
COMPUTERIZED MONITORING identifying operational problems in rotating machinery. The
main function of soft computing technologies is to extract this

Computerized monitoring is the art of extracting information information and to identify its correlation with the condition
of the system. Computerized monitoring uses these signalsfrom a system through computer processes for various pur-

poses. Computerized monitoring and inspection encompasses and with the aid of soft computing techniques and algorithms
monitors the status of the system or its components.a wide range of applications in various industries. One com-

mon application is to evaluate the condition of a system or to With the improvements in computer technology, modern
instrumentation systems have the capacity to acquire a prodi-inspect the integrity of its components for diagnostic pur-

poses. The concept behind a computerized monitoring system gious amount of data from a wide variety of sensor types,
leaving the software component as the main standard byfor diagnosis is to provide information on component faults

by comparison of actual observations with models of normal which to evaluate a computerized monitoring system. In addi-
tion, each application would require a software componentbehavior. The approach is to seek mechanisms and proce-

dures that can detect deviations from normal operation at an with appropriate customized soft computing techniques and
algorithms that are unique to the specific application.early stage. Other applications include, but are not limited to,

control, industry automation, manufacturing processes, aero- The first basic steps in designing a computerized monitor-
ing system are tospace engineering, laboratory automation, quality control,

and robotics.
A computerized monitoring system has two major compo- 1. identify target parameters to be monitored,

nents, hardware and software. The hardware components of 2. design the structure of data acquisition hardware and
a typical computerized monitoring system consist of transduc- necessary signal preprocessing,
ers (or sensors), signal conditioning, data acquisition hard-

3. design and develop the algorithm of the soft computingware interface, and the computer itself (Fig. 1). The basic re-
component of the software and design the user interfacequirements for the hardware components are reliability,
and display format, andaccuracy, cost-effectiveness, and speed.

4. reexamine the system for reliability, cost, maintenance,The software component of the computerized monitoring
and updating capability.system should provide effective information display, deter-

mine the status of the system (i.e., pattern recognition and
diagnosis), and, if appropriate, provide decision-making capa- We will demonstrate basic concepts in computerized monitor-
bility. These components are generally designed with the fol- ing with two examples of monitoring and inspection applied
lowing items in mind: reliability, speed, visual effect (i.e., ef- in the nuclear industry. One uses signals from a data acquisi-
fective information display), user friendliness, ease of tion system and the purpose of monitoring is diagnosis and
maintenance, and provisions for upgrading. fault identification using artificial neural networks (3). The

The software component frequently incorporates soft com- other example demonstrates an inspection system for the pur-
puting technologies. Soft computing consists of methodologies pose of quality control using image analysis methodologies
that resemble the real-world model pertaining to imprecision and fuzzy logic algorithms. In addition, a brief description of
and uncertainty. The best example of a real-world model for the concept of an artificial neural network and fuzzy logic,
soft computing is the human mind. Soft computing encom- which are currently the two most popular soft computing
passes technologies including, but not limited to, expert sys- technologies, will be provided.
tems, artificial neural networks, fuzzy logic, genetic algo-
rithms, computer vision and image processing techniques,
data mining techniques, and hypermedia databases. ARTIFICIAL NEURAL NETWORKS

The input variables to a monitoring system could be any-
thing that can bear the information about the monitored ob- Artificial neural networks have become popular tools for pat-
ject. Examples are the current waveform of a circuit, output tern recognition and signal classification (4). They offer great
torque of a motor, image of an object, speed of a car, power of potential for successful application in computerized monitor-
a nuclear reactor, or position of a spacecraft. Transducers ing systems.
sense the monitored variables of the system and produce the Artificial neural networks (ANNs) are information pro-
electrical signal. Typically, these are signals that must be pre- cessing systems motivated by the goal of reproducing the cog-
processed before they are introduced into the monitoring sys- nitive processes and organizational models of neural biologi-
tem software. The preprocessing (i.e., digital signal processing cal systems. The individual computational processor that
[DSP]) may involve filtering, digitizing, sampling, or nor- makes up most artificial neural systems is referred to as a
malizing to a certain maximum value (1,2). Some technologies processing element (PE). Each PE (also called neuron) has
that are applied in DSP include, but are not limited to, filter many inputs, but has only a single output, which can fan out
design, wavelets techniques, fast Fourier transform (FFT), to many other PEs in the network. Each connection to the
time–frequency analysis, and time–scale analysis. Signals ith PE has associated with it a quantity called a weight or
from components of a system carry valuable information re- connection strength. The weight on the connection from the
garding the condition of the components or the system as a jth node to the ith node is denoted Wij. Figure 2 shows a pro-

cessing element. The specific characteristics of an ANN is awhole. For example, analysis of vibration data is helpful in

1
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Figure 1. The minimum necessary hardware
components needed to design a computerized
monitoring system and the flow of information.
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result of the network paradigm used. The network paradigm connected to the unit whose output is the biggest [Fig. 3(c)].
Weights are normalized to avoid increase without upperis specified by the network architecture and neurodynamics.
bound. Because only one unit becomes active as the winner of
the competition, the network is called a winner-take-allNeurodynamics and Learning Mechanisms
network.

Neurodynamics specifies how the inputs to the PE will be
An adaptive resonance theory (ART) network has the abil-

combined, what type of function or relationship will be used
ity to learn many new things without necessarily forgetting

to develop the output, and how the weights will be modified.
things learned in the past. Patterns of activities that develop

The inputs to the PEs are weighted and are often combined
over the nodes in the two layers of the attentional subsystem

using the summation function. This is called the ‘‘interval ac-
[Fig. 3(d)] are called short-term memory (STM) traces because

tivation.’’ This interval activation is used to generate the out-
they exist only in association with a single application of an

put of the neuron using a continuous or noncontinuous trans-
input vector. The weights associated with the bottom-up and

fer function.
top-down connections between F1 and F2 layers are called

The learning mechanism that handles modifications to the
long-term memory (LTM) trace because they encode informa-

weights and any other organization of the network can be
tion that remains a part of the network for an extended

classified under supervised learning, unsupervised learning,
period.

or self-supervised (reinforcement) learning. Supervised learn-
Among the different rules and procedures developed, the

ing takes place when the network is trained using pairs of
handful mentioned here are accepted by the community:

inputs and desired outputs. In unsupervised learning inputs
backpropagation, counterpropagation, Kohonen feature maps,

are entered and the network is able to organize its own cate-
bidirectional associative memory, neocognitron, Hopfield, and

gories. Self-supervised learning adds the feedback to unsuper-
adaptive resonance theory, including ART2, ART2-A,

vised learning to correct errors in the pattern recognition
FuzzyART, ARTMAP, and FuzzyARTMAP (6,7).

process.
Supervised neural networks do not require a prior fault-

related parameter to be identified and generate their own
Network Architecture

rules by learning from being shown original examples. This
characteristic of the artificial neural network makes it attrac-The network architecture defines the arrangement of pro-

cessing elements and their interconnections. This establishes tive for monitoring purposes and diagnostic applications.
which PEs are interconnected, the inputs to and outputs from
PEs, the group or layers of PEs, and how the information AN EXAMPLE OF COMPUTERIZED MONITORING
flows in the network. Figure 3 shows several examples of neu- SYSTEM FOR DIAGNOSIS
ral network architectures.

One of the most popular feedforward neural networks that Keyvan et al. (3) have developed a prototype of a simple diag-
iteratively determines the weight is the backpropagation Net- nostic monitoring system using several artificial neural net-
work (BPN) [Fig. 3(a)]. A simple learning algorithm that mod- works. The system integrates the result of neural network
ifies the weights between output and hidden layers is called pattern recognition with a preexisting database to classify
a delta rule (5). The backpropagation algorithm is an exten- faulty signal and through an expert system to identify the
sion of the delta rule that can train the weights, not only be- fault. The system is developed in an X-windows environment
tween output and hidden layers but also in hidden and input and uses Motif in a UNIX environment to build the graphical
layers. A sequential network feeds its output back to the in- user interface (GUI). It is user-friendly and menu-driven,
put units of the network [Fig. 3(b)]. A competitive neural net- allowing the user to select signals and choose several neural
work is a kind of unsupervised network. It employs a com- network paradigms including ART2 and ART2-A. The system
petitive learning algorithm that strengthens the weights provides the status or condition of the signals tested as either

normal or faulty. In the case of faulty status, the system iden-
tifies the fault and indicates the progress of the fault relative
to normal as well as relative to the previous tests.

The signals used here are divided into two groups, the ac-
tual collected signal and the simulated signals. The collected
signal is the pump power signal of the Experimental Breeder
Reactor-II (EBR-II) nuclear plant; it was collected from the
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sensors by the plant data acquisition system on 1/29/91. This
signal is used to simulate and generate faulty signals repre-Figure 2. A processing element and its components. Two mathemati-
senting several levels of reactor pump shaft degradation. Fig-cal functions (� and F) are applied to the input in order to create the

output. For a Sigmoid transfer function: F � (1 � e��)�1. ure 4 shows the plot of the collected signal data and a faulty
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Figure 3. Examples of neural network architec-
tures: (a) feedforward neural network, (b) sequen-
tial network, (c) competitive network, (d) ART neu-
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signal data for a 50 s time period. A comparison of these two monitoring system output showing a typical information
display.plots reveals the sensitivity that is required of a soft comput-

ing algorithm to distinguish these signal patterns.
The neural network runs in the background and classifies

the given input signal into one of three categories : normal, FUZZY LOGIC
faulty, or unknown signal. When the signal is identified as
normal or faulty, a status report is displayed as shown in Fig. Fuzzy logic is often incorporated in a computerized monitor-

ing system to better model the causal effect between a system5. Note that, in the case of the faulty status report, a sample
plot of the normal signal is also shown for comparison. A de- condition and its measurable signal variables.

In the real world, we often must deal with fuzzy conceptsscription of the fault can be obtained by selecting the Describe
Fault button shown in Fig. 5. The fault description corre- or variables such as high speed, low temperature, and strong

signal. Fuzzy logic provides a means to specify fuzzy concepts.sponding to the current faulty signal is identified from the
existing fault data base and is displayed at this point. The Fuzzy theory provides a means for representing these uncer-

tainties and this vagueness. In fuzzy logic, the domain of eachfaults are described as ‘‘Degradation Level 1,’’ ‘‘Degradation
Level 2,’’ etc. When a new fault different from the ones cur- variable is quantified into a finite number of fuzzy concepts.

For example, the variable temperature may be fuzzily quanti-rently registered in the database is encountered, the fault de-
scription will be ‘‘Unidentified fault,’’ as shown in Fig. 6. Fig- fied into low, medium, and high. Application of fuzzy logic is

most suited in (1) very complex models where understandingures 5 and 6 are the actual computer screen of the diagnostic
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Figure 4. (a) Plot of pump #1 collected power signal for a 50 s time period; (b) plot of pump #1
simulated faulty signal for a 50 s time period.
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is strictly limited or, in fact, quite judgmental, and (2) pro-
cesses where human reasoning, human percepiton, or human
decision making are inextricably involved.

Implementing fuzzy systems into computerized monitoring
often relies on a substantial amount of heuristic observation
to express the behavior of the system. However, the practical
development of such systems presents two critical problems:
finding the domain-dependent rules and tuning these rules
and their membership functions (8). The conventional method
first generates the initial rules and their membership func-
tions and then refines the rules and membership functions to
optimize the final system’s performance by trial and error.
The input features (signals) are mapped into the fuzzy mem-
bership value based on the fuzzy membership function (fuzzi-
fication). A membership value describes the degree of which
the current parameter belongs to the defined category.

As an example, a fuzzy system with two noninteractive in-
puts x and y (antecedents) and a single output z (consequence)
is described by a collection of r linguistic IF-THEN proposi-
tions. The fuzzy rule has the following format:

IF x is Ak
1 and y is Ak

2 THEN zk is Bk for k � 1, 2, . . ., r

where Ak
1 and Ak

2 are the fuzzy sets representing the kth ante-Figure 5. User interface showing the status report of a faulty signal.
cedent pairs, and Bk are the fuzzy sets representing the kthBy choosing the ‘‘Describe Fault’’ option button, the user is provided

with another window describing the nature of the fault, i.e., ‘‘Degra- consequence. zk is the fuzzy variable, and Bk is a fuzzy quanti-
dation Level 3’’ in this case. fier for the domain of zk.

The fuzzy system maps an input to an output in three
steps. The first step matches the input to all the IF-part fuzzy
sets in parallel. This step ‘‘fires’’ or ‘‘activates’’ the rules ac-
cording to the degree to which the input belongs to each IF-

Figure 6. User interface describing a faulty signal outside of the database. By selecting the
‘‘yes’’ option, the user is provided with an entry box to describe the new fault.
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Figure 7. Graphical (max–min) inference method with crisp input (X, Y). The inference in this
example is done for each rule with a minimum membership function, resulting in the shaded
area of the triangles. The final output is the result of aggregation of the two shaded areas based
on the disjunctive relations between these two rules.

part set. Each input fires a corresponding rule or rules. Then The pictorial representation of the fuzzy mapping process
with the input of x and y is shown in Fig. 7. Because theeach fired IF-part set scales its THEN-part set. The second

step adds all scaled THEN-part sets into a final output set. antecedent pairs given in the general rule structure for this
system is connected by a logical and connective, each rule ap-The third step is defuzzification. The system computes the

output as the centroid or center of gravity of this final out- plies the THEN part with a minimum membership grade. The
minimum membership value for the antecedents propagatesput set.

Most fuzzy systems involve more than one rule. The pro- through to the consequence and truncates the membership for
the consequence of each rule. The inference (process ofcess of obtaining the overall consequence (conclusion) from

the individual consequence contributed by each rule in the applying fuzzy system) is done for each rule. Then the trun-
cated membership functions for each rule are aggregated. Forrule base is known as aggregation of rules. Fuzzy systems

differ in how they fire rules and how they combine the fired a set of disjunctive rules, the aggregated output for a max–
min inference or composition is given byrules. Aggregation strategy is based on the two extreme ex-

isting cases—conjunctive system and disconjunctive system.
In the case of a system of rules that must be jointly satis-

fied (conjunctive), the rules are connected by and connectives.
In this case, the aggregated output (consequence) y is found

µ(Z) = max[min[µz1(input(x)), µz1(input(y))],

min[µz2(input(x)),µz2(input(y))] · · ·
min[µzr(input(x)),µzr(input(y))]]by the fuzzy intersection of all individual rule consequent.

The overall output membership function is
where r is the number of the rules that have been activited.

µz(z) = min[µz1(z), µz2(z), . . ., µzr(z)]
An Example of Software Component of Computerized
Monitoring System for InspectionFor the disjunctive system of rules where the satisfaction of

at least one rule is required, the rules are connected by the Our second example demonstrates a computerized inspection
or connectives. In this case, the aggregated output is found of quality of a nuclear fuel pellet. Fabricated pellets must be
by the fuzzy union of all rule contributions, as of high quality before being placed into the fuel assemblies

and into service in the core of a nuclear reactor. Computerized
µz(z) = max[µz1(z),µz2(z), . . ., µzr(z)] inspection in this application is expected to increase accuracy

and speed of inspection and will reduce the radiation expo-
Suppose we have the two following fuzzy rules that are acti- sure of the workers. The structure of this computerized in-
vated for input (x, y) in the fuzzy system. spection system is shown in Fig. 8.

First, the input signal (the image of the fuel pellet) is ac-
quired (using a camera) and converted to the digital signal;Rule 1. IF X is low and Y is low, THEN Z is low.

Rule 2. IF X is high and Y is high, THEN Z is high. then, it is converted to an 8-bit gray-scale mode. Next a refer-
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Figure 8. The structure and components of the computer-
ized inspection system. The input images are created using
a camera. Important features are extracted using machine
vision techniques. The final results are obtained by
applying artificial intelligence techniques to these ex-
tracted features.
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ence model is generated to check the presence of a defect on By using this dynamic model search approach, a defect is
enhanced for the next step (i.e., pattern recognition). Next,the pellet image. For the nuclear fuel pellet, it is challenging

to generate a universal model representing a good pellet to be six features are extracted from this enhanced defect informa-
tion pool. Table 1 lists these features and their relations withchecked against a defective pellet image. This is because the

gray-scale value of the pixels on the same area for any two the status of the input image, where each possible status of a
pellet can be uniquely identified from the corresponding fea-good pellets may vary greatly because of the high noise, dif-

ferent manufacturing process, and small variations in pellet ture values. Each value of the feature, which is a fuzzy mem-
bership value, encodes the quality criteria of a fuel pellet.size. For this reason, a dynamic reference model is generated

on-line for each pellet individually. The relation between pellet status and feature value,
which are fuzzy rules, map the human inspection knowledge.The shape of gray-scale intensity distribution of the pellet

image reflects the presence of a defect very well. A dynamic The IF-THEN fuzzy rules are:
reference is generated by finding those rows of pixels with a

IF Abnormal dark area size is big;distribution very close to that of a good fuel pellet. A set of
∧ Abnormal light area size is zero;good fuel pellets was selected, and their distribution surface
∧ No related closing abnormal dark area and lightwas processed to create the reference surface model. Each row

area;of the target image is used to match the distribution of this
∧ Shape factor is small;reference model by using

THEN
Banded defect.

S = 1.0 −
r

(Ir1 − I1)2 + (Ir2 − I2)2 + · · · + (Im − Im )2

m
FUTURE OF COMPUTERIZED MONITORING

where AND INSPECTION

S � the degree of match; Each soft computing technique has unique properties and ad-
m � the number of total pixels in each row of fuel pellet vantages. Hence, increasing integration of a number of such

image; techniques into a computerized monitoring system is antici-
Ii � the intensity of ith pixel in the current row; and pated in the near future (9,10). For example, as already men-
Iri � the intensity of ith pixel in the rth reference model. tioned, neural networks consist of highly interconnected

processing units that can learn and globally estimate input–
output functions in a parallel-distribution framework. FuzzyThe best matching row is selected as the dynamic standard

reference to reexamine the entire pellet image. Those pixels logic systems store and process rules, with output fuzzy sets
associated with input fuzzy sets in parallel. The similar paral-whose intensities are below or above the reference value (be-

yond a preselected tolerance value) are regarded as abnormal lelism properties of neural nets and fuzzy logic systems make
their integration more suitable to the study of the behavior ofpixels and are classified into two categories—abnormal dark

and abnormal light. We call those pixels above the reference systems that are imprecisely defined by virtue of their high
degree of complexity. Because of their great learning capabil-distribution abnormal light and those below the reference dis-

tribution abnormal dark. ity, neural networks have been combined with fuzzy logic sys-

Table 1. Relationships Between Fuel Pellet Condition and Feature Value

Fuel Pellet Size—Abnormal Size—Abnormal Closeness of Dark Shape Factor of Distance (relative
Condition Dark Area Light Area Area to Light Area Dark Area to end of pellet)

Good Zero Zero —a —a —a

End defect —a Big —a —a Big
Banded Big Zero Zero Small —a

Crack Big Zero Zero Big Small
Chipped Big Big Big Small —a

a No relation exists.
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Table 2. Listing of Vendors of Sensors, Transducers, and Data Acquisition Boards

Production Company Comments

Acceleration sensors, chemical sensors, Motorola Sensor Products Division Sensing acceleration and deceleration for auto-
pressure sensors, biomedical sensors Motorola Literature Distribution motive, industrial, and commercial applica-

P.O. Box 20912 tions
Phoenix, AZ 85036
http://design-net.com/senseon/

Pressure sensors, disposable medial sen- Lucas NovaSensor Sensing the solid state pressure
sor, integrated accelerometer 1005 Mission Court

Fremont, CA 94539
(800) 962-7364
(510) 661-6000
http://www.novasensor.com/

Position sensors BEI Sensor & Systems Company A major supplier of inertial sensors and sub-
Industrial Encoder Division systems throughout the aerospace, vehicle
7230 Hollister Avenue dynamic control, navigation, intelligent
Goleta, CA 93117 cruise control, precision farming and vehicle
(805) 968-0782 location systems, and so on
http://www.systron.com

Shock sensors, airbag sensors, ultrasonic Murata Erie North America Provides various kinds of sensors
sensors, pyroelectric infrared sensors, 2200 Lake Park Drive
temperature sensors, rotary sensors, Smyrna, GA 30080
magnetic pattern recognition sensor, http://www.iijnet.or.jp/murata/
electric potential sensors

Sensor highway Vibra�Metrics, Inc. Provides access to hundreds of predictive
1014 Sherman Avenue maintenance and process sensors using the
Hamden, CT 06514 industry standard Sensor Highway. Vibra-
(203) 288-6158 larm is a PC-based software package that

drives Sensor Highway and acquires sensor
data for supervisory alarm reporting

Data acquisition boards American Data Acquisition Corporation Provides boards that work with DriverLink,
70 Tower Office Park Snap-Master, LABTECH NOTEBOOK, Lab-
Woburn, MA 01801 VIEW, and LabWindows/CVI

Data acquisition boards ComputerBoard Inc. Provides UniversaLibrary Programming’s in-
125 High Street terface for Windows and DOS languages
Mansfield, MA 02048 such as C/C��, Visual Basic, Borland
(508) 261-1123 C/C��, Watcom C, and Pascal

Data acquisition boards, signal condition- National Instruments Company This company is well known for its software
ing products 6504 Bridge Point Parkway products such as LabVIEW and

Austin, TX 78730 LabWindows/CVI
(512) 794-0100
http://www.testardmeasurement.com

tems to form the initial rules of fuzzy systems and tune the
rules and membership functions to manage the fuzzy system
efficiently and accurately. In addition, fuzzy microprocessors,
called fuzzy chips, have been successfully applied in control
and robotics. Hence, it is natural to predict a more intense
future application of integrated neural networks and fuzzy
logic in computerized monitoring and inspection. In addition,
soft computing technologies are the core of computerized mon-
itoring and inspection. Therefore, it is expected that new ad-
vancements in these technologies, such as computer vision
and data mining techniques, would greatly affect the future
of computerized monitoring and inspection.

RESOURCES AND VENDOR INFORMATION

Information on several vendors of sensors, transducers, and
data acquisition boards useful in computerized monitoring ap-
plications are provided in Table 2. This is not an exhaustive
list of all vendors. Table 3 provides a sample of resources on
the subject of computerized monitoring and inspection for in-
terested readers.

Table 3. A List of Related Resources on Computerized
Monitoring Technology

Web address http://www-dsp.rice.edu
Journal Expert Systems with Applications

Journal of Acoustic Emission
Artificial Intelligence in Engineering
Computers & Industrial Engineering
Control Engineering Practice

Conference International Conference on Monitoring, Acoustics
Speech, and Signal Processing

International Conference on Robotics and Auto-
mation

International Conference on Intelligent System Ap-
plication to Power System

Transactions IEEE Transactions on Power Systems
IEEE Transactions on Professional Communication
IEEE Transactions on Control Systems Technology
IEEE Transactions on Instrumentation and Mea-

surement
IEEE Transactions on Fuzzy Systems
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