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VERY LARGE DATABASES Data Warehouses

Data warehouses provide integrated access to historical dataA growing number of database applications require on-line
collected from legacy data sources (1). In a typical business,access to large volumes of data to perform a variety of tasks.
numerous on-line software systems manage and collect dataFor example, telecommunication service providers need to
as part of the daily operation of the company. These systemsstore terabytes of phone call data to satisfy the requirements
may be transaction-processing systems that use a traditionalof billing, fraud detection, and strategic planning. Further-
DBMS, or they may be specialized applications that squirrelmore, many of these applications require support for new
away data in files. The data used by these different applica-types of digital data, such as images and video. For example,
tions hold valuable information about past business decisionsa detailed requirements analysis for NASA’s Earth Observing
and outcomes that can be used to improve future decisions.System indicates that, at the turn of the century, the daily
To accomplish this, warehouses integrate the data under agrowth in stored image data will be 2.7 Tbytes, and the total
unified schema (structure) and provide access mechanismsstored volume will exceed 1.5 Pbytes. In this article, such new
that enable efficient use by analysis and decision-supportapplication domains for database management will be identi-
packages (see Fig. 1).fied, and the issues that arise from large data volumes, appli-

cation-specific requirements, and new types of data will be
discussed. On-Line Analytic Processing (OLAP)

OLAP refers to the statistical analysis of data in support of
APPLICATION-ORIENTED DATABASE MANAGEMENT SYSTEMS decision-making tasks. In OLAP, the focus of data manage-

ment shifts from one of ensuring consistency and durabilityDatabase management systems (DBMS) are designed to pro-
of data to one of providing flexible, convenient access to data.vide the data storage and manipulation functions common to
As a result, many of the principles that guided the develop-tasks that depend on very large volumes of data. Economic
ment of data management solutions for OLTP (e.g., the needand technological changes, including the development of high-
to minimize data replication and to normalize data) do notspeed networking, are fueling a new family of data-intensive
apply to OLAP.applications. Traditional DBMS applications, such as banking

applications, required fast access by multiple users to large,
dynamic datasets. To meet these requirements, traditional Digital Libraries
DBMS support on-line transaction processing (OLTP), using

A digital library is an electronic version of a classical librarytransactions as the basic mechanisms for ensuring data con-
in which the information resources (e.g., books, art work,sistency in the face of concurrent updates by a host of users.
films), and the indexing information used to locate resourcesThe data are typically highly structured and represented in a
are stored digitally (2). By its nature, a digital library muststructured data model such as the relational model. In con-
be able to store and manage a highly heterogeneous collectiontrast, the new applications discussed in this section may re-
of data, ranging from unstructured data (e.g., images or vid-quire infrequent updates and the queries may be more com-
eos) to semistructured data (hypertext documents) to struc-plex, including aggregation and intricate pattern-matching
tured data (descriptive metadata). Digital libraries use tech-queries. In addition, the data may be less structured or com-
niques from both information-retrieval and structuredpletely unstructured. Some of the most prevalent of these ap-
databases, and extend these with new browsing and search-plications, and the underlying DBMS support technologies

will be described. ing techniques.

OLTP system

Transform
data

Transform
data

Statistics
package

Web
browser

Integrated data

D
a

ta
 a

cc
e

ssOperational data

Data source

Data warehouse
Analysis and 
report tools

Figure 1. Data warehouse architecture.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



134 VERY LARGE DATABASES

Statistical and Scientific Database be viewed as having the dimensions profession, age, years-at-
current-address, and so on. Product design data can beManagement Systems (SSDBMS)
viewed as having dimensions designer, product type, date-

Statistical DBMS are designed to manage socioeconomic data-
of-production, etc. In these examples, the tables containing

sets (e.g., census data or economic forecasting data) (3). Scien-
census or product data are called fact tables. Such a multi-

tific DBMS manage complex collections of data used in and
dimensional view of data facilitates the direct modeling of po-

gathered from experiments and other scientific endeavors. As
tentially complex relationships among dimensions. For exam-

in OLAP, SSDBMS must support sophisticated browsing,
ple, the date-of-production dimension may be refined into

summarization, and analysis functions. In addition, this sup-
subdimensions—day-of-sale, month, and year. There is a

port must be provided over a diverse collection of complex
functional relationship from data-of-production to each of its

data, including not only numeric and text data, but also data
subdimensions. A multidimensional model also facilitates the

with complex types. These types may represent such objects
expression of aggregation or summarization of data along dif-

as molecular structures, terrain maps, or architectural plans.
ferent dimensions (or subdimensions) of interest to a user.
For example, a user may retrieve the number of people over

World Wide Web and Databases age 35 in each state who have technology-related professions.
The explicit modeling of dimensions provides a convenientThe use of DBMS to store World Wide Web (web) content has
formalism on which language operators for aggregation andproven to be an effective means of creating dynamic, scalable
summarization can be built.web servers. Using interfaces such as the common gateway

interface (CGI), web application programs can access DBMS
to retrieve static web pages or to dynamically create pages Unstructured and Semistructured Models. Traditional infor-
based on query results. While DBMS may be used to store mation retrieval (IR) systems use unstructured data models
web content, the web also permits the electronic publishing of to represent data. Data are stored in documents of arbitrary
existing (or legacy) databases. Users of published databases, type and structure. Hence, documents may be images, video
unlike traditional DBMS users, are typically unfamiliar with sequences, or full-text data stored in any format. Each docu-
the data and structure of the database. As a result, users may ment is modeled as a bag of words (which may be a subset of
be unable to effectively formulate structured queries and re- the words in a document or a set of words describing an image
quire new solutions for browsing and effectively locating data or video). No structure is associated with these words so a
in large, complex datasets (4). document may contain the word Washington, but the model

To meet the data-management needs of these emerging ap- does not include information on whether Washington is the
plications, new support technology has to be incorporated into author, the subject, or the location of the document. Unstruc-
DBMS. This new technology is examined, including exten- tured models are appropriate for data that truly have no in-
sions to data models, query languages, indexing methods, herent structure. However, they fail to provide sufficient func-
query processing engines, and query optimizers. tionality when used to model data (such as web pages) that

have some structure. Consider an XML document which may
have tags indicating the author, creation date, and title of theData Model
document along with large portions of unstructured data (e.g.,

Traditional DBMS use structured data models such as the
the body of the document). Using an unstructured data model,

relational model, hierarchical models, or object-oriented mod-
a query could not be posed to retrieve web documents written

els. Structured data models assume that data can be grouped
by Washington. Using a structured data model to represent

into collections of tables or classes, each having a well-defined
this information is equally unsatisfying, since web documents

structure (or schema). To accommodate the needs of new ap-
rarely share the same structure. At best, one could define a

plications, data models have been extended in three primary
table containing attributes common to most documents. To

directions: direct support for abstract data types; addition of
provide better support for such data, semistructured data

conceptual structures to help in the summarization and
models have been developed. These models are often self-

browsing of large, complex data collections; and support for
describing data models in which a data object is described by

unstructured and semistructured data. Each of these exten-
both a value and its structure. Hence, each object may have

sions are examined in turn.
its own unique structure. In addition, these models often per-
mit objects to be associated with other objects, typically using

Abstract Data Types. Traditional DBMS support a fixed set labeled graphs (5).
of simple data types (e.g., integers and dates). Extensible
DBMS can be extended dynamically with user-defined types

Query Languageand functions. These types can be used to model complex ob-
jects, for example, molecular structures, along with the be- In structured data models, the structure (or schema) is used
havior of these objects. Most commercial DBMS (including In- as the primary vehicle for querying. In structured query lan-
formix, DB2, and Oracle) now provide such extensibility. To guages (e.g., SQL or OQL), schema components (e.g., attri-
fully support these new data types, a DBMS must provide bute, relation, or class names) are used to specify what data
data-management support, including new indexing- and should be retrieved. Hence, the user must know and under-
query-processing techniques. stand the schema in order to pose queries. In unstructured

data models, the query model is based on keyword matching.
A set or Boolean combination of user-specified keywords areMultidimensional Models. In data warehousing, OLAP, and

statistical applications, data are often conceptually modeled matched against the words representing the stored docu-
ments. To support efficient querying, indexes such as invertedas having multiple dimensions. For example, census data can
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indexes are used to quickly map keyword(s) to documents drill-down into a set of data by successively restricting one or
more of the dimensions, while the system presents aggregateswhich they annotate. Sophisticated techniques are used to en-

sure that all relevant documents are retrieved and no irrele- of the underlying data at each step.
vant documents. These techniques include linguistic tech-
niques for detecting synonyms among keywords. Indexing

Query languages for semistructured data models permit
New data-intensive applications require much more complexthe specification of structured queries over data objects with
forms of querying. This complexity can take on many forms.known structure. However, given that each data object may
In semistructured data, path queries, which retrieve a sub-have its own structure, understanding the structure of an en-
set of objects directly or indirectly associated with a giventire database may not be feasible. In a data warehouse, where
object, are common. In OLAP and SSDBMS, aggregate que-the structure of the data may be extremely complex, users
ries and multidimensional queries are common. In many ofmay need to pose queries without knowing the full structure.
these application, queries may join multiple tables (e.g., aAs a result, semistructured query languages permit the speci-
fact table may be joined with many dimension tables).fication of pattern-matching style queries (e.g., ‘‘Find all
These query characteristics require the development of newbuilding plans designed by Maria that include a heating sys-
indexing mechanisms for enhancing query performancetem with more than 100 subcomponents.’’) Such queries per-
(8,9).mit the browsing and location of data in unknown or partially

To support complex queries over multiple tables, multita-known structures (6).
ble indices have been developed including join indices andPattern-matching queries are also useful in querying het-
star indices. These indices materialize (i.e., cache) commonerogeneous structures. Multidatabase languages provide ad-
joins enabling complex queries to be performed efficiently.ditional data restructuring and merging operations to facili-
Traditional indices have been generalized to enable the in-tate data integration. Metadata, which is descriptive
dexing of new user-defined types. To support queries with in-information about database schemas, can be extremely valu-
dependent selection conditions, bitmap indices may be used.able in enabling the integration of heterogeneous data
A bitmap index is a modification of a traditional index (e.g.,sources. Higher-order languages that permit the querying of
a B�-tree or hash index), where for each index value (or key)schemas along with the data have been used successfully in
the index stores a bitmap representing which tuples containheterogeneous DBMS.
the given value. Bitmap indices have also been shown to beData warehouses provide powerful aggregation and sum-
useful in enhancing the execution of some aggregate queries.marization facilities to permit the extraction of relevant infor-
Other specialized access structures are tailored to materializemation. The aggregation functions typically include the basic
specific, commonly used queries (e.g., projection indices). Thefunctions provided in SQL (and object-based variants of SQL)
update characteristics of these structures may be unaccept-for computing counts, averages, sums, maximums, and mini-
able for OLTP applications. However, for read-only or read-mums, along with more sophisticated statistical functions
mostly applications, the improved query speed may offset anyover numeric data. Some DBMS permit the user to define new
additional update cost. Data may also be replicated andaggregation functions. The summarization techniques extend
stored under materialized views. Many data-managementthe simple horizontal partitioning permitted by the SQL
products make extensive use of materialized aggregate views,group by operator. The group by operator partitions the tuples
including materialization of the data cube, to permit fast com-of a table (or instances of a class) into groups based on the
putation of aggregate summaries.values of a set of attributes. Aggregation functions are then

applied to each group to compute a summary for each set of
Query Processingattribute values. Extensions permit the partitioning to be

based on the values of any function applied to the table attri- The query language extensions and new indexing structures
butes. The cube operator is used to compute cross-tabulations outlined above introduce a variety of new challenges for
on a table (7). In contrast to the group by operation, a cross- query processing. The proliferation of new physical struc-
tabulation includes subtotals (or subaggregates) for every tures for accessing data has required the development of
subset of attributes. new techniques for determining when an index structure or

Browsing techniques provide a convenient way of introduc- materialized view can be used (correctly) in answering a
ing the data and schema to new users. Users can navigate query (10). Similar techniques have also been applied to
through the data, effectively locating data of interest. Brows- heterogeneous DBMS to enable query processing over het-
ing techniques can be broadly grouped into two strategies. erogeneous views of data (11–14). New efficient algorithms
The first uses concept classifications from library science to for computing the data cube and other aggregate queries
logically organize the database. Documents are associated have been developed and incorporated into commercial
with concepts in the classification, such as agriculture or query engines.
welding. Concepts are related to each other based on their
semantic relationships. Users can browse the concept classi-

Query Optimization
fication, which is often presented using hypertext, to locate
documents. The second type of browsing technique uses To complement the new query-processing strategies, new

techniques for query optimization have been required. GivenOLAP style summarizations of the database to permit users
to locate data of interest (4). These systems group together the new language operators and the new access methods

available, the task of deciding which combination of operatorssubsets of the database and present aggregates of the data
items in each group. Hierarchical abstractions, or dimensions, and which indices or view to use in executing a query has

become significantly more difficult. Query optimization is al-over the data are used to form the aggregates. A user may
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ready a complex task in conventional relational systems. The As a consequence, multimedia data have much richer seman-
tics than conventional symbolic data and any meaningful in-challenge for new applications is to introduce new operators

and access structures in a way that does not adversely affect terpretation of a multimedia object is typically based on its
relationship to a system of spatial coordinates and/or a con-the performance or quality of the query optimizer.

Recent research has addressed some of the issues involved stantly progressing time scale. Furthermore, time-dependent
multimedia data [also known as continuous media (CM) data],in optimizing aggregate queries and queries with expensive

(possibly user-defined) functions. Magic sets, and their cost- like audio and video, have specific timeliness constraints asso-
ciated with them. For example, a video clip consists of abased extensions, have proven valuable in optimizing complex

relational queries, including queries over views (15). Alge- stream of video frames which must be delivered to viewers at
a certain rate (typically 30 frames/s). For MPEG-I com-braic and cost-based optimization of queries over heteroge-

neous DBMS has also been addressed, though much work re- pressed video, this translates to a data rate of approximately
1.5 Mbps (megabits per second). The underlying storage man-mains to be done [see (16) for a summary]. Work on

optimizing queries over semistructured data has just begun. ager needs to ensure that the storage and retrieval of CM
data proceeds at their prespecified real-time rates (22). Inte-
grated support for the spatiotemporal nature and semantics
of multimedia data requires nontrivial extensions to variousMULTIMEDIA DATABASE MANAGEMENT SYSTEMS
basic building blocks and functional units of a DBMS.

Recent advances in computing, communication, and storage
technologies have enabled the proliferation of multimedia Data Model
data, such as images, graphics, audio, video, and animation,

Complex multimedia objects require sophisticated modeling
in a number of diverse application domains. Examples of such

mechanisms with rich semantic capabilities. An important re-
domains include digital libraries, satellite image archival and

quirement for these conceptual tools is the ability to model
processing, training and education, entertainment, and medi-

the complex spatiotemporal structure of a multimedia object
cal databases containing X rays and MRIs. Currently, the

through well-defined abstractions. For spatial noncontinuous
bulk of multimedia data reside in either conventional or mul-

data, like images, the modeling problem is probably simpler,
timedia storage servers, offering special-purpose, application-

since the semantics of objects and operations are clearly de-
specific functionality. This situation, however, raises a num-

fined and their properties can be derived from geometry. CM
ber of problems, including redundancy, inconsistency, concur-

data, on the other hand, present the much more difficult prob-
rent access anomalies, as well as integrity, atomicity, and se-

lem of modeling time with conceptual mechanisms that can
curity problems. The continuously expanding diversity of

capture: (1) intramedia continuity, that is, the real-time deliv-
multimedia applications and volume of multimedia data fur-

ery requirements of a CM stream; (2) intermedia synchroniza-
ther exacerbate the problem. Incorporating database technol-

tion, that is, the precedence and real-time synchronization
ogy in multimedia application development can offer several

constraints among the component CM streams of a complex
benefits, including declarative query facilities, transparency

multimedia presentation (e.g., audio and video lip-synching);
from physical aspects of storage, associative access through

and (3) user interaction, that is, the ability of a user to inter-
indexing, data consistency through well-defined access meth-

act with the presentation through standard VCR-type func-
ods, multiuser access through concurrency control, and relia-

tions (e.g., fast-forward or rewind), which can change the pre-
bility through recovery mechanisms. This understanding has

sentation speed or randomly access specific points in a
given rise to a significant amount of recent interest in multi-

presentation.
media database management systems (17–21).

Most efforts for managing multimedia data have been
Providing database functionality for multimedia data

based on flexible object-oriented or extended relational mod-
types presents a host of new challenges not addressed by con-

els that allow for the modeling of complex structured multi-
ventional DBMS. These challenges stem from the fact that

media objects, the definition of abstract media types, and op-
multimedia data types differ from traditional alphanumeric

erations on media data units. However, despite their ability
data in their characteristics and, hence, require different

to model complex structures, such data models lack the tem-
techniques for their organization and management. A first

poral modeling capabilities required by CM data—the prob-
distinguishing characteristic of multimedia data is their vol-

lems of stream-oriented, real-time access, and synchroniza-
ume—a JPEG-compressed color image can require several

tion still remain. A number of conceptual models have been
megabytes of storage space, and a 100 min video compressed

developed for capturing the temporal aspects of multimedia
using the MPEG-I standard requires about 1.25 Gbytes of

data. They can be roughly classified into three categories,
storage space. Conventional DBMS and file systems provide

namely: (1) graph-based models [e.g., object composition petri
only very limited support for such large objects, typically in

nets (23) and presentation graphs (19)], language-based mod-
the form of special data types, such as long fields and BLOBs

els [e.g., HyTime (24) and MHEG (25)], and temporal abstrac-
(binary large objects), with very poor semantics. Reducing

tion models [e.g., temporal intervals and relations (26) and
multimedia data to single, large, uninterpreted data values is

timed streams (27)]. Nevertheless, the efficient mapping of
clearly inadequate for supporting the rich semantic content of

such conceptual constructs to the physical level of a full-
multimedia data types and places the whole burden of data

fledged multimedia DBMS still remains an issue of concern.
processing within the application. A second, and perhaps
most important, characteristic of multimedia data types is

Query Language
that, in contrast to alphanumeric data, they are typically
characterized by a spatial extent (e.g., images and graphics), Declarative query languages are an important part of DBMS

and have played an important role in their success. A power-a temporal extent (e.g., audio and speech), or both (e.g., video).
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ful declarative querying facility allows associative (i.e., con- of such queries requires the development of appropriate in-
tent-based) access to the underlying data and helps to main- dexing mechanisms for retrieval by similarity. The standard
tain the desired independence between the DBMS and the technique for this purpose is to map both the query and each
application. Conventional DBMS query languages are typi- multimedia object into some multidimensional feature space,
cally based on the assumption of highly symbolic alphanu- such that two perceptually similar objects are guaranteed not
meric representations, and thus cannot accommodate the to be far apart in this space (18). Typical features of multime-
much richer spatiotemporal semantics of multimedia data. dia objects include color, texture (e.g., contrast, coarseness),
More specifically, query languages for complex multimedia shape, text (i.e., a set of keywords or annotations), and mo-
objects need to address the following issues: tion. There can also be some features specific to particular

application domains. Features are extracted either manually
1. Similarity Queries. Conventional declarative content- or using automated (usually domain-specific) methods, and

based querying is based on exact-matching between stored as a collection of feature vectors in the database. For
well-defined sets of symbols using simple equality or example, the QBIC (query by image content) system devel-
comparison operators. An example of such a query is: oped at IBM Almaden supports queries based on example im-
‘‘Select all employees with salary �45K.’’ For any em- ages, user sketches and drawings, color, texture, shape, and
ployee in the database, the search condition will evalu- keywords (29). Color-based querying is implemented by stor-
ate to either TRUE or FALSE, based on a well-understood ing a color histogram for each image in the database and com-
numerical comparison. Such exact matches are rarely of paring the color histogram of the query image with those in
interest for multimedia data types such as images or the database.
video. Users are usually interested in discovering multi- Mapping objects and queries onto feature vectors enables
media objects that are perceptually similar (to each the use of appropriate multidimensional indexing mecha-
other or to some query object), where the notion of simi- nisms such as grid files and R-trees, with the query region
larity typically depends on the data type and the re- appropriately expanded around the query point. Given that
quirements of the application. Answers to such similar- notions of similarity are, in general, diverse and application
ity queries will be ranked, based on grades of similarity dependent, it is important to select appropriate distance mea-
obtained using an appropriate similarity function and sures in the multidimensional feature space that closely
users will usually be interested in obtaining the TOP-k match the perception of similarity. For example, the distance
results, that is, the objects with the k highest grades between color histograms in QBIC is defined as a quadratic
(28,29). form function (a generalization of Euclidean distance), which

2. Spatiotemporal Queries. A complete declarative query takes into account the ‘‘cross-talk’’ between two similar colors
facility for multimedia DBMS should allow users que- (e.g., orange and red) (29). One issue that needs to be ad-
ries not only on the content, but also the structure, that dressed is that conventional multidimensional indexing meth-
is, the spatiotemporal characteristics of multimedia ob- ods like grid files or R-trees suffer from the infamous ‘‘dimen-
jects. Examples of such queries include spatial searches sionality curse,’’ meaning that they result in access times that
(e.g., ‘‘Find all the roads passing through Murray are exponential in the number of dimensions or they degrade
Hill.’’), temporal searches (e.g., ‘‘Find all scenes where to a linear search as the dimensionality increases. This is a
President Clinton is shaking hands after stepping off an serious problem for multimedia data indexing, since the num-
airplane.’’), and simple spatial or temporal computa- ber of dimensions (i.e., features) can in some cases exceed one
tions (e.g., ‘‘Find the area of this object.’’). Of course, hundred (31). One approach for dealing with high dimension-
supporting spatiotemporal queries is intimately related ality is to map high-dimensional feature vectors to a lower
to the facilities offered by the underlying data model for number of dimensions using a distance-preserving transfor-
modeling the complex spatial and temporal structure of

mation (18). Another approach is to design new, scalable in-
multimedia objects.

dexing structures or to improve existing ones to scale to
3. Quality of Service (QoS) Specifications. Multimedia ob- higher dimensions (31).

jects can often be accessed at multiple levels of resolu-
tion or quality of service (QoS) that correspond to differ-

Query Processingent service requirements on the underlying DBMS
resources. Important QoS parameters include the aver- Multimedia data types introduce a host of new challenges for
age delay (experienced by the user), the actual presen- the query processing component of a DBMS. A central issue
tation rate and image resolution, and the allowable de- is that the real-time access characteristics and the large vol-
viations for temporal synchronization constraints. Some umes of CM data mandate the design of effective resource
application environments can be flexible about certain management strategies for multimedia query processing. Such
QoS parameters (e.g., audio quality or image resolu- strategies should: (1) provide guaranteed service levels for the
tion). Since such flexibilities can be directly translated storage and retrieval of CM data; (2) provide support for the
to flexible resource requirements, effective QoS specifi- temporal synchronization constraints defined between the
cations play a very important role in effective query pro- CM components of complex multimedia objects; (3) provide
cessing and optimization in a multimedia DBMS (30). support for user interaction (i.e., VCR-type functions); (4)

allow for the retrieval of noncontinuous data concurrently
Indexing with CM data; and, (5) maximize system throughput and re-

duce system response times. A number of these issues haveSimilarity-based queries are the prominent form of associa-
tive data access in a multimedia DBMS. Efficient execution been addressed in the context of CM storage servers, for ex-
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ample, the Fellini multimedia storage server developed at ranked result sets over multimedia repositories (28). The
main emphasis in this work was to explore optimization strat-Bell Labs (32).

Given the limited amount of DBMS resources (e.g., mem- egies designed for graded results and TOP-k semantics. Two
additional issues that arise in the optimization of multimediaory, disk bandwidth, disk storage), providing service guaran-

tees for CM data mandates a novel admission control compo- queries are intra/inter-media synchronization and QoS (3).
Ignoring synchronization constraints during optimization cannent that decides whether to execute or postpone user

queries. By initiating the execution of a query, the DBMS lead to excessive buffer requirements and underutilization of
resources at run-time or unacceptable flaws in the presenta-commits to satisfy the resource requirements (e.g., memory,

disk bandwidth) of the CM streams involved throughout their tion (e.g., glitches in the video, out-of-sync audio). QoS re-
quirements are significant for optimization since they impactduration. The service guarantees provided by the admission-

control policy can be either deterministic (i.e., based on worst- the space of execution alternatives as well as the metric of
optimization. For example, a query generated by a fraud-de-case assumptions) (22) or stochastic (i.e., based on statistical

models of system behavior) (33). Prior research has proposed tection application needs to be evaluated speedily with qual-
ity of video being of secondary importance. Thus the optimizernovel data layout strategies, disk-scheduling algorithms, and

buffer-management policies that take advantage of the highly should obviously consider the option of returning a low-qual-
ity (e.g., compressed) version of the video if this results insequential, stream-oriented access patterns to CM data in or-

der to improve system throughput (34,35). A method proposed lower response time. As of this writing these issues have yet
to be addressed by the database or multimedia research com-for handling conventional (noncontinuous) data requests and

user interaction is to reserve a portion of the system’s re- munity.
sources specifically for that purpose (32). Given that typical
CM requests tend to execute for long periods of time, reserv-
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37. M. N. Garofalakis, Y. E. Ioannidis, and B. Özden, Resource16. A. Tomasic, L. Raschid, and P. Valduriez, Scaling heterogeneous
databases and the design of DISCO, Proc. Int. Conf. Distributed scheduling for composite multimedia objects, Proc. 24th Int. Conf.

Very Large Data Bases, New York, 1998.Computer Syst., 1996, pp. 449–457.

17. P. M. G. Apers, H. M. Blanken, and M. A. W. Houtsma (eds.), 38. R. Fagin, Fuzzy queries in multimedia database systems, Proc.
17th ACM SIGACT-SIGMOD-SIGART Symp. Principles DatabaseMultimedia Databases in Perspective, New York: Springer-Ver-

lag, 1997. Syst., Seattle, WA, 1998.

39. S. Ghandeharizadeh and C. Shahabi, On multimedia repositories,18. C. Faloutsos, Searching Multimedia Databases by Content, Nor-
well, MA: Kluwer, 1996. personal computers, and hierarchical storage systems, Proc. ACM

Multimedia ’94, San Francisco, CA, 1994, pp. 407–416.19. K. C. Nwosu, B. Thuraisingham, and P. B. Berra (eds.), Multime-
dia Database Systems: Design and Implementation Strategies, Nor- 40. A. Dan, D. Sitaram, and P. Shahabuddin, Scheduling policies for

an on-demand video server with batching, Proc. ACM Multimediawell, MA: Kluwer, 1996.
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23. T. D. C. Little and A. Ghafoor, Sunchronization and storage mod- University of Toronto
els for multimedia objects, IEEE J. Selected Areas Commun., 8:
413–427, 1990.

24. S. R. Newcomb, N. A. Kipp, and V. T. Newcomb, The HyTime
Hypermedia/time-based document structuring language, Comm. VERY SMALL APERTURE TERMINALS. See VSAT
ACM, 34 (11): 67–83, 1991. NETWORKS.

25. R. Price, MHEG: An introduction to the future international VIDEO AMPLIFIERS. See WIDEBAND AMPLIFIERS.
standard for hypermedia object interchange, Proc. ACM Multime- VIDEO CAMERAS. See CAMERA CALIBRATION FOR IMAGEdia ’93, Anaheim, CA, 1993, pp. 121–128.

PROCESSING.
26. J. F. Allen, Maintaining knowledge about temporal intervals,

VIDEO CAPTURE. See IMAGE PROCESSING EQUIPMENT.Comm. ACM, 26 (11): 832–843, 1983.
VIDEO CODEC. See DATA COMPRESSION FOR NETWORKING.27. S. Gibbs, C. Breiteneder, and D. Tsichritzis, Data modeling of
VIDEO CODING. See IMAGE AND VIDEO CODING.time-based media, Proc. 1994 ACM SIGMOD Int. Conf. Manage-

ment Data, Minneapolis, Minnesota, 1994, pp. 91–102. VIDEO CODING (METHODS). See VIDEO COMPRES-

SION METHODS.28. S. Chaudhuri and L. Gravano, Optimizing queries over multime-
dia repositories, Proc. 1996 ACM SIGMOD Int. Conf. Management
Data, Montreal, 1996, pp. 91–102.

29. C. Faloutsos et al., Efficient and effective querying by image con-
tent, J. Intell. Inf. Syst., 3: 231–262, 1994.

30. S. Chaudhuri, On optimization of multimedia queries, Proc. ACM
Multimedia ’94 Conf. Workshop Multimedia Database Manage-
ment Syst., San Francisco, CA, 1994.

31. D. A. White and R. Jain, Similarity indexing with the SS-Tree,
Proc. 12th Int. Conf. Data Eng., New Orleans, LA, 1996, pp.
516–523.

32. C. Martin et al., The Fellini multimedia storage server, in S. M.
Chung (ed.), Multimedia Information Storage and Management,
Norwell, MA: Kluwer, 1996.

33. G. Nerjes, P. Muth, and G. Weikum, Stochastic service guaran-
tees for continuous media data on multi-zone disks, Proc. 16th
ACM SIGACT-SIGMOD-SIGART Symp. Principles Database
Syst., Tucson, AZ, 1997, pp. 154–160.

34. S. Berson et al., Staggered striping in multimedia information
systems, Proc. 1994 ACM SIGMOD Int. Conf. Management Data,
Minneapolis, MN, 1994, pp. 79–90.
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