and there is
paths for the data into the hidden layer. Each input node isa great deal of computation required in the training process.
connected to each hidden layer node by a weighted link. InBecause, in practical circumstances, classifiers must be re-
the hidden layer, the weighted input features are summedtrained for every new data set, characteristics affecting the
and compared to a thresholding decision function. The deci-training phase are especially significant.
sion function is usually ‘‘soft,’’ with a form known as a sig-
moid,

Unsupervised Classification

A second form of classification that finds use in remote sens-
ing is unsupervised classification, also known as clustering.

output(input) = 1
1 + exp(−input)

(18)

In this case, data elements, usually individual pixels, are as-
The output from each hidden layer node is then fed through asigned to a class without the use of training samples, thus
weighted link to each output layer node. The same processing,the ‘‘unsupervised’’ name. The purpose of this type of classifi-
summation and comparison to a threshold, is performed incation is to assign pixels to a group whose members have sim-
each output node. The output node with the highest resultingilar spectral properties (i.e., are near to one another in spec-
value is selected as the label for the input feature vector.tral feature space). There are, again, many algorithms to

The decision information of the ANN is contained in itsaccomplish this. Generally speaking, three capabilities are
weights. To adapt the weights to the data, an iterative algo-needed.
rithm is required. The classic example is the Back Propaga-
tion (BP) algorithm (15,16). The BP algorithm minimizes the

1. A measure of distance between points. Euclidean dis- output error over all classes for a given set of training data.
tance is a common choice. It achieves this by measuring the output error and adjusting

the ANN’s link weights progressively backward through each2. A measure of distance or separability between the sets
layer to reduce the error. If local minima in the decision spaceof points comprising each cluster. Any separability mea-
of the ANN can be avoided, the BP algorithm will converge tosure, such as listed in Table 3 could be used, but usually
a global minimum for the output error [although one is neversimpler measures are selected.
sure that it is not in reality a local minimum (i.e., the algo-3. A cluster compactness criterion. An example might be
rithm cannot be proven to result in a global error minimum)].the sum of squared distances from the cluster center for
Other convergence algorithms, such as Radial Basis Func-all pixels assigned to a cluster.
tions, have been used and are faster than BP.

One parameter that must be set for ANNs is the number
The process typically begins when one selects (often arbi- of hidden layer nodes. A way to specify this is to relate the

trarily) a set of initial cluster centers and then assigns each total number of Degrees-Of-Freedom (DOF) in the ANN to
pixel to the nearest cluster center using step 1. After as- that of another classifier for comparison (2). For example, in
signing all the pixels, one computes the new cluster centers. a three-layer ANN, the DOF are
If any of the cluster centers have moved, all the pixels are
reassigned to the new cluster centers. This iterative process NANN = H(K + L) (19)
continues until the cluster centers do not move or the move-

where H is the number of hidden layer nodes, K is the num-ment is smaller than a prescribed threshold. Then steps 2
ber of input features, and L is the number of output classes.and 3 are used to test if the clusters are sufficiently distinct
For the same number of features and classes, the ML classi-(separated from one another) and compact. If they are not
fier has the following DOF:adequately distinct, the two that are the closest are combined,

and the process is repeated. If they are not sufficiently com-
pact, an additional cluster center is created within the least NML = LK(K + 3)

2
(20)

distinct cluster, and the process is repeated.
Clustering is ordinarily not useful for final classification as Therefore, to compare the two classifiers, it is logical to set

such because it is unlikely that the data would be clustered their DOF equal, obtaining
into classes of specific interest. Rather it is primarily useful
as an intermediate processing step. For example, in the train-
ing process, it is often used to divide the data into spectrally H = LK(K + 3)

2(K + L)
(21)

homogenous areas that might be useful in deciding on super-
vised classifier classes and subclasses and in selecting train- for the number of hidden layer nodes in the ANN. This analy-

sis yields only 20 hidden layer nodes for six bands of nonther-ing samples for these classes and subclasses.



INFORMATION PROCESSING FOR REMOTE SENSING 93

mal TM imagery, even for as many as 20 classes. Fewer hid- Edge Detection
den layer nodes result in faster BP training.

Edge detection approaches generally examine pixel values in
local areas of an image and flag relatively abrupt changes in

Performance Comparison to Statistical Classifiers pixel values as edge pixels. These edge pixels are then ex-
tended, if necessary, to form the boundaries of regions in anThe ANN type of classifier has some unique characteristics
image segmentation.that are important in comparing it to other classifiers:

Derivative-Based Methods for Edge Detection. The simplest
1. Because the weights are initially randomized, the final approaches for finding abrupt changes in pixel values com-

output results of the ANN are stochastic (i.e., they will pute an approximation of the gradient at each pixel. The
vary from run to run on the same training data). It has mathematical definition of the gradient of the continuous
been estimated that this variation is as much as 5% function f (x, y) is
(17).

2. The decision boundaries move in the feature space to ∇ f (x, y) =
(

∂ f
∂x

(x, y),
∂ f
∂y

(x, y)

)
(22)

reduce the total output error during the optimization
process. The network weights and final classification

where �f (x, y) is the gradient at position (x, y), and (�f /�x)(x,map that result will depend on when the process is ter-
y) and (�f /�y)(x, y) are the first derivatives of the functionminated.
f (x, y) with respect to the x and y coordinates, respectively.
The gradient magnitude is

The ANN classifier is nonparametric (i.e., it makes no as-
sumptions about an underlying statistical distribution for
each class). In contrast, the ML classifier assumes a Gaussian |∇ f (x, y)| =

√[
∂ f
∂x

(x, y)

]2

+
[

∂ f
∂y

(x, y)

]2

(23)
distribution for each class. These facts make the feature space
decision boundaries totally different. It appears that the and the gradient direction (angle) is
boundaries from a three-layer ANN trained with the BP algo-
rithm are often more similar to those from the minimum-dis-
tance-to-means classifier than to those from the ML classifier.
Experiments with a land-use/land-cover classification involv-
ing heterogeneous class spectral signatures indicate that the

φ = arctan




∂ f
∂x

(x, y)

∂ f
∂y

(x, y)


 (24)

nonparametric characteristic of the ANN classifier results in
superior classifications (18). In order to apply the concept of a mathematical gradient

to image processing, (�f /�x)(x, y) and (�f /�y)(x, y) must be ap-
proximated by values on a discrete lattice corresponding to

IMAGE SEGMENTATION the image pixel locations. Such a simple discretization is

Image segmentation is a partitioning of an image into regions
based on the similarity or dissimilarity of feature values be-

∂ f
∂x

(x, y) ∼= f (x + 1, y) − f (x, y) (25)

tween neighboring image pixels. It is often used in image
for edge detection in the x direction andanalysis to exploit the spatial information content of the im-

age data. Most image segmentation approaches can be placed
in one of three categories (19): ∂ f

∂y
(x, y) ∼= f (x, y + 1) − f (x, y) (26)

1. characteristic feature thresholding or clustering, for edge detection in the y direction. These functions are
equivalent to convolving the image with one of the two tem-2. boundary detection, or
plates in Fig. 5, where (x, y) is the upper left corner of the3. region growing.
window.

Characteristic feature thresholding or clustering does not
exploit spatial information. The unsupervised classification
(clustering) approaches discussed previously are a form of
this type of image segmentation. Boundary detection exploits
spatial information by examining local edges found through-
out the image. For simple noise-free images, detection of
edges results in straightforward boundary delineation. How-
ever, edge detection on noisy, complex images often produces
missing edges and extra edges that cause the detected bound-
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(x, y)
  f∂
  y∂

(x, y)

–1 1

0 0
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aries to not necessarily form a set of closed connected curves Figure 5. Convolution templates corresponding to the discretized
that surround connected regions. Image segmentation first deriviative of the image function f (x, y) in the x and y directions.
through region growing uses spatial information and guaran- These templates can be used as image edge detectors. However, their
tees the formation of closed, connected regions. However, it small 2 � 2 window size makes these templates very susceptible to

noise.can be a computationally intensive process.
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Figure 6. The Sobel and Prewitt edge de-
tection templates. These 3 � 3 window
templates are somewhat less susceptible
to noise as compared to the 2 � 2 window
templates illustrated in Fig. 5.
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A disadvantage of this and other similar [e.g., Roberts tem- Gaussian (LOG) function
plate (20)] approximations of the gradient function is that the
small 2 � 2 window size makes them very susceptible to
noise. Somewhat less susceptible to noise are the 3 � 3 win-
dow templates devised by Sobel [see Duda and Hart (21)] and

∇2G(x, y) =
{

1
2πσ 4

}
·
{(

x2 + y2

σ 2

)
− 1

}
exp

{−(x2 + y2)

2σ 2

}
(29)

Prewitt (22), which are illustrated in Fig. 6.
The edge detection templates given in Figs. 5 and 6 are where � controls the amount of smoothing provided by the

approximations of an image gradient or a discretation of the filter.
first derivative of the image function. The second derivative Edge detection through convolving the image with the
of the image function, called the Laplacian operator, can also LOG function and searching for zero-crossing locations is less
be used for edge detection. Whereas the first derivative pro- sensitive to noise than the previously discussed methods.
duces positive or negative peaks at and image edge, the sec- Even more sophisticated filtering and edge location tech-
ond derivative produces a zero value at the image edge, sur- niques have been devised. These techniques were unified in a
rounded closely by positive and negative peaks. Edge paper by Shen and Castan (24), in which they derive the opti-
detection then reduces to detecting these ‘‘zero-crossing’’ val- mal filter for the multi-edge case.
ues from the Laplacian operator. For a continuous function
f (x, y), the Laplacian operator is defined as Region Growing

Region growing is a process by which image pixels are merged
with neighboring pixels to form regions, based upon a mea-∇2 f (x, y) = ∂2 f (x, y)

∂x2 + ∂2 f (x, y)

∂y2 (27)

sure of similarity between pixels and regions. The basic out-
line of region growing follows (25–27):The usual discrete approximation is

1. Initialize by labeling each pixel as a separate region.∇2 f (x, y) = 4 f (x, y) − f (x − 1, y) − f (x, y + 1) − f (x + 1, y)

(28) 2. Merge all spatially adjacent pixels with identical fea-
ture values.

This can be represented by convolving a two-dimensional im-
3. Calculate a similarity or dissimilarity criterion betweenage with the image template shown in Fig. 7. Note that the

each pair of spatially adjacent regions.Laplacian operator is directionally symmetric.
4. Merge the most similar pair of regions.
5. Stop if convergence has been achieved; otherwise, re-Image Filtering for Edge Detection. All these methods for

turn to step 3.edge detection are intrinsically noise sensitive (some more
than others) because they are based upon differences between
pixels in local areas of the image. Marr and Hildreth (23) sug- Beaulieu and Goldberg (25) describe a sequential implemen-
gested the use of Gaussian filters with relatively large win- tation of this algorithm in which step 3 is kept efficient
dow sizes to remove noise in images. Combining the Gaussian through updating only those regions involved in or adjacent to
filter with the Laplacian operator yields the Laplacian of the merge performed in step 4. Tilton (26) describes a parallel

implementation of this algorithm in which multiple merges
are allowed in step 4 (best merges are performed in image
subregions) and the (dis)similarity criterion in step 3 is calcu-
lated in parallel for all regions. Schoenmakers (27) simultane-
ously merges all region pairs with minimum dissimilarity cri-
terion value in step 4.

The similarity or dissimilarity criterion employed in step 3
should be tailored to the type of image being processed. A

0 –1 0

–1 4 –1

0 –1 0
simple criterion that has been used effectively with remotely
sensed data is the Euclidean spectral distance (27), as in Ta-Figure 7. The Laplacian edge detection template. This edge detec-
ble 3. Other criteria that have been employed are the Normal-tion template is the discretized second derivative of the image func-
ized Vector Distance (28), criteria based on minimizing thetion f (x, y). This operator produces a zero value at image edges, which

is surrounded closely by positive and negative peaks. mean-square error or change in image entropy (29), and a
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criterion based on minimizing a polynomial approximation ton (34) use region growing to generate a hierarchical set of
image segmentations and make local selections of the besterror (25).

Clear-cut convergence criteria have not been developed for level of segmentation detail based on edges produced by an
edge detector.region growing segmentation. Simple criteria that are satis-

factory in some applications are the number of regions or a
ratio of number of regions to the total number of image pixels. Hybrids of Spectral Clustering and Region Growing
Direct thresholding on the dissimilarity criterion value (i.e.,

Tilton (35) has recently demonstrated the potential of a hy-perform no merges between regions with a dissimilarity crite-
brid of spectral clustering and region growing. In this ap-rion value greater than a threshold) has also been used with
proach, spectral clustering is performed in between each re-mixed results. More satisfactory results have been obtained
gion growing iteration. The spectral clustering is constrainedby defining convergence as the iteration prior to the iteration
to merge regions that are at least as similar as the last pairat which the maximum change in dissimilarity criterion
of regions merged by region growing, and is not allowed tovalue occurred.
merge any spatially adjacent regions. This approach to image
segmentation is very computationally intensive. However,Extraction and Classification of Homogeneous Objects
practical processing times have been achieved by a recursive

An image segmentation followed by a maximum likelihood implementation on a cluster of 64 Pentium Pro PCs config-
classification is the basic idea behind the Extraction and Clas- ured as a Beowulf-class parallel computer (35,36).
sification of Homogeneous Objects (ECHO) classifier (30,31).
The segmentation scheme used by ECHO was designed for

HYPERSPECTRAL DATAspeed on the computers of mid-1970s and could be replaced
by a segmentation approach of more recent vintage. However,

Hyperspectral Data Normalizationthe formalization of the maximum likelihood classification for
image regions (objects) is still appropriate. For single pixels, Hyperspectral imagery contains significantly more spectral
the maximum likelihood decision rule is information than does multispectral imagery such as that

from Landsat TM. Imaging spectrometers produce hundreds
of spectral band images, with narrow (typically 10 nm or less)
contiguous bands across a broad wavelength range (e.g., 400–

Decide X is in ωi if and only if

p(X|ωi) ≥ p(X|ω j ) for all j = 1, 2, . . ., k (30)
2400 nm). Also, such new sensor systems are capable of gen-

The rule is just Eq. (13) with p(�j) � 1. Suppose that an erating more precise data radiometrically, with signal-to-
image region consists of m pixels. To apply the maximum noise ratios justifying 10 or more bit data systems (1024 or
likelihood decision rule to this region, X must be redefined to more shades of gray per band), as compared to 6 or 8 bit preci-
include the entire region, that is, X � �X1, X2, . . ., Xm. The sion in previous systems. This potentially high precision re-
evaluation of p(X��i), where X is redefined as a collection of quires concomitant substantially improved calibration for at-
pixels, is very difficult. However, this collection of pixels be- mospheric, solar, and topographic effects, particularly if
longs to a homogeneous region. In this case, it is reasonable comparisons are to be made to laboratory or field reflectance
to assume that the pixels are statistically independent. This spectra for classification.
assumption allows the evaluation of p(X��i) as the product To convert remote sensing data to reflectance, one must

first correct for the additive and multiplicative factors in Eq.
(1). Even though in some circumstances (e.g., multitemporal
analysis) this correction may be useful for all spectral data, it

p(X|ωi) = p(X1, X2, . . ., Xm|ωi) =
m∏

j=1

p(X j|ωi ) (31)

is especially critical for hyperspectral imagery when the in-
tention is to use narrow band spectral absorption features inSplit and Merge
a deterministic sense because

Seeking more efficient methods for region-based image seg-
mentation has led to the development of split-and-merge ap- 1. narrow atmospheric absorption bands have a severe ef-
proaches. Here the image is repeatedly subdivided until each fect on corresponding sensor bands, and
resulting region has a minimum homogeneity. After the re- 2. some algorithms for physical constituent estimation, ei-
gion-splitting process converges, the regions are grown as pre- ther in the atmosphere or on the Earth’s surface, re-
viously described. This approach is more efficient when large quire precise measurements of absorption band loca-
homogenous regions are present. However, some segmenta- tions, widths, and depths.
tion detail may be lost. See Cross et al. (32) for an example of
split-and-merge image segmentation. The computation burden for calibration is, of course, much

larger for hyperspectral imagery than it is for multispectral
Hybrids of Edge Detection and Region Growing

imagery.
In one effective calibration technique, the empirical lineA number of approaches have been offered for combining edge

detection and region growing. Pavlidis and Liow (33) perform method (37), the sensor values are linearly correlated to field
reflectance measurements. In this single process, all the coef-a split-and-merge segmentation such that an oversegmented

result is produced and then eliminate or modify region bound- ficients in Eq. (1) are determined except for topographic shad-
ing. Obtaining field reflectance measurements is difficult andaries based on general criteria including the contrast between

the regions, region boundary smoothness, and the variation expensive at best, so a number of indirect within-scene ap-
proaches have also been used.of the image gradient along the boundary. LeMoigne and Til-
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An example of the use of within-scene information to
achieve a partial calibration of hyperspectral imagery is
termed flat-fielding (38). An object that can be assumed spec-
trally uniform and with high radiance (‘‘white’’ in a visual
sense) must be located within the scene. Its spectrum as seen
by the sensor contains the atmospheric transmittance terms
of Eq. (1). If the data are first corrected for the haze level, or
if it can be ignored (at longer wavelengths such as in the NIR
and SWIR), then a division of each pixel’s spectrum by the
bright reference object’s spectrum will tend to cancel the solar
irradiance and atmospheric transmittance factors in Eq. (1).
An example is shown in Fig. 8. The data are from an Airborne
Visible-InfraRed Imaging Spectrometer (AVIRIS) flight over
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Cuprite, Nevada, in 1990. The mineral kaolinite contains a
Figure 9. Definition of spectral absorption features in hyperspectraldoublet absorption feature centered at about 2180 nm, which
data. After an absorption band is detected in the spectral data, these

is masked in the at-sensor radiance data by the downward features can be measured and compared with the same features de-
trend of the solar irradiance. An atmospheric carbon dioxide rived either from labeled training pixels within the image itself or
absorption feature can also be seen at 2060 nm. After the flat- from library spectral reflectance data. For surface materials with
field operation, the relative spectral reflectance closely characteristic absorption bands, this approach can considerably re-

duce the amount of computation required for classification of hyper-matches a sample reflectance curve in shape, including no at-
spectral imagery.mospheric absorption features. The reflectance magnitude

does not agree because the flat-field correction does not cor-
rect for topographic shading [the cosine term in Eq. (1)].

After the hyperspectral data are normalized in this way, it operations such as a spectral derivative and then calculate
is possible to characterize the surface absorption features by the depth and width of those minima. Zero crossings in sec-
such parameters as their location, depth (relative to a contin- ond-order derivatives and a spectral scale-space can also be
uum, which is a hypothetical curve with no absorption fea- used to detect and measure significant spectral absorption
tures), and width (Fig. 9). These features can be used to dis- features (40).
tinguish one mineral (or any other material with narrow
absorption features) from another (39). The feature extraction Classification and Analysis of Hyperspectral Data
algorithms first detect local minima in the spectral data using

Data in higher-dimensional spaces have substantially differ-
ent characteristics than that in three-dimensional space, such
that the ordinary rules of geometry of three-dimensional
space do not apply. For example, two class distributions can
lie right on top of one another, in the sense of having the
same mean values and yet they may be perfectly separable
by a well-designed classifier.

Examples of these differences of data in high-dimensional
space follow (41). As dimensionality increases,

1. The volume of a hypercube concentrates in the corners.
2. The volume of a hypersphere concentrates in an outside

shell.
3. The diagonals are nearly orthogonal to all coordinate

axis.

When data sets contain a large number of spectral bands or
features, more than 10 or so, the ability to discriminate be-
tween classes with higher accuracy and to derive greater in-
formation detail increases substantially, but some additional
aspects become significant in the data analysis process in or-
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der to achieve this enhanced potential. For example, as the
Figure 8. AVIRIS radiance data for the mineral kaolinite at Cuprite, data dimensionality increases, the number of samples neces-
Nevada, before and after flat-field normalization, compared to spec- sary to define the class distributions to adequate precision
tral reflectance data from a mineral reflectance library (sample desig- increases very rapidly. Furthermore, both first- and second-
nated CM9). It is evident that the normalization process produces a order statistics are significant in achieving optimal separabil-
spectral signal from the image radiance data that more closely

ity of classes.matches the shape of the spectral reflectance curve. If classification
The fact that second-order statistics are significant, in ad-of image radiance data is performed with library spectral reflectance

dition to first-order statistics, tends to exacerbate the need foras the reference signal, either an empirical normalization of this type,
a larger number of training samples. For example, if one wereor a difficult calibration of the sensor radiance data to reflectance

would be required. to attempt to analyze a 200-dimensional data set at full di-
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mensionality using conventional estimation methods, many Thus, based upon the algorithms referred to previously,
one can expect to do a very effective analysis of high-dimen-thousands of samples may be necessary in order to obtain the

full benefit of the 200 bands. Rarely would this number of sional multispectral data and, in a practical circumstance,
achieve a near to optimal extraction of desired informationsamples be available.
with performance substantially enhanced over that possible
with more conventional multispectral data.Hyperspectral Feature Extraction
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