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panies, organizations, and even individuals who carry such
toll-free numbers has become excessively large. Therefore the
provision of effective MMDs for the satisfaction of such user
requirements is a major concern and a challenging technical
task.

There are a number of key differences between MMDs andDATABASE ARCHITECTURES
conventional database systems. In MMDs, access structures
can facilitate the retrieval of data items by traversing andThe ongoing tremendous market changes that have led to a

global economy have forced designers of modern information checking memory locations, while in disk-based databases,
most of the retrieval process is centered around input/outputsystems to adopt innovative computing architectures. The

service sector of the economy, which includes companies in (I/O) operations. In a disk-based system, the costs of disk–
access can be amortized by clustering data so that pages canthe financial services, telecommunications, air transportation,

retail trade, health care, banking, and insurance, is a heavy be accessed sequentially, while in MMDs, data are often
fetched randomly. Finally memory banks are volatile and can-user of such information systems (1). For businesses and or-

ganizations, the deployed computing systems as well as the not maintain their stored information if there is a disruption
of power. Although it is possible to use nonvolatile memories,used applications and data constitute their lifeline in today’s

global market. And, as corporations continuously adapt in an such an option is considered to be not cost-effective.
In client–server computing environments, a number of cli-ever-changing business world, they become more dependent

on their computing infrastructure. ent processes typically running on small machines (i.e., desk-
tops, laptops) interact with one or more server processes us-The increasingly complex information needs of modern

organizations and corporations with many geographically dis- ing an underlying interprocess communication system. This
interaction is inherently recursive in nature, since a serverpersed branches can only be met by the use of versatile data-

base architectures. These architectures must harness high- may become the client of another service site, and it has re-
sulted in integrated systems that allow for distributed accessperformance computing resources and take advantage of

much improved and widely available networking options. of data, computing, and presentation of results. Windowing
systems are often run on the client sites, allowing for easySuch specialized configurations are deployed in order to help

reduce system response times, increase productivity, and en- interface with application packages as well as querying of
data. The latter can be done by using standard query lan-hance throughput rates. In this regard main-memory data-

bases (MMDs) have been developed to service the areas of the guages such as SQL or specialized data-exchange protocols
between clients and data sources. Interprocess communica-economy that call for exceedingly good transaction response

times. Client–server systems and databases (CSSs/CSDs) tion abstractions are used to provide the transport layer
among the various sites involved. Once clients have obtainedhave increased productivity through the use of the existing

infrastructure in conjunction with internetworking software. their desired data/results, they can choose to immediately use
these data or/and cache them for further analysis and futureFinally parallel databases (PDBs), built around the notion of

tightly coupled computing and storage components, have re- reuse.
Server processes typically offer services that range fromsulted in systems that demonstrate very high throughput fea-

tures. Earlier implementations of PDBs were called database simple file system request handling and provision of CPU-
intensive computation to complicated information retrievalmachines. Here we examine the requirements, review the sa-

lient characteristics, and discuss a number of research issues and database management. Indeed, a client may indepen-
dently request services from more than one server at thefor the above three families of database systems and their

underlying data architectures. same time. Servers continuously monitor (‘‘listen’’ to) the net-
work for incoming requests and respond to those receivedMain-memory databases (MMDs) assume that most, if not

all, of the operational data remain in volatile memory at all from clients by providing the required service. Servers at-
tempt to satisfy incoming client requests by creating and exe-times. Disk–resident database copies are mostly used to re-

cover from either a disaster or an accident (2). There exist a cuting concurrent tasks. The application programmatic inter-
face of servers hides their internal functionality andlarge number of applications in the service sector that call for

MMD support in order to function according to predefined organization, as well as the idiosyncrasies of the operating
systems and hardware platforms used. Hence servers can nottight performance requirements. Environments where such

applications are commonplace include securities trading, only be providers of services but also repositories of programs,
managers of data, and sources for information and knowledgemoney market transaction systems, and telecommunication

systems. In the financial area, transactions need to complete dissemination.
The wide availability of multiple-processor computers of-in real-time, and this can be achieved only if the underlying

database system avoids long delays caused by interaction fers opportunities for parallel database systems that demon-
strate substantially improved throughput rates. Since futurewith mechanical parts. Furnishing ultrafast data access and

transaction processing in the above environments is only pos- databases will have to manage diverse data types that include
multimedia such as images, video clips, and sounds, theysible if the deployed data architectures avoid interaction with

external storage devices (i.e., disks). Accessing main-memory should be able to efficiently access and manipulate high vol-
umes of data. The projected volume increase of today’s data-resident data is in the order of nanoseconds, while accessing

disk-based data requires possibly tens of milliseconds. Along bases will only be possible to handle through the use of multi-
processor and parallel database architectures. Suchthe same lines a customer of a telephone company desires

that an 800-call be completed within acceptable time con- architectures could also be used in conjunction (undertaking
the role of specialized servers) with client–server configura-straints. The size of the customer base and the volume of com-
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tions in order to bring to the desktop unmatched CPU and occurs. However, these types of services are not inexpensive,
and they may also suffer from overheating. In light of thestorage capabilities.

Parallel database architectures can partially address the above, a MMD should be developed in a way that trades off
the consistency between the in-core data and the disk–I/O bottleneck problem that ultimately appears in all central-

ized systems. Instead of having the actual data reside in a resident data with the overhead required for continuous
backups.few large devices, parallel database architectures advocate an

increase in parallel data transfers from many small(er) disks. If one considers the universality of the 80%–20% rule, then
it is evident that the whole database does not need to be inWorking in conjunction with different parallel I/O buses, such

disks can help diminish the average access time as long as main-memory. Actually only the hot parts of the data can re-
main in-core, while the less frequently accessed items can bedata requests can be fragmented into smaller ones that can

be serviced in a parallel fashion. Two possible mechanisms disk-based. The distinction between hot and cold(er) parts of
databases is, in a way, natural. For instance, the values ofused to increase performance rates in such systems are in-

traoperation and interquery parallelism. The former allows traded securities have to be always maintained in main-mem-
ory, whereas background information about corporations andfor the decomposition of a large job into identifiable smaller

pieces that can be carried out by a group of independent pro- their operations need not.
cessors and/or I/O units; the latter enables the simultaneous
execution of multiple queries. Parallel databases can also be Organization of MMD Components
classified in terms of their degree of parallelism: coarse or fine

Memory Data Representation and Organization. Issues re-granularity. In coarse granularity parallelism, there is a
lated to MMD data layout and management have been par-small number of processors per system (often two or four) cou-
tially addressed in the development of conventional data-pled with a few (less than five) disk units. A fine granularity
bases, specifically in the development of system catalogs.parallel system may contain tens or even hundreds of pro-
Objects in such catalogs have to be handled in a very differentcessing elements and I/O devices.
way than their disk-based counterparts; these subsystems areIn this article we discuss the specific requirements and ex-
organized so that optimal times are achieved in terms of ac-amine the key features of the above three database architec-
cess and response times. To maintain this type of fast interac-tures. We discuss issues related to data organization and rep-
tion, their development is centered around variable lengthresentation, query processing and optimization, caching and
structures that use mostly pointers to the memory heap.concurrency control, transaction handling and recovery. We

Tuples, objects, and many other types of data items whenthen discuss main-memory databases, client–server, and par-
they are disk–resident can be accessed through ‘‘object identi-allel databases. The article ends with a summary.
fiers’’ (OIDs). The task of a database system is essentially to
translate an OID to the address of a block/page. Once the
item in discussion is brought into main-memory, accessing isMAIN-MEMORY DATABASES
typically facilitated by a hash table that maps the OID to an
address in main memory. When an application references anMain-memory databases (MMDs) feature all the conventional
object (in the ‘‘shared’’ database buffer space), a copying oper-elements that one would expect in a database system, namely
ation has to be carried out. This copying operation brings thedata organization, access methods, concurrency and deadlock
object into the address space of the application and is carriedmanagement, query processing and optimization, commit pro-
out with the help of an interprocess communication mecha-tocols and recovery. In standard database systems most of
nism. Thus there is a nonnegligible penalty involved in car-these operations and functionalities are designed around the
rying out the above ‘‘conversion’’ in address space every timemovement of data blocks/pages in the memory hierarchy. In
there is a reference to an object. Instead of performing thean MMD the fundamental difference is that its components
above steps, what modern systems tend to do is to ‘‘swizzle’’are designed to take advantage of the fact that data do not
database objects (3).need to be transferred from disks. Schemes for data organiza-

In swizzling, disk-based object layouts, such as tuples oftions in MMDs are of major importance. In this direction,
certain constant length and representation, are transformeddata swizzling is an important step: As soon as a (complex)
into strings of variable length. User applications are provideddata item is retrieved from the disk to main-memory, applica-
with access to these variable length strings through directtions can access it through a ‘‘direct’’ pointer. Along the same
pointers. The key performance question in swizzling is to de-lines, while conventional query optimizers try to minimize the
cide whether it is profitable to convert OID references to ob-number of accessed blocks, MMDs attempt to optimize their
jects in main-memory, with direct pointers. Moreover there isquery processing tasks by reducing the CPU cycles spent on
a certain cost to be considered when swizzled data have to beeach task. Finally, commit and logging protocols in MMDs
stored back on the long-term memory device, since the re-have to be designed carefully so that they do not create un-
verse process has to take place (i.e., objects have to be unswiz-necessary bottleneck points.
zled). Unswizzling is done during the save phase of the objectThe main point of concern for MMDs is that either a crash
access operation.or an unexpected power outage may disrupt mission critical

For operations that involve OIDs and are computationallyoperations. Unlike disks, memories become oblivious of their
intensive, there are numerous options that a system designercontents once power is lost. Therefore it is absolutely critical
could pursue. The success of these options depends on thethat frequent backups are taken so that the integrity of data
types of operations and the composition of the workloads thatcan be guaranteed at all times. Naturally memory banks with
the MMD receives. In particular, objects brought into mainuninterruptible power supply (UPS) can be used to keep the

memory afloat for some time even after a disruption of power memory could be simply copied, swizzled in place, or copy-
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Figure 1. Starburst’s main-memory

DBstart

Segment
table

Table lock
control blocks

Partition
table

Heap
space

2nd field

4th field

Free
space

Record
array
space

Record
descriptor

..
..

..
..

.

..
..

..
..

.

..
..

..
..

management.

swizzled. Copy-swizzling allows the image of the object in the various fields of the record in the heap area. Before values of
MMD–buffer to remain intact. In-place swizzling avoids mak- the various fields are used by applications, they have to be
ing an extra copy of the object in main-memory and therefore copied over into the applications’ space. By keeping all the
reduces the CPU costs involved. There is a trade-off between storage structures in main memory, the path length of ac-
the CPU–overhead savings and the overhead required to un- cessing a data item becomes much shorter as compared to a
swizzle objects before they are flushed into the disk–manager. disk-based database organization.
On the other hand, copy-swizzling may present some savings Continuous additions and modifications of tuple attributes
as only modified objects need to be unswizzled before they are will ultimately require space that is not currently available
written out to the long-term memory. Also, depending on the in the partition. In this case the newly expanded tuple will
way objects are brought into main-memory, swizzling can be have to be physically moved into another partition. Such a
either eager or lazy. Although the cost of swizzling may at movement could be easily accommodated as long as there are
first appear small, it is evident that if thousands of objects no references to the augmented record. Tombstones are used
are accessed at the same time, then there might be significant in this context in order to avoid undesirable lost references.
cumulative penalties. On the other hand, if swizzled-pointers As expected, tombstones augment the path length of the exe-
to objects are dereferenced more than once, then the benefits cution as references go through an additional cycle in order
of swizzling can be sizable (4). to detect possible encounter of tombstones, and there is some

The organization of MMDs is an area of prime concern be- space overhead as well. A possible way to overcome the disad-
cause data have to be always accessed in an efficient manner. vantages of tombstoning is to assume that field pointers can
In Starburst there is a dedicated main-memory database com- span across partitions.
ponent termed MMM (5), which does not use swizzling and The administration of the partition space is done by adopt-
attempts to optimize access to the data using T-trees (6). The ing a scheme where four partition classes are introduced in
key main-memory element of MMM is a partition which is a terms of available capacity: those with available capacity up
fixed size unit of memory allocation (Fig. 1). In spirit, MMM to 500 bytes, those with 500 or more bytes available, parti-
partitions are very similar to pages, they are only different in

tions with 2000 or more bytes free, and finally partitions withterms of their sizes, which range from 64 K to 256 K. Parti-
more than 10,000 bytes of free space. A partition may belongtions are dynamically allocated, and they constitute the main
to one or more such classes. Depending on the degree of theunit of recovery. Partitions are clustered together into seg-
expected growth of the record(s), a suitable data partition isments. Segments are areas of memory whose sizes (i.e., sum
selected to place a record in. If there is no space available inof partitions) are variable.
the current partition, then a new partition is allocated.Records are identified by record identifiers (RIDs) which

The Dalı́ main-memory manager (7) exploits the idea ofconsist of three parts: segment number, partition number,
memory mapped I/O. Specifically, most Unix implementa-and offset within the partition. The fields of a record are
tions offer the system call mmap( ). Memory-mapped I/Oheap–resident. They can be addressed through an array of
allows the system to map disk–resident files in main-memorypointers (i.e., the record descriptor). The record descriptor pro-
buffers. Once the mapping has been carried out, reading ofvides the means for representing data tuples in the context of
bytes from the buffer automatically corresponds to fetchinga Starburst partition. If the number of attributes of a tuple
the corresponding data from the disk file. In the same fashion,changes, then a special tail structure is used. This tail struc-
whenever data are stored/set in this buffer area, the corre-ture extends the record representation in the heap.
sponding modified bytes are written back to the disk file. AAccessing a specific record is facilitated by using the corre-
file can be memory-mapped by many processes. If a file issponding RID to identify both segment and partition within
memory-mapped to a shared virtual memory area, then Dalı́the overall main-memory structure. Once inside the partition,
multiple-users are provided with access to a file with sequen-then the offset is used to reach the record’s slot. The slot is

essentially a descriptor/translation mechanism to get to the tial consistency guarantees. Consequently Dalı́ advocates that
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Figure 2. Dalı́ database file organization.

MMDs be organized in distinct ‘‘database’’ files with each file Query Processing. The fact that data are resident in main-
memory has ramifications on the way query processing is car-containing related data.

Figure 2 depicts the organization of a Dalı́ database file. ried out. While in traditional query processing the dominant
cost is that of the involved disk I/O operations, the CPU com-The space of a file is classified into areas (or partitions) whose

functionality is fundamentally different from those of Star- putation cost becomes a major factor in MMDs. Therefore ap-
proaches based on CPU-cost optimization for query processingburst. The ‘‘partition table’’ indicates the borders of these

areas, and it is super-user writable only. The descriptors of have been suggested (2,10,11). However, modeling CPU costs
is not an always easy task. Costs may vary substantially de-the various individual database file items are provided by the

‘‘meta-data partition.’’ The structure of this partition is shown pending on the hardware platform, the style of programs that
carry out the operations, and the overall software design (12).in the right-hand side of Fig. 2. Data–pointers are used to

point to data items that reside in the data partition. The lat- In addition there are interesting trade-offs between the
amount of CPU processing required and the memory bufferter is a user-writable area, since individual processes can

modify the content of data objects. The free and overflow space reserved for indexing purposes.
In conventional query optimization, there have been nu-areas of a file are used when there is need for data and meta-

data space, respectively. Naturally the cost of mapping data- merous efforts to efficiently process queries—and in particu-
lar joins—by preprocessing one (or more) of the participatingbase-pointers—as the ones just mentioned—to virtual mem-

ory addresses could be reduced by swizzling. However, Dalı́ relations. For instance, ordering both relations by their join-
ing attribute offers significant savings. In MMDs such ap-does not provide this feature, since it would complicate the

implementation of its concurrency schemes (7). proaches lose most of their appeal, since the traversal of
pointers provides very fast access. Sorting relations, beforeThe internal data representation is not the only core issue

in MMDs that needs to be considered. Different indexing the eventual join is performed, may not be a reasonable op-
tion because it can impose additional and unnecessary over-schemes have to be used as well. Although the B�-tree struc-

ture is one of the most acceptable indexing options for conven- heads in terms of CPU-processing and space used. Instead,
the outer relation can be traversed sequentially, and the join-tional disk-bound operations, it loses some of its appeal when

it comes to main-memory resident data. Instead, AVL trees ing attribute value can be used to access the appropriate join-
ing tuples from the inner relation (12). This access is facili-can be used, since they offer elegant rebalancing operations

in the light of updates, and logarithmic access times (8). T- tated by the traversal of navigational pointers provided by
the MMDs, as mentioned earlier in the context of Dalı́ andtrees (6) have been designed for main-memory databases and

the utilization of their node space is user-specified. They also Starburst. Hence the sort–merge approach is not used for join
processing in main-memory databases. Further it not only re-exploit pointers to traverse the tree structure fast. Other

structures such as BB-trees, skip–lists, and deterministic quires extra space to accommodate pointers that denote the
sorted order of relations but also CPU time to carry out theskip–lists can be used efficiently to access data in memory

(9). An additional advantage of all these structures is that the actual sorting (10). A number of elegant algorithms used to
join relations and/or views by exploiting pointers are dis-key values do not need to be part of the internal node. In-

stead, a pointer or a record ID can be used to point to the cussed in Ref. 13.
A query optimizer that has been specifically developed forrequired key value. Most of the methods above can offer

range–queries through minor extensions. a main-memory database was presented in Ref. 10. The ap-
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proach followed here is geared toward minimizing the number 1. Evaluation of predicates at the earliest possible oppor-
of predicate evaluations. Minimum CPU costs incurred in tunity
predicate evaluation determine viable access plans. In addi- 2. Avoidance of useless predicate or expression evaluation
tion a branch-and-bound methodology is used to prune the whenever possible
search space during the query processing phase. In trying to

3. Binding of elements as early as possiblebuild a realistic model, Ref. 10 proposes to identify system
bottlenecks that correspond to the pieces of database code

The branch-and-bound algorithm used is equivalent to an ex-that take up most of the CPU processing time in the context
haustive search; however, it prunes subtrees for which thereof a query. The optimization phase is based on these costs.
is a strong indication that the optimal solution will not beThe costs of such high overhead operations are determined by
found even if the search were continued inside these subtrees.using profiling techniques and program execution analyzers.
This indication can be derived by comparing a continuouslyIn Ref. 10 five specific cost factors have been identified:
maintained global lower bound of the cost with the antici-
pated cost if a specific subtree is followed.1. Cost for evaluating predicate expressions

2. Cost for comparison operations
Concurrency Control. Data items are easily accessible in3. Cost for retrieving a memory-resident tuple

MMDs, so transactions may have an opportunity to complete
4. Unit cost for creating an index (unit refers to the cost much faster, since extreme contention conditions are not ex-

per indexed item) pected to develop often. Coarse granularity locking has been
5. Unit cost for sorting (penalty per sorted item) suggested as a sufficient option for concurrent MMD opera-

tions. However, some long-running transactions may suffer
from starvation and/or lengthy delays. Therefore a more flex-Since queries are expressed here in canonical form, these fac-
ible technique can be useful here. For instance, a protocol thattors are sufficient to model the overall costs required by vari-
is capable of adapting from coarse to fine granularity lockingous materialization plans. Among these five cost factors, Ref.
whenever necessary could be beneficial.10 experimentally verified that the first one is the most ex-

System designers of MMDs may also avoid overheads bypensive of all. In fact the first cost is tenfold more expensive
circumventing operations to an independent lock manager. Inthan each of the other four factors listed above. This is be-
traditional databases, lock managers are organized around acause the entire predicate tree structure has to be traversed
hashing table. This hash table maintains information aboutin order to obtain a single evaluation. Since such tree struc-
the way that the various data objects are locked at any time.tures can accommodate general forms of predicates, they can
In MMDs this locking mechanism can be adapted and possi-lead to expensive evaluation phases.
bly optimized so that the overhead required to access theThe query optimizer uses a number of strategies to pro-

duce the lowest-cost estimates, namely hashing table is eliminated. This optimization can be
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Figure 3. Starburst’s main-memory management and concurrency structures.
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achieved by attaching the locking information to the actual frequently, this technique presents an acceptable locking al-
ternative. System M (15) features an exclusive/shared lockingdata.

Both of the above ideas have been implemented in the scheme with conversion capability from shared to exclusive
mode at the segment level (set of records).Starburst main-memory manager (MMM) (14). Figure 3

shows the key data structures used augmented with the sup-
porting locking mechanisms. Each segment maintains a con- Logging and Commit Protocols. Logging is mandatory be-

cause the MMD should be able to avoid lost data and/ortrol block that includes the pertinent lock information about
the segment in question. Every transaction that attempts to transactions due to media failure. Since logging is the only

operation that has to deal with an external device in MDDs,get a lock on the table receives a table lock control block that
provides the type of lock as well as a list of tuple–locks en- it can become a bottleneck that may adversely affect system

throughput. A number of solutions have been suggested tocountered so far. If tuple–locks are not compatible with the
aggregate lock type of the table, then they are kept pending, solve this problem; they are based around the concept of a

stable main-memory space (2,11,15–17). Whenever a transac-and the requesting processes are blocked. For instance, Fig. 3
indicates that transaction 1023 has successfully locked the tion is ready to commit, the transaction writes its changes

into stable memory (nonvolatile RAM). Stable memory is of-table and is working with three specific tuples. However,
transaction 1009, which initially locked the table in a manner ten used to ‘‘carry’’ the transaction log and can greatly assist

in decoupling persistence from atomicity. Writing to such acompatible to 1023 (and 1025), subsequently requested a non-
compatible tuple lock and is currently blocked. stable log is a fast operation, since it is equivalent to a mem-

ory-to-memory copy. Once many log entries accumulate, aWhen such contention for data items appears, data tuples
can be locked individually. This action will almost certainly special process [or processor as in System M (15)] can be used

to flush log data to the disk unit. What stable memory reallyincrease concurrent sharing. Thus Starburst’s MMM is capa-
ble of featuring a list of tuple–lock control blocks per tuple. achieves is that it helps keep response times short because

transactions do not have to wait long for the log operations toTuple–lock control blocks indicate which processes have ac-
cessed specific tuples, and how. In Fig. 3 such a list of control complete. In Ref. 2 it has been suggested that a small amount

of stable memory can be as effective as a large one. The ratio-blocks is attached to the descriptor of the record.
A granularity flag is always maintained at the table level nale is that a small stable buffer space can effectively main-

tain the tail of the database log at all times.(i.e., segment control block) and indicates whether table or
tuple locking granularity is in use. Starburst’s MMM has the When stable memory is unavailable, group committing can

be used to help relieve the potential log bottleneck (2,15,18).ability to escalate and de-escalate locks so that the level of
concurrency can be adjusted. Since table locking is generally Group commit does not send entries to the disk-based log in-

discriminately and on demand as a traditional write-aheadinexpensive (carries low overhead), it is the preferred method
for low-sharing situations. However, as more transactions ac- log would normally do. Instead, log records are allowed to ac-

cumulate in main-memory buffers. When a page of such logcessing the same table become active, the MMM de-escalates
the table lock to individual tuple-level ones and the degree of entries is full, it is moved to the log–disk in a single opera-

tion. The rationale behind group commit is to diminish thedata sharing increases. De-escalation is possible only if the
transaction holding the table lock is capable of ‘‘remembering’’ number of disk I/Os required to log committed transactions

and amortize the cost of disk I/O over multiple transactions.the individual tuple–lock requests up to this point. This is
the reason why, besides the locks on segments, the segment Precommitting also works in the direction of improving re-

sponse times because it releases locks as soon as a log entrycontrol block keeps a record of all the requested (and whether
granted or blocked) locks on tuples so far. The tuple–lock con- is made in the main-memory log (2,18). This scheme allows

newer transactions to compete for locks and data objectstrol blocks (as shown in Fig. 3) indicate the transactions that
have acquired shared access on specific tuples (e.g., transac- while others are committing.

In Ref. 17 a protocol for commitment is provided that re-tions with IDs 123 and 312) as well as transactions that are
currently blocked (i.e., transaction 231). As soon as de-escala- duces the size of the logging operations by flushing into the

disk only redo entries. Undo records are kept in main-memorytion occurs, the lock-related structure at the segment level is
de-activated. Escalation back to table locking occurs when the and are discarded as soon as a transaction has committed suc-

cessfully to either the disk or a stable area. This action econo-need for increased data sharing ceases to exist.
In Ref. 12 an alternative way to process exclusive-only con- mizes on the log volume and so furnishes a short(er) recovery

phase, since the MMD requires only a single log pass. In thiscurrent requests is outlined. In this, two bits per object are
used to realize concurrency control. If the first bit is set then scheme the MMD maintains a redo-log on the disk where only

the redo entries of committed transactions reside. To achievean object is locked and is unavailable. If an object is locked
and the second bit is set as well, it means that one or more this, every active transaction maintains two distinct log areas

(for redo and undo entries) in main-memory (Fig. 4). Whentransactions are waiting for the object to become available.
The set of transaction identifiers waiting for a lock on an ob- the commit entry of a transaction ultimately reaches the per-

sistent log (located on either disk or stable RAM), the transac-ject are stored in a hash table. When a finishing transaction
resets the first bit, it also checks the status of the second. If tion commits. The novel feature of the commit protocol dis-

cussed in Ref. 17 mostly rests with the way that thethe latter is set, then the terminating transaction has to wake
up one of the waiting transactions. The last transaction to be termination of transactions is handled. There are three dis-

tinct phases in the commitment protocol:waked up needs to clean up the second bit. The benefits of
such a scheme rest with the fact that often in MMDs, records
are locked for a short period of time and are released soon 1. Precommit Phase. A completed transaction Ti is as-

signed a commit sequence number (csn), releases all itsafter the update. If there is no need to access the hash table
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tions and the global redo–log.

locks and writes an entry � csn, Ti � to the private More elaborate reloading algorithms attempt to place in
main-memory a selected set of pages that will enable theredo–log of Ti. This private redo–log is appended to the

global redo–log kept by the MMD. MMD to become operational immediately (19). Such algo-
rithms include reload with prioritization, smart, and fre-2. Actual Commitment. The commit entry of the transac-
quency reloading. In reload with prioritization, pages aretion reaches persistent storage.
brought into main-memory on-demand according to a prede-3. Postcommit Phase. The user–process that instigated
termined priority scheme, and the MMD resumes normalthe transaction is notified of the completion; the trans-
transaction processing once a prespecified percentage of theaction is removed from the list of the active transactions
database is in place. The smart algorithm is essentially reloadand its volatile undo log is discarded.
with prioritization but uses page prefetching (instead of on-
demand paging). In the frequency-reload algorithm, pages are

The usage of individual redo–logs diminishes the contention stored in the archival memory according to their frequency of
for the global log as well as the size of the global log’s tail. access observed so far. This is facilitated by a specialized disk-
Transactions that have not completed their commit protocol based structure that helps classify the various data elements
and need to abort can do so by traversing the undo entries of according to their frequency indicators. Using this structure,
their own logs in reverse. the frequency-reload algorithm brings pages with higher ac-

cess frequency counts into memory first. Assuming that fre-
Recovery and Efficient Reloading of Data. Check–pointing is quencies of data page accesses do not change very often, fre-

often used as the means to reduce the length of recovery once quency-reload produces good response times and satisfactory
a MMD fails and data have to be restored from the disk– reloading times.
image of the database and the system log. Actually in MMDs,
check–pointing and recovery are the only points at which the
disk–resident database is accessed. One way to minimize the CLIENT–SERVER DATABASES
overheads of check–pointing is to use large-sized blocks so
that writing to the external device is more efficient (12). The client–server paradigm has been in use for several years

in areas other than database management systems. It isWhen a crash takes place, reloading of the database has
to be performed. The MMD may experience undesirably long widely used in multitasking operating systems for the provi-

sion of various system services such as print spooling. Thedelays if the system is brought up by reloading a large collec-
tion of data. Therefore effective reloading techniques are im- advent of internetworking has allowed this model to be ex-

tended to distributed services such as electronic mail, fileportant. In particular, on-demand schemes offer an obvious
advantage as transaction processing may restart with the transfer, remote login, and even networked file systems

(21,22).availability of only a small amount of important data in mem-
ory. In Refs. 19 and 20, a number of such techniques are in- In most multiuser computing systems, the data reside at

one or more central nodes. With the help of their terminalstroduced, and their behavior is compared (through experi-
mentation) with ordered-reload. Ordered-reload refers to the and/or personal workstations, individual users (clients) ac-

cess the data from centralized systems (servers) using tele-process of reading data from the archived database sequen-
tially. Its advantage is that the actual reload process lasts for phone or other communication lines. When such aggregates

involve databases, they are often termed client–server data-the shortest possible time and presents no additional space
and/or CPU overhead later. bases (CSDs). In CSDs the interaction among users and data-
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providing sites occurs mainly in two ways: query–shipping the full database management system; the client, which acts
and data–shipping. In pure query–shipping settings, clients as an interface between applications on a remote processor;
dispatch user–queries and updates to the database server(s) and the DBMS. Interaction between the client and server is
and receive the results of their operations. In data–shipping, purely on the basis of queries and results. The client applica-
the client machines request the required set of data objects/ tion sends a query to the server as a result of user interaction.
pages from the server(s) and perform the necessary pro- This query is transported on a local or wide-area network by
cessing of the data locally. some form of message–passing or remote procedure call

In both ways of interaction, there is a straightforward opti- mechanism to the server. The server receives the query, exe-
mization to be found. By storing either data or results re- cutes it, and sends the result back to the client using the
ceived from servers locally, clients may possibly eliminate or same communication mechanism. The client application pro-
reduce the need for future interaction with the server data- cesses the results of the query in a naive fashion, such that
base. The maintenance of such ‘‘remote’’ data is known as should the same data be required again, it must be re-fetched
data caching. Data caching has been used as a vehicle to from the server. Figure 5 depicts the configuration of this ar-
achieve scalable performance in CSDs in the presence of large chitecture.
number of clients attached per server. The greatest benefits There is little difference between this mode of operation
of data caching are as follows: and that used in a time-sharing system, except for the ability

of the client application to format the results so that they
• Redundant requests for the same data originating at the are better suited for the end-user’s consumption. This is the

same client can be eliminated. This makes such commu- approach taken by the ‘‘SQL server’’ applications commonly
nication between the user machine and the database available in the market today. Apart from improved presenta-
server unnecessary and significantly improves response tion capabilities, another more important reason for the adop-
times for requests on the cached data. tion of this strategy is that the server is no longer burdened

• Once server-data are locally available, clients can use with tasks related to application processing. As a result it is
their own computing resources to process them and fur- possible to achieve improved performance rates (throughput
nish the query results to the users. In this manner cli- and response time) than in the basic time-sharing system.
ents can off-load work from the database server(s). This The usefulness of a database lies in its ability to store and
feature has gained importance as client workstations manage data for future retrieval, functions which inherently
have become increasingly more powerful. make its operations disk-intensive.

Unfortunately, data access times of secondary storage de-
However, with these benefits come several cost/consistency vices lag at least two orders of magnitude behind those of
trade-off issues. Whenever cached data are updated at the CPU and primary memory, and hence, I/O operations on the
owner site, the new value must be propagated to the copies. server disk remain a major stumbling block in the improve-
This propagation cost can be significant. For frequently ment of overall system performance of a client–server archi-
changing data, the cost of propagating the updated data val- tecture. This was confirmed in Ref. 23. It was also pointed out
ues to the cache sites can outweigh the gains of caching the that although database retrieval operations are not as CPU-
data. Another consideration is in the context of client–server intensive as application processing, the basic client–server
databases where the data cached at the clients is updated by architecture suffers serious degradation of performance when
transactions. Here the concern is not only with data consis- a large number of ‘‘active’’ clients are attached per server.
tency but with data recovery in case of client– or database A natural extension to the basic architecture, which at-
server crashes. tempts to overcome the I/O bottleneck, is the use of several

disks, accessible in parallel, at the server. A query received
Basic Client–Server Database Architecture by the server is fielded by the disk that holds the relevant

data. By this method the response time is improved. Data areDirectly applied to databases, the basic CS architecture dif-
distributed among the disks in a manner that ensures thatfers very slightly from that found in operating systems. The

principal components of the system are a server, which runs similar loads are imposed on each of them. This can be
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Figure 5. Basic client–server database architecture.
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achieved by using some load-balancing algorithm, disk Locality of data access improves response time and the reduc-
tion of both I/O and CPU processing demands on the serverstriping, or any other scheme similar to those used in distrib-

uted database systems (24). Experiments performed on the translates directly into improved system scalability. The
RAD-UNIFY model of client–server databases is a popularfully replicated case (23) show this variation to be an im-

provement on the basic architecture, especially under circum- architecture in the development of object-oriented databases
because it simplifies the development of the server.stances where the number of clients is limited. Now the disk

that is currently under the least load can field the request for
Enhanced Client–Server Database Architecturedata. However, this architecture still suffers from scalability

problems. Other disadvantages in the use of this configura- The next step in improving CSD performance is to attempt
tion include the cost of propagation of updates to all the disks. to increase the locality of data accesses by using the client
This could be alleviated by the use of a variant of a primary- workstations’ disk resources. The obvious approach would be
copy commit mechanism at the cost of reduced concurrency to extend the RAD-UNIFY architecture to use the client disk
(i.e., all transactions that are interested in a recently updated as an extension of primary memory. While this could be per-
data item must block until the new data value has been safely formed automatically as part of the operating system’s virtual
forced to secondary storage). The monetary cost of multiple memory functionality, the DBMS’s specialized buffer–
disks is a major concern as well. management techniques are better suited to the task of main-

taining this disk cache. This is the approach taken in the en-
RAD-UNIFY Client–Server Database Architecture

hanced client–server (ECS) architectures proposed by Refs.
23 and 29. Figure 7 shows the main components of the ECSRather than attempting to improve server performance by in-

troducing parallelism, the RAD-UNIFY client–server archi- architecture.
The client site now runs a simplified implementation of thetecture (25) further reduces demands on the server. This is

achieved by moving a significant portion of the database DBMS which features query processing, disk storage, and
buffer managers on its own. The use of the disk resourceserver functionality to the client site. The rationale here is to

exploit both the client CPU and primary memory. The client allows a larger amount of data to be staged at the client disk–
cache, further increasing the locality of data access and conse-maintains the query-processing and optimization components

of the database, while the server retains the data as well as quently reducing response times. If the disk–caches are large
enough and update frequency is low, or conflicting transac-the concurrency control and buffer managers. Interaction be-

tween clients and servers takes place at a low level, since only tions are uncommon, this architecture is shown to improve
overall system performance almost linearly with the numbermessages and data pages are transported between them. The

client ‘‘stages’’ these data pages in its own memory space. of clients attached per server. Once client disk–caches contain
the data relevant to the client’s work, the server only needsSubsequently the query processor running on the local CPU

refers to these staged pages to generate the result(s) for the to deal with update requests and their propagation to perti-
nent sites. Client caches can be built using incremental tech-client application/query. The usage of client buffer space to

hold a portion of the server database has proved to be a basic niques and maintained by methods of either replacement or
merging of data. As the number of updates increases, the de-yet effective form of caching (25–28). This caching plays a

central role in the improvement of performance rates of the gree of conflict increases as well. Therefore the performance
of the aggregate system becomes tied to the server’s ability toarchitecture (28) as compared to those achieved by the basic

CS configuration. Figure 6 shows the functional components cope with the tasks of maintaining data consistency, update
propagation, and concurrency control.of the architecture in discussion.

By allowing the contents of the client memory to remain Deppisch and Obermeit (30) propose a checkout system
that uses local disks for data storage suitable for environ-valid across transactions (intertransaction caching), it is pos-

sible to reduce the load on the server on the assumption that ments where most transactions are of a long duration. The
proposed architecture involves ‘‘multi-level’’ cooperation be-data may be held locally. The immediate benefit of this

method is that the server may be accessed less frequently if tween clients and server(s). Large objects are frequently ex-
tracted in their entirety from the server database for manipu-the query patterns are such that locally cached data are rele-

vant to most of a particular client’s application requirements. lation on a client workstation. Client queries are exchanged
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at the query level to ensure easy constraint checking, but the valid in object-oriented databases, their ability to store more
actual data pages relating to the requested object are shipped complex nested data types and their affiliated methods re-
back to the server at a low(er) level. By allowing this ‘‘dual’’ quires a tighter degree of integration between client and
interaction, the system offers the consistency maintenance of server which can only be offered by low-level data transfers.
the query-level interface as well as the performance benefits Data shipping in client-server architectures has been used
of low-level transfers. When a modified object is being re- for some time in distributed file systems whose principle aims
turned to the server, the data pages are transmitted at page are to increase locality of access and reduce server load. The
level but the modified access paths and meta-data are submit- Andrew File Service (AFS) (33) uses a file–server approach in
ted at query level. If any consistency constraints are not satis- which files are retrieved from the server when opened, cached
fied by the new data, the injected pages are simply discarded. at the client while in local use, and finally written back. Cach-
This avoids the processing of large amounts of data through ing in AFS is disk-based, which is suitable given that entire
the higher layers of the database (query processor and com- files are being transferred at a time and these may exceed the
plex object manager). size of primary memory. Sprite (34) and Sun’s Network File

Server (NFS) use page-shipping approaches to remote file ser-
Data Exchange Granularity in CSDs vices. Files are opened on the remote server, and pages are

fetched as requested by the client. Experiments on the SpriteThis section examines CSDs in the light of the interactions of
file system revealed that while client disk caching is definitelytheir functional components and the granularity of the data
beneficial due to the increased locality of access, a largeitems they exchange. In this regard two broad categories ex-
server cache can provide benefits of similar magnitude with-ist, namely query-shipping and data-shipping architectures.
out the expense of a local disk cache.In query-shipping systems, interaction between the client

The three main data-shipping classes of CS architecturesand server takes place as the exchange of queries, submitted
in a high-level language such as SQL, and results being re- useful for object-oriented databases are the page–server, ob-
turned as matching tuples from a set of data resident on the ject–server, and file–server (26). These differ principally in
server. Query-shipping systems are in common use in rela- the granularity of data transfer and caching. The file–server
tional database client–server implementations, particularly and page–server have their origins in distributed file sys-
those where the level of client interaction is mainly limited to tems. The following subsections examine each of the above
the execution of casual or ad hoc queries. Examples of such classes in some detail.
systems include ‘‘SQL servers,’’ applications that allow PC
productivity packages to access enterprise data, and on-line

File–Server CSDs. While this method is not really a majorinformation retrieval systems such as those described by
player in the area of database management, it has some inter-Alonso et al. (31). In Refs. 23 and 32 it was shown that the
esting properties that allow rapid system development. It isperformance of a properly designed query–server system can
indeed possible to implement a database system on top of abe enhanced to the extent where it becomes a viable imple-
distributed file system, but there are certain inefficiencies in-mentation even for environments that demonstrate high up-
volved. These inefficiencies arise due to the mismatch be-date rates.
tween file systems and databases, and they make this con-Data-shipping systems differ from query-shipping ones in
figuration an inefficient solution for CSDs.that the unit of data transfer is normally equivalent to the

The file–server CSD does not use the notion of a file as theunit of low-level storage. The use of data page transfers
unit of transfer. This would be prohibitively inefficient; inallows some of the database functionality to be located at the
fact, it is common for an entire database to be contained in aclient site. This allows reduction of the server burden and per-
single operating system file organized into objects (35). Themits tighter integration between client and server in issues
file–server approach often makes use of a remote-open filesuch as concurrency control (27). The scenario used by the
service such as Sun NFS or Sprite to perform page-level re-enhanced CSDs in Ref. 23 could be viewed as a data-shipping
quests for data. Therefore the architecture would simply con-system in which the unit of transfer and client storage is that
sist of simplified client systems sharing a database using aof data tuple. Such CSDs can therefore be referred to be as

tuple-server systems. While the concept of a tuple remains remote file service (26). The clients interact with a single-
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server process that coordinates client I/O requests, concurre- In the RAD-UNIFY CSD there is no interaction between
the clients. In Ref. 37 retrieval of information from other cli-ncy, and the allocation of new pages in the database.
ents’ caches is presented as a way to ‘‘augment’’ the localThe key benefit of this architecture is that because the net-
cache. By adding client caches, CSDs follow the trend inwork file system software is normally integrated in the kernel
building global-memory hierarchy systems (38). This makesof the operating system (at least with Sun NFS), page read
the volume of data available in memory buffers (other than inoperations are quite fast as compared to the performance that
the server’s cache) larger, further alleviating the performancewould be achieved by using a remote procedure call (26).
bottleneck introduced by the server disk’s slower access time.Caching of data may be performed explicitly by the client ap-
When a client application makes a request to the clientplication or by the file system’s page cache. The former is
DBMS, the presence of the relevant data pages in the clientprobably more beneficial, since the buffer replacement used
cache is checked. A page miss at the client results in the re-by the file service may be optimized to take into account ac-
quest being forwarded to the server. The server checks if itcess patterns that differ from those encountered in databases.
has the requested page in its memory. If so, the page is sentSince network file systems have been in use for a long time,
to the client as normal. If not, before attempting to retrievethey are fairly stable and reliable products.
the page from its disk, the server checks if any other clientThe use of remote file services has its costs as well. Be-
has the page cached and is prepared to ship it to the re-cause the I/O function is separate from the server process, it
quester. If so, the server puts the two clients in touch withis often necessary to make separate requests for tasks that
one another and the page is transferred between them. Onlyare closely related. For example, reading a page from the da-
when a page is not cached at any client is the server’s disktabase requires one call to the server process to get the lock
accessed. A number of algorithms have been developed thatand another to the network file system to retrieve the actual
allow this method to be used to reduce the server load withoutpage. NFS, in particular, is also known for the low speed of
affecting data consistency in the database, as well as max-executing write operations, which can impact transaction
imizing the amount of data that is available for retrieval fromthroughput adversely.
global memory. As Ref. 37 indicates, this configuration is best
suitable for environments where there is low to medium

Page–Server CSDs. The basic page–server architecture is data sharing.
an instantiation of the RAD-UNIFY architecture that uses The notion of enhanced CSD and the use of client’s disks
pages as the main unit of data transfer (26,36). In this case described earlier can be extended in the page–server environ-
the server is essentially a large buffer pool with buffer man- ment. A proposal along these lines appears in Ref. 29. There
agement, I/O access, concurrency, and recovery modules. are essentially two choices in designing such an architecture:
When the server receives a page request, it locks the page in The first would be to have each client act as the host and
the appropriate mode, retrieves and transmits it to the re- server for a portion of the database. This approach gives rise
questing client. The client database comprises of an object to standard distributed database issues such as fragmenta-
manager, an access method manager, a page buffer, and, of tion, replication, and data availability problems. The second
course, a communication module. The client database system alternative is to involve the disk that the operating system’s
acts as an agent for applications running on the same pro- virtual memory uses, thus allowing a large in-memory cache
cessor, fulfilling their data requirements either using locally to be held. This technique has the disadvantage that the op-
cached data or interacting through the server. The client erating system buffer management and replacement policies
DBMS may cache only pages (page-to-page system) or both may not be in agreement with the database access patterns.
pages and objects (page-to-object system). The benefit of an An additional problem is that the nature of the virtual mem-
object cache is that space is not wasted storing objects that ory cache is transient, and thus it does not persist across sep-
have not been referenced. Naturally this is dependent on the arate executions of the client DBMS software. These problems
relative size of the objects and pages. are overcome in Ref. 29 by modifying the buffer management

Caching of objects is not without costs; it requires that ob- system of the client DBMS so that it handles disk storage as
jects be copied from the incoming page buffer before they can a direct extension of main memory.
be referenced. If an object is modified when its corresponding Applied to object–oriented databases, page-server architec-
page in the page buffer has already been replaced by a more tures face a few problems. As the unit of transfer and locking
recent page request, the client will have to retrieve the page is the page, it is difficult to implement object-level locking.
from the server again so that the object can be included on it This negatively impacts the concurrency of the system. Since
for transmission back to the server. By using a good cluster- object methods can only be executed on the client, operations
ing scheme, it is possible to ensure that most of the objects on collections or parts thereof may require the transfer of the
contained on a page will be related in some fashion (e.g., clus- entire collection to the client, which can be expensive in terms
tering all components of a complex objects). By such means of both server load and communication cost.
the number of requests to the server can be reduced, which
in turn has implications on the scalability of the system. Ad- Object–Server CSDs. As implied by its name, the unit of
ditionally, because retrieval operations on the server only in- exchange between client and server in the object–server ar-
volve locating a particular page and transmitting in its en- chitecture is the object (26,36). In this architecture almost all
tirety, the overhead on the server is reduced to a minimum. database functionality is replicated between client and server.
Experiments discussed in Ref. 26 show that the page–server One glaring disadvantage of the page–server approach is that
architecture, in the form described above, yields performance the server has no understanding of the semantics or contents
superior to both file–server and object–server architectures, of the object. In cases where objects are small, the page gran-

ularity may not be specific enough to minimize network trans-provided that a good data clustering scheme is in use.
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missions. Under situations of poor object clustering page– copies of objects and ultimately streamline update operations
server performance is affected by multiple page requests for on segments. The ObServer lock manager can work in two
each object required by the client. The same problem arises granularities: segments and objects.
under circumstances where the cache hit rate is low. As a The novel point of the locking scheme used here is that
result the object–server is very sensitive to the client cache clients issue lock requests in the form of triplets: The first
size (26). By performing requests for data at the object level, element in a triplet is the type of lock required, the second
a higher level of specificity is achievable, and the clustering determines the way the lock is to be communicated to other
problem can be overcome. Conversely, under situations of clients that already have a lock on the object in discussion,
high clustering, the object–server offers little benefit. It dupli- and the last designates whether the server is to establish a
cates the effort in clustering data because it determines rela- lock. Read and write modes are differentiated as restrictive
tionships between objects navigationally (e.g., based on con- (R) and nonrestrictive (NR). NR-READ works as a traditional
tainment and association relationships). read lock. R-READ disallows processes other than the current

Retaining DBMS functionality at the server has the benefit to read an object. R-WRITE provides a user with exclusive
of allowing the server to perform consistency and constraint access to an object. NR-WRITE disallows other processes from
checking before performing potentially expensive data trans- obtaining either R-WRITE or R-READ but allows reading of
fers. Query predicates and object methods can be evaluated an object through the NR-READ mode.
on the server, reducing the size of results to only relevant The locking scheme uses an additional dimension namely
data. As Ref. 26 shows, the object–server has better perfor- that of communication–mode. This locking–mode refers to
mance when the client cache size is small. The use of objects the communication among clients as the result of an action of
as the unit of transfer and buffering lends itself to high con- another client. More specifically, any changes in the lock sta-
currency, and the object–server is best used under situations tus of a server object should be sent to the clients that main-
of high contention. Several techniques have been proposed in tain a lock on the same object. Five communication modes
order to increase the page–server’s concurrency to similar lev- (and their interaction) are proposed:
els (39).

In Ref. 36 some subtle factors that arise in the choice be-
• U-Notify. Notifies lock holders upon object update.tween an object–server and a page–server are suggested.

Since the page–server has no knowledge of the object seman- • R-Notify. Notifies lock holders if another client requests
tics and methods, it is possible to update data in violation of the object for reading.
these conditions. As authorization can only be tied to the data

• W-Notify. Notifies lock holders if another client requests
transfer granularity, page–servers are unable to permit fine- the object for writing.
granularity authorization constraints. Other considerations

• RW-Notify. Notifies lock holders if another client re-relating to application development effort, ability to handle
quests the object for either reading or writing.dynamic schema changes, programming language support,

and the like, are also difficult to address in the page–server • N-Notify. Makes no notification at all.
environment.

Deadlock detection is performed in the server using a flexible
Consistency Maintenance of Networked Data wait-for graph. This hierarchical locking scheme is capable of

operating in a more highly concurrent fashion than its strictWhen volatile memory or disk caching is in use, consistency
two-phase counterpart (40).and control over updates has to be maintained at all times.

Wilkinson and Niemat (41) proposed an extension to theThere are numerous issues that have been studied in this
two-phase locking protocol for consistency maintenance ofarea, and one could broadly classify them into two categories:
workstation cached data. Their protocol introduces cache–concurrency control policies and caching algorithms. These
locks (CLs). Such locks indicate that clients have successfullytwo areas are not completely orthogonal, since concurrency
obtained server objects. When a client requests a exclusivecontrol techniques affect the way caching may work. In the
lock on an item already cached at another client, the CL atfollowing two subsections we examine the questions ad-
that client becomes a pending-update lock (PL). If an updatedressed by research in these two areas.
takes place, the PL is converted to an out-of-date lock (OL);
otherwise, it is converted back to a CL lock. CL, PL, and OLConcurrency Control Policies. In Ref. 40 an early form of
track the status of objects that are being modified by a clientCSD called ObServer, used mostly for the handling of soft-
site and at the same time have already been downloaded toware–engineering artifacts, is presented. The sole purpose of
others. The introduced concurrency scheme is compared withObServer is to read from and write to disk chunks of memory
the protocol that uses notify-locks (40). Simulation results in-(software–engineering applications). The server disk unit is
dicate the following:organized in segments that store clustered (related) objects.

The rationale is that once a segment is retrieved, all associ-
ated data items are selected as well. Both segments and ob- • Cache–locks always give a better performance than two-
jects maintain unique identifiers. Client sites run the EN- phase locking.
CORE database which is able to cache objects and rearrange

• Notify–locks perform better than cache–locks wheneverthem so that they can best serve the user–applications. Seg-
jobs are not CPU bound.ments represent the unit of transfer from the server to the

• Notify–locks are sensitive to CPU utilization and multi-clients, while modified objects travel in the other direction. It
is up to the server to coordinate, through locking, multiple programming level.



DATABASE ARCHITECTURES 527

Thus, if the processing in the CSD tends to be CPU-bound, idea that a client starts working on a transaction based on
the cached data and waits for certification by the server atcache–locks should be used; otherwise, notify–locks offer bet-

ter performance. commit time. In this way, both client and server work inde-
pendently and in a manner that can help increase the systemIn a CSD environment, where clients use portions of their

main-memory to cache data pages, Carey et al. (27) examine throughput. Notification is added to the no-wait protocol in
order to avoid delays in aborting transactions whose cachedthe performance of a number of concurrency control policies.

These techniques are used to achieve consistency between data have been invalidated by modifications in other sites
(server or clients). Simulation experiments indicate that ei-server and client-cached data pages. The proposed algorithms

are variations of the two-phase locking (two techniques) and ther a two-phase locking or a certification consistency algo-
rithm offer the best performance in almost all cases. This re-optimistic protocols (three techniques).

The basic two-phase locking scheme (B2PL) disallows in- sult is based on the assumption that intertransaction caching
is in place and is in accordance to what (27) reports. Theretertransaction data caching, and pages can be cached as long

as a read–lock has been obtained at the server. A client may are two additional results:
request an upgrade to a write–lock and receive it provided

• When the network shows no delays and the server is verythat there is no conflict at the server. The server is also re-
fast, then no-wait locking with notification or callbacksponsible for monotoring and resolving deadlocks. Caching
locking perform better.two-phase locking (C2PL) allows for intertransaction data

caching. All items requested for the first time need to be • Callback locking is better when intertransaction locality
fetched from the server. Clients read valid data as the server is high and there are few writes. Otherwise, no-wait lock-
exploits reply–messages to piggyback modified pages. To ing with notification performs better.
achieve this, the server compares the log sequence numbers
(LSN) of its pages with those maintained locally by clients. In a later study Carey et al. (27) show how object-level
The server maintains the pertinent LSN numbers of all cli- locking can be supported in a page–server object-oriented
ent-cached pages. DBMS. They compare the two basic granularities for data

In the optimistic two-phase locking (O2PL) family of proto- transfer and concurrency control, namely, object level and
cols, clients update data pages locally. A committing client page level with three hybrid approaches. In the first hybrid
will have to ultimately ‘‘ship’’ to the server all modified data approach, locking and callbacks are considered at the object
pages. This is achieved by sending all the dirty pages to the level only. The second hybrid scheme performs locking at the
server (in a precommit logical message). The server will then object level but allows page-level callbacks whenever possible,
have to coordinate a prepare-phase for the commitment of up- and the third approach uses adaptive locking as well as call-
dates. This phase entails obtaining update-copy locks at the backs. Client–server data transfers are performed at the page
server and on other client–sites that may have cached images level only. Simulation results showed that the third hybrid
of the pages being updated. Update–locks are similar to ex- scheme outperformed all the other approaches for the range
clusive locks, but they are used to assist in early deadlock of workloads considered. In Ref. 43 an optimistic concurrency
detection as transactions that conflict at commit time indicate control algorithm is proposed that promises better perfor-
a deadlock. Clients that have already acquired update–locks, mance than the schemes presented in Ref. 27 in the presence
may have to obtain new copies of the modified server pages. of low to moderate contention. This algorithm has been de-
This can be done in a variety of ways: invalidation (leading to scribed in the context of the Thor object-oriented database
the O2PL-I protocol), update propagation (O2PL-P), and (44). Transaction processing in Thor is performed at the cli-
finally, by a combination of the two called dynamic algorithm ents by allowing data–shipping and intertransaction caching.
(O2PL-D). Instead of using callback locks, Adya et al. (43) propose the

Since B2PL disallows intertransaction data caching, it use of backward validation (45) to preserve database consis-
demonstrates the poorest performance. The performances of tency. Once a client transaction reaches the commit stage, it
the other four protocols present small variations for a small has to be validated with possibly conflicting transactions at
number of clients, and their throughput rates level out for other clients. In order to do this, the validation information
more than 10 clients. The O2PL-I works well in situations for the transaction (identity of each object used along with
where invalidated pages will not be used soon, while O2PL-D the type of access) is sent to the server. If there is more than
performs satisfactorily when the workload is not known a pri- one server, this information is sent to one of the servers that
ori. Finally the O2PL-P is good for ‘‘feed’’ (producer/consumer) owns some of the objects used by that transaction. The server
settings but does not work well when clients have hot–server commits the transaction unilaterally if it owns all the objects
pages in their cold sets. For workloads with low or no locality, in question. Otherwise, it coordinates a two-phase protocol
all algorithms perform similarly. with the other servers. Once a read–write transaction com-

In a parallel study Wang and Rowe (42) examine the per- mits, the server sends invalidation messages to clients that
formance of five cache-consistency and/or concurrency control are caching objects updated by that transaction. These clients
algorithms in a CSD configuration, namely two-phase locking, purge all invalid objects from their caches and also abort any
certification, callback locking, no-wait locking, and no-wait transactions that may be using these outdated data. The algo-
with notification. Callback locking is based on the idea that rithm takes advantage of the presence of closely, but not ex-
locks are released at the client sites only when the server actly, synchronized client clocks in order to serialize globally
requires them to do so for update reasons. Once a write oc- the order of execution of client transactions.
curs, the server requests that all pertinent clients release
their locks on a particular object before it proceeds with the Caching Schemes. So far caching techniques have been

used in numerous instances and in diverse settings. More no-processing of the modification. No-wait locking is based on the
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table is their applications in the areas of file systems/servers, prisingly small and is readily amortized by the performance
gains it provides.retrieval systems and CSDs.

We first present a brief introduction to the issue of caching In Ref. 47 an approach to cache management is proposed
for distributed systems (databases, file servers, name servers,in OSs. Sprite (34) features a mechanism for caching files

among a collection of networked workstations. Sprite guaran- etc.). Updates at the server are not automatically propagated
to the clients that cache affected data. By looking at thetees a consistent view of the data when these data are avail-

able in more than one site and through a negotiation mecha- cached data as ‘‘hints,’’ rather than consistent replicas of the
server data, the problems associated with maintaining strictnism (between the main and virtual memory components of

the client OS) determines the effective physical client memory data consistency can be approached differently. The objective
is to maintain a minimum level of cache accuracy. By estimat-for file–caching. Sprite permits sequential as well as concur-

rent write–sharing. Sequential write–sharing occurs when a ing the lifetime of a cached object and its age, the application
could determine the degree of accuracy of the object in discus-file is modified by a client, closed, and then open by another

client. If the latter client has an older version of the file in its sion. Hints that are highly accurate ensure good perfor-
mance benefits.cache (determined by a version number), then it flushes that

file from its cache and obtains a fresh version. Since Sprite In Ref. 48 the issue of write–caching in distributed sys-
tems is examined. Write policies used in traditional file sys-uses delayed write-backs, the current data for a file may be

with the client that last wrote to it. In this case the server tem caches use either write-through or periodic write-back
which may result in little benefit in general distributed set-notifies the last writer, waits for it to flush its changes to the

server, and then allows the requesting client to access the tings. Here systems with client and server nonvolatile caches
are considered. Both a single-level caching system (using thefile. Concurrent write–sharing occurs when a file is open at

multiple client sites and at least one of them is writing it. In server’s memory) and a two-level caching (using client caches
as well) settings were examined. The replacement policiesthis situation client caching for that file is disabled, and all

reads and writes are undertaken by the server. The file in used were LRU, WBT (write-back with thresholds which is
purging-based) and LRUPT (LRU purge with thresholds). Inquestion becomes cacheable again when it has been closed on

all clients. Experiments with file operations indicate that un- WBT, a block purge is scheduled whenever the cache occu-
pancy exceeds a given high-limit threshold. LRUPT combinesder certain conditions, client caches allow diskless Sprite

workstations to perform almost as well as clients with disks. LRU and WBT; cached blocks are maintained in LRU order
and purged according to this order. Experimental results sug-In addition client caching reduces server load by 50% and net-

work traffic by 75%. gest that LRU as well as LRUPT perform well in a single-
level write–caching environment. In a two-level caching envi-In Ref. 46 Korner suggested the use of intelligent methods

to improve the effectiveness of caching. Caching algorithms ronment, the combination of LRU at the client and WBT at
the server results in better performance.using higher-level knowledge can generate expectations of

user process behavior to provide hints to the file system. Us- In Ref. 31 Alonso et al. proposed the utilization of individ-
ual user’s local storage capacity to cache data locally in aning Unix-based generalizations of file usage by programs, de-

pending on the filename, extension, and directory of resi- information retrieval system. This significantly improves the
response time of user queries that can be satisfied by thedence, an expert system was used to generate likely access

patterns. Three algorithms were examined, namely LRU, op- cached data. The overhead incurred by the system is in main-
taining valid copies of the cached data at multiple user sites.timal, and ‘‘intelligent.’’ The data block that the optimal algo-

rithm selects for replacement is that with the next time of In order to reduce this overhead, they introduce the notion of
quasi-copies. The idea is to allow the copies of the data toreference farthest away from the present time. The intelligent

algorithm makes use of three separate performance enhance- diverge from each other in a controlled fashion. Propagation
of updates to the users’ computers is scheduled at more conve-ments:
nient times, for example, when the system is lightly loaded.
The paper discusses several ways in which the decision to add1. Intelligent Caching. Blocks are cached according to an-
or drop data from the users’ cache can be specified by theticipated access patterns. Different cache management
user. Coherency conditions specify the allowable deviations ofpolicies are used based on these anticipated access pat-
the cached image from the data at the server. Several typesterns.
of coherency conditions are discussed, and analysis shows2. Cache Preloading/Reloading. Information of general
that quasi-caching can potentially improve performance andutility to all processes (i.e., i-node tables etc.) is deter-
availability in most circumstances. Response time problemsmined and preloaded or reloaded during idle server pe-
can arise in systems where a very large fraction of the up-riods.
dates received at the server have to be propagated to the us-

3. Intelligent Background Read–Ahead. Where sequential ers’ computers. Similarly problems arise if the selection and
access was anticipated, the next block of the sequence coherency conditions are very complex. In this case the over-
is passed with each read request to allow discretionary head of the bookkeeping may outweigh the savings. The ideas
prefetching. discussed in this paper were further extended and analyzed

in Ref. 49.
In Ref. 37 a framework that allows client page requests toOf the three performance enhancements used in the intelli-

gent algorithm, cache preloading appears to be always useful, be serviced by other clients is proposed. This paper treats the
memory available to all the clients as another level in theand intelligent caching, too, provides performance increases

over the LRU strategy. The cost of the extra processing re- global memory hierarchy. This available memory is classified
into four levels based on the speed of access: The local client–quired by the intelligent cache management algorithm is sur-
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memory (because it is the fastest to access), server–memory, techniques are introduced and their behavior is examined
through experimentation. The strategies differ mainly inremote client–memory, and the server–disk (it is the slowest

to access). To optimize the page accesses in this context, a their approaches to server complexity and network bandwidth
utilization. The simplest update propagation strategy is thenumber of page replacement techniques have been suggested.

In the Forwarding algorithm, a page request can be fulfilled on-demand strategy (ODM) where updates are sent to clients
only on demand. The next two strategies are built around thenot by the server but by another client that happens to have

a copy of the requested page in its own cache. In Forwarding idea of broadcasting server data modifications to clients as
soon as they commit. In the first one, updates are sent to allwith Hate–Hints, a server page dispatched to a client is

marked as its ‘‘hated’’ one. Even if the server page is subse- clients indiscriminately as soon as a write operation commits.
This strategy requires no extra functional server overhead,quently removed in the server’s buffer, it can be still retrieved

from the client that has cached it. In this manner a server and is called broadcasting with no-catalog (BNC) bindings. In
the other strategy, the server maintains a catalog of bindingdisk–access is avoided. If there is only one copy of a page

available in the global memory in a nonserver location and information that designates the specific areas of the database
that each client has cached. Every time an update job com-the holding client wants to drop the page in question, the

server undertakes the task to be its ‘‘next’’ host. This tech- mits, the server sends the updated data only to those clients
that require it. This strategy tries to limit the amount ofnique is termed Forwarding–Sending–Dropped-Pages. The

two last schemes can be combined in a more effective tech- broadcasted data and requires additional server functionality.
It is called broadcasting with catalog (BWC) bindings. Thenique called Forwarding–Hate–Hints and Sending–Dropped-

Pages. Since the introduced techniques strive to keep pages two final strategies combine the previous strategies with the
idea of periodic update broadcasts. Here client-originated re-available in the main-memory areas, they display throughput

gains if compared with the conventional callback locking quests are handled in a manner similar to ODM but at regu-
lar intervals the server dispatches the updates that have notpolicy.

The idea of distributed-caching as described in Ref. 50 is been seen by clients yet. This can be done in two different
ways, indiscriminately [periodic broadcasting with no-catalogto off-load data access requests from overburdened data

servers to idle nodes. These nodes are called mutual-servers, bindings (PNC)] or by using a discriminatory strategy based
on catalog bindings [periodic broadcasting with catalog bind-and they answer query with the help of their own data. This

study focuses on the following caching policies: passive ings (PWC)]. Simulations indicate that the performance of
these update propagation techniques depends greatly on thesender/passive receiver (PS/PR), active sender/active receiver

(AS/AR), and similarly AS/PR and PS/AR: operating conditions of the ECS. For example, the ODM strat-
egy offers the best performance if none of the server resources
reaches full utilization, while BNC offers the best perfor-1. PS/PR. The sender does not actively hand over any ob-
mance under high utilization of server resources when theject. When it needs to throw something away, it simply
updates have small page selectivities, the number of clientsbroadcasts it to the network. If some mutual-server is
is large, and the number of updates increases linearly withlistening, the object might be picked up if it seems valu-
the number of clients in the system.able; otherwise, it is dropped. The mutual-servers do

In Ref. 51 O’Toole and Shrira present a scheme that allowsnot make any active efforts to fill up their buffers
clients to cache objects and pages. Previous studies haveeither.
shown that when hot data are densely packed on pages, page-2. AS/PR. A data server or mutual-server trying to get
based caching performs well, and when hot data are sparselyrid of an object takes the initiative to hand it over to
packed, object-based caching performs better (27). By propos-another mutual-server. When an active-sender node
ing a hybrid caching scheme, this work tries to reduce theperceives itself to be a bottleneck, it broadcasts a mes-
number of I/Os when the server writes client-committed up-sage to the network seeking hosts for its most globally
dates into the master database. Such update operations arevaluable objects. From those mutual-servers that re-
termed installation reads. The server receives commit re-spond, the server selects one and hands over the object.
quests from the clients for whole pages or individual objects.

3. PS/AR. Idle mutual-servers take the initiative to ob- When the commit request provides a page, the server vali-
tain globally valuable data from data servers and over- dates the transaction according to the individual object that
flowing mutual-servers. As busy servers discover the ex- was modified and then uses the containing page to avoid the
istence of willing receivers, they hand over their most read phase of an installation. Commit requests that provide
valuable objects to them. individual objects require the server to perform installation

4. AS/AR. In this scenario all nodes are active senders or reads. By using an opportunistic log (52), installation–reads
receivers. When a data server or mutual-server is idle, are deferred and scheduled along with other object updates
it volunteers to store other nodes’ most valuable objects, on the same pages if possible. Simulation results show that
and when it becomes a bottleneck, it looks for other when disk I/O is the system performance bottleneck, the hy-
nodes to which to off-load its most valuable objects. brid system can outperform both pure object caching and pure

page caching.
Predicate indexing (53) and predicate merging techniquesIn most simulation settings distributed caching policies show

superior performance to the pure client–server system. Ac- are used to efficiently support examination of cached query
results. When a new query partially intersects cached predi-tive-sender policies perform the best under skewed loads.

In Ref. 32 the problem of managing server imposed up- cates, this query’s predicate can be trimmed before submis-
sion to the server. This can reduce the time required to mate-dates that affect client cached data is examined in the context

of the enhanced CSD architecture. Five update propagation rialize a query result at the client. Queries are also
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augmented at times to make the query result more suitable transaction commits, whichever happens earlier. Write-ahead
logging is used to ensure that log records are sent to thefor caching. Query augmentation can result in simpler cache

descriptions, thus in more efficient determination of cache server and written to stable storage before any pages are sent
back. The Commit_LSN (58) technique is used to determinecompleteness and currency with the potential disadvantages

of increasing query results and response times, and wastage whether all the updates on a page were committed. This
method uses the LSN of the first log record of the oldest up-of server and client resources in maintaining information that

may never be referenced again. By exploiting the above ideas, date transaction still executing to infer that all the updates
in pages with page_LSN less than Commit_LSN have beenKeller and Basu (54) introduced predicate-based client-side

caching in CSDs. It is assumed that the database is relational committed. Clients as well as the server take checkpoints at
regular intervals. This allows for intertransaction caching ofand stored entirely at a central server. The key idea is the

reuse of locally cached data for associative query execution at data at the clients.
In Ref. 59 Panagos et al. propose the use of local disks forthe clients. Client queries are executed at the server, and the

results are stored in the client cache. The contents of client logging and recovery in data–shipping CSD architectures. All
updates on cached data items, performed at clients, arecaches are described by means of predicates. If a client deter-

mines from its local cache description that a new query is not logged locally. Concurrency control is based on strict, global
two-phase locking. The local logs of the clients need never becomputable locally then the query (or a part of it) is sent to

the server for execution. Otherwise, the query is executed on merged, and local transaction rollback and crash recovery are
handled exclusively by each client. Recovery is based on thethe cached local data. Transactions executing at the clients

assume that all cached data are current. Predicate descrip- write-ahead log protocol and the ARIES redo-undo algorithm
(56) is used. The steps taken in the proposed recovery algo-tions of client caches are also stored by the server. This allows

the server to notify clients when their cached data are up- rithm for recovery from a single node crash are (1) determin-
ing the pages that may need recovery, (2) identifying thedated at the server. There are several methods for main-

taining the currency of the data cached at a client: automatic nodes involved in the recovery, (3) reconstructing lock infor-
mation, and (4) coordinating the recovery among the in-refresh by the server, invalidation of cached data and predi-

cates, or refresh upon demand. volved nodes.

Recovery
PARALLEL DATABASE SYSTEMS

Since CSDs often stage data in nodes other than the database
server(s), the issue of recovery after a failure is of vital impor- High-performance computing systems are available today in
tance. Recovery in CSDs has been addressed by introducing many flavors and configurations. Such parallel systems al-
variants of the basic ARIES database recovery protocol. ready play a vital role in the service sector and are expected

Recovery in the Client–Server EXODUS Storage Manager to be in the forefront of scientific and engineering computing
(ESM-CS) (55) involves two main components. The logging in the future (60). Parallel database systems (PDSs) offer
subsystem maintains an append-only log on stable storage, high performance and high availability by using tightly or
and the recovery subsystem uses the log to provide transac- loosely connected multiprocessor systems for managing ever-
tion rollback and crash recovery. Crash recovery is performed increasing volumes of corporate data. New and data-intensive
by the server in communication with the clients using a modi- application areas call for the further development and re-
fication of the ARIES algorithm (56). ESM-CS uses strict two- finement of PDSs featuring ultra-high CPU processing capac-
phase locking for data pages and non-two-phase locking for ity and aggregate I/O bandwidth.
index pages. Before each client transaction commits, all the In today’s business world, novel application areas that en-
pages modified by it are sent to the server (no intertransac- joy tremendous growth include data warehousing, decision
tion caching). Before the pages are sent, however, the log re- support systems (DSS), and data mining. The main character-
cords for the transaction are sent to the server and written to istics of these applications are the huge volumes of data that
stable storage (write-ahead logging). Checkpoints are taken they need to handle and the high complexity of the queries
at the server regularly. Each page has a log record counter involved. Queries in data warehouses and DSSs make heavy
(pageLRC) that is stored with the page itself. When a page is use of aggregations, and they are certainly much more com-
modified, the pageLRC is updated and copied into the corre- plex than their OLTP counterparts (61). In data mining, use-
sponding log record. During crash recovery, the pages that ful association patterns need to be discovered by scanning
could have possibly been dirty at the time of the crash are large volumes of mostly historical and temporal data (62,63).
identified. This is not as simple as in ARIES, since there may With the introduction of multimedia and digital libraries, di-
be pages that are dirty at a client but not at the server. The verse data types have been introduced (i.e., images, video
pageLRC is compared with the LRC of the log record to deter- clips, and sounds) that require an order of magnitude higher
mine whether a particular update has been reflected in the disk capacity and more complex query processing. Uniproces-
page. Care has to be taken to ensure that the combination of sor database systems simply cannot handle the capacity or
page ID and pageLRC refers to a unique log record. provide the efficiency required by such applications. The goal

ARIES/CSA (57) is another modification of the ARIES of a PDS is to provide high performance and availability at a
redo-undo algorithm (56). Adapting ARIES to a CSD environ- much lower price than an equivalent aggregate of uniproces-
ment requires that the log sequence numbers generated sor systems (64).
throughout the system be unique and monotonically increas- It has been successfully argued and shown that the rela-
ing. The log records produced at a client for local updates are tional model and its accompanying operators are amenable to

parallelization. Hence the relational model has become thesent to the server when dirty pages are sent back or when a
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natural choice for deployment in PDSs. The power of the cessors and disks in significantly higher than in a uniproces-
model lies in its simplicity and uniformity. Relations consist sor system. A PDS designed without taking this fact into
of sets of tuples, and operators applied on relations produce account will demonstrate very frequent breakdowns of ser-
new relations. In this regard relational queries can be decom- vice. For instance, if a component (either CPU or disk unit)
posed into distinct and possibly independent relational oper- has a failure rate of once every five years, then in an aggre-
ators. gate architecture with 100 such components and assuming

A PDS can achieve high performance through parallel im- statistical independence, the mean failure rate is once every
plementation of operations such as loading data, building in- 18 days.
dexes, optimizing and processing of queries, and load balanc- For database applications the availability of disk–resident
ing (65). A PDS can exploit parallelism by using one of the data objects is perhaps the most critical concern (67). One
following approaches: approach to obtain higher availability is to simply replicate

data items on separate disks. Thus in the event of a disk fail-
ure, the copy of the data may still be available on the backup1. Pipelined Parallelism. The PDS can execute a rela-
disk. Unless both disks (the original disk and the backuptional query in parallel by streaming the output of one
disk) fail at the same time, the failure of a single disk will beoperator into the input of another operator.
transparent to the users and the PDS will continue to operate2. Partitioned Parallelism. The PDS partitions the input
properly. However, replication can potentially lead to data in-data and each processor is assigned to one of these data
consistency if a data item gets modified but its copy remainssets. All processors apply the same operator simultane-
unchanged. To avoid this undesirable effect, a protocol thatously.
avoids inconsistencies has to be enforced at all times. A popu-

3. Independent Parallelism. Distinct PDS processors exe- lar such protocol is ROWA (read one, write all) where a logical
cute different operators on possibly disjoint data sets read operation is converted to a physical read operation of
at the same time. In this type of parallelism, the key any one of the copies, but a logical write operation is trans-
assumption is that the input and the output of the par- lated into physical writes to all copies.
allel operations are not related.

If disk A—which has a (partial) replica of its data on disk
B—fails, then disk B will have to carry not only its own re-

Throughput and average transaction response time are the quests but the queries received by the failed disk as well. This
two performance indicators mostly used in the evaluation of ‘‘double’’ work that disk B has to accommodate may result in
PDSs. A PDS that processes a large number of small transac- poor response time which could become twice as long. In addi-
tions can improve throughput by executing as many transac- tion the throughput of the overall system will be effectively
tions in parallel as possible. On the other hand, a system that reduced. In order to avoid the above phenomena, a scheme
processes large transactions can reduce the response time by that replicates the data on the disks, in a manner more resil-
performing many different tasks of each transaction in par- ient to disk failures, is required. Chained declustering is a
allel. technique that allocates data throughout the available disk

There are two possible ways to parallelize a query evalua- devices and provides acceptable performance rates in the case
tion process (66): interquery and intraquery parallelism. In of a failure (67). We briefly describe chained declustering in a
interquery parallelism, several different queries are executed subsequent section.
simultaneously. The goal of this form of parallelism is to in-
crease transaction throughput by utilizing as many pro-

Metrics and Design Objectivescessors as possible at any time. Intraquery parallelism refers
to the execution of a single query in parallel on multiple pro- The two most important metrics in studying parallelism are
cessors and disks. Hence the response time of individual speedup and scaleup (65). Speedup indicates how much faster
queries is reduced. Interquery parallelism cannot achieve sig- a task can be run by increasing the degree of parallelism.
nificant response time reduction, since individual tasks as- Scaleup refers to the handling a larger task by increasing the
signed per processor are scheduled according to a strict se- degree of parallelism proportional to the size of the task. More
quential discipline. specifically, consider a PDS running a database application,

Intraquery parallelism can be manifested in two forms: in- and suppose that we enhance the system adding new pro-
tra- and interoperation parallelism. Intra-operation parallel- cessors and disks. Let the execution time of the application in
ism executes the same operator on a number of processors the initial system be TS and that in the enhanced configura-
with each processor working on a different data set. Interop- tion be TL. Then the speedup given by the larger system is
eration allows the assignment of processors on the various
nodes of the query tree on demand. The two types of in-
traquery parallelism are complementary and can be used si- Speedup = TS

TLmultaneously on a query. Large-scale parallelism of a com-
plex query may introduce significant communication costs.

The speedup is linear if an N-times larger or more expen-Therefore the PDS must not only consider conventional query
sive system yields a speedup of N. If the speedup is less thanoptimization and load balancing issues but also take into ac-
N, the PDS demonstrates sublinear speedup. The notion ofcount the communication overhead involved.
speedup holds the problem size constant while the PDS growsSince critical applications are run on PDSs, high availabil-
in terms of available computing resources. However, it is veryity is a much desired property for the system in the presence
often the case that we need to increase the ‘‘capacity’’ of theof a failure. The probability of a single processor or disk de-

vice failure in a PDS consisting of a large number of pro- PDS so that it can handle a larger database (problem do-
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main). In this case the effectiveness of the new system is ex- of the task is skewed. In the presence of a skewed parti-
tioning, increasing parallelism improves the executionpressed by using the notion of scaleup.

Let us assume that a database task A runs on a parallel time only slightly, since there is a subtask with very
long service requirements.database system M and with execution time TA. Now suppose

that we enhance the old system and build a new system L
that is N times larger or more expensive than M. In L we run Parallel Database Architectures
a new database task B that is N times larger than A and the

In Refs. 64 and 68 a taxonomy for such parallel systems and
execution time is TB. Then the scaleup is defined as the ratio

frameworks for their implementation were presented. De-
pending on the employed hardware configurations and the
used software paradigms, various parallel database architec-Scaleup = TA

TB tures are feasible. In the following subsections, we discuss
four such architectures:The PDS demonstrates linear scaleup on task B if the above

fraction is equal to one. If TB � TA (i.e., scaleup � 1), then the
• Shared-Memory. All processors share direct access to aPDS is said to demonstrate sublinear scaleup behavior.

common global memory and to all disks.There are two distinct types of scaleup relevant to data-
• Shared-Disk. Each processor has a private memory andbase systems, depending on the composition of the workload:

direct access to all disks through an interconnection net-transactional and batch scaleup. In transactional systems a
work.database task consists of many small independent requests

(containing updates as well). For instance, consider an OLTP • Shared-Nothing. Each processor has local main memory
system that manages deposits, withdrawals, and queries on and disk space; in addition each site acts as a server for
account balance. In such systems we would like to ideally ob- the data resident on the disk or disks in it.
tain the same response time despite the increase in the num- • Hierarchical or Hybrid. This model is organized around
ber of user requests and the size of the database. Therefore an interconnection network that allows interoperation of
transactional-scaleup designates not only N-times many re- functionally independent sites. Each site is, in its own
quests but also demands that these requests be executed on right, organized according to one of the preceding three
a shared database that is N-times larger than the original models.
one. Transactional-scaleup is a well-suited indicator for the
assessment of a PDS because transactions run concurrently Shared-Memory Architecture. In a shared-memory system
and independently on separate processors, and their execu- any processor and disk has direct access to a common global
tion time is independent of the database size. In batch– memory. Figure 8 depicts the salient characteristics of this
scaleup the size of the database increases along with the size architecture. The advantages of a shared-memory architec-
(or range) of the submitted query. If a N-times larger (and ture are simplicity in developing database software, efficient
possibly more complex) transaction runs on a N-times larger communication among processors, and possibility for effective
database (using a N-times larger PDS) and we still maintain load balancing.
the same levels of response times, then we can say that the Since every processor shares the database’s meta-data and
PDS presents linear batch–scaleup. catalog information, migration of a database from a

In optimal settings PDSs should demonstrate both linear multitasking uniprocessor system to a shared-memory envi-
speedup and scaleup (65). However, a number of restraining ronment is a relatively straightforward task. Simply every
factors prevent such systems from achieving this. They are process (transaction) that used to run concurrently can be
as follows: now executed on an individual processor, in parallel with

other processes. This represents interquery parallelism which
1. Startup Costs. There exist costs every time a process may result in a higher throughput for the overall system.

is initiated in a parallel configuration. If tens or even Thus database applications designed for uniprocessors can be
hundreds of processes must be started, then the startup run in a shared-memory system with few or no changes. In-
time can easily dominate the actual computation time, traquery parallelism for shared-memory architectures re-
resulting in execution time degradation. quires more effort to be implemented but remains simple. Un-

2. Interference. A task executed in a PDS may consist of a
number of processes executing concurrently that may
access shared resources. Whenever there is contention
for a shared resource (communication media/buses,
disks, locks, etc.) by two or more parallel transactions, a
slowdown will inevitably take place. Both speedup and
scaleup can be affected by such contention.

3. Service Time Skew. A well-designed PDS attempts to
break down a single task into a number of equal-sized
parallel subtasks. The higher number of subtasks we
create, the less the average size of each subtask will be.
It is worthwhile to note that the service time of the
overall task is the service time of the slowest subtask.

.......

.............
CPU CPU CPU

Interconnection network

Disk Disk Disk

Shared-memory
When the variance in the service times of the subtasks
exceed the average service time, then the partitioning Figure 8. Shared-memory architecture.
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shared-memory model, and the quality of the load balancing
can be equally good.

An additional advantage of the shared-disk over the
shared-memory organization is that it can provide a higher
degree of availability. In case of a processor failure, the other
processors can take over its tasks. The disk subsystem can
also provide better availability by using a RAID architecture
(72). Migrating a system from a uniprocessor system to a
shared-disk multiprocessor is straightforward, since the data
resident on the disk units need not be reorganized. The
shared-disk configuration is capable of exploiting interquery
parallelism.

On the other hand, the main drawback of the shared-disk

.......

.............CPU CPU CPU

Interconnection network

Memory Memory Memory

Disk Disk Disk

architecture remains its scalability, especially in cases of da-Figure 9. Shared-disk architecture.
tabase applications requiring concurrent read and write oper-
ations on shared data. When the database application makes
a large number of disk accesses, the interconnection to the

fortunately, intraquery parallelism may impose high disks becomes a bottleneck. Interference among processors is
interference, hurting the response time and the throughput. also possible, and control messages among processors due to
Most of the contemporary shared-memory commercial PDSs coherency protocols may further worsen matters.
exploit only interquery parallelism.

The communication between processors can be imple- Shared-Nothing Architecture. In a shared-nothing (SN) sys-
mented with shared memory segments using only read and tem architecture each node of the PDS is a full-fledged com-
write system calls, which are much faster than message sends puting system consisting of a processor, main-memory buff-
and receives. The load balancing is excellent because, every ers, and one or more disks. The sites communicate with each
time a processor finishes a task, it can be assigned a new one other through a high-speed interconnection network. Such a
resulting in an almost perfectly balanced system. On the system can be a parallel multicomputer system or even a
other hand, shared-memory architectures suffer in cost, scala- number of workstations attached to a high-speed local area
bility, and availability. The interconnection network must be network (termed Network of Workstations or NOW). Figure
extremely complex to accommodate access of each processor 10 depicts the architecture in question.
and disk to every memory module. This increases the cost of The major benefit of a shared-nothing system is its scala-
shared-memory systems when large numbers of participating bility. A shared-nothing architecture can easily scale up to
resources are involved. The interconnection network needs to thousands of sites that do not interfere with one another. The
have a bandwidth equal to the sum of the transfer band- interference is reduced by minimizing resource sharing and
widths of all the processor and disk components. This makes carefully partitioning data on multiple nodes. It has been
it impossible to scale such systems beyond some tens of com- shown that shared-nothing architectures can achieve near-
ponents as the network becomes a bottleneck. Therefore the linear speedups as well as good scaleups on complex rela-
scalability of a shared-memory system is rather low. Also a tional queries and on-line transaction processing workloads
memory fault may affect most of the processors when the (28).
faulted module is a shared memory space, so reducing the As one can easily observe, the previous architectures (Figs.
data availability. 8 and 9) tend to move large amounts of data through the in-

Examples of shared-memory PDSs are the XPRS system terconnection network. The shared-nothing, on the other
(69), DBS3 (70), Volcano (71), and Sybase ASE 11.5. In sum- hand, if designed properly, can minimize such data move-
mary, the shared-memory architecture is a satisfactory solu- ment. Essentially it can move only requests and answers pro-
tion when the PDS maintains coarse granularity parallelism. viding a sound foundation for achieving high scalability. An-

other advantage of the shared-nothing architecture is that it
can make use of commodity computing systems. At the sameShared-Disk Architecture. In a shared-disk architecture
time, the need for a very expensive interconnection networkeach processor has a private memory and can access all the

available disks directly via an interconnection network. Each
processor can access database pages on the shared disks and
copy them into its own memory space. Subsequently the pro-
cessor in discussion can work on the data independently,
without interfering with anyone else. Thus the memory bus
is no longer a bottleneck. To avoid conflicting operations on
the same data, the system should incorporate a protocol simi-
lar to cache-coherence protocols of the shared-memory sys-
tems. Figure 9 depicts this architectural framework.

If the interconnection network can successfully scale up to
hundreds of processors and disks, then the shared-disk archi-
tecture is ideal for mostly-read databases and for applications

................

CPU CPU CPU

Memory Memory Memory
Disk Disk Disk

Interconnection network

that do not create resource contention. The cost of the inter-
connection network is significantly less than that in the Figure 10. Shared-nothing architecture.
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can be avoided. Today’s high-performance processors, large shared-memory systems are interconnected to form a shared-
nothing system.memory modules, sizable disk devices, and fast LANs are

available at very low costs. Thus the shared-nothing frame- The case for a hybrid system termed ‘‘shared-something’’
is discussed in Ref. 64. This is a compromise between thework can be realized by utilizing ‘‘off-the-shelf ’’ components,

reducing the cost of the overall architecture tremendously. shared-memory and shared-disk architectures as CPUs in a
shared-disk model work off a global memory space. It is ex-The availability of such systems can be increased by repli-

cating data on multiple nodes. Finally, since disk references pected that such hybrid architectures will combine the advan-
tages of the previous three models and compensate for theirare serviced by local disks at each node, without going

through the network, the I/O bandwidth is high. Under pure- disadvantages (76). Thus hybrid architectures provide high
scalability as the outer level employs a shared-nothing designquery settings, this I/O bandwidth is equal to the sum of the

disk bandwidths of all the nodes involved. and, at the same time, furnish good load-balancing features
by using shared-memory configurations in each node.The main drawbacks of the shared-nothing systems lie

with the high complexity in the system software layer and the Many contemporary commercial PDSs have converged to-
ward some variant of the hierarchical-hybrid model. NCR/load balancing used. Shared-nothing PDSs require complex

software components to efficiently partition the data across Teradata’s new version of database machine as well as Tan-
dem’s ServerNet-based systems are samples of the hierarchi-nodes and sophisticated query optimizers to avoid sending

large volumes of data through the network. Load balancing cal architecture.
depends on the effectiveness of the adopted database parti-
tioning schemes and often calls for repartitioning of the data Data Placement
so that query execution is evenly distributed among system

Data placement is one of the most critical issues in PDSs. In
nodes. Finally the addition of new nodes will very likely re-

the context of the shared-nothing (SN) architecture, it has
quire reorganization of the data to rebalance the load of the

been studied extensively, and a number of placement algo-
system.

rithms have been proposed. In such systems the effectiveness
The shared-nothing architecture has been adopted by

of the load balancing is largely dependent on proper data
many commercial database systems such as Tandem, Tera-

placement. In SN architectures data placement determines
data (one of the earliest and most successful commercial data-

not only the data distribution but also the distribution of op-
base machine), Informix XPS, and BD2 Parallel Edition (73)

erators that access the data. Thus, if data are not carefully
as well by numerous research prototypes including Gamma

assigned to the nodes, the load might be distributed nonuni-
(74) and Bubba (75).

formly leading to the creation of bottlenecks. The I/O parallel-
ism in a PDS can be fully exploited only if the data are placed

Hierarchical-Hybrid Architecture. The hierarchical or hy- on multiple disks. Thus the data should be horizontally parti-
brid architecture represents a combination of the shared- tioned or ‘‘declustered.’’ It has been shown that declustering
memory, shared-disk, and shared-nothing architectures (64). is useful for shared memory configurations as well, since
The main vehicle of this architecture is an interconnection memory conflicts can be reduced (70).
network that aggregates nodes. These nodes can be organized In data placement there are three major factors to be de-
using the shared-memory model where a few processors are termined: the degree of declustering, the selection of particu-
present. This is shown in Fig. 11. Alternatively, every node lar nodes (disks) on which the partitioned data will be stored,
can be configured as a shared-disk architecture. In this case and the mapping of data tuples to system nodes (partitioning
every processing element could be further organized using the method). The degree of declustering is the number of nodes
shared-memory model. Thus one may achieve three levels of (disks) on which a relation is distributed, and its choice is a
hierarchy with each one representing a different architecture. very important decision as far as the data placement algo-

rithms are concerned. It should be chosen so that the benefitHua et al. (76) proposed a hybrid system where clusters of

Figure 11. Hierarchical architecture.

Shared-memory Shared-memory

...........

...........

............

..........

..........

...... ......

Disks

Disks

Interconnection network

In
te

rc
o

n
n

e
ct

io
n

 n
e

tw
o

rk

In
te

rc
o

n
n

e
ct

io
n

 n
e

tw
o

rk

CPU

CPU

CPU

CPU

CPU

CPU



DATABASE ARCHITECTURES 535

of parallelism is higher than the cost of the overheads in-
curred. A higher degree of declustering indicates higher par-
allelism for the relational operators. The factors that affect
the degree of declustering chosen are startup and termination

Primary copy

Disk

Backup copy

10 2 3 4

F0 F1 F2 F3 F4

f4 f0 f1 f2 f3

costs of the operators, communication costs, and data skew.
Figure 12. Disk layout for chained declustering.In Ref. 77 an experimental methodology that computes the

degree of declustering is discussed. This degree selection is
based on the maximization of the system throughput achieved

needed, the average communication time, and the addi-by the PDS. Simulation experiments indicate that for the sys-
tional costs to initiate and terminate the execution oftem parameters used, full declustering is not the best option
the query. Then it computes the optimal number of pro-possible.
cessors (ONP) required to minimize the average re-As soon as the degree of declustering has been determined,
sponse time. Assuming that the average result size of apartitioning techniques are used to place tuples into nodes
query is Nresult tuples, then the fraction of Nresult/ONP is(disks). Some commonly used methods are as follow:
computed. This fraction represents the maximum num-
ber of tuples to be returned by a single node in the case1. Round-Robin (RR). The relation is declustered in a
of a range query. This set of tuples is termed ‘‘fragment’’round-robin fashion. Thus, if the degree of declustering
(78).is M, the ith tuple is placed on the i mod Mth node

Subsequently the relation is sorted on the parti-(disk). The main advantage of this method is its excel-
tioning attribute and is chopped into sequential frag-lent load balancing, since every node (disk) has approxi-
ments of size Nresult/ONP. Finally these fragments aremately the same number of tuples. RR is ideal for que-
distributed among the PDS nodes (disks) through aries that scan entire relations. On the other hand, all M
round-robin technique. The assignment of fragments tonodes (disks) must be used for point and range queries,
nodes is kept in a range table.even if the result resides on only one node (disk).

2. Hash Partitioning (HP). Here the relation is declust- In Ref. 79 a simulation study of data placement algorithms
ered using a hashing function with range 0 to (M � 1). is presented for a shared-nothing architecture. Due to the
This function takes as input the partitioning attribute high processing power of contemporary processors and high
of a tuple and returns the number of the node (disk) bandwidth of modern interconnection networks, full declus-
where this tuple is to be placed. If the hash function is tering is shown to be a viable method for data placement. Full
chosen carefully, and the data are not skewed on the declustering provides the highest degree of parallelism and
partitioning attribute, the data are declustered almost avoids the penalties of computing either the degree of declus-
uniformly. Subsequently queries that scan the entire re- tering or the placement of data partitions on the available
lation are very efficient, since it takes approximately disks.
1/M of the time required to scan the relation on a sin- Another critical issue in data placement algorithms is the
gle-disk system. Point queries on the partitioning attri- availability of data in the presence of failures. Chained de-
bute are executed very efficiently, since the hash func- clustering is a technique that redistributes the load in the
tion can directly identify the node (disk) that may event of a failure (67). In this technique, system nodes are
contain the target tuples. Range queries have to be ma- divided into disjoint groups called clusters. The tuples of a
terialized by scanning all M nodes. relation are horizontally declustered among the disks of one

3. Range Partitioning (RP). This method requires from the cluster. Two copies of each relation are maintained, the pri-
user to specify a range of attribute values for each node mary and the backup copy. The tuples in the primary copy
(disk). Such a declustering is described by a ‘‘range vec- are declustered using a partitioning method (from those men-
tor’’ which consists of the partitioning attribute and the tioned earlier) and the ith primary copy partition (Fi) is
various adopted ranges. The database catalog main- stored on the i mod Cth disk in the cluster, where C is the
tains such range vectors. RP is obviously well suited for cluster size. The backup copy consists of the same partitions
point and range queries. As compared to HP, a point as the primary copy and the ith backup partition ( fi) is stored
query may display some overhead because the range on the (i � 1) mod Cth disk. The term chained declustering
vector has to be looked up before the query is directed indicates the fact that any two adjacent disks are ‘‘linked’’
to the appropriate node (disk). For range queries, re- together like a chain. An example with C � 5 is shown in
quests are directed only to specific nodes that may have Fig. 12.
the answer. Depending on the selectivity of the range During normal operation, read operations are directed to
query, RP can produce the results in either short or long primary copies and write operations to both primary and
turnaround times. If the selectivity is large, RP will fur- backup copies (i.e., ROWA protocol). If a single-disk failure
nish unsatisfactory query turnaround times. In this occurs, chained declustering tries to uniformly distribute the
case the HP or RR are preferable. load among the remaining nodes. In this case all primary and

backup partitions on the working disks are used. The increase4. Hybrid-Range Partitioning (HPR) (78). This technique
attempts to combine the sequential paradigm of the RP of the load on each disk is 1/(C � 1), assuming that the load

was distributed uniformly to all disk before the failure oc-and the load balancing of RR partitioning. To achieve
this, the HPR uses the characteristics of the submitted curred. For example, if the disk number 2 fails, the backup

copy that resides on disk 3 must be used instead. Now, diskqueries. In particular, HPR takes as input the average
query CPU execution time, the average query I/O time 3 redirects the 3/4th of its own requests to disk 4. Disk 4 will
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join operations, and the probe phases can be executed using
extensive pipelining. On the other hand, left-deep trees allow
the execution of the probe phase of only one join and the build
phase of the next join in the tree at the same time. Hence
right-deep query representations are better suited to exploit
the parallelism offered by PDSs.

The result above is extended for bushy query trees in Ref.
83. Right-deep trees may suffer from low flexibility of struc-
ture, thus implying a limitation on performance. A major
problem for pure right-deep trees is that the amount of main-
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memory available may not be enough to accommodate all theFigure 13. Disk failure handing in chained declustering.
inner relations during the build phase. Hence the right-deep
tree has to be decomposed into disjoint segments so that the
inner relations of each segment can fit into memory. Bushy

use the backup partition number 3 ( f3) to accommodate these
trees offer greater flexibility in the generation of query plans

requests. In the same manner, disk 4 will send the 2/4th of
at the cost of a larger search space. It has been shown that

its own requests to disk 0 and so on (Fig. 13). This dynamic
for sort–merge, the evaluation of a bushy tree can outperform

rebalancing has, as a direct result, an increase in load of all
that of the linear trees. However, in the case of hash join, the

still functioning disks by 1/4th. The reassignment of the ac-
scheduling of a bushy query tree is much more complex than

tive partitions does not require disk I/O nor data movements
the corresponding right-deep structure. The problem here is

across disks. It can be implemented by only changing some
that the execution of join operation should be synchronized in

bounds in main-memory managed control tables.
order to fully exploit pipelining. Therefore the use of seg-
mented right-deep trees for the execution of pipelined hash

Parallel Query Optimization
joins is suggested in Ref. 83. A segmented right-deep tree is
a bushy tree that consists of right-deep segments. These seg-A vital component for the success of a PDS is the parallel

query optimizer (PQO). Given a SQL statement, the objective ments can be evaluated using the approach described in Ref.
66. Each segment is assigned to a set of processors where theof the PQO is to identify a parallel query materialization plan

that gives the minimum execution time. Since one of the ob- size of the set is proportional to the estimated amount of work
in the join operations. Thus independent segments can be ex-jectives of PDSs is to diminish the query response times in

decision–support and warehousing applications, the role of ecuted in parallel using sets of disjoint processors.
In Ref. 84 a performance study is provided for four differ-PQO is of paramount importance to the success of such sys-

tems (80). ent execution strategies for multi-join queries, using the
main-memory PDS PRISMA/DB (85). There are four strate-Techniques employed by conventional query optimizers are

not adequate for PDSs. More specifically, in the case of multi- gies examined:
way joins, a conventional query optimizer considers plans
only for the left-linear join tree. In doing so, the optimizer • Sequential Execution Strategy (SP). This is the simplest
limits the search space and exploits possible auxiliary access way to evaluate a multi-join query using intra-operator,
structures on the joining operands. This strategy works rea- but not interoperator, parallelism. Here join-operators
sonably well for uniprocessor systems (81). However, the in- are evaluated one after the other using all available pro-
troduction of parallelism in PDS makes the number of possi- cessors. Since there is no pipelining used, the intermedi-
ble join trees very high. This means that optimal and even ate results have to be stored. In PRISMA these results
near-optimal solutions may not be included in the search are kept in main-memory, and this is the main reason
space when it is restricted to linear join trees (82). Addition- for the competitiveness of this strategy.
ally the cost function used by the PQO has to take into ac-
count the partitioning and communication costs, the place-
ment of the data, and the execution skew. Therefore several
algorithms have been introduced for parallel query optimi-
zation.

In Ref. 66 opportunities in the parallelism of left-deep (left-
linear) and right-deep (right-linear) query trees (Fig. 14) in
light of multi-way joins are discussed. For binary join opera-
tions the hash join method is used, because it is the best pos-
sible choice for parallel execution. This technique consists of
two phases: build and probe. In the build phase the inner-join
operand is used to create a hash table in main memory. If the
hash table exceeds the memory capacity, the overflow tuples
are stored to a temporary file on disk. During the probe phase
the outer-join operand is used to probe the hash table or the
portion of the hash table on the disk. The inner-join operand
is called ‘‘left operand,’’ and in the same fashion the outer-

Left-linear

Right-linear

Left-oriented
 bushy 

Right-oriented bushy 

Wide-bushy

join operand is termed ‘‘right operand.’’ In the right-deep
query tree, the build phase can be executed in parallel for all Figure 14. Types of query trees.
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• Synchronous Execution (SE). The rationale here is to ex- include grouping, aggregation, and other operations usually
contained in DSS and warehousing queries.ecute independent subtrees of the query tree using inde-

pendent parallelism. The second phase of the approach takes as input the anno-
tated query tree produced and returns a query execution plan:• Segmented Right-Deep Execution (RD). This is the query

processing method discussed earlier and was proposed in
Ref. 83. • The first step translates the annotated query tree to an

operator tree by ‘‘macroexpansion.’’ The nodes of an oper-• Full Parallel Execution (FP). Both pipelining and inde-
pendent parallelism are added to partitioned parallelism ator tree represent operators and the edges represent the

flow as well as timing constraints between operators.in the individual join operators. Here each join operator
is assigned to a private group of processors, so all join These operators are considered as atomic pieces of code

by the scheduler.operators are executed in parallel. Depending on the
shape of the query tree, pipelining and independent par- • The second step schedules the operation tree on the par-
allelism are used. allel machine’s nodes, while respecting the precedence

constraints and the data placement.
All strategies but the first offer imperfect load balancing. The
query tree shapes used in the experiments were left-linear,
left-oriented bushy, wide-bushy, right-oriented bushy, and SUMMARY
right-linear (Fig. 14). The experimental results indicate that
for a small number of processors the SP strategy is the cheap- We have examined three families of database architectures
est one as intermediate results are buffered. For larger num- used to satisfy the unique requirements of diverse real-world
ber of processors, the FP strategy outperforms the others. The environments. The architectures optimize database pro-
performances of the SE and RD depend on the shape of the cessing by taking advantage of available computing resources
query tree. In particular, RD does not work well for trees with and exploiting application characteristics.
left-deep segments. However, it is possible to transform, with To deliver real-time responses and high-throughput rates,
little cost, a query tree to a more right-oriented one. In this main-memory databases have been developed, on the as-
case the RD strategy can work very effectively. In terms of sumption that most of their operational data are available in
memory consumption, the RD appears to be better than the volatile memory at all times. This is not an unrealistic as-
FP. Among the different query-tree shapes, the most competi- sumption as only a small fraction of any application’s data
tive seems to be the bushy tree, since it allows for more effec- space is utilized at any given moment. The absence of fre-
tive parallelization. quent disk accesses has led to the design of concurrency and

A different approach in PDS query processing is discussed transaction processing techniques specifically tuned to per-
in Ref. 86 where the problem is decomposed into two phases: form well in the main-memory environment.
join ordering and query rewrite (JOQR), and parallelization. The widespread availability of workstations and high-end
The rationale of this approach resembles that followed in the PCs coupled with the presence of high-speed networking op-
compilation of programming languages where the problem is tions have led to the evolution of client–server systems. Em-
fragmented into several distinct phases in order to deal effec- pirical observations have indicated that most database users
tively with the problem’s complexity and provide easy imple- access small and likely disjoint portions of the data. In addi-
mentation. tion these data portions are accessed with a much greater

The first phase, JOQR, produces an annotated query tree frequency than the rest of the database. The desire to off-load
that fixes the order of operators and the join computing meth- such localized processing from database servers to the clients’
ods. This phase is similar to traditional (centralized) query own workstations has led to the development of client–server
optimization, and a conventional query optimizer can be used. database architectures. Initial implementations utilized client
In accordance with the design of traditional optimizers, this machines as user-interface points only. However, the increas-
phase can be further broken into two steps: ing processing capabilities of PCs and workstations have al-

lowed clients to not only be able to cache data but also per-
• The first rewrites the submitted query using heuristics form database processing. Caching could be of either an

(algebraic transformation rules). ephemeral or long-term nature. In the former, the clients’
• The second arranges the ordering operations and selects buffer space is used as a temporary storage area for data. In

the method to compute each operation (e.g., the method the latter, the clients’ full memory hierarchy is used to store
to compute the joins). server-originating data not only in main memory but in the

disk units as well (i.e., disk-caching).
In the absence of localized database accesses or when theIn JOQR an important issue is the choice of the parti-

volume of data to be processed is massive, parallel databasestioning attributes in the query tree so that the total sum of
offer an appropriate architecture for efficient database pro-communication and computation costs is minimized. In Ref.
cessing. Parallel database systems offer high performance86 this problem is reduced to a query tree coloring problem.
and high availability by using tightly or loosely connectedHere the partitioning attributes are regarded as colors, and
multiprocessor systems and I/O devices. The aggregate ultra-the repartitioning cost is saved when adjacent operators have
high CPU processing capabilities and the I/O bandwidth ofthe same color. Subsequently the costs function considers
such systems offer numerous opportunities for parallelism incommunication and computation costs, access methods ex-
database processing. This parallelism is achieved by first de-penses, if any, and finally costs for strategies that compute

each operator. These algorithms also deal with queries that clustering data among the I/O units and then optimizing pro-
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