
388 RELATIONAL DATABASES

hierarchical or network models, according to which data are
manipulated on a record-by-record basis. As a consequence,
data manipulation languages for relational databases are set-
oriented and so, fall into the category of declarative lan-
guages, in which there is no need of control structures, such
as conditional or iterative statements. On the other hand, be-
cause relationships are a well-known mathematical concept,
the relational model stimulated a lot of theoretical research,
which led to successful implementations. As an example of a
relational database, Fig. 1 shows the two tables, called EMP
and DEPT, of a sample database for a business application.

The main results obtained so far are summarized as
follows:

1. The expressional power of relational data manipulation
languages is almost that of first-order logic without
functional symbols. Moreover, relational languages
have large capabilities of optimization. This point is of
particular importance, because it guarantees that data
are efficiently retrieved, independently of the way the
query is issued by the user.

2. Integrity constraints, whose role is to account for prop-
erties of data are considered within the model. The most
important and familiar are the functional dependencies.
Research on this topic led to theoretical criteria for
what is meant by a ‘‘good’’ conceptual data organization
for a given application.

3. A theory of concurrency control and transaction man-
agement has been proposed to account for the dynamic
aspects of data manipulation with integrity constraints.
Research in this area led to actual methods and algo-RELATIONAL DATABASES rithms which guarantees that, in the presence of multi-
ple updates in a multiuser environment, the modified

Managing a large amount of persistent data with computers database still satisfies the integrity constraints imposed
requires storing and retrieving these data in files. However, on it.
it was found in the early 1960s that files are not sufficient for
the design and use of more and more sophisticated applica-

These fundamental aspects led to actual relational systemstions. As a consequence, database systems have become a
that rapidly acquired their position in the software marketvery important tool for many applications over the past 30
and still continue to do so today. Relational DBMSs are cur-years. Database management systems (DBMSs) aim to pro-
rently the key piece of software in most business applicationsvide users with an efficient tool for good modeling and for
running on various types of computers, ranging from main-easy and efficient manipulation of data. It is important to
frame systems to personal computers (PCs). Among the rela-note that concurrency control, data confidentiality, and recov-
tional systems available on the marketplace, we mention DB2ery from failure are also important services a DBMS should
(IBM), INGRES (developed at the University of California,offer. The very first DBMSs, known as hierarchical and then
Berkeley), and ORACLE (Oracle Corp.), all of which imple-network systems, were based on a hierarchical and then net-
ment the relational model of databases together with tools forwork-like conceptual data organization, which actually re-
developing applications.flects the physical organization of the underlying files. Thus,

these systems do not distinguish clearly between the physical
and the conceptual levels of data organization. Therefore,
these systems, although efficient, have some important draw-
backs, among which we mention data redundancies (which
should be avoided) and a procedural way of data manipula-
tion, which is considered not easy enough to use.

The relational model, proposed by Codd in 1970 (1), avoids
the drawbacks mentioned previously by distinguishing explic-
itly between the physical and conceptual levels of data organi-
zation. This basic property of the relational model is a conse-
quence of the fact that, in this model, users see the data as
tables and do not have to be aware how these tables are phys-

EMP empno ename sal deptno

123 john 23,000 1
234 julia 50,000 1
345 peter 7,500 2
456 laura 12,000 2
567 paul 8,000 1

DEPT deptno dname mgr

1 sales 234
2 staff 345

ically stored. The tables of a relational database are accessed
and manipulated as a whole, contrary to languages based on Figure 1. A sample relational database D.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



RELATIONAL DATABASES 389

In the remainder of this article, we focus on the theory of clarative counterpart of relational algebra, seen as a proce-
dural language.the relational model and on basic aspects of dependency the-

ory. Then, we deal with problems related to updates and The six fundamental operations of relational algebra are
union, difference, projection, selection, join, and renamingtransaction management, and we briefly describe the struc-

ture of relational systems and the associated reference lan- (note that replacing the join operation by the cartesian-prod-
uct is another popular choice discussed in Refs. 2 and 3). Theguage called SQL. We conclude with a brief discussion on

extensions of the relational model currently under investi- formal definitions of these operations are as follows: Let r and
s be two relations over relation schemes R and S, respec-gation.
tively. Then

THEORETICAL BACKGROUND OF RELATIONAL DATABASES 1. Union. If R � S then r � s is a relation defined over R,
such that r � s � �t � t � r or t � s�. Otherwise r � s is

The theory of the relational model of databases is based on undefined.
relationships. Although relationships are well known in 2. Difference. If R � S then r � s is a relation defined over
mathematics, their use in the field of databases requires R, such that r � s � �t � t � r and t � s�. Otherwise r �
definitions that slightly differ from those usual in mathemat- s is undefined.
ics. Based on these definitions, basic operations on relation-

3. Projection. Let Y be a relation scheme. If Y � R, thenships constitute relational algebra, which is closely related to
�Y(r) is a relation defined over Y, such that �Y(r) �first-order logic. Indeed, relational algebra has the same ex-
�t � �� � r such that u.Y � t�. Otherwise �Y(r) is unde-pressional power as a first-order logic language, called rela-
fined.tional calculus, and this relationship constitutes the basis of

4. Selection of r with respect to a condition C: �c(r) is athe definition of actual data manipulation languages, among
relation defined over R, such that �c(r) ) � �t � t � r andwhich the language called SQL is now the reference.
t satisfies C�. Selection conditions are either atomic con-
ditions or conditions obtained by combination of atomicBasic Definitions and Notations
conditions, using the logical connectives � (or), � (and),

The formal definition of relational databases starts with a fi- or ¬ (not). An atomic condition is an expression of the
nite set, called the universe, whose elements are called attri- form A � A� or A � a where A and A� are attributes in
butes. If U denotes a universe, each attribute A of U is associ- R whose domains are ‘‘compatible’’ [i.e., it makes sense
ated with a nonempty and possibly infinite set of value (or to compare a value in dom(A) with a value in dom(A�)],
constants), called the domain of A and denoted by dom(A). a is a constant in dom(A), and � is an operator of com-
Every nonempty subset of U is called a relation scheme and parison, such as �, �, �, � or �.
is denoted by the juxtaposition of its elements. For example, 5. Join. r ���� s is a relation defined over R � S, such that
in the database of Fig. 1, the universe U contains the attri- r ���� s � �t � t.R � r and t.S � s�.
butes empno, ename, sal, deptno, dname and mgr standing 6. Renaming. If A is an attribute in R and B is an attri-
respectively for: numbers, names and salaries of employees, bute not in R, such that dom(A) � dom(B), then �B�A(r)
numbers, names of departments, and numbers of managers. is a relation defined over (R � �A�) � �B� whose tuples
Moreover, we consider here that empno, deptno, and mgr have are the same as those in r.
the same domain, namely the set of all positive integers,
whereas the domain of the attributes ename and dname is the For example, in the database of Fig. 1, the following ex-
set of strings of alphabetic characters of length at most 10. pression computes the numbers and names of all departments

Given a relationship scheme R, a tuple t over R is a map- having an employee whose salary is less than 10,000:
ping from R to the union of the domains of the attributes in
R, so that, for every attribute A in R, t(A) is an element of E : πdeptno dname[σsal<10,000(EMP �� DEPT)].
dom(A). Moreover, if R� is a nonempty subset of R the restric-
tion of t to R�, being the restriction of a mapping, is also a Figure 2 shows the steps for evaluating this expression
tuple, denoted by t.R�. As a notational convenience, tuples are against the database of Fig. 1. As an example of using renam-
denoted by the juxtaposition of their values, assuming that ing, the following expression computes the numbers of em-
the order in which values are written corresponds to the order ployees working in at least two different departments:
in which attributes in R are considered.

Given a universe U and a relation scheme R, a relation
over R a is a finite set of tuples over R, and a database over U

E1 : πempno
[
σdeptno �=dnumber(EMP)

�� ρdnumber←deptno[πdeptno empno(EMP)]
]
.

is a set of relations over relations schemes obtained from U.

The operations introduced previously enjoy properties, such
Relational Algebra as commutativity, associativity, and distributivity [see (3) for

full details]. The properties of the relational operators allowFrom a theoretical point of view, querying a database consists
for syntactic transformations according to which the same re-of computing a relation (which in practice is displayed as the
sult is obtained, but through a more efficient computation.answer to the query) based on the relation in the database.
For instance, instead of evaluating the previous expressionThe relation to be computed can be expressed in two different
E, it is more efficient to consider the following expression:languages: relational algebra, which explicitly manipulates

relation, and relational calculus, which is based on first-
order logic. Roughly speaking, relational calculus is the de- E′ : πdeptno dname[σsal<10,000(EMP) �� πdeptno dname(DEPT)].



390 RELATIONAL DATABASES

Figure 2. The intermediate relations in the computation of expres-
sion E applied to the database D of Fig. 1. (a) the computation of
the join; (b) the computation of the selection; and (c) the computa-
tion of the projection.

(a) EMP ���� DEPT empno ename sal deptno dname mgr

123 john 23,000 1 sales 234
234 julia 50,000 1 sales 234
345 peter 7,500 2 staff 345
456 laura 12,000 2 staff 345
578 paul 8,000 1 sales 234

(b) �sal�10,000 (EMP ���� DEPT) empno ename sal deptno dname mgr

345 peter 7,500 2 staff 345
578 paul 8,000 1 sales 234

(c) �deptno dname[�sal�10,000 (EMP ���� DEPT)] deptno dname

2 staff
1 sales

Indeed, the intermediate relations computed for this expres- main elements, in which case the language is called do-
main calculus.sion are ‘‘smaller’’ than those of Fig. 2 in the number of rows

and the number of columns.
Such a transformation is known as query optimization. To One should notice that no function symbols are considered

optimize an expression of relational algebra, the expression is in relational calculus. Based on such an alphabet, formulas of
represented as a tree in which the internal nodes are labeled interest are built up as usual in logic, but with some syntactic
by operators and the leaves are labeled by the names of the restrictions explained later. Now we recall that without loss
relations of the database. Optimizing an expression consists of generality, a well-formed formula has the form � �
of applying properties of relational operators to transform the (Q1)(Q2) . . . (Qk)[�(x1, x2, . . ., xk, y1, y2, . . ., y1)] where x1,
associated tree into another tree for which the evaluation is x2, . . ., xk, y1, y2, . . ., y1 are the only variable symbols oc-
more efficient. For instance, one of the most frequent trans- curring in �, where (Qi) stands for (�xi) or (�xi) and where �
formations consists of pushing down selections in the tree to is a quantifier-free formula built up from connectives and
reduce the number of rows of intermediate relationships. We atomic formulas (atomic formulas have the form r(t1, t2, . . .,
refer to (2) for a complete discussion of query optimization tn) where r is an n-ary predicate symbol and tj is either a vari-
techniques and for any topic related to databases. Although able or a constant symbol). Moreover, in the formula �, the
efficient in practice, query optimization techniques are not op- variables xi are bound (or quantified) and the variables yj are
timal, because, as Kanellakis notices (4), the problem of decid- free (or not quantified). See (5) for full details on this topic.
ing whether two expressions of relational algebra always In the formalism of tuple calculus, the relational expres-
yield the same result is impossible to solve. sion E is written as

Relational Calculus

The existence of different ways of expressing a given query in
relational algebra stresses the fact that, as mentioned pre-

{z|(∃x)(∃y)(EMP(x) ∧ DEPT(y) ∧ y.deptno=z.deptno

∧ y.dname=z.dname

∧ x.deptno=y.deptno ∧ x.sal < 10,000)}
viously, it is a procedural language. Fortunately, relational
algebra has a declarative counterpart, relational calculus. One should note that, in this formula, variables stand for
This comes from the observation that, if r is a relation defined tuples, whose components are denoted as restrictions in rela-
over a relation scheme R containing n distinct attributes, tional algebra. Considering domain calculus, the previous for-
then membership of a given tuple t in r is equivalently ex- mula is written as follows:
pressed by first-order formalism if we regard r as an n-ary
predicate, and t as an n-ary vector of constants and if we state
that the atomic formula r(t) is true. More formally, the corre-

{z1z2|(∃x1)(∃x2)(∃x3)(∃y1)(EMP(x1, x2, x3, z1)

∧ DEPT(z1, z2, y1) ∧ x3 < 10,000)}
spondence between relational algebra and calculus is as fol-
lows: Given a database D � �r1, r2, . . ., rn� over a universe U where z1 and z2 are free variables ranging, respectively, over
and with schema �R1, R2, . . ., Rn�, we consider a first-order all possible numbers and names of departments.
alphabet with the usual connectives (�, �, ¬) and quantifiers The satisfaction of a formula � in a database D is defined
(�, �) where in a standard way, as in first-order logic. In the context of

databases, however, some well-formed formulas must be dis-
1. the set of constant symbols is the union of all domains carded because relations are assumed to be finite, and thus,

of the attributes in U: so must be the set of tuples satisfying a given formula in a
2. the set of predicate symbols is �r1, r2, . . ., rn�, where database. For instance, the domain calculus formula

each ri is a predicate symbol whose arity is the cardinal- (�x)[¬r(x, y)] must be discarded, because in any database, the
ity of Ri; and set of constants a satisfying the formula ¬r(x0, a) for some

appropriate x0 may be infinite (remember that domains may3. the variable symbols may range over tuples, in which
case the language is called tuple calculus, or over do- be infinite). The notion of safeness is based on what is called



RELATIONAL DATABASES 391

the domain of a formula �, denoted by DOM(�). DOM(�) is computational point of view. An axiomatization of this prob-
lem, proposed in (7), consists of the following rules, where X,defined as the set of all constant symbols occurring in �, to-

gether with all constant symbols of tuples in relations oc- Y, and Z are relation schemes:
curring in � as predicate symbols. Hence, DOM(�) is a finite
set of constants and � is called safe if all tuples satisfying it 1. Y � X ⇒ X � Y
in D contain only constants of DOM(�). To illustrate the no- 2. X � Y ⇒ XZ � YZ
tion of safeness, again consider the formula � � (�x)[¬r(x,

3. X � Y, Y � Z ⇒ X � Zy)]. Here DOM(�) � �� � � occurs in a tuple of r�, and so, �
may be satisfied in D by values � not in DOM(�). Therefore,

A derivation using these axioms is defined as follows: F de-� is a nonsafe formula. On the other hand, the formula �� �
rives X � Y if either X � Y is in F or X � Y can be generated(�x)[¬r(x, y) � s(x, y)] is safe, because every � satisfying �� in
from F using repeatedly the axioms above. Then, the sound-D occurs in DOM(��).
ness and completeness of these axioms is expressed as fol-It is important to note that tuple and domain calculus are
lows: F implies X � Y if and only if F derives X � Y, thusequivalent languages that have resulted in the emergence of
providing an effective way for solving the implication problemactual languages for relational systems. A formal proof of the
in this case.equivalence between relational calculus and relational alge-

An important aspect of functional dependencies is thatbra was given by Codd in Ref. 6.
they allow for the definition of normal forms which character-
ize suitable database schemas. Normal forms are based on

DATA DEPENDENCIES the notion of key defined as follows: if R is a relation scheme
with functional dependencies F, then K is a key of (R, F) if K

The theory of data dependencies has been motivated by prob- is a minimal relation scheme with respect to set inclusion
lems of particular practical importance, because in all appli- such that F implies (or derives) K � R. Four normal forms
cations, data stored in a database must be restricted so as to can be defined, among which we mention here only three of
satisfy some required properties or constraints. For instance, them:
in the database of Fig. 1, two such properties could be (1)
two departments with distinct names cannot have the same 1. The first normal form (INF) stipulates that attributes
number and (2) a department has only one manager, so that are atomic in the relational model. This is implicit in
the relation DEPT cannot contain two distinct tuples with the the definitions of relational databases but restricts the
same deptno value. Investigations on constraints in databases range of applications that can easily been taken into
have been carried out in the context of the relational model account. This explains, in particular, the emergence of
in order to provide sound methods for the design of database object-oriented models of databases.
schemas. The impact of constraints on schema design is ex- 2. The third normal form (3NF) stipulates that attributes
emplified through properties (1) and (2). Indeed, assume that participating in no keys depend fully and exclusively on
the database consists of only one relation defined over the full keys. The formal definition is as follows: (R, F) is in 3NF
universe. Then clearly, information about a given department if, for every derived dependency X � A from F, such
is stored as many times as the number of its employees, that A is an attribute not in X and appearing in no keys
which is redundant. This problem has been solved by the in- of (R, F), X contains a key of (R, F).
troducing normal forms in the case of particular dependencies

3. The Boyce–Codd normal form (BCNF), is defined as thecalled functional dependencies. On the other hand, another
previous form, except that the attribute A may now ap-problem that arises in the context of our example is the fol-
pear in a key of (R, F). Thus, the formal definition islowing: assuming that a database D satisfies the constraints
the following: (R, F) is in BCNF if, for every derived(1) and (2), does D satisfy other constraints? Clearly, this
dependency X � A from F, such that A is an attributeproblem, called the implication problem, has to be solved to
not in X, X contains a key of (R, F).make sure that all constraints are considered at the design

phase just mentioned. Again, the implication problem has
It turns out that every scheme (R, F) in BCNF is in 3NF,been solved in the context of functional dependencies. In what

whereas the contrary is false in general. Moreover, 3NF andfollows, we focus on functional dependencies, and then, we
BCNF characterize those schemes recognized as suitable inoutline other kinds of dependencies that have also been the
practice. If a scheme (R, F) is neither 3NF nor BCNF, then itsubject of research.
is always possible to decompose (R, F) into subschemes that
are at least 3NF. More precisely, by schema decomposition,The Theory of Functional Dependencies
we mean the replacement of (R, F) by schemes (R1, F1), (R2,

Let r be a relation over a relation scheme R, and let X and Y F2), . . ., (Rk, Fk), where
be two subschemes of R. The functional dependency from X to
Y, denoted by X � Y, is satisfied by r if, for all tuples t and 1. each Ri is a subset of R and R in the union of the Ris;
t� in r, the following holds: t.X � t�.X ⇒ t.Y � t�.Y. Then,

2. each Fi is the set of all dependencies X � Y derivablegiven a set F of functional dependencies and a dependency
from F, such that XY � Ri; andX � Y, F implies X � Y if every relation satisfying the de-

3. each (Ri, Fi) is in 3NF or in BCNF.pendencies in F also satisfies the dependency X � Y. For in-
stance, for R � (A, B, C) and F � (A � B, AB � C), it can be
seen that F implies A � C. However, this definition of the Furthermore, this replacement must ensure that data and de-

pendencies are preserved in the following sense:implication of functional dependencies is not effective from a



392 RELATIONAL DATABASES

1. Data preservation: starting with a relation r which sat- DATABASE UPDATES
isfies F, the relations ri are the projections of r over Ri,
and their join must be equal to r. Although updates are an important issue in databases, this

area has received less attention from the research community2. Dependency preservation: the set F and the union of the
than the topics just addressed. Roughly speaking, updates aresets Fi must derive exactly the same functional depend-
basic insert, delete, or modify operations defined on relationsencies.
seen as physical structures, and no theoretical background
similar to that discussed for queries is available for updates.

In the context of functional dependencies, data preserva- As a consequence, no declarative way of considering updates
tion is characterized as follows, in the case where k � 2: the has been proposed so far, although there is much effort in this
decomposition of (R, F) into (R1, F1), (R2, F2) preserves the direction. Actually, current relational systems handle sophis-
data if F derives at least one of the two functional dependen- ticated updates procedurally, based on the notion of transac-
cies R1 � R2 � R1 or R1 � R2 � R2. If k is greater than 2, then tions, which are programs containing update statements. An
the previous result can be generalized, using properties of the important point is that, to maintain data consistency, these
join operator. Unfortunately, no such easy to check property programs must be considered as units, in the sense that ei-
is known for dependency preservation. What has to be done ther all or none of their statements are executed. For in-
in practice is to make sure that every dependency of F can be stance, if a failure occurs during the execution of a transac-
derived from the union of the Fis. tion, all updates performed before the failure must be undone

It has been shown that it is always possible to decompose before rerunning the whole program. In what follows, we first
a scheme (U, F) so that data and dependencies are preserved discuss the relationship between updates and data dependen-
and the schemes (Ri, Fi) are all at least in 3NF. But it should cies, and then, we give a short introduction to transaction exe-
be noticed that BCNF is not guaranteed when decomposing a cution.
relation scheme. Two kinds of algorithms have been imple-
mented for schema decomposition: the synthesis algorithms Updates and Data Dependencies
(which generate the schemes based on a canonical form of the

There are two main ways to maintain the database consistentdependencies of F) and the decomposition algorithms (which
with respect to constraints in the presence of updates: (1) re-repeatedly split the universe U into two subschemes). Synthe-
ject all updates contradicting a constraint; (2) take appro-

sis algorithms ensure data and dependency preservation to-
priate actions to restore consistency with respect to con-

gether with schemes in 3NF (at least), whereas decomposition straints. To illustrate these two ways of treating updates, let
algorithms ensure data preservation together with schemes us consider again the database of Fig. 1 and let us assume
in BCNF, but at the cost of a possible loss of dependencies. that the relation DEPT must satisfy the functional depen-

dency deptno � dname mgr. According to (1) previous, the
More on Data Dependencies insertion in DEPT of the tuple 1 toy 456 is rejected, whereas

it is accepted according to (2) previous, if, in addition, theDependencies other than functional dependencies have been
tuple 1 sales 234 is removed from DEPT. Actually, it turnswidely studied in the past. In particular, multivalued depend-
out that (1) gives priority to ‘‘old’’ knowledge over ‘‘new’’encies and their interaction with functional dependencies
knowledge, whereas (2) does the opposite. Clearly, updatinghave motivated much research. The intuitive idea behind
a database according to (1) or (2) depends on the application.multivalued dependencies is that, in a relation over R, a value
In practice, policy (1) is implemented as such for keys and

over X is associated with a set of values over Y, and is inde- policy (2) is specified by transactions.
pendent of the values over R � XY. An example of multival- Before we come to problems related to transaction execu-
ued dependencies is the following: assume that we have R � tion, we would like to mention that an important and emerg-
�empno, childname, car�, to store the names of the children ing issue related to policy (2) is that of active rules. This new
and the cars of employees. Clearly, every empno value is asso- concept is considered the declarative counterpart of transac-
ciated with a fixed set of names (of children), independent tions, and thus, is meant as an efficient tool to specify how
of the associated car values. Multivalued dependencies and the database should react to updates, or, more generally, to
functional dependencies have been axiomatized soundly and events.
completely, which has led to an additional normal form, called Active rules are rules of the form: on �event� if �condition�
the fourth normal form, and defined similarly to BCNF. then �action�, and provide a declarative formalism for ensur-

Other dependencies of practical interest which have been ing that data dependencies remain satisfied in the presence
studied are inclusion dependencies. For example, in the data- of updates. For example, if we consider the database of Fig. 1
base of Fig. 1, we may like to state that every manager is an and the inclusion dependency �mgr(DEPT) � �empno(EMP), the
employee, which is expressed as follows: �mgr(DEPT) � insertion of a new department respects this constraint if we
�empo(EMP). In general, an inclusion dependency is �X(r) � consider the following active rule:
�Y(s) where r and s are relations of the database and where X
and Y are relation schemes, such that the projections and the on insert(n, d, m) into DEPT
inclusion are defined. Although it has been shown that the if m � �empno(EMP)
implication problem for inclusion dependencies in the pres- then call insert_EMP(m, d)
ence of functional dependencies is not decidable [see (2)], a
restricted case of practical significance is decidable in polyno- where insert_EMP is an interactive program asking for a
mial time: the restriction is roughly that the relations in in- name and a salary for the new manager, so that the corre-

sponding tuple can be inserted in the relation EMP.clusion dependencies are all unary.



RELATIONAL DATABASES 393

Another important feature of active rules is their ability to write operations operating on the tuples of the database. The
express dynamic dependencies. The particularity of dynamic operation read(t) indicates that t is retrieved from the second-
dependencies is that they refer to more than one database ary memory and entered in the main memory, whereas the
state (as opposed to static dependencies that refer to only one operation write(t) does the opposite: the current value of t in
database state). A typical dynamic dependency, in the context the main memory is saved in the secondary memory, and thus
of the database of Fig. 1, is to state that salaries must never survives execution of the transaction. Moreover, two addi-
decrease, which corresponds to the following active rule: tional operations are considered, modeling, respectively, suc-

cessful or failed executions: the commit operation (which indi-
on update_sal(ne, new-sal) in EMP cates that changes in data must be preserved), and the abort

operation (which indicates that changes in data performed byif new-sal � �sal(�empno�ne(EMP))
the transaction must be undone, so that the aborted transac-then set sal � new-sal where empno � ne
tion is simply ignored). For example, call the first tuple of the
relationship EMP of Fig. 1, and assume that two transactionswhere update_sal is the update meant to assign the salary of
T1 and T2 increase John’s salary of 500 and 1,000, respec-the employee number ne to the value new-sal and where the
tively. In the read-write model, both T1 and T2 have the form:set instruction actually performs the modification.
read(t) ; write(t�) ; commit, where t�.sal � t.sal � 500 for T1Although active rules are an elegant and powerful way to
and where t�.sal � t.sal � 1,000 for T2.specify various dynamic aspects of databases, they raise im-

Based on these operations, many criteria for correctness ofportant questions concerning their execution. Indeed, as the
transaction execution have been proposed. We shall restrictexecution of an active rule fires other active rules in its action,
ourselves to the most common, known as serializability ofthe main problem is to decide how these rules are fired. Three
schedules. A schedule is a sequence of interleaved operationsmain execution modes have been proposed so far in the litera-
originating from various transactions, and a schedule built upture: the immediate mode, the deferred mode, and the concur-
from transactions T1, T2, . . ., Tk is said to be serializable ifrent mode. According to the immediate mode, the rule is fired
its execution leaves the database in the same state as theas soon as its event occurs while the condition is true (this is
sequential execution of transactions Ti’s, in some order wouldthe first case of our previous example). According to the de-

ferred mode, the actions are executed only after the last event do. In the previous example, let us consider the following
occurs and the last condition is evaluated (this corresponds to schedule:
the second case of our previous example). In the concurrent
mode, no policy of action execution is considered, but a sepa- read1(t) ; read2(t) ; write1(t1) ; commit1 ; write2(t2) ; commit2rate process is spawned for each action and is executed con-
currently with other processes. It should be clear that execut-

where the subscripts correspond to the transaction where theing the same active rules according to each of these modes
instructions occur. This schedule is not serializable, becausegenerally gives different results and the choice of one mode
in execution corresponds neither to T1 followed by T2 nor toover the others depends heavily on the application. This is
T2 followed by T1. Indeed, transactions T1 and T2 both readwhy, in most prototypes implementing active rules, the choice
the initial value of t and the effects of T1 on tuple t are lost,of the execution mode is left to the user.
as T2 commits its changes after T1.

To characterize serializable schedules, one can design exe-Transaction Management
cution protocols. Here again many techniques have been in-

Contrary to what has been discussed before, the problem of troduced, and we focus on the most frequent of them in actual
transaction management concerns the physical level of systems, known as the two-phase locking protocol. The system
DBMSs and not the conceptual level. Although transaction associates every read or write operation on the same object to
execution is independent of the conceptual model of databases

a lock, respectively, a read-lock or a write-lock, and once abeing used (relational or not), this research area has been in-
lock is granted for a transaction, other transactions cannotvestigated in the context of relational databases. The problem
access the corresponding object. Additionally, no lock can beis that, in a multiuser environment, several transactions may
granted to a transaction that has already released a lock. Ithave to access the same data simultaneously, and then, in
is easy to see that, in the previous example, such a protocolthis case the execution of these transactions may leave the
prevents the execution of the schedule we considered, be-database inconsistent whereas each transaction executed
cause T2 cannot read t unless T1 has released its write-lock.alone leaves the database in a consistent state (an example of

Although efficient and easy to implement, this protocol hassuch a situation will be given shortly). Additionally, modifi-
its shortcomings. For example, it is not free of deadlocks, thatcations of data performed by transactions must survive possi-
is, the execution may never terminate because two transac-ble hardware or software failures.
tions are waiting for the same lock at the same time. For in-To cope with these difficulties, the following two problems
stance, transaction T1 may ask for a lock on object o1, cur-have to be considered: (1) the concurrency control problem
rently owned by transaction T2 which in turn asks for a lock(that is, how to provide synchronization mechanisms which
on object o2, currently owned by transaction T1. In such a situ-allow for efficient and correct access of multiple transactions
ation, the only way to restart execution is to abort one of thein a shared database) and (2) the recovery problem (that is,
two transactions. Detecting deadlocks is performed by the de-how to provide mechanisms that react to failures in an auto-
tection of cycles in a graph whose nodes are the transactionsmated way). To achieve these goals, the most prominent com-
in the schedule and in which an edge from transaction T toputational model for transactions is known as the read-write

model, which considers transactions as sequences of read and transaction T� means that T is waiting for a lock owned by T�.



394 RELATIONAL DATABASES

RELATIONAL DATABASE SYSTEMS AND SQL QUEL (implemented in the system INGRES) is based on
tuple calculus. These languages are described in Ref. 2. We

In this section, we describe the general architecture of rela- focus here on language SQL which is now implemented in all
relational systems.tional DBMS, and we give an overview of the language SQL

which has become a reference for relational systems. SQL is based on domain calculus but also refers to the
tuple calculus in some of its aspects. The basic structure of a

The Architecture of Relational Systems SQL query expression is the following:

According to a proposal by the ANSI/SPARC normalization
SELECT �list of attributes�group in 1975, every database system is structured in three
FROM �list of relations�main levels:
WHERE �condition�

1. the internal (or physical) level which is concerned with
the actual storage of data and by the management of which roughly corresponds to a relational expression con-
transactions; taining projections, selections, and joins. For example, in the

2. the conceptual level which allows describing a given ap- database of Fig. 1, the query E is expressed in SQL as follows:
plication in terms of the DBMS used, that is, in terms
of relations in the case of a relational DBMS; and SELECT EMP.deptno, dname

3. the external level which is in charge of taking user’s re- FROM EMP, DEPT
quirements into account. WHERE sal � 10,000 AND EMP.deptno � DEPT.deptno

Based on this three-level general architecture, all relational
We draw attention to the fact that the condition part re-DBMSs are structured according to the same general schema

flects not only the selection condition from E, but also that, tothat is seen as two interfaces, the external interface and the
join tuples from the relationships EMP and DEPT, theirstorage interface.
deptno values must be equal. This last equality must be ex-The external interface, which is in charge of the communi-
plicit in SQL, whereas, in relational algebra, it is a conse-cation between user’s programs and the database, contains
quence of the definition of the join operator. We also note thatfive main modules: (1) precompilers allowing for the use of
terms such as EMP.deptno or DEPT.deptno can be seen asSQL statements in programs written in procedural languages
terms from tuple calculus, whereas terms such as deptno orsuch as C, PASCAL, or COBOL; (2) an interactive interface
dname, refer to domain calculus. In general, prefixing an at-for a real-time use of databases; (3) an analyzer which is in
tribute name to the corresponding relationship name is re-charge of the treatment of SQL statements issued either from
quired if this attribute occurs in more than one relationshipa user’s program or directly by a user via the interactive in-
in the FROM part of the query.terface; (4) an optimizer based on the techniques discussed

The algebraic renaming operator is implemented in SQL,previously; and (5) a catalog, where information about users
but concerns relations, rather than attributes as in relationaland about all databases that can be used, is stored. It is im-
algebra. For example, the algebraic expression E1 (which com-portant to note that this catalog, which is a basic component
putes the number of employees working in at least two dis-for the management of databases, is itself organized as a rela-
tinct departments) is written in SQL as follows:tional database, usually called the metadatabase, or data dic-

tionary.
SELECT EMP.empnoThe storage interface, which is in charge of the communi-
FROM EMP,EMP EMPLOYEEScations between database and the file management system,

also contains five main modules: (1) a journal, where all WHERE EMP.deptno��EMPLOYEES.deptno AND
transactions on the database are stored so that the system EMP.empno � EMPLOYEES.empno
restarts safely in case of failures; (2) the transaction manager
which generally works under the two-phase locking protocol Set theoretic operator’s union, intersection, and difference are
discussed previously; (3) the index manager (indexes are cre- expressed as such in SQL, by the keywords UNION, INTER-
ated to speed up the access to data); (4) the space disk man- SECT, and MINUS (or EXCEPT), respectively. Thus, it turns
ager which is charge of defining the actual location of data out that every expression of relational algebra can be written
on disks; and (5) the buffer manager which is in charge of as a SQL statement, and this basic result is known as the
transferring data between the main memory and the disk. completeness of the language SQL. An important point in this
The efficiency of this last module is crucial in practice because respect is that SQL expresses more queries than relational
accesses on disks are very long operations that must be opti- algebra as a consequence of introducing functions (whereas
mized. It is important to note that this general architecture is function symbols are not considered in relational calculus)
the basis for organizing relational system that also integrate and ‘‘grouping’’ instructions in SQL. First, since relations are
network and distributed aspects in a client-server configura- restricted to the first normal form, it is impossible to consider
tion or distributed database systems. structured attributes, such as dates or strings. SQL over-

comes this problem by providing usual functions for manipu-
An Overview of SQL

lating dates or strings, and additionally, arithmetic functions
for counting or for computing minimum, maximum, average,There have been many languages proposed to implement rela-

tional calculus. For instance, the language QBE (Query By and sum are available in SQL. Moreover, SQL offers the pos-
sibility of grouping tuples of relations, through the GROUPExample) is based on domain calculus, where the language



RELATIONAL DATABASES 395

BY instruction. As an example of these features, the numbers are derived relations, updates on views must be translated
into updates on the relations of the database, and this trans-of departments together with the associated numbers of em-

ployees are obtained in the database of Fig. 1 with the follow- lation, when it exists, is generally not unique. This problem,
known as the nondeterminism of view updating, is the subjecting SQL query (in which no WHERE statement occurs, be-

cause no selection has to be performed): of much research but has not yet been satisfactorily solved.
Now we conclude by mentioning that relational systems

are successful in providing powerful database systems forSELECT deptno, COUNT(empno)
many applications, essentially for business applications. How-FROM EMP
ever, these systems are not adapted to many new applica-GROUP BY deptno
tions, such as geographical information systems, knowledge-
based management, or data warehousing because of twoOn the other hand, a database system must incorporate
kinds of limitations on the relational model:many other basic features concerning the physical storage of

tuples, constraints, updates, transactions, and confidentiality. 1. Relations are flat structures which prevent easily man-
In SQL, relations are created with the CREATE TABLE in- aging data requiring sophisticated structures. This re-
struction, where the name of the relation together with the mark led to the emergence of object-oriented database
names and types of the attributes are specified. It is impor- systems that are currently the subject of important re-
tant to note that this instruction allows specifying constraints search efforts, most of them originating from concepts
and information about the physical storage of the tuples. of object-oriented languages, and also from concepts of
Moreover, other physical aspects are taken into account in relational databases. As another research direction in
SQL by creating indexes or clusters to speed up data re- this area, we mention the emergence of object-relational
trieval. data models that extend the relational model by provid-

Update instructions in SQL are either insertion, deletion, ing a richer type system including object orientation,
or modification instructions in which WHERE statements are and that add constructs to relational languages (such
incorporated to specify which tuples are affected by the up- as SQL) to deal with the added data types. We refer to
date. For example, in the database of Fig. 1, increasing the Ref. 8 for an introductory discussion on object-oriented
salaries of 10% of all employees working in department num- databases and object-relational data models.
ber 1 is achieved as follows:

2. Relational algebra does not allow for recursiveness [see
(3)], and thus, queries, such as the computing the tran-

UPDATE EMP sitive closure of a graph cannot be expressed. This re-
SET sal � sal * 1.1 mark has stimulated research in the field of deductive
WHERE deptno � 1 databases, a topic closely related to logic programming

but which also integrates techniques and concepts from
Transactions are managed in SQL by the two-phase lock- relational databases. The basic concepts of deductive

ing protocol, using different kinds of locks, allowing only read databases and their connections with relational data-
data or allowing read and write data. Moreover, activeness in bases are presented in Ref. 2 and studied in full detail
databases is taken into account in SQL through the notion of in Ref. 9.
triggers, which are executed according to the immediate

Moreover, the general problem of dynamic aspects of data-mode.
bases is currently the subject of much research effort. ThisData confidentiality is a very important issue, closely re-
problem, known as the view updating problem in the field oflated to data security, but has received very little attention at
relational databases, is also addressed in the object-orientedthe theoretical level. Nevertheless, this problem is addressed
or deductive frameworks. The basic questions under investi-in SQL in two different ways: (1) by restricting the access to
gation that have not yet been answered are What should bedata to specified users and (2) by allowing users to query only
meant be updating a database and How can deduced datathe part of the database they have permission to query. Re-
be updated? Furthermore, an important field of investigation,stricting access to data by other users is achieved through the
which is currently of much interest in the database commu-GRANT instruction, that is specified by the owner either on
nity, is that of data mining. Indeed, it is becoming more anda relation or on attributes of a relation. A GRANT instruction
more crucial to extract abstracted information from manymay concern queries and/or updates, so that, for example, a
huge available databases, and in all these investigations, theuser is allowed to query for salaries of employees, while for-
relational model is the basic database model under consider-bidding the user to modify them. On the other hand, a differ-
ation. Data mining and other emerging topics, such as dataent way to ensure data confidentiality consists in defining de-
warehousing, are discussed in Ref. 8.rived relations called views. For instance, to prevent users

from seeing the salaries of employees, one can define a view
from the relation EMP of Fig. 1 defined as the projection of BIBLIOGRAPHY
this relation over attributes empno, ename, and deptno. A
view is a query, whose SQL code is stored in the metadata- 1. E. F. Codd, A relational model of data for large shared data banks,
base, but whose result is not stored in the database. The con- Communication of the ACM, 13: 377–387, 1970.
cept of views is a very efficient tool for data confidentiality, 2. J. D. Ullman, Principles of Database and Knowledge-Base Systems,
thanks to the high expressional power of queries in SQL. Rockville, MD: Computer Science Press, 1988, Vol. I–II.
However, the difficulty with views is that they are not upda- 3. D. Maier, The Theory of Relational Databases, Rockville, MD: Com-

puter Science Press, 1983.table, except in very restricted cases. Indeed, because views



396 RELAXATION OSCILLATORS AND NETWORKS

4. P. C. Kanellakis, Elements of relational database theory, in J. Van
Leuwen (ed.), Handbook of Theoretical Computer Science, Vol. B:
Formal and Semantics. Amsterdam: North Holland, 1990, pp.
1073–1156.

5. J. W. Lloyd, Foundations of Logic Programming, 2nd ed., Berlin,
Germany: Springer-Verlag, 1987.

6. E. F. Codd, Relational Completeness of Data Base Sublanguages,
in R. Rustin (ed.), Data Base Systems, Englewood Cliffs, NJ: Pren-
tice-Hall, 1972, pp. 65–98.

7. W. W. Armstrong, Dependency structures of database relation-
ships. Proc. IFIP Congress, Amsterdam: North Holland, 1974, pp.
580–583.

8. A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts, 3rd ed., New York: McGraw-Hill series in Computer Sci-
ence, 1996.

9. S. Ceri, G. Gottlob, and L. Tanca, Logic Programming and Data-
bases, Berlin: Springer-Verlag, 1990.

Reading List

S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Read-
ing, MA: Addison-Wesley, 1995.

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, Reading: MA: Addison–Wesley,
1987. A good introduction and a fine reference source for the topic
of transaction management.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems,
2nd ed., Redwood City, CA: Benjamin Cummings, 1994. One of
the most widely used database textbooks.

C. H. Papadimitriou, The Theory of Database Concurrency Control,
Rockville, MD: Computer Science Press, 1986. A reference source
for the theoretical foundations of concurrency control.

J. D. Ullman and J. Widom, A First Course in Database Systems,
Englewood Cliffs, NJ: Prentice-Hall, 1997. A good and up-to-date
textbook on databases.

M. Y. Vardi, Fundamentals of dependency theory, in E. Borger (ed.),
Trends in Theoretical Computer Science, Rockville, MD: Computer
Science Press, 1987, pp. 171–224. A complete introduction to theo-
retical aspects of dependency theory.

G. Vossen, Data Models, Database Languages, and Database Manage-
ment Systems, Workingham, UK: Addison–Wesley, 1991. This
book is a fine introduction to the theory of databases.

DOMINIQUE LAURENT

University of Tours


