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STATISTICAL DATABASES

A statistical database management system (SDBMS) is one
that can model, store, and manipulate data in a manner well
suited to the needs of users who want to perform statistical
analyses on the data. Statistical databases have some spe-
cial characteristics and requirements that are not supported
by existing commercial database management systems. For
example, while basic aggregation operations like SUM and
AVG are part of SQL, there is no support for other commonly
used operations like variance and co-variance. Such com-
putations, as well as more advanced ones like regression and
principal component analysis, are usually performed using
statistical packages and libraries, such as SAS (1) and
SPSS (2).

From the end-user’s perspective, whether the statistical
calculations are being performed in the database or in a sta-
tistical package can be quite transparent, especially from a
functionality viewpoint. However, once the datasets to be ana-
lyzed grow beyond a certain size, the statistical package ap-
proach becomes infeasible, due to either its inability to handle
large volumes of data, or the unacceptable computation times
which make interactive analysis impossible. With the increas-
ing sophistication of data collection instrumentation, and the
cheap availability of large volume and high speed storage de-
vices, most applications are today collecting data at unprece-
dented rates. In addition, an increasing number of applica-
tions today want the ability to perform interactive and on-line
analysis of these data in real time, such as ‘‘what-if ’’ analysis
in forecasting. The emergence of multiple gigabyte corporate
data warehouses (3), with on-line analytical processing
(OLAP) (4–6) and data mining (7–8) type of analyses on
them, is a good example of this trend. Hence, there is an in-
creasing need for supporting statistical functions directly in-
side the database management system. This is precisely the
goal of statistical database management, in addition to com-
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mon requirements of regular DBMSs, such as data privacy, quently. Second, if data are to be updated, it is usually done
by a single person or single program. In such a case, the up-user-friendly query languages, consistency, and integrity.

In this article we provide a general overview of statistical date does not need to be visible right away and thus can be
made on a simple locked version of the database. Third, evendatabase management, with specific focus on the various

technical issues and proposed approaches. By its very nature, if multiple users are to update the database at the same time,
they often access different parts of the DBs. Finally, longthe treatment here is brief, and many details have been omit-

ted. References to the original sources are provided, and the transactions are very common for SDBs, where a scientist
may embark on a lengthy analysis.reader is invited to refer to them for further details.

For these reasons, concurrency control technique currently
in use are not appropriate for SDBs. There is a need to sup-

REQUIREMENTS OF STATISTICAL DATABASES
port multiple versions of datasets, and to keep track of the
correspondence between them. In addition, there is the need

SDB applications involve complex data sets from many fields,
to support a master version, where different parts can be ac-

such as biology and physics, and different operations on them.
cessed by multiple users. Support for long transactions is an-

They have requirements that far exceed the capabilities of
other important requirement. Finally, for the massive amount

current commercial DBMSs. In this section, we discuss issues
of data stored in SDBs, the overhead of controlling concur-

including additional requirements of SDBs over the basic fea-
rency is not acceptable. Fortunately, SDB applications do not

tures of regular DBMSs, data model, query language, con-
have very strict consistency requirements.

currency control, data integrity, backup/recovery, and physi-
cal storage. In addition, another important requirement of

Integrity Constraints
SDBs, which is to support data analysis, shall be described
briefly. Since data in SDBs tend to have complex structure, it often

results in complex constraints. Currently commercial DBMSs
do not support such complex types of constraints. In general,Data Model
a typical SDBMS should capture more semantics and the in-

A data model provides an abstraction for representing the
tegrity constraints implied by these semantics. This would

structure and semantics of data collected from the real world.
help users by saving the chore of expressing them explicitly.

The most popular data model is the relational model, where
data are organized into a tabular format. This model is not

Recovery
adequate for storing data used for statistical purposes, be-
cause SDBs usually contain data that are not appropriate to Mechanisms for backup and recovery are needed in any data-

base with updates, especially if it has long-running activities.store as a two-dimensional table, such as temporal or spatial
data. Moreover, SDBs must store complex data objects such For SDBs, where long transactions are common, backing up

to the last transaction is not acceptable since too much workas points in space, images, and sequences. Representing these
data objects in terms of relational tables loses a lot of seman- will be lost. Mechanisms developed for supporting long trans-

actions should be used. Some type of versioning mechanismtics. Hence, data models that support complex structures of
data directly and naturally are needed for SDBs. with incremental checkpointing is desirable.

Physical Database OrganizationQuery Language

Relational database implementations typically organize rowsEvery type of database needs some query language defined
over the data model for accessing and manipulating data. of relations as records in files and provide additional access

paths, such as B-trees and hash tables, to access data effi-SDBs require a more adequate query language than SQL,
which has been shown to be a fairly good language for ac- ciently. This approach is not sufficient for SDBs. The main

reason is that alternate ways of clustering data provide morecessing data from traditional DBs. As an example, consider a
query like ‘‘find a subsequence of length k starting from position efficient access to statistical data. For example, SDBs often

need to access a few columns from a table for, say, doing somen’’ from a sequence-structured data field. This type of query
is not directly supported by SQL and is hard to obtain even if aggregate operations. The ‘‘row-wise’’ type of storage is not

efficient for such applications. The entire record must be readwe add more features to SQL due to the relational nature of
data storage. In general, complex data objects are composed even though we only need a few attributes. Hence, for effi-

cient performance, a SDBMS should provide various optionsof multiple structures which require a set of operations of
their own. of physical organization and appropriate query optimization

techniques.SDB applications come from different disciplines, e.g. biol-
ogy, earth science, and physics, and require highly specialized
operations on their own specialized data. Usually, each of Data Analysis Requirements
those data domains needs special operations on it.

The most important purpose of a SDBMS is to provide tools
and mechanisms for users to analyze data faster and more

Concurrency Control
easily. Conventional DBMSs are not capable of providing this
in an efficient manner. Attempts have been made to feed dataFor business-oriented DBs, such as banking or accounting,

concurrency control is very important and is the main source from traditional DBs to statistical packages to do the job, but
this has been proven not to be a good approach, especiallyof overhead for the whole system. In SDBs, concurrency con-

trol is not that important an issue and has different require- when the data sizes grow beyond some threshold. Moreover,
the bookkeeping problem, namely the problem of keepingments due to four reasons. First, data are not updated fre-
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track of sets of analyses and intermediate results, has not This graph structure is used to support a menu-driven in-
been solved very successfully. More research needs to be done terface. The user need not know the types of nodes, but the
along these two dimensions. system can use them to provide automatic aggregation. The

graph can either be browsed by moving up and down the
nodes, or searched directly with keywords. The sharing of
nodes provides the capability to use the same clusters acrossSTATISTICAL DATA MODELS AND METADATA
data sets, and to avoid confusion of names. The main advan-

A data model in general means a notation for describing data, tage of this representation is that the user can be shown the
and a set of operations to manipulate them (9). content of the DB by gradually revealing additional detail

SDBs and commercial DBs differ in the nature of the raw when requested (17). As SUBJECT can model almost every
data and the operations desired on them. Statistical data are statistical table, it was widely followed by statistical data-
more abstract, and operations on SDBs have different seman- base researchers.
tics than business data. Usually SDBs are analyzed by creat-
ing aggregate data from raw data. Aggregate data can be of

Semantic Association Model (SAM)many forms, such as a cross-table histogram, which are typi-
cally not supported by RDBMSs. Moreover, the relational Su (19) and co-workers proposed SAM, which was designed
model is also not suitable to handle such types of data. The for modeling both scientific-statistical databases and busi-
main reason is the multidimensionality of statistical data ness-oriented databases. In SAM, each part of the real world
(10–12). Thus, new data structures and operations are needed can be modeled by a network of interrelated concepts. SAM
to handle this. Examples would be the data cube operator distinguishes two types of concepts, i.e., atomic and non-
(6,11), and the Aggregate Data Structure (ADaS) (12). An- atomic concepts.
other direction is to extend the relational data model to have An atomic concept is a nondecomposable, observable physi-
set-valued relations and new operators (13). More information cal object, abstract object, event, or any data element that the
on operators for SDBMSs can be found in Refs. 14–16. user regards as an information unit. Its meaning is assumed

In addition, statistical objects, e.g., tables and histograms, to be understood, and thus need not to be redefined. An
have two types of attributes (12,17–19): (a) summary attri- atomic concept can be represented by a simple data type such
butes representing the result of applying aggregation on raw as integer, real, or character, or by a complex data object
data, and (b) descriptive attributes which describe associated (CDT), which is a structured data type corresponding to an
summary attributes and are also called metadata. Great ben- abstract data element from the user’s point of view. A non-
efit can be gained from easy access to metadata, e.g., many atomic concept is a physical object, an abstract object, or an
analysis tasks prefer aggregates and descriptions rather than event whose meaning is described in terms of other atomic
individual records. Thus, facilitating access to metadata is and/or nonatomic concepts.
very important in SDBMSs. The reader is referred to Refs. The grouping of atomic or nonatomic concepts to describe
20–24 for more information on this. another nonatomic concept is called an association. Based on

Because of limited space, we shall briefly introduce the different structural properties, operational characteristics,
main statistical data models proposed so far in terms of the and semantic constraints, Su classified associations into
notations for describing data. Further details are provided in seven types: membership association, aggregation associa-
Ref. 25. tion, generalization association, interaction association, com-

position association, cross product association, and summari-
Subject zation association. He used a network representation, in

which labeled nodes and arcs are used to describe the sevenOne of the early models was SUBJECT (17), introduced by
association types. Each nonatomic concept of an associationChan and Shoshani. The authors distinguished two types of
type is labeled by the name of the association type. If theabstraction in order to organize the statistical information,
same nonatomic concept is seen by different users as havingnamely category attribute and summary attribute. The main
different semantic properties, the concept will be labeled withadvantage of modeling the semantics of category and sum-
more than one association type. The conceptual description ofmary attributes is the capability of automatic aggregation,
a database can be given in terms of any number and structurei.e., the system is able to infer the attributes (category attri-
of these association types, depending on the semantic com-bute) over which an aggregation should be applied (26).
plexity of the database.These semantic concepts are hidden from the user and are

represented as a graph. There are two kinds of nodes, namely
cross-product nodes (X-node) and cluster nodes (C-node). The Graphical Approach for Statistical Summaries (GRASS)
nodes can be connected by edges to form an acyclic graph. C-

GRASS (27,28) is an extension of the SUBJECT model. Itnodes represent a collection of items. X-nodes represent com-
uses a directed, connected, and acyclic graph to represent theposite keys of category attributes. Clustering and cross prod-
model. GRASS gives the statistical user an easy and immedi-uct can be understood as two different types of relationships
ate instrument to help understand the structure of the statis-among categories in a SDB.
tical database at a logical level. GRASS introduced five typesCluster nodes are used to represent a hierarchy of parame-
of nodes, which are marked to distinguish types, and labeledters, each of which is a category attribute. This is a way to
to distinguish each node within the limits of the same type.represent complex category attributes. Cluster nodes also rep-
The marks which distinguish the node types are S, T, A, C,resent the collection of summary attributes under the node

labeled variables. and tn. Their semantic descriptions follow:
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• An S node represents the conceptual relation which ex- schema in CSM can be represented by a diagram, in which
each of the representation structures is labeled by a uniqueists between different nodes (of the S or T type) on a

lower level of aggregation. symbol. Symbols are connected by edges, according to their
definition. The seven structures and their corresponding sym-• A T node represents the summary data physically pres-
bols are described briefly as follows:ent in the database; the label expresses the event de-

scribed and the type of data itself.
• An A node and a C node represent, respectively, the con- • Class of objects (S) is defined as a set of objects of the real

cepts of aggregation (or cross product) and category attri- world that share common properties and are involved in
bute (or clustering). some aggregation of interest. Classes in the statistical

schema may be identical to the classes in the elementary• A tn node represents one of the assumable values within
schema or derived from them as the result of some ma-the limits of a data domain for a category attribute defi-
nipulation.nition.

• Category attribute (C) is a property of a class used in
A T node is a root with respect to both the part of the graph some statistical aggregation. It can be seen as a corre-

made up of the S nodes, and the table trees formed by nodes spondence between a class and a set of values, called do-
C, A, and tn. main.

If G is a GRASS graph, the connection rules between dif- • Statistical classification (X) describes the relationship be-
ferent nodes of G can be described as follows: tween a class of objects involved in some aggregation and

the set of category attributes used in the aggregation.
• R1: A minimal graph consists of the following chain: S �

• Class of data (D) can be built using three mechanisms,T � A � C � tn. All the edges are oriented toward a T-
namely starting from a partition of a class of object,node.
starting from another class of data, or starting from two

• R2: An S-node can be connected with one or more S-nodes or more classes of data. For example, starting from the
and/or one or more T-nodes. class PERSON by SEX and AGE RANGE, we can build

• R3: A T-node can be connected with one or more S-nodes the class of data number of persons by sex and age range,
and/or one or more A-nodes. counting the objects of each subset.

• R4: An A-node can be connected with one or more T- • Data view (V) allows the grouping together of classes of
nodes, with two or more C-nodes or with one or more C- data with homogeneous characteristics. For instance, we
nodes and one or more A-nodes. can group classes of data referring to unemployed people,

• R5: A C-node can be connected with one or more A-nodes using a data view DATA_ON_LABOR_FORCES. A data
and with two or more tn nodes, which have to be in- view can also be defined from other data views.
stances of the same domain. • An aggregate (A) defined from category attributes A1,

• R6: A tn node can be connected with only one C-node. . . ., An, with domains D1, . . ., Dn, is a category attri-
bute with domain D1 � D2 . . . � Dn. Using aggregates,

We can have the same labels for different nodes (A and C) we may see a category attribute as expressed in terms of
as long as the nodes are not common to the same table tree, its component properties. In addition, aggregates are
i.e., they do not have the same T node as root. useful to express classifications defined over common at-

tributes in a compact way.
Conceptual Statistical Model (CSM)

• Grouping (*) is used to group the elements of the domain
of an attribute according to some common property. ThisThe CSM model was proposed by Batini and Di Battista (29)
is similar to association in the SAM model.using two different data models for elementary and summary

data. The authors justify this choice, as opposed to others
such as Su (19), since from their point of view, this allows a Statistical Object Representation Model (STORM)
cleaner description and comparison of the two types of data

SUBJECT is useful to model actual statistical tables in print.during the design process. Furthermore, they have provided
However, it is unsatisfactory as a data model for a statisticalthe statistical model with new specific representation struc-
database shared by many users. This is mainly because thetures that allow more powerful modeling of aggregations. The
same data may be described in different manners. As a simplefollowing is a brief description of CSM.
example, columns and rows in a statistical table can be, inFirst, CSM uses two different but complementary data
general, exchangeable without harm. However, SUBJECTmodels for the description of elementary and summary data,
cannot reflect this fact because it depends on the physicalnamely the ER model by Chen and redefinition of the GRASS
structure of the table.model (27,28). Second, a conceptual schema is used, which

For these reasons, later works on SDB tend to representconsists of an effective tradeoff between top-down and bottom-
logical models separately from the physical structure of a sta-up activities. Typical top-down activities are the design of the
tistical table. STORM (30,31), proposed by Rafanelli anddraft elementary schema, of the skeleton statistical schema,
Shoshani, is one such model. It is an enhancement of GRASS.and the aggregation subschemas. A bottom-up activity can be
While STORM adopts a graph representation resemblingthe design of the statistical schema through incremental
SUBJECT, it introduces conditions which make the descrip-merging of aggregation subschemas. Third, seven representa-
tion of statistical data clearer. These conditions can be sum-tion structures are defined in the CSM that consist of various

types of abstractions. As for other models, a conceptual marized as follows:
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1. There is only a single variable node in the graph tree by the possible objects and operations derivable from that lan-
guage. Moreover, the language should be easy to use, and theand it points to the root X-node, i.e., only one summary

attribute is allowed for the tree. syntax as well as functionalities should be well defined.
The following taxonomy of SDBMS query languages has2. A single X-node is pointed to by the variable node.

been developed in Ref. 35:3. Multiple C-nodes or X-nodes can point to an X-node.
4. Only a single type of C-node or an X-node can point to

• SDBMS built on top of CDBMS: the majority of the sys-another C-node.
tems in this category are relational systems which are

5. Condition 4 implies that a C-node is allowed only if it HSDB (36) on Model 204 (37), Ghosh’s extension to SQL
clusters categories belonging to a single domain. For ex- (38), System K on SQL/DS (39), GRAFSTAT (40) on
ample, a sex category and an age category must respec- DB2(SQL/DS), STRAND (41) on INGRES (42–44).
tively belong to different C-nodes.

• Another approach is to use a Generalized Interface sys-
tem that links together available CDBMS, statisticalIn summary, when modeling statistical data in a complex
packages and graphics software, using a high-level inter-statistical table, we must decompose it into elementary statis-
face language. Such systems are PASTE (45), SIBYLtical files.
(46), GPI (47), and PEPIN-SICLA (48).

• Separately developed SDBMS: Systems in this category
STATISTICAL QUERY LANGUAGES generally use relations as data modeling tools and an al-

gebra- or calculus-based language. We further group
Most traditional databases have been developed for commer- them into six categories with respect to their data model
cial business applications, which involve extensive decision- and query languages:
making activities. Such database management systems

1. Relational data model (49) and relational query lan-(DBMS) are not suitable for SDBs, which require extensive
guages. These systems have been developed withinuse of statistical analysis techniques. Statistical DBMSs
the framework of the relational data model. They pro-(SDBMSs) are expected to provide users with rich internal
vide new internal (file) organization techniques andmodeling tools, and powerful and easy-to-use query languages
conceptual modeling tools suitable for SDBMS as wellto define and manipulate statistical data. In this section, we
as well-defined aggregation operations in their queryshall introduce statistical query languages following the tax-
languages. Examples are RAPID (50) and CAS SDBonomy by Tansel (25). Most query languages can be evaluated
(51) which use relational algebra, ABE (52–54) whichbased on the following criteria: data and metadata definition,
uses relational calculus, SIR/SQL (55), GENISYSdata manipulation, interface to statistical packages, and the
(56), and CANTOR (57) which use SQL, JANUS (58)expressive power of the language.
and the algebra of Ref. 59 which uses tables and rela-For metatada definition we consider:
tional algebra like complete information (60). The
July system uses a universal relation interface (61).• Objects definable in the language
Summary data model generates summary tables from

• Data description such as units of measure, missing val- the existing ones (62).
ues, data quality information, and universe description

2. Network and hierarchical data model. Examples are
• Footnotes SIR/DBMS (55), TPL, and TPLDCS (63) and
• Keywords BROWSE (64).
• Textual description 3. Formal extensions of relational model. Examples are
• Temporal data and time dimension, item editing specifi- SSDL (65), Klug’s work (52–54) and extensions of Oz-

cations, and data structuring capabilities. soyoglu et al. (15,66).
4. SDBMS with graphical user interfaces. These systems

The most common SDB objects are summary tables and provide graphical, two-dimensional, and diagram-
tabular representation of aggregated data. All statistical matic query languages in contrast to the traditional
packages provide some type of summary table output format- query languages in which query statements are coded.
ting facilities. However, these are quite limited and mostly at Examples are SUBJECT (17), GUIDE (67), ABE (52–
an elementary level. There are many SDBMSs which include 54), STBE (32,34), SEEDS online code book (68),
summary tables as a modeling object and provide powerful ALDS data editor (69), GRASP (70), and GRASS
and easy-to-use summary table processing languages. STBE (27,28).
is a good example of such a language (32–34).

5. Natural language based user interface: LIDS 86 (71).For data manipulation capabilities, we consider aggrega-
6. Query languages which calculate aggregates fromtion, subsetting and sampling, metadata manipulation, and

temporal data. Examples are TQUEL (72), HQUELhandling time dimension explicitly.
(73,74), TBE (75), Tansel’s extension to relational al-The interface to the statistical package is another impor-
gebra (76), temporal data model of Shoshani andtant aspect of a SDB query language. Basic statistical opera-
Segev (77–79), and the query language of TEER (80).tions such as avg, min, max, sum, count, and standard devia-

tion are included in almost all commercial DBMSs. However,
sophisticated ones like correlation and principal component In this section, we have presented a taxonomy to classify

the statistical query languages in the literature. The taxon-analysis are not, and hence the calculations are usually inef-
ficient. The expressive power of a language can be determined omy is based on that of Ref. 35. The bibliographies on these
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systems have also been provided. Statistical query language Each non-root node of TBSAM of order m contains k keys,
where m/2 � k � m. In addition, it also contains k � 1and SDBMS systems have been studied since the early 1980s.

However, there are still issues that need to be addressed like pointers Pj, 0 � j � k, that point to its subtrees. Pi points to
the root of the subtree containing all keys Kj such that Ki �embedding security specification in the query language or a

good query language for both temporal and spatial data. A Kj 
 Ki�1. The leaf nodes point to data pages that contain
tuples of the relation being indexed by the tree. Figure 1full treatment of these issues is still open to investigation.
shows a TBSAM index created on the key attribute K. The
index provides an ordering of tuples on the key attribute.

PHYSICAL DATABASE DESIGN AND INDEX Each node of the TBSAM index contains some information
STRUCTURES FOR STATISTICAL OPERATIONS in addition to the keys and pointers. Beside Ki and Pi, there

is a structure called Si storing statistics metadata for the ith
Physical data structures and access methods are critical for subtree. Statistics metadata is metadata that facilitates the
efficient query processing. A traditional DBMS often stores processing of statistical queries such as count(i)—the number
rows of relation tables as records in files and provides addi- of data tuples in the ith subtree, or Sum_Age(i, p)—the sum
tional index mechanisms over the various columns of the rela- of all the age values to the pth power, of all tuples in the ith
tions. Some of the classical ones are VSAM (81–84), B-tree subtree. The choice for the statistics metadata is not arbi-
(85–87), GRID-file (88), and linear hashing (89), while some trary. It is based on the aggregate property which all of the
newer ones are BANG file (90), and R-tree (91). These data chosen quantities exhibit. This property of the tree can be
structures along with their access methods have significantly used to efficiently process queries requiring order statistics
reduced the time required to access data from physical stor- (i.e., median and quantiles), and aggregates on the specified
age. However, SSDB applications need additional types of attributes.
data organization and access algorithms, since most of the Various types of statistical queries can be facilitated by the
data structures mentioned are aimed at speeding up the pro- use of the TBSAM index. Examples of such query types are
cessing of relational operators, primarily the join operator. descriptive statistics, order statistics, or statistical sampling.
For SSDBs, the best physical clustering of the data may not Statistical sampling from relational databases has been dis-
be according to records in a file. The main reason is that in cussed in detail by Olken (93). However, the approach taken
SSDB applications, the access requirements would benefit is quite different. The query language has to be extended by
from other ways of clustering data. For instance, spatial ap- adding a set of sampling operators.
plications typically have local access operators such as ‘‘find In conclusion, data management systems for SSDBs need
the points that are close to me.’’ For such applications, physi- to have a rich set of physical organization options to provide
cal locality of data according to their spatial locality would efficient performance. TBSAM is only one of many examples
reduce the amount or I/O from secondary storage. In this sec- of physical storage structures that an SSDB should adopt. A
tion, we briefly present TBSAM (92) as an example of a typi- multiplicity of choices makes the problem of query optimiza-
cal SSDB physical design and access method.

TBSAM (tree based statistics access method) is designed
to efficiently process a class of aggregate queries such as:

Calculate 〈set-of-aggregates〉 of all data items

such that 〈boolean qualification〉

Here, aggregates are some overall characteristics of all the
qualifying data items. Examples of such aggregates include
descriptive and order statistics. This class of queries arises
very naturally in applications such as scientific data analysis,
planning, and forecasting.

TBSAM is based on the B�_tree, and it exploits all the
benefits of a B�_tree’s dynamic nature. It provides facilities
for efficient evaluation of the arithmetic mean and higher mo-
ments of one or more attributes. The B�_tree index structure
provides an ordering of the tuples of a relation on the index
attribute. The aim is the efficient retrieval of a tuple, given
the value of its index attribute. However, there is no proviso
for retrieving a tuple whose rank in the order is specified in-
stead of its index attribute value. This is the basic operation
required in finding the median and other order statistics for
a set of data items. This operation is supported in a natural
and efficient manner by TBSAM. TBSAM can be used for per-
forming statistical sampling on a relational database.

TBSAM is a dynamic index, and thus can support
insertion/deletion/modification of tuples in the relation.

• •  •

•  •  •

•  •  •

• •
 •

•  •  • •  •  •

•  •  • •  •  •

• •
 •

Data
blocks

TBSAM index tree

TBSAM index node

Ki Ki + 1

So S1 Sm

Po P1 KmK1 K2 Pm

These operations can be performed very naturally, and the
cost is almost the same as that for the B�_tree. Figure 1. A sample TBSAM index structure.
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tion much harder. The management of these options and the et al. presented a strategy for executing temporal semi joins
in Ref. 98.way they can interact is a great challenge to the designers of

such systems. For more information, the reader is referred to With respect to spatial data, the same situation exists,
namely, tables are too simple to represent points or geometricRefs. 94 and 95.
objects in space. Queries like ‘‘find a shortest path from A to
B’’ are not easy to perform in RDBMSs. Algorithms to answer
such questions deterministically or approximately have beenQUERY PROCESSING AND OPTIMIZATION
proposed (99,100). In addition, query processing techniques
and indexing structures for spatial joins have also been devel-A large portion of statistical data is either spatial or temporal

data. Traditional relational DBMSs are not designed to deal oped by many researchers, e.g., Gunther (101) and Faloutsos
et al. (102). Aref et al. (103) proposed several optimizationwith such types of data. The pure tables of relational data-

bases are not capable of efficiently storing or helping retriev- strategies for spatial queries.
To summarize, statistical data and the queries on theming such data. For example, with temporal data, a natural

query would be to compute aggregates or moving averages have special characteristics, which are different from busi-
ness data, and which require more complicated data struc-and joins along the time dimension. With spatial data, the

query users want to ask would be to get the average over tures, database operations, and query processing techniques.
Most research on this topic has focused on some particularsome neighborhood around a given point. Standard tech-

niques are not good enough for such queries. Of course, the aspects of the problem, and thus the area is still quite open
for research.issues involve not only the query processing techniques them-

selves, but also the query language and the physical storage
structure of choice. In this section, we survey some query pro-
cessing and optimization techniques that have been designed SAMPLING AND ITS ROLE IN STATISTICAL DATABASES
specially for temporal and spatial data.

The query processing and optimization techniques for rela- Obtaining information, whether from a database or the real
world, requires time and effort. In many cases, we do not needtional databases have been well studied for a long time and

are described in most of the basic database texts. The algo- the exact answers to our questions. In fact, in some cases
even the concept of an exact answer may be undefined. Forrithms typically reorder the operations to be performed (join,

select, group, etc.), build the optimal or suboptimal query pro- example, the quantity ‘‘number of hamburgers sold by Mc-
Donald’s on December 5, 1997’’ may seem well defined, untilcessing tree, and then, depending on the physical data storage

structures, choose the best possible strategy to query the we try to actually compute it. If we consider only the sales of
McDonald’s in a single time zone, then the calculation maydata. Basically, the most expensive operation is the join oper-

ation and the principal focus has been on optimizing the join be possible, but what if we cross time zones, especially as we
consider the world-wide sales of McDonald’s. Similarly, whatoperation.

With respect to temporal data, most queries are asked exactly is meant by a ‘‘hamburger’’? Do we include chicken
burgers and fish filet sandwiches, and do we include muttonalong the time dimension. Usually, additional operators are

needed, such as ‘‘overlaps,’’ ‘‘starts,’’ ‘‘equal,’’ ‘‘during,’’ and burgers popular in south-east Asia? However, answers to
such questions are routinely required by the McDonald’s cor-‘‘finishes.’’ Moreover, a traditional type of query can be issued

based on some constraints on time, for example, join on a par- poration. In this case, an approximate answer or an estimate
with a high degree of confidence is usually sufficient. Sinceticular attribute where the join values are equal at the same

time. For that reason, many new operations have been pro- estimates with high degrees of accuracy can be computed
from samples of data, rather than scanning the entire dataposed on temporal data. We introduce a few of them here.

‘‘Temporal theta join’’ is made up of the conjunction of two set, this approach can lead to a few orders of magnitude of
savings in computational costs, at the expense of little or nosets of predicates, the time join predicate and the non-time

join predicate. In ‘‘TE-join,’’ or ‘‘Temporal Equijoin,’’ two loss of accuracy.
For large administrative, marketing, forecasting, and sci-tuples (or rows) in two join relations (tables) are joined if their

time intervals intersect. Intuitively, this is like ‘‘join them if entific databases, retrieval costs can be significant. For exam-
ple, social security and tax record databases contain tens tothey exist at the same time’’. A ‘‘T-join’’ causes the concatena-

tion of tuples from the operand relations only if their time hundreds of millions of records. High energy physics datasets
often contain hundreds of gigabytes of data. Even if retrievalintervals intersect. No predicate on non-time attributes is

specified. Semantically, T-join is just a TE-join with a null costs were negligible, sampling would still be important in
order to reduce sample post-processing costs. Some of thesepredicate on the non-time attributes. ‘‘Time Union Join’’ is

characterized by a union operation on the time intervals. An costs may arise from extensive computation on each record
(93). Finally, even if computing were free, sampling would‘‘Event-join’’ groups several temporal attributes of an entity

into a single relation. A good treatment on temporal join oper- still be important for those applications which require physi-
cal inspection of the real world objects which correspond toation can be found in Ref. 25.

After new operators have been specified, there must be the sampled database records. Examples include sampling to
audit financial databases (104,105), inspection of componentsnew strategies to process the temporal queries in an efficient

way. The factors affecting processing optimization are physi- for quality control (106,107), and medical examination of sam-
pled patient data for epidemiological studies.cal data organization, indexing methods, metadata, architec-

ture of the query processor, and how good the estimation of Random sampling (108) is typically used to support statis-
tical analysis of a dataset, either to estimate parameters ofselectivities is. Query execution strategies for ‘‘TE-join’’ are

given in Ref. 96, and for ‘‘Event join’’ in Ref. 97. Cliff Leung interest (109,110) or for hypothesis testing. Applications in-
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A jeweler not only sells gems but also handles for his customersclude control systems, scientific investigations, product qual-
the jewels he has sold to them. In addition, to repair and service,ity control, and policy analyses. Note that the accuracy of esti-
the jeweler must sometimes keep his customers’ jewels in his safe,mates from sampling is typically a function of the size of the
especially if these are regular and important customers. He knowssample, with little dependence on the population size. Hence,
that the safety of the jewels is only as good as the safety of thesampling is most advantageous when done from large data- safe. To this end he must have well-made safes with elaborate

bases. protection mechanisms and combinations. Quite often he has to
Given that answering queries from a data sample is often transport the jewels from one place to another. In this situation,

much better than from the entire database, the next question he must devise a secure procedure for transportation. Although
is how to create a sample in the most cost-effective manner. safe may be included in the transportation, there is still a need

for special vehicles, e.g. armored cars, to carry the safes. Further-The traditional approach in statistical analysis has been to
more, he must take great precautions when the jewels are moveduse a library function to do sampling from a data set, either
from one vehicle to another. The security problem is compoundedin a file or from a database. In either case, the entire data set
when one day the jeweler realizes that in an effort to safeguardmust be read at least once. Recent research efforts (93,111)
the jewels, he has to keep them hidden, thereby interfering withhave shown that building sampling functionality into a data- one of the most important objectives of jewels, namely their dis-

base management system, and hence performing it as close as play. He then ponders the question whether it is possible to simul-
possible to the data source, gives substantial computational taneously display jewels and ensure their security. He investi-
benefits. The efficiency gained arises from the reduction in gates the possibility of developing security mechanisms which are
the amount of data to be retrieved for sampling queries, and part of the jewels themselves, and hence fulfill both the objectives.
from exploiting the indices and access methods used in the
DBMS. Instead of completely processing a database query There is a straightforward analogy between jewels and
and then sampling the result, the sampling and query opera- data, and the jeweler and database administrator. In general,

all security controls for data are divided into two classes,tors can be interchanged, so that sampling is done prior to
namely external and internal. External methods include per-query processing. In a series of papers Olken and Rotem de-
sonnel security, building security, physical security, etc.: thatveloped this idea, showing how to do sampled querying for a
is, issues outside the computer system. Internal methods aresingle relational operator (112) sampling from B�-trees (111),
usually divided into four categories (118):and sampling from hash files (93).

Sampling can also be used to provide estimates of the an-
• Access controls regulate which users may enter the sys-swers to aggregate queries, in applications where such esti-

tem, and subsequently which data sets an active usermates are adequate, and where the cost in time or money to
may read or write,fully evaluate the query may be excessive. Morgenstein (113)

discusses the estimation procedures for various aggregate • Flow controls regulate the dissemination of values
queries such as count, with some initial description of the use among the data sets accessible to a user,
of sampling. Hou et al. (109) discussed the construction of sta- • Inference controls protect statistical databases by pre-
tistical estimators for arbitrary relational expressions for venting questioners from deducing confidential informa-
COUNT aggregates, and their use in real-time applications tion by posing carefully designed sequences of statistical
(110). Sampling may also be used to estimate database pa- queries and correlating the responses, and
rameters used by the query optimizer to choose query evalua- • Data encryption attempts to prevent unauthorized dis-
tion plans. Willard (114) discusses the determination of as- closure of confidential information in transit or storage
ymptotically optimal sample size for estimating the selectivity by encoding it.
of a selection query, while Srivastava et al. (25) showed how
to maintain these selectivities to specified degrees of accu- We now give an example to illustrate the difficult nature
racy. Lipton and Naughton (115) discuss the use of sampling of the problem of database inference.
to estimate the size of transitive closures. Denning (116) pro- Example: Consider a company’s database with employee
posed the use of sampling as a means of providing security information given in Table 1. This database operates under
for individual data, while permitting access to statistical ag- the policy that salaries of individuals are confidential infor-
gregates. mation, and should not be revealed. However, averages must

have returned since this is a statistical database. To achieve
this goal, the database does not return answers to queries

STATISTICAL DATABASE SECURITY like ‘‘what is the salary of the employee whose name is Jill?’’
Furthermore, it does not even answer aggregate queries

An important goal of statistical databases is to provide an- where it determines that the average is being computed over
swers to aggregate queries. However, at the same time it a single record. Hence, it refuses to answer a query like ‘‘what
must be ensured that sensitive information about individuals
is not leaked. The problem becomes especially hard if we con-
sider the fact that a series of aggregate queries, each of which
by itself does not reveal sensitive information, can be used to
infer sensitive information. This has been called the statisti-
cal database inference problem, and mechanisms to safeguard
against it are called inference control mechanisms.

The data security problem is quite complex, as is illus-
trated by the following example from Ref. 117:

Table 1. An Example Table of a Company’s Database

Name Gender Department Salary

John Male Mathematics 20,000
Todd Male Computer Science 30,000
Jane Female Mathematics 26,000
Jill Female Computer Science 32,000
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is the average salary of female employees who work for the help the statistically unsophisticated researcher arrive
at the right conclusion, and (d) a wish, from a statisticalComputer Science department?’’ Let the individual salaries of

the four employees be s1, s2, s3, and s4, respectively. As the expert, for a second opinion.
following sequence of queries shows, it is rather straightfor-
ward to determine each individual’s salary.

CONCLUSION
• What is the average salary of female employees? � re-

The number of applications that collect vast amounts of data,turns 29,000 � (s3 � s4)/2
and require interactive real-time analysis capabilities on it, is• What is the average salary of male employees? � returns
on the rise. A large part of these analyses are the computation25,000 � (s1 � s2)/2
of statistical parameters from the data set. In this environ-

• What is the average salary of mathematics employees?
ment, the standard approach of statistical analysis to load

� returns 23,000 � (s1 � s3)/2 part of the data from a file or database into a statistical pack-
• What is the average salary of computer science employ- age, and then perform analysis on it will not work due to effi-

ees? � returns 31,000 � (s2 � s4)/2 ciency and flexibility reasons. The overall goal of research in
statistical database management has been to make this anal-

From the four equations above, each of s1, s2, s3, and s4 can ysis an integral part of the data management system itself.
be calculated. The focus of the research community has been on developing

For a good treatment of issues in statistical database secu- techniques to make this happen. In this article we have pro-
rity, the reader is referred to Refs. 119–127. vided a brief overview of the issues in statistical database

management, and encourage the interested reader to follow
OTHER ISSUES up details from the references. The edited collection of papers

by Michalewicz (25) is a very good starting point for this ex-
In addition to the principal technical areas discussed pre- ploration.
viously, the statistical database research community has ex-
plored a number of other issues as well, including data visual-
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