
DISTRIBUTED DATABASES 693

uted databases, then provide a taxonomy of distributed data-
bases. This follows with a description of the architecture of
distributed databases and data allocation in distributed data-
bases. The section entitled ‘‘Distributed Query Processing’’
covers query processing in distributed databases. The section
entitled ‘‘Distributed Transaction Processing’’ provides anDISTRIBUTED DATABASES
overview of transaction processing. This follows with a de-
scription of concurrency control and distributed commit pro-The importance of information in most organizations has led

to the development of a large body of concepts and techniques cessing. The section entitled ‘‘Replication of Data’’ describes
replication issues in a distributed database system. This arti-for the efficient management of data. Distributing data across

sites or departments in an organization allows those data to cle concludes with an annotated list of key material for fur-
ther study.reside where they are generated or are most needed, but still

to be accessible from other sites and from other departments.
A distributed database system (DDS) is a software system that Distributed Database System Overview
gives users transparent access to data, along with the ability

To illustrate a distributed database system, let us consider a
to manipulate these data, in local databases that are distrib-

banking system that comprises four branches located in four
uted across the nodes of a communication network. Each of

different cities. Each branch has its own computer, with a
the local databases is managed by a local database manage-

database consisting of all the accounts maintained at that
ment system (DBMS).

branch. Each such installation is thus a site in the distributed
A distributed database system consists of multiple data-

system. Each site maintains a relation account with the
bases that are distributed across computers in a communica-

schema (branch name, account number, balance). In addition,
tion network. The individual computers can be personal com-

the branch at the fourth site maintains information about all
puters (PCs), workstations, or mainframes. None of the

the branches of the bank. It maintains the relation branch
machines share memory or disk space. The computers in a

with the schema (branch name, branch city, assets).
distributed database are referred to as sites or nodes; we

Figure 1 depicts this example distributed database bank-
mainly use the term site to emphasize the physical distribu-

ing system.
tion of these systems.

Our definition of a distributed database system does not
Parallel database systems, which are seeing increased use,

mandate that all local DBMSs be the same; in fact, they may
may also be designed as a set of databases connected by a

differ. There is also no requirement that the data models used
high-speed local-area network. However, distributed data-

at the local databases be identical. For example, one local site
bases can be distinguished from parallel database systems in

may use a hierarchical data model, whereas another may use
several ways: The local databases of a distributed database

a relational model and a third may use an object-oriented
are typically geographically separated, separately adminis-

data model. If data models are different for different sites, the
tered, and have a slower interconnection. The local databases

distributed database system must contain a sufficient infor-
also have a great deal of degree of autonomy in carrying out

mation to translate data from one data model to another.
their functions such as concurrency control and recovery.

The sites may have no knowledge of one another, but the
The field of distributed databases is well established, dat-

distributed database system must contain information about
ing back to the late 1970s. In fact, several commercial imple-

all of them. Each local site, in addition to containing its own
mentations were built in the early 1980s, although they did

DBMS, must contain an additional software layer to facilitate
not have much of commercial success. However, interest in
distributed databases has greatly increased in the 1990s
largely due to the explosive growth of networks, both the In-
ternet and organization-wide intranets. Database systems de-
veloped independently are increasingly being coupled to-
gether across networks, to form organization-wide
distributed databases.

Traditional online transaction processing (OLTP) applica-
tions have hitherto driven the area of distributed databases,
with their need for access to remote databases and their high
availability requirements. Online application continues to be
an important motivator for distributed databases. However,
as of the late 1990s, data warehousing applications are in-
creasingly driving distributed database systems. Data ware-
houses collect data from multiple sources, integrate these
data in a common format, and make them available for deci-
sion support applications. The growth of multiple database
services on the World Wide Web, such as stock market infor-
mation and trading systems, banking systems, and reserva-
tion systems, is also contributing to the growth of distributed
database applications.

Account

DBMS

Account
branch

DBMS

Account

DBMS

Account

DBMS

Site 1 Site 2

Site 3 Site 4

Network

In this article we provide an introduction to the field of
distributed databases. We begin with an overview of distrib- Figure 1. Example of a distributed database banking system.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

694 DISTRIBUTED DATABASES

coordination with other sites on behalf of a distributed data- available to users and (2) user services being interrupted.
In a distributed database system, the addition of a newbase. Such coordination allows the distributed database sys-

tem to enforce uniform processing of user requests regardless site has no effect on current data processing. Data main-
tenance procedures are performed on a per-site basis;of whether local DBMSs are aware of one another.
consequently, users always have access to the overall da-

Distributed Database System Advantages and Disadvantages tabase system, although an individual site may be un-
available.Distributed database system confer several important advan-

tages over centralized systems.
The primary disadvantage of a distributed database sys-

tems is the added complexity required to ensure proper coor-• Data Sharing. A major advantage is that a distributed
dination among the sites. In fact, several of the advantagesdatabase system provides an environment where users
listed (such as enhanced performance) could in certain cir-at one site can access the data residing at other sites.
cumstances become disadvantages. For example, if a userFor instance, in our example of a distributed banking
tries to update a data object that is replicated at several sites,system, a user in one branch can access data at another
the system needs to coordinate updates at all the sites to en-branch.
sure that either all the sites have the new value or none of

• Autonomy. The primary advantage of sharing data by them has the new value. Among the disadvantages of distrib-
means of data distribution is that each site retains a de- uted database systems compared to centralized systems are
gree of control over its locally stored data. In a central- these:
ized system, the manager of the central site controls the
entire database. In a distributed system, local managers • Higher Software Development Cost. Implementing a dis-
have local autonomy in devising data policies—such as tributed database system is complicated and costly.
access, manipulation, and maintenance policies—at the

• Greater Potential for Bugs. The sites that constitute thesite. Depending on the amount of the local autonomy,
distributed system operate in parallel, so it is hard todistributed systems fall into different categories (see the
ensure the correctness of algorithms, especially operationsection entitled ‘‘Taxonomy of Distributed Database Sys-
during failures of part of the system and during recoverytems’’). The potential for local autonomy is often a major
from failures. The potential exists for extremely subtlereason why an organization chooses to use a distributed
bugs.database.

• Increased Processing Overhead. The exchange of mes-
• Availability. If one site in a distributed system fails, or

sages and the additional computation required to achievebecomes unavailable due to communication or site fail-
intersite coordination add an overhead cost.ure, the remaining sites may be able to continue to oper-

• Decreased Security. Distribution of data among severalate. In particular, if data objects are replicated at several
sites creates several entrance points for potential mali-sites, a transaction that requires a particular data object
cious users. It is more difficult and more expensive tomay find that object at any of these sites. Thus, the fail-
design and enforce security procedures when data can beure of one site does not necessarily imply the shutdown
accessed from several sites, each of which may have itsof the system.
own security policy. In addition, data are transferredThe failure of one site must be detected by the system,
over the communication network, making it possible forand appropriate recovery action may need to be initiated.
people to intercept the data.The system must stop relying on the services of the failed

site. Finally, when the failed site recovers, mechanisms
Transparencymust be available to integrate it back into the system

smoothly. Thus, recovery from failure is more complex in The user of a distributed database system should not be re-
distributed systems than in centralized systems. quired to know either where the data are physically located

• Enhanced Performance. Data that reside in proximity to or how the data can be accessed at the specific local site. This
users can be accessed much faster than can data at re- characteristic, called data transparency, can take several
mote sites. Furthermore, user requests for the data that forms:
are located at several sites can be processed in parallel at
each site and shipped to the user’s location. This parallel • Replication Transparency. Users view each data object

as logically unique. The distributed system may replicateprocessing improves overall response time. For instance,
if a user at site 4 in the distributed banking system re- an object to increase either system performance or data

availability. Users should not be concerned with whatquests a list of all accounts at all branches that have a
balance of more than $200, then all four sites perform data objects need to be replicated, when the replication

should occur, or where new replicas should be placed.selection of such accounts in parallel and send the re-
sulting list of accounts to site 4, where all these lists are • Data Naming Transparency. Each data object has a
coalesced into one. In contrast, if all accounts were lo- unique name in the distributed system. Since a system
cated at a single site, the site processor could take four includes several autonomous local data sites, the same
times as much time to select the requested accounts. data object may have different names at different sites,

and different data objects at different sites may share• Expandability. It is much easier to expand a distributed
database by adding new data or new sites, in contrast to the same name. The distributed database system should

always be able to find a unique data object that is re-expanding of a centralized database, where the mainte-
nance procedure results in (1) the database being un- quested by the user. For example, a distributed database

DISTRIBUTED DATABASES 695

system may prefix each object name with the name of the schemas are heterogeneous if they employ possibly different
data models, different query and transaction-processing algo-site at which that object is located.
rithms, and different notions of local data objects. HeDBS• Location Transparency. Users are not required to know
sites are not aware of one another; consequently, it is difficultthe physical location of the data. The distributed data-
to enforce cooperation among local sites that are processingbase system should be able to find any datum as long as
parts of a single transaction.the data identifier is supplied by the user transaction.

Suppose that in our distributed-banking example, each lo-• Data Definition Transparency. The same data object may
cal DBMS is relational but was developed by a differenthave been defined differently at different local sites. For
DBMS software vendor. Further suppose that the definitionexample, date of birth in one local database could be de-
of the account relation differs across sites (say two branchesfined as string of six characters, whereas at the other
require a customer date of birth on the account, whereas thelocal site it is defined as a string of eight characters. Us-
two other sites require the number of the customer’s depen-ers are not required to know the details of the object
dents). If the user requests a list of all accounts and the datedefinitions used at each local site. The distributed data-
of birth for a given account owner and if the same user hasbase system provides a user with a single definition of
an account in two branches, two sites may have the informa-the data object, and it translates the user data object
tion to fulfill the request. Consequently, a distributed data-definition to the definitions used at the local site where
base system software must be able to determine whether in-the data object is located.
formation missing at one site is available from some other

• Data Representation Transparency. The user should not site; in our example, it should be able to match accounts for
be concerned about how a data object is physically repre- a named customer, even if those accounts are located at dif-
sented in each local site. ferent branches.

• Network Topology Transparency. A distributed database There are several types of heterogeneous database sys-
can be defined for a set of sites regardless of how those tems. In federated distributed database systems (FDB), local
sites are interconnected. The only requirement is that sites have more autonomy than in a homogeneous distributed
any two sites be able to exchange messages. Users are database. Each FDB site creates an import–export schema of
not required to know the details of the network topology data that it is willing to share with other sites, and on which
to access and manipulate the data. it is willing to cooperate with other sites in processing user

requests. For example, the site may indicate that the account-
owner name and the account balance are available to otherTAXONOMY OF DISTRIBUTED DATABASE SYSTEMS
sites and that, for these data, it is willing to participate in
implementing distributed database systems data access andFigure 2 depicts a classification of distributed-database sys-
transaction management policies. In an FDB, there is notems, based on the level of local sites’ cooperation within the
global schema. Each site does have a local database schema,system and on differences among the local DBMS software.
as well as the view of the data for off-site users (the import–In a homogeneous distributed database system (DDB), local
export schema).sites have identical DBMS software, are aware of one an-

In recent years, new database applications have been de-other, and agree to cooperate in processing users requests. In
veloped that require data from a variety of preexisting data-such a system, local sites surrender a portion of their auton-
bases located in a heterogeneous collection of hardware andomy. A site can no longer process user requests without con-
software environments. A multidatabase system is a distrib-sulting other sites. For example, a site cannot unilaterally de-
uted database system where local sites retain full autonomy;cide to commit changes that a transaction has made to its
they are not aware of one another and are not prepared tolocal database; it must instead coordinate its actions with
share their local data access and transaction management in-other sites. Local DDB sites share their local DBMS control
formation. A multidatabase system creates the illusion of logi-information with other sites. Each site has an identical local
cal database integration without requiring physical databaseDBMS, and there is a global schema such that each local da-
integration. To enforce cooperation of local sites, the multida-tabase schema is a view of the global schema. This global
tabase must not only coordinate execution of user requests,schema makes it relatively easy to develop a distributed data-
but also reimplement its own access and transaction pro-base system, because the system can enforce global query and
cessing policies to be enforced outside of local DBMSs.transaction processing, as well as security policies.

In this article, we are primarily concerned with homoge-Next, we consider a heterogeneous distributed database sys-
neous distributed databases. However, in the section entitledtem (HeDBS). We say that local DBMS and local database
‘‘Multidatabase Concurrency Control,’’ we discuss briefly
transaction management in federated databases and in multi-
databases.

DISTRIBUTED DATABASE ARCHITECTURE

There are two architectural models for distributed database
systems: system architecture and schema architecture. The
system architecture describes interactions among different

Distributed databases

Federated Multidatabases

Homogeneous Heterogeneous

system components of a distributed database system and be-
tween local DBMSs and system components. The schema ar-Figure 2. Taxonomy of distributed database systems.

696 DISTRIBUTED DATABASES

of the optimizer is to find a plan that minimizes the request
response time and data transfers between the different sites
during the query processing. The execution monitor oversees
carrying out of the requests at different sites and ensures
data consistency and atomicity of any requests that require
intersite communication.

After receiving the portion of a user request that the execu-
tion monitor has sent to the site, the local query optimizer at
each site devises a local execution plan to obtain the local
data in the fastest possible way. The transaction manager and
the data manager at each site guarantee atomicity, consis-
tency, isolation, durability (ACID) transaction properties at
that site; global ACID transaction properties are ensured by
the execution monitor.

Schema Architecture

Figure 4 depicts a schema architecture of the distributed da-
tabase system. Data in a distributed database system are
usually fragmented and replicated. Fragmentation and repli-
cation of data create the problem of how to represent a global
data view. Each user application creates its own view of the
data represented in the distributed database. An application
view is called a user view. Various users views are combined
into a global view of the data, represented by a global concep-Site 1 Site n

…

Data
manager

Data
manager

Transaction
manager

Transaction
manager

Local
optimizer

Execution
monitor

Global
optimizer

Compiler

User
interface

Local
optimizer

tual schema. At each local site, a local conceptual schema pro-
Figure 3. System architecture. vides transparency of data naming and data representation.

The global directory contains the mapping of global data ob-
jects into various users views, on one hand, and into various

chitecture outlines an application, enterprise, and local site local conceptual schemas, on the other hand. Each local
view of the data in the distributed database. DBMS schema is represented by a local internal schema. A

local directory maintained at each local site describes the dif-
System Architecture ferences between the local data representation in the local

DBMS and the way the data is seen by external users. Fi-Figure 3 depicts the system architecture of a distributed data-
nally, a local storage schema describes how the data are actu-base system. The user interface accepts user requests and
ally stored in the local database, and it also defines data keystranslates them into the language of the distributed database,
and access indices.and it also represents data from the database in the form that

the user expects. The compiler checks the syntactic correct-
Schema Integration

ness of the data requests, and it validates requests against
security and against other system level restrictions on data. Conceptually, each relation in the global schema is defined as

a view on relations from the local schemas. Schema integra-The global query optimizer designs an execution plan for ac-
cessing or updating data that a user has requested. The job tion is not, however, simply straightforward translation be-

Figure 4. Schema integration architecture. Site 1 Site n

…

…

Site 2

Local storage
schema

Local storage
schema

Local storage
schema

Local internal
schema

Local conceptual
schema

Local conceptual
schema

Local conceptual
schema

Local internal
schema

Local internal
schema

Global directory

User viewUser view User view

Global conceptual schema

DISTRIBUTED DATABASES 697

tween data definition languages; it is a complicated task due Replication provides the following advantages:
to semantic heterogeneity.

For example, the same attribute names may appear in dif- • Availability. If one of the sites containing relation r fails,
ferent local databases but represent different meanings. The then r can be found in another site. Thus, the system can
data types used in one system may not be supported by other continue to process queries that require r, despite the
systems, and translation between types may not be simple. failure of one site.
Even for identical data types, problems may arise due to the • Increased Parallelism. When the majority of accesses to
physical representation of data. One system may use ASCII, the relation r result in only the reading of the relation,
while another may use EBCDIC. Floating-point representa- then several sites can process in parallel queries involv-
tions may differ. Integers may be represented in big-endian ing r. The more replicas of r, the greater the chance that
or little-endian form. At the semantic level, an integer value the needed data will be found at the site where the trans-
for length may be inches in one system and millimeters in action is executing. Hence, data replication minimizes
another, thus creating an awkward situation in which equal- movement of data among sites.
ity of integers is only an approximate notion (as is always the
case for floating-point numbers). The same name may appear

In general, replication enhances the performance of readin different languages in different systems. For example, a
operations and increases the availability of data to read-onlysystem based in the United States may refer to the city ‘‘Co-
transactions. However, update transactions incur greaterlogne,’’ whereas one in Germany refers to it as ‘‘Köln.’’
overhead, since the update must be propagated to every rep-All these seemingly minor distinctions must be properly
lica. We can simplify the management of replicas of a relationrecorded in the common global conceptual schema. Transla-
r by choosing one of them as the primary copy. For example,tion functions must be provided. Indices must be annotated
in a banking system, an account can be associated with thefor system-dependent behavior (for example, the sort order of
site at which it was opened.nonalphanumeric characters is not the same in ASCII as in

If relation r is fragmented, r is divided into multiple frag-EBCDIC). As we noted earlier, the alternative of converting
ments: r1, r2, . . ., rn. These fragments contain sufficient infor-each database to a common format may not be feasible be-
mation to allow reconstruction of the original relation r.cause it may obsolete existing application programs.
There are two different schemes for fragmenting a relation:Useful global query optimizations are possible if further

information about sites is provided. For example, suppose
• Horizontal fragmentation splits the relation by assigningthat site 1 contains only accounts whose branch name is A.

each tuple of r to one or more fragments. The set ofSuch information is sometimes referred to as a site descrip-
tuples in a fragment is determined by applying a selec-tion, and it can be formally specified by defining the local data
tion operation on the relation r.at the site as a selection on the global schema. Given the site

description for the preceding example, queries that request • Vertical fragmentation splits the relation by decomposing
the scheme R of relation r into several subsets R1, R2,account data for branch B do not need to access site 1 at all.

In the recent past, numerous databases have become avail- . . ., Rn such that R � R1 � R2 � . . . � Rn. The frag-
mentation should be done such that we can reconstructable on the World Wide Web. In some cases the data in these

databases are structured in the traditional database sense. relation r from the fragments by taking the natural join
of all vertical fragments ri.In other cases the data consist of unstructured documents.

Integration of data from multiple databases and optimizing
queries posed on the integrated schema are topics of ongoing These two schemes can be applied successively to the same
research. relation, resulting in many different fragments. Note that cer-

tain information may appear in several fragments.
In many distributed databases, the local relations already

DATA ALLOCATION exist and the global schema is defined later as a view on the
local schema. Thus a global relation could be a view defined,

Consider a relation r that is to be stored in the database. for example, as the join of several local relations or as the
There are several approaches to storing this relation in the union of several local relations. In such a case, a join can be
distributed database: viewed as integrating data about the same entities from dif-

ferent local databases, whereas a union can be viewed as inte-
grating data about different entities stored in different local• Replication. The system maintains several identical rep-
databases. More complex expressions involving combinationslicas (copies) of the relation. Each replica is stored at a
of joins, unions, and other relational operations could also bedifferent site. A relation is said to be fully replicated if a
used in defining the global view.replica of the relation is stored at every site in the dis-

tributed database. If more than one, but not all, sites
have a replica, the relation is said to be partially repli-

DISTRIBUTED QUERY PROCESSINGcated.

• Fragmentation. The relation is partitioned into several The main purpose of query optimization in a distributed data-
fragments. Each fragment is stored at a different site. base system is to reduce the costs of processing of user re-

quests. The processing costs are determined by the usage of• Replication and Fragmentation. The relation is parti-
tioned into several fragments. The system maintains sev- CPU, disk, and network resources. However, the ultimate

goal is to provide users with the fastest possible responseeral replicas of each fragment.

698 DISTRIBUTED DATABASES

time. Evaluating joins is the most expensive part of distrib- r1 and r2 whose join attributes have a hash value i. Note that
an r1 tuple at site i and an r2 tuple at a different site j cannotuted query processing, so the choice of join strategy is critical.
possibly satisfy the join condition. Each site then indepen-
dently, and in parallel with other sites, computes the join ofSimple Scheme
its partition of r1 and r2. The results at each site are shipped

Consider a join of three relations: r1, r2, and r3. Assume that to the user site, and their concatenation gives the final join
the three relations are neither replicated nor fragmented and result.
that r1 is stored at site s1, r2 at s2, and r3 at s3. Let sI denote
the site at which the query was issued. The system needs to

DISTRIBUTED TRANSACTION PROCESSINGproduce the result at site sI. Among the possible strategies for
processing this query are the following:

Access to the various data objects in a distributed system is
usually accomplished through transactions, which must pre-• Ship copies of all three relations to site sI, and apply cen-
serve the ACID properties. There are two types of transac-tralized database query optimization strategies to pro-
tions in a distributed database. Local transactions are thosecess the entire query locally at site sI.
that access and update data at only one local site: the site• Ship a copy of the r1 relation to site s2; and compute
where the transaction starts. Global transactions are thosetemp1, which is a join of r1 and r2. Ship temp1 from s2 to
that access and update data at several local sites. Ensurings3, and compute temp2 as a join of temp1 and r3. Ship the
the ACID properties of local transactions is usually done by aresult temp2 to sI.
local DBMS. In the case of global transactions, however, this

• Devise strategies similar to the previous one, but with task is much more complicated, because several sites may be
the roles of s1, s2, and s3 exchanged. participating in execution. The failure of one of these sites, or

the failure of a communication link connecting these sites,
No one strategy is always the best choice. Among the factors may result in erroneous computations.
that must be considered are the volume of data being shipped,
the cost of transmitting a block of data between a pair of sites, Transaction Management Model
and the relative speed of processing at each site.

Each site has its own local transaction manager whose func-
tion is to ensure the ACID properties of those transactionsSemijoins
that execute at that site. The various transaction managers

Suppose that we wish to evaluate a join of r1 and r2, where r1 cooperate to execute global transactions. We define a model of
and r2 are stored at sites s1 and s2, respectively. Let the sche- a transaction system as follows. At each local site there are
mas of r1 and r2 be R1 and R2. Suppose that we wish to obtain two subsystems:
the result at s1. If there are many tuples of r2 that do not join
with any tuple of r1, then shipping r2 to s1 entails shipping • The transaction manager coordinates the execution of the
tuples that fail to contribute to the result. It is desirable to various transactions (both local and global) initiated at
remove such tuples before shipping data to s1, particularly if that site.
network costs are high. Consequently, we first project from • The data manager manages the execution of those trans-
r1 all tuples on attributes that occur in both R1 and R2, and actions (or subtransactions) that access data stored in a
then we ship these tuples to s2. At s2, we join these tuples local site. Note that each such transaction may be either
with relation r2. We ship the resulting relation back to s1. Fi- a local transaction or part of a global transaction that
nally, at s1, we join the received relation with r1. The resulting accesses data at the local site.
relation is exactly the same as the join of relations r1 and r2.

This approach is called a semijoin execution of a join opera- The overall system architecture is depicted in Fig. 5.
tion. A semijoin approach is particularly advantageous when The transaction manager at site si coordinates execution of
relatively few tuples of r2 contribute to the join. For joins of all transactions at that site. Each operation of a transaction
several relations, this strategy can be extended to form a se-
ries of semijoin steps.

Parallel Join

Another alternative is to perform parts of the join in parallel
on multiple sites, and then to combine the results to get the
complete join. The parallel hash join is one way to do so. In
the hash-join algorithm, a hash function h is used to partition
tuples of both relations r1 and r2. When applied to an attribute
of a tuple t, the hash function h returns a value i between 1
and N � 1, where N sites participate in the join. When ap-
plied to the join attribute of a natural join, the following re-
sult holds: Suppose that an r1 tuple and an r2 tuple satisfy
the join condition; then, they will have the same value for the
join attribute.

Local
data

Site kSite 1

Data
manager

…

Transaction
manager

Local
data

Data
manager

Transaction
manager

The basic idea is to partition the tuples of each of the rela-
tions amongst the sites, such that site i receives all tuples of Figure 5. Transaction management model.

DISTRIBUTED DATABASES 699

is submitted to the site transaction manager. The transaction When a network partition occurs and a transaction needs
a datum located in another partition, the transaction maymanager decides at which site the operation should be exe-

cuted, and it ships the operation to that site. If an operation have to be aborted or to wait until the communication is re-
stored. An abort of such a transaction is the preferable resolu-is to be executed at the local site, the transaction manager

decides whether the operation must be submitted to the data tion, because otherwise the transaction may hold resources
for undetermined period, potentially impeding other transac-manager for execution or must wait, or whether the transac-

tion submitting the operation must be aborted. The latter tions in a partition that is operational. However, in some
cases, when data objects are replicated it may be possible tocould occur if the transaction manager concluded that execu-

tion of the transaction might violate the transaction ACID proceed with reads and updates even though some replicas
are inaccessible. In this case, when a failed site recovers, if itproperties. If a transaction Tk submits its first operation at

site si, then the transaction manager at site si becomes the had replicas of any data object, it must obtain the current
values of these data objects and must ensure that it receivesTk’s transaction coordinator. That is, site si is responsible for

the coordination of Ti execution at all sites. Transaction ter- all future updates. We address this issue in the section enti-
tled ‘‘Replication of Data.’’mination should be conducted such that the transaction coor-

dinator guarantees the transaction atomicity. That is, the da-
tabase must reflect either all or no data changes made by the

DISTRIBUTED CONCURRENCY CONTROL
transaction. Transaction termination usually employs an
atomic commit protocol, such as the two- or three-phase com-

The notion of transaction isolation used in distributed sys-
mit protocols that we discuss in the sections entitled ‘‘The

tems remains the same as in centralized systems, namely se-
Two-Phase Commit Protocol’’ and ‘‘Three-Phase Commit Pro-

rializability. A concurrent execution of a set of transactions is
tocol.’’

said to be serializable if the effect of the execution (in terms
The data manager is responsible for logging all operations

of the values seen by the transactions, and the final state of
that any transaction performs at the local site. The system

the database) is the same as that of some serial execution of
uses this information to restore a database to a consistent

the same set of transactions.
state in the event of a failure during transaction execution.

To ensure the transaction isolation property, distributed
database systems typically use a distributed version of the

System Failure Modes well-known concurrency-control protocols for centralized
DBMSs.There are two basic types of failure in a distributed envi-

ronment:
Distributed Two-Phase-Locking Protocol

• Site Failure. Site failures occur when a site becomes In a centralized version of the two-phase-locking protocol, the
nonoperational and all useful processing stops. The fail- transaction manager keeps two types of locks for each data
ure may occur at the site operating system or at the local object: a read lock and a write lock. Each transaction Ti, before
DBMS. In most distributed database systems, each local it can perform a read (or write) operation on data object a,
site is considered to be in one of two modes: operational must request a read (or write) lock on a. Ti receives a read (or
or nonoperational. Even if a site responds to some mes- write) lock if no other transaction keeps a write (or a read or
sages, if it does not respond to all messages, then it is write) lock on a. If a lock cannot be granted, Ti either waits
considered to be nonoperational and thus to have failed. or is aborted. When the transaction does not need an acquired

• Communication Failure. Communication failure occurs lock, it can release the lock.
when a message sent from site s1 to site s2 does not reach A transaction acquires locks following the two-phase-lock-
the destination site. Loss or corruption of individual mes- ing rule: No lock can be granted to a transaction after that
sages is always possible in a distributed system. The sys- transaction has released at least one of its locks. If each transac-
tem uses transmission-control protocols, such as TCP/IP, tion follows the two-phase-locking rule, then the local DBMS
to handle such errors. Even if a link between two sites is ensures the isolation property. A simple way of ensuring the
down, the network may be able to find an alternative two-phase-locking rule is to hold all locks until the end of
route to deliver the message, making the failure invisible the transaction.
to the distributed database system. If, however, due to The two-phase-locking protocol is prone to deadlocks. For
link failure, there is no route between two sites, the sites example, suppose that user A at site s1 wants to transfer $200
will be unable to communicate. from account acc1 to account acc2 that is located at site s2. At

the same time, user B wants to transfer $300 from account
acc2 at site s2 to account acc1 at site s1. After A has acquiredIf there are two sites in the network that cannot communi-

cate at all, a network partition has occurred. Network parti- a write lock on acc1 at s1 and B has acquired a write lock on
acc2 at site s2, A would have to wait for B at s2 to get a writetions are the source of many different problems that degrade

the performance of distributed database systems. It is gener- lock for acc2, and B would have to wait for A at s1 to get a
write lock on acc1. Neither A nor B can release the lock itally not possible, however, to differentiate clearly between a

site failure and communication failures that lead to network already has due to the two-phase-locking rule. Thus, a dead-
lock ensues. Observe that at each site the local DBMS is notpartitions. The system can usually detect that a failure has

occurred, but it may not be able to identify the type of failure. able to unilaterally determine that there is a deadlock be-
tween the A and B lock requests. Deadlock detection in dis-For example, suppose that site s1 is not able to communicate

with s2. Perhaps s2 has failed, or perhaps the link between s1 tributed databases needs to be performed in a global setting.
We consider the deadlock detection in the context of differentand s2 has failed, resulting in a network partition.

700 DISTRIBUTED DATABASES

lock manager implementations in the section entitled ‘‘Lock data objects. In case data objects are not replicated, the site
where the data object resides is responsible for handling lock-Manager Implementation.’’

Recall that a data object in a distributed database may ing of that data object. Requests for locks are sent to that site;
and as in the centralized lock manager approach, the lockhave multiple replicas; all the replicas must have the same

value. A simple way of ensuring that all replicas have the manager at the site responds appropriately to the request. In
the case of data replication, we can choose one of the replicassame value at the end of a transaction is to require the trans-

action to write the value to all replicas. (We consider atomic as the primary copy. Thus, for each data object a, the primary
copy of a must reside in precisely one site, which we call thetransaction commit in the section entitled ‘‘Distributed Com-

mit Protocols.’’) When a transaction needs to read the data primary site of a. For uniformity, for nonreplicated data ob-
jects we will consider the site where the object resides as theobject, it can then read any replica of the data object. We shall

assume for now that this simple read-one, write-all protocol primary site of the object.
When a transaction needs to lock data object a, it requestsis followed. The drawback of this protocol is that when a site

that holds a replica of an item has failed, it is not possible for a lock at the primary site of a. As before, the response to the
request is delayed until the request can be granted. Thus, theany transaction to write to that item. Ways of permitting

writes to occur on only replicas that are located at live sites primary copy enables concurrency control for replicated data
to be handled in a manner similar to the case of nonreplicatedare considered in the section entitled ‘‘Replication of Data.’’
data. This similarity allows for a simple implementation.

Deadlock detection is more complicated in this case sinceLock Manager Implementation
the information at each of the local lock managers may not be

There are several possible approaches to implement lock sufficient to detect a deadlock. Distributed database systems
managers in a distributed databases. We study two ap- can perform global deadlock detection by collecting informa-
proaches in this section. We consider other approaches that tion from each of the local lock managers at a single site.
deal better with replicated objects in the section entitled More complicated distributed algorithms for deadlock detec-
‘‘Replication of Data.’’ tion have also been proposed. All these algorithms require co-

operation from the different local databases. Many distrib-
Centralized Lock Manager Approach. In the centralized lock uted database systems handle deadlocks by using timeouts.

manager approach, the system maintains a single lock man- That is, after the transaction waits for a certain prespecified
ager that resides in a single chosen site—say, si. All lock and time (the timeout interval) if a transaction has not received a
unlock requests are made at site si. When a transaction needs requested lock, it is aborted. Although this approach may lead
to lock a data object, it sends a lock request to si. The lock to unnecessary aborts, it has the advantage of not requiring
manager determines whether the lock can be granted imme- any special actions for global deadlock detection.
diately. If the lock can be granted, the lock manager sends a
message to that effect to the site at which the lock request

Multidatabase Concurrency Controlwas initiated. Otherwise, the request is delayed until it can
be granted and the message sent. The transaction can read Ensuring the local autonomy of each DBMS requires making
the data object from any one of the sites at which a replica of no changes to the local DBMS software. A DBMS at one site
that data object resides. In the case of a write, all the sites thus is not able to communicate directly with a DBMS at any
where a replica of the data object resides must be involved in other site to synchronize the execution of a global transaction
the writing. that is active at several sites.

The centralized lock manager scheme has the following ad- Since the multidatabase system has no control over the
vantages: execution of local transactions, each local DBMS must use a

concurrency-control scheme (for example, two-phase locking
• Simple Implementation. This scheme requires only two or timestamping) to ensure that its schedule is serializable.

messages for handling lock requests, and only one mes- In addition, in case of locking, the local DBMS must be able
sage for handling unlock requests. to guard against the possibility of local deadlocks.

• Simple Deadlock Handling. Because all lock and unlock The guarantee of local serializability is not sufficient to en-
requests are made at one site, the deadlock-handling al- sure global serializability. As an illustration, consider two
gorithms are identical to deadlock-handling schemes in a global transactions T1 and T2, each of which accesses and up-
centralized database system. dates two data objects, A and B, located at sites s1 and s2,

respectively. Suppose that the local schedules are serializable.
The disadvantages of the centralized lock manager scheme It is still possible to have a situation where, at site s1, T2 fol-

include the following: lows T1, whereas, at s2, T1 follows T2, resulting in a nonseriali-
zable global schedule. Indeed, even if there is no concurrency

• Bottleneck. Site si becomes a bottleneck, because all re- among global transactions (that is, a global transaction is
quests must be processed there. submitted only after the previous one commits or aborts), lo-

cal serializability is not sufficient to ensure global serializa-• Vulnerability. If the site si fails, the concurrency control-
bility.ler is lost. Either processing must stop, or a recovery

scheme must be used so that a new site can take over To guarantee global serializability, the execution monitor
lock management from si. in a multidatabase system must take some actions. Which ac-

tions it takes depend on the degree of cooperation among local
DBMSs. If local DBMSs do not cooperate at all and the execu-Distributed Lock Manager Approach. In this approach, dif-

ferent sites are responsible for handling locking for different tion monitor is not aware of any details of how the local

DISTRIBUTED DATABASES 701

DBMS schedules local operations, then a scheme based on the that are allocated to T, so other transactions that need any of
these resources have to wait until the participant releasesidea of a ticket works. In the ticket approach, a special data

object called ticket is created at each local site. Each global the T’s resources. The voting process constitutes the first
phase of the commit protocol.transaction that accesses the data at the local site must write

a ticket at that site first. Consequently, any two global trans- After the coordinator receives votes from all participants,
or if at least one of the participants fails to respond withinactions that update data at the same local site directly conflict

at that site. Since every local DBMS generates a locally seri- an allotted time (which, from the coordinator’s viewpoint, is
equivalent to voting no), the coordinator makes the decisionalizable schedule, the global transaction manager—by con-

trolling the order of global transactions accessing local tick- whether to commit T. If all the participants voted to commit
T, the coordinator persistently records that T is committedets—guarantees global serializability.

If the execution monitor knows that at each local site any and then sends a commit message to each of the participants.
If at least one of the participants voted against committing Ttwo transactions executed in serial order are also serialized

in the order of their execution, then a scheme based on the or did not respond, the coordinator persistently records the
decision to abort T and then sends the abort message to allidea of site graphs can be used. In the site graph approach,

the execution monitor maintains an undirected bipartite the participants. Each of the participants that has voted to
commit T waits for the message from the coordinator ongraph. Global transaction T is connected to site s, if T per-

forms any operations at s. The execution monitor can guaran- whether to commit or abort T.
Since unanimity is required to commit a transaction, thetee global serializability by ensuring that the site graph is

always acyclic; it can ensure acyclicity by controlling the ac- fate of T is sealed as soon as at least one site votes not to
commit T. Since the coordinator site si is one of the sites atcess of global transactions to sites. In general, the more infor-

mation available to the execution monitor about local DBMSs, which T executed, the coordinator can decide unilaterally to
abort T. The final verdict regarding T is determined at thethe easier it is to implement isolation of global transactions.
time that the coordinator writes that verdict (commit or
abort) to persistent storage.

DISTRIBUTED COMMIT PROTOCOLS
We now examine in detail how the 2PC protocol responds

to various types of failures. When the participant site si recov-
In order to ensure atomicity, all the sites at which transaction

ers, it first finds the state of the protocol for T from its persis-
T executed must agree on the final outcome of the execution;

tent storage, and based on the state it does one of the follow-
T must either commit at all sites or abort at all sites. To en-

ing. If si had failed before it had voted, then it aborts T. If sisure this property, the execution monitor must execute a com-
had failed after it had voted to commit T but before it had

mit protocol. In the case of DDB, a transaction manager at
received the commit/abort verdict from the coordinator, then

the site where the transaction is initiated becomes the trans-
we say that si failed in an uncertain state, since si does not

action coordinator that monitors the transaction-commit pro-
know what has been decided about T. In this case, si requests

tocol. In the case of a multidatabase system, the execution
a verdict about the transaction from the coordinator. If it re-

monitor acts as the transaction coordinator. To implement the
ceives the verdict, it proceeds to commit or abort T as per the

commit protocol, the sites must give up some autonomy; spe-
verdict. If the coordinator is not available (either it has failed

cifically, they cannot make the commit/abort decision for a
or is unreachable), si checks the status of the transaction from

global transaction by themselves. Instead, they need to coop-
other participants. If any of them indicates that the transac-

erate with other sites and the transaction coordinator to make
tion committed or aborted, si performs the same action on T.

the decision.
If all other live participants are in the uncertain state, si must

Among the simplest and most widely used commit proto-
wait for the coordinator to recover to find out the status of

cols is the two-phase commit (2PC) protocol. The alternative
T. In the meantime, the participant must keep reserved the

three-phase commit (3PC) protocol avoids certain disadvan-
resources (such as locks) allocated for T. Such a situation is

tages of the 2PC protocol but adds complexity and overhead.
called blocking. The weakest aspect of 2PC is that the protocol
is subject to blocking.

The Two-Phase Commit Protocol
If the coordinator fails before it sends a prepare-to-commit

message, then, after it recovers, it aborts the transaction. Ob-Let T be a transaction initiated at site si. That is, the transac-
tion manager at si is the transaction coordinator for T. The serve that every participant has already aborted T while

waiting for and failing to receive the prepare-to-commit mes-transaction managers at all sites at which T was active are
called participants. sage. If the coordinator fails before it collects all the votes or

before it has sent its decision to all participants, then, afterAfter T completes execution, the coordinator records in
persistent storage that it is starting a commit process, and it it recovers, it aborts T and sends the abort message to all

participants. Observe that while the coordinator remains non-sends to each participant a prepare-to-commit message. After
a participant has received a prepare-to-commit message, it operational, each participant that has voted to commit T is

blocked, since it does not know the coordinator’s decision.checks whether T has performed all its operations success-
fully at its site, and whether it is ready to commit T at its When a network partitions, two possibilities exist:
site. The participant both records its decision in persistent

1. The coordinator and all its participants remain in onestorage and sends its decision to the coordinator. If the par-
partition. In this case, the failure has no effect on theticipant’s decision is not to commit T, then it aborts T. If the
commit protocol.participant has voted to commit T, it cannot unilaterally

change its vote until it hears again from the coordinator. In 2. The coordinator and its participants belong to several
partitions. From the viewpoint of the sites in one of thesuch a case, the participant continues to keep all resources

702 DISTRIBUTED DATABASES

partitions, it appears that the sites in other partitions base system. All messages directed to the coordinator are re-
ceived by both the coordinator and its backup. The backuphave failed. Sites that are not in the partition con-

taining the coordinator simply execute the protocol to coordinator executes the same algorithms and maintains the
same internal state information (such as, for a concurrencydeal with failure of the coordinator. The coordinator and

the sites that are in the same partition as the coordina- coordinator, the lock table) as does the coordinator. The only
difference in function between the coordinator and its backuptor follow the usual commit protocol, assuming that the

sites in the other partitions have failed. is that the backup does not take any action that affects
other sites.

In the event that the backup coordinator detects the fail-Thus, the major disadvantage of the 2PC protocol is that coor-
dinator failure may result in blocking, where a decision either ure of the coordinator, it assumes the role of coordinator.

Since the backup has all the information available to it thatto commit or to abort T may have to be postponed until the
coordinator recovers. the failed coordinator had, processing continues without in-

terruption.The two-phase commit protocol is widely used in the indus-
try. The X/Open XA standard defines a set of functions for The primary advantage to the backup approach is the abil-

ity to continue processing without delay if the coordinatorsupporting the 2PC protocol. Any database that supports the
standard can participate in a 2PC with any other databases fails. If a backup were not ready to assume the coordinator’s

responsibility, a newly appointed coordinator would have tothat support the standard.
seek information from all sites in the system so that it could
execute the coordination tasks. Frequently, the only source ofThree-Phase Commit Protocol
some of the required information is the failed coordinator. In

The three-phase commit (3PC) protocol is an extension of the
that case, it may be necessary to abort several (or all) active

two-phase commit protocol that avoids the blocking problem
transactions and to restart them under the control of the

under certain assumptions. In particular, it is assumed that
new coordinator.

no network partition occurs and that not more than k sites
Thus, use of a backup coordinator avoids a substantial de-

fail, where k is some predetermined number k. Under these
lay for recovery from coordinator failure. The disadvantage is

assumptions, the protocol avoids blocking by introducing an
the overhead of duplicate execution of the coordinator’s tasks.

extra third phase where multiple sites are involved in the de-
Furthermore, a coordinator and its backup may need to com-

cision to commit. Instead of directly noting the commit deci-
municate regularly to verify that their activities are synchro-

sion in its persistent storage, the coordinator first ensures
nized.

that at least k other sites know that it intended to commit
In the absence of a designated backup, or in order to han-

the transaction. If the coordinator fails, the remaining sites
dle multiple failures, a new coordinator can be chosen dynam-

first select a new coordinator. This new coordinator checks
ically by sites that are live. Election algorithms have been

the status of the protocol from the remaining sites; if the coor-
designed for the purpose of enabling the sites to make this

dinator had decided to commit, at least one of the other k
decision collectively, in a decentralized manner. In the bully

sites that it informed will be up and will ensure that the com-
algorithm, sites have identifiers preassigned, and the site

mit decision is respected. The new coordinator restarts the
among the live ones that has the highest numbered identifier

third phase of the protocol if some site knew that the old coor-
is chosen.

dinator intended to commit the transaction. otherwise the
new coordinator aborts the transaction.

Although the 3PC protocol has the desirable property that
REPLICATION OF DATA

it does not cause blocking, it has the drawback that a network
partitioning will appear to be the same as more than k sites

A major goal of replication is to create the possibility of a
failing, violating the assumptions made earlier. Thus the 3PC

distributed database continuing to process transactions even
protocol is after all subject to some degree of blocking, and

when some sites are down. So far our protocols for dealing
given its significantly greater cost, it is not widely used.

with replication have assumed that all replicas of a data ob-
ject must be updated for the transaction to commit; recall the

Coordinator Selection
read-one, write-all policy for handling replicated data from
the section entitled ‘‘Distributed Concurrency Control.’’ In aSeveral of the algorithms that we have presented require a

process at a site to coordinate the activities of other sites. The distributed database system that comprises hundreds of data
sites, there is a high likelihood that at least one site is notcoordinator in 2PC is an example. Other examples include, in

a centralized lock manager, the site that has the lock man- operational. If that site contains a replica of the data that
needs to be written, the transaction must either abort or waitager, or, with a distributed lock manager, the site that per-

forms deadlock detection. We refer to such processes as coor- until the site recovers, neither of which is acceptable.
In this section we consider protocols that enable transac-dinators.

If the coordinator fails because of a failure of the site at tions to update just those replicas that are available. These
protocols define when and how to continue operations on thewhich it resides, the system can continue execution only by

starting a new coordinator on another site. One way to con- available replicas, as well as how to reintegrate a site that
was not available earlier, when it comes back. Reintegrationtinue execution is to maintain a backup coordinator that is

ready to assume the coordinator’s responsibility. A backup co- of a site is more complicated than it may seem to be at first
glance, because updates to the data objects may have beenordinator is a site that, in addition to other tasks, maintains

enough information locally to allow it to assume the role of processed while the site is recovering. An easy solution is
temporarily to halt the entire system while the failed site re-coordinator with minimal disruption to the distributed-data-

DISTRIBUTED DATABASES 703

joins it. In most applications, however, such a temporary halt quorum Qw, that must satisfy the following condition, where
S is the total weight of all sites at which x resides:is unacceptably disruptive. Techniques have been developed

that allow failed sites to reintegrate while allowing concur-
rent updates to data objects. Qr + Qs > S and 2 ∗ Qs > S

Enforcing global serializability is also an issue in these
To execute a read operation, enough replicas must be readschemes. A centralized lock manager or a primary copy lock-

such that their total weight is more than or equal to Qr. Toing scheme is not acceptable since the failure of one site can
execute a write operation, enough replicas must be written toprevent processing from continuing in other sites. Alternative
such that their total weight is more than or equal to Qw. Thelocking schemes are therefore used. Each site maintains a lo-
arguments of correctness for the majority approach can becal lock manager whose function is to administer the lock and
readily generalized for the quorum consensus approach.unlock requests for those data objects and replicas that are

The benefit of the QC approach is that it can permit thestored in its site. When the local lock manager receives a lock
cost of either reads or writes to be selectively reduced by ap-request for a replica at that site, it determines whether, as
propriately defining the read and write quorums. For in-far as it is concerned, the lock can be granted. If it can, a reply
stance, with a small read quorum, reads need to read fewergranting the lock is sent immediately; if not, the response is
replicas, but the write quorum will be higher; hence writesdelayed until the request can be granted. Global deadlock de-
can succeed only if correspondingly more replicas are avail-tection is of course a problem; we assume that either timeouts
able. Also, by giving higher weights to some sites (e.g., thoseare used or there is a coordinator that periodically performs
less likely to fail), fewer sites need to be accessed by eitherglobal deadlock detection.
writes or reads. However, the danger of failures preventingEnsuring atomicity of commit remains an issue as before,
the system from processing transactions increases if someand it can be handled by the usual two-phase commit pro-
sites are given higher weights.tocol.

Read One, Write All Available Approach
Majority-Based Approach

We now consider the read one, write all available approach.
In this approach, a version number is stored with each data In this approach, the read operation is done the same way as
object to detect when it was last written to. Whenever a trans- in the read one, write all scheme; any available replica can be
action writes an object, it also updates the version number as read. A read lock is obtained at that replica. The write opera-
we describe here. tion is shipped to all replicas; write locks are acquried at all

If data object a is replicated in n different sites, then a the replicas. If a site is down, the transaction manager pro-
lock-request mesage must be sent to more than one-half of ceeds without waiting for the site to recover.
the n sites in which a is stored. The transaction does not oper- Although this approach appears attractive, there are sev-
ate on a until it has successfully obtained a lock on a majority eral complications. In particular, temporary communications
of the replicas of a. failure may cause a site to appear to be unavailable, resulting

Read operations look at all replicas on which a lock has in a write not being performed; when the link is restored,
been obtained, and they read the value from the replica that however, the site is not aware that it has to perform some
has the highest version number. (Optionally, they may also reintegration actions to catch up on writes that it has lost.
write this value back to replicas with lower version numbers.) Furthermore, if the network partitions, each partition may
Writes read all the replicas just like reads to find the highest proceed to update the same data item, believing that sites in
version number (this step would normally have been per- the other partitions are all dead.
formed earlier in the transaction by a read, and the result can All the read one, write all available schemes we are aware
be reused). The new version number is one more than the of either assume that there is never any communication fail-
highest version number. The write operation writes all the ure, or are very expensive in the presence of failures, and are
replicas on which it has obtained locks, and it sets the version therefore not very practical.
number at all the replicas to the new version number.

Failures during a transaction can be tolerated as long as
ALTERNATIVE MODELS OF DISTRIBUTEDthe sites available at commit time contain a majority of repli-
TRANSACTION PROCESSINGcas of all the objects written to; and during reads, a majority

of replicas are read to find the version numbers. If these re-
For many applications, the blocking problem of two-phasequirements are violated, the transaction must be aborted.
commit is not acceptable. The problem here is the notion of aIn this approach, reintegration is trivial; nothing needs to
single transaction that works across multiple sites. In thisbe done. The reason is that the writes will have updated a
section we consider alternatives that can avoid the blockingmajority of the replicas, whereas the reads will read a major-
problem in many cases. We first consider persistent messagingity of the replicas and find at least one replica that has the
and then we look at the larger issue of workflows.latest version.

Persistent Messaging
Quorum Consensus Approach

To understand persistent messaging, we consider how one
The quorum consensus (QC) approach is a generalization of might transfer funds between two different banks, each with
the majority protocol. In this scheme, each site is assigned a their own computer. One approach is to have a transaction
nonnegative weight. Read and write operations on an item x span the two sites and to use the two-phase commit protocol

to ensure atomicity. However, the transaction may have toare assigned two integers, called read quorum Qr and write

704 DISTRIBUTED DATABASES

update the total bank balance, and blocking could have a seri- approved by one or more superior officers, after which the
loan can be made. Each human here performs a task; in aous effect on all other transactions at each bank, since almost

all transactions at the bank would update the total bank bank that has not automated the task of loan processing, the
coordination of the tasks is typically carried out via passingbalance.

In contrast, consider how funds transfer occurs when a of the loan application, with attached notes and other infor-
mation, from one employee to the next. Other examples ofbanker’s check is used. The bank first deducts the amount of

the check from the available balance and then prints out a workflows include processing of expense vouchers, of pur-
chase orders, and of credit-card transactions.check. The check is then physically transferred to the other

bank where it is deposited. After verifying the check, the bank Workflows offer an attractive way of implementing a com-
plex long duration task that must span multiple sites in aincreases the local balance by the amount of the check. The

check constitutes a message sent between the two banks. So distributed database. For instance, it may be possible to
break up a distributed transaction into a workflow. Somethat funds are not lost or incorrectly increased, the check

must not be lost, and it must not be duplicated and deposited parts of the workflow can execute even when some sites in
the distributed database are not available.more than once.

When the bank computers are connected by a network, Persistent messages provide a mechanism for implement-
ing workflow systems. In a workflow, a single complex taskpersistent messages provide the same service as the check (but

do so much faster, of course). Unlike regular messages, persis- has subtasks that must be executed at different sites. Tasks
must be dispatched from one site to another in a reliable fash-tent messages give the guarantee that once they are gener-

ated, they will definitely be delivered and will never be multi- ion. Unlike in normal transaction processing, the tasks in a
workflow may take a long time to complete; and even if theply delivered. Database recovery techniques are used to

implement persistent messaging on top of the normal network database systems involved crash in-between, the workflow
must be completed. Persistent messages provide a way to dis-channels which do not provide delivery guarantees.

Unlike the two-phase commit implementation, with persis- patch the tasks reliably. The message requesting a task to be
performed is deleted only when the task is completed. If atent messaging, there must be a code available to deal with

exception conditions. For instance, if the deposit account has crash occurs in-between, the message will still be available in
a persistent message queue, and the task can be restartedbeen closed the check must be sent back to the originating

account and must be credited back there. An error handling on recovery.
code must therefore be provided along with the code to handle
the persistent messages. In contrast, with two-phase commit

CONCLUSIONSthe error would be detected by the transaction, which would
then never deduct the amount in the first place.

Although distributed database systems have been a topic ofIn balance, there are many applications where the benefit
interest since the late 1970s, there is renewed interest in theof eliminating blocking is well worth the extra work to imple-
area due to he growth of corporate Intranets and the Internet,ment systems using persistent messages.
which have enabled hitherto disconnected databases to com-
municate easily with one another. We can expect distributedWorkflows
databases to form an integral part of most database applica-

A workflow is an activity involving the coordinated execution tions in the future.
of multiple tasks performed by different processing entities. We have provided an overview of several aspects of distrib-
A task defines some work to be done and can be specified in a uted databases, including the architecture of distributed da-
number of ways, including a textual description, a form, a tabases, query processing and schema integration, transac-
message, or a computer program. A processing entity that per- tion processing including concurrency control and distributed
forms the tasks may be a person or a software system. commit protocols, and replication. We refer the interested

Consider the processing of a loan; the relevant workflow is reader to the sources listed below for further reading.
shown in Fig. 6. The person who wants a loan fills out a form,
which is then checked by a loan officer. An employee who pro-
cesses loan applications verifies the data in the form using BIBLIOGRAPHY
sources such as credit-reference bureaus. When all the re-
quired information has been collected, the loan officer may P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems, Reading, MA: Addison-Wesley,decide to approve the loan; that decision may then have to be
1987. A classic book on concurrency control and recovery with ex-
tensive coverage of distributed databases.

Y. Breitbart, H. Garcia-Molina, and A. Silberschatz, Overview of mul-
tidatabase transaction management, VLDB J., 1: 2, 1992. A com-
prehensive review of various multidatabase transaction pro-
cessing schemes.

J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques, San Mateo, CA: Morgan Kaufman, 1993. The bible on the
subject of implementation of transaction processing; includes some
material on recovery and concurrency in distributed databases.

T. Ozsu and P. Valduriez, Principles of Distributed Database Systems,

Customer

Loan
application

Reject

Loan officer

Verification

Loan
disbursement Accept Superior

officer

Englewood Cliffs, NJ: Prentice-Hall, 1991. An advanced textbook
on distributed databases.Figure 6. Workflow in loan processing.

DISTRIBUTED FEEDBACK LASERS 705

A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Con-
cepts, 3rd ed., New York: McGraw-Hill, 1997. A fundamental text-
book on databases; includes a chapter on distributed databases
and also includes material on workflows.

Y. BREITBART

H. F. KORTH

A. SILBERSCHATZ

Bell Laboratories

S. SUDARSHAN

Indian Institute of Technology

