
PARALLEL DATABASE MANAGEMENT SYSTEMS 603

Modern database management systems (DBMSs) are de-
signed to support the client–server computing model. In this
environment, applications running on client computers or
workstations are allowed to store and access data from a re-
mote database server. This configuration makes best use of
both hardware and software resources. Both the client and
database server can be dedicated to the tasks for which they
are best suited. This architecture also provides an opportu-
nity for both horizontal (i.e., more servers) and vertical (i.e.,
larger servers) scaling of resources to do the job.

Today’s database servers are generally general-purpose
computers running database management software, typically
a relational DBMS. These servers employ essentially the
same hardware technology used for the client workstations.
This approach offers the most cost-effective computing envi-
ronment for a wide range of applications by leveraging the
advances in commodity hardware. A potential pitfall of this
approach is that the many equally powerful workstations may
saturate the server. The situation is aggravated for applica-
tions which involve very large databases and complex queries.
To address this problem, designers have relied on parallel
processing technologies to build the more powerful database
servers (1–4). This solution enables servers to be configured
in a variety of ways to support various needs.

PARALLEL DATABASE SERVER ARCHITECTURES

The problem faced by database applications has long been
known as I/O limited. The I/O bottleneck sets a hard limita-
tion on the performance of a database server. To address this
problem, all parallel database approaches distribute the data
across a large number of disks in order to take advantage
of their aggregate bandwidth. The different types of parallel
database servers are characterized by the way their pro-
cessors are allowed to share the storage devices. Most existing
systems employ one of the three basic parallel architectures
(5): shared everything (SE), shared disk (SD), and shared
nothing (SN). None emerges as the undisputed winner. Each
has its own advantages as well as disadvantages.PARALLEL DATABASE MANAGEMENT SYSTEMS

Shared Everything
A database is a collection of data that is managed by a data-
base management system, also called a DBMS. A DBMS All disks and memory modules are shared by the processors

[Fig. 1(a)]. Examples of this architecture include IBM main-allows users to create a new database by specifying the logical
structure of the data. For instance, the world is represented frames, HP T500, SGI Challenge, and the symmetric-multi-

processor (SMP) systems available from PC manufacturers. Aas a collection of tables in relational DBMSs. This model is
very simple, but is useful for many applications. It is the major advantage of this approach is that interprocessor com-

munication is fast as the processors can cooperate via themodel on which the major commercial DBMSs are based to-
day. After a database has been created, the users are allowed shared memory. This system architecture, however, does not

scale well to support very large databases. For an SE systemto insert new data. They can also query and modify existing
data. The DBMS gives them the ability to access the data with more than 32 processors, the shared memory would have

to be a physically distributed memory to accommodate thesimultaneously, without allowing the action of one user to af-
fect other users. The DBMS ensures that no simultaneous ac- aggregate demand on the shared memory from the large num-

ber of processors. An interconnection network (e.g.,cesses can corrupt the data accidentally. In this article the
reader will learn how parallel processing technology can be multistage network) is needed, in this case, to allow the pro-

cessors to access the different memory modules simultane-used to effectively address the performance bottleneck in
DBMSs. After a brief discussion of the various parallel com- ously. As the number of the processors increases, the size of

the interconnection network grows accordingly rendering aputer architectures suitable for DBMSs, we learn the tech-
niques for organizing data in such machines, and the strate- longer memory access latency. The performance of micropro-

cessors is very sensitive to this factor. If the memory-accessgies for processing these data using multiple processors.
Finally, we discuss some future directions and research latency exceeds one instruction time, the processor may idle

until the storage cycle completes. A popular solution to thisproblems.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



604 PARALLEL DATABASE MANAGEMENT SYSTEMS

problem is to have cache memory with each processor. How-
ever, the use of caches requires a mechanism to ensure cache
coherency. As we increase the number of processors, the num-
ber of messages due to cache coherency control (i.e., cross in-
terrogation) increases. Unless this problem can be solved,
scaling an SE database server into the range of 64 or more
processors will be impractical. Commercial DBMSs designed
for this architecture include Informix 7.2 Online Dynamic
Server, Oracle 7.3 Parallel Query Option, and IBM DB2/
MVS.

Shared Disk

To address the memory-access-latency problem encountered
in SE systems, each processor is coupled with its private
memory in an SD system [Fig. 1(b)]. The disks are still shared
by all processors as in SE. Intel Paragon, nCUBE/2, and Tan-
dem’s ServerNet-based machines typify this design. Since
each processor may cache data pages in its private memory,

Communication network

P P P P P P

Bus Bus

Memory Memory

Cluster 1 Cluster N

• • •

• • • • • •

SD also suffers the high cost of cache coherency control. In
Figure 2. A hybrid architecture for parallel database servers. SEfact the interference among processors is even more severe
clusters are interconnected to form an SN structure at the interclus-than in SE. As an example, let us consider a disk page con-
ter level.taining 32 cache lines of data. There is no interference in an

SE system as long as the processors update different cache
lines of this page. In contrast, an update to any of these cache

figuration, a message-passing network is used to interconnectlines in an SD system will interfere with all the processors
a large number of processing nodes (PN). Each PN is an au-currently having a copy of this page even when they are actu-
tonomous computer consisting of a processor, local privateally using different cache lines of the page. Commercial
memory, and dedicated disk drives. Memory access latency isDBMSs designed for this architecture include IBM IMS/VS
no longer a problem. Furthermore, since each processor isData Sharing Product, DEC VAX DBMS and Rdb products,
only allowed to read and write its local partition of the data-and Oracle on DEC’s VAXcluster and Ncube Computers.
base, cache coherency is much easier to maintain. SN is not

Shared Nothing a performance panacea, however. Message passing is signifi-
cantly more expensive than sharing data through a central-To improve scalability, SN systems are designed to overcome
ized shared memory as in SE systems. Some examples of thisthe drawbacks of SE and SD systems [Fig. 1(c)]. In this con-
architecture are Teradata’s DBC, Tandem NonStopSQL, and
IBM 6000 SP. Commercial DBMSs designed for this architec-
ture include Teradata’s DBC, Tandem NonStopSQL and IBM
DB2 Parallel Edition.

To combine the advantages of the previously discussed ar-
chitectures and compensate for their respective disadvan-
tages, new parallel database servers are converging toward a
hybrid architecture (6), in which SE clusters are intercon-
nected through a communication network to form an SN
structure at the intercluster level (Fig. 2). The motivation is
to minimize the communication overhead associated with the
SN structure, and yet each cluster size is kept small within
the limitation of the local memory and I/O bandwidth. Exam-
ples of this architecture include new Sequent computers, IBM
RS/6000 SP, NCR 5100M and Bull PowerCluster. Some of the
commercial DBMSs designed for this structure are the Tera-
data Database System for the NCR WorldMark 5100 com-
puter, Sybase MPP, and Informix-Online Extended Parallel
Server.

DATA PARTITIONING TECHNIQUES

Traditional use of parallel computers is to speed up the com-

M M M M

P P P P M M MM

M M M M

P P P P

P P P P

M

P

Communication
network

Communication
network

Communication
networkMemory module

Processor

Disk drive

Shared nothing (SN)

•••

•••

•••

•••

•••

•••

•••

•••

Shared everything (SE) Shared disk (SD)

(a) (b)

(c)

:

:

:

plex computation of scientific and engineering applications. In
contrast, database applications use parallelism primarily toFigure 1. Basic architectures for parallel database servers. Both
increase the disk-I/O bandwidth. The level of I/O concurrencydisks and memory modules are shared by all the processors in SE.
achievable determines the degree of parallelism that can beOnly disks are shared in SD. Neither disks nor memory modules are

shared by the processors in SN. attained. If each relation (i.e., data set) is divided into parti-



PARALLEL DATABASE MANAGEMENT SYSTEMS 605

tions each stored on a distinct disk, a database operator can where N is the number of disks, d is the number of parti-
tioning attributes, Shf_disti � �d Ni�1, and GCDi �often be decomposed into many independent operators each

working on one of the partitions. To maximize parallelism, gcd(Shf_disti, N). A data placement example using this map-
ping function is illustrated in Fig. 3. Visually, the data frag-several data partitioning techniques have been used (7).
ments represented by the two-dimensional grid are assigned
to the nine disks as follows.Round-Robin Partitioning

The tuples (i.e., data records) of a relation are distributed
1. Compute the shift distance, shf_dist � �d N � 3.among the disks in a round-robin fashion. The advantages of

this approach are simplicity and the balanced data load 2. Mark the top-most row as the check row.
among the disks. The drawback of this scheme is that it does 3. Disks 0, 1, . . ., 8 are assigned to the nine fragments in
not support associative search. Any search operations would this row from left to right. Make the next row the cur-
require searching all the disks in the system. Typically, local rent row.
indices must be created for each data partition to speed up

4. The allocation pattern for the current row is determined
the local search operations.

by circularly left-shifting the pattern of the row above
it by three (i.e., shf_dist) positions.

Hash Partitioning
5. If the allocation pattern of the current row is identical

A randomizing hash function is applied to the partitioning to that of the check row, we perform a circular left-shift
attribute (i.e., key field) of each tuple in order to determine its on the current row one more position and mark it as the
disk. Like round-robin partitioning, hash partitioning usually new check row.
provides an even distribution of data across the disks. How- 6. If there are more rows to consider, make the next row
ever, unlike round-robin partitioning, the same hash function the current row and repeat steps 4, 5 and 6.
can be employed at runtime to support associative searches. A
drawback of hash partitioning is its inability to support range

Assuming that nine had been determined to be the optimalqueries. A range query retrieves tuples which have the value
degree of I/O-parallelism for the given relation, this dataof the specified attribute falling within a given range. This
placement scheme allows as many types of range queries totype of query is common in many applications.
take full advantage of the I/O concurrency as possible. Range
queries expressed on either age or salary or both can be sup-Range Partitioning
ported effectively. The optimal degree of I/O parallelism is

This approach maps contiguous key ranges of a relation to known as the degree of declustering (DoD), which defines the
various disks. This strategy is useful for range queries be- number of partitions a relation should have. For clarity, we
cause it helps to identify data partitions relevant to the query, assumed in this example that the number of intervals on each
skipping all of the uninvolved partitions. The disadvantage of dimension is the same as the DoD. The mapping function [Eq.
this scheme is that data processing can be concentrated on a (1)], however, can be used without this restriction.
few disks leaving most computing resources underutilized, a Many studies have observed that linear speedup for
phenomenon known as access skew. To minimize this effect, smaller numbers of processors could not always be extrapo-
the relation can be divided into a large number of fragments lated to larger numbers of processors. Although increasing
using very small ranges. These fragments are distributed the DoD improves the performance of a system, excessive de-
among the disks in a round-robin fashion. clustering will reduce throughput due to overhead associated

with parallel execution (12). Full declustering should not be
Multidimensional Partitioning used for very large parallel systems. The DoDs should be

carefully determined to maximize the system throughput. ARange partitioning cannot support range queries expressed
good approach is to evenly divide the disks into a number ofon nonpartitioning attributes. To address this problem, multi-
groups, and assign relations which are frequently used to-dimensional partitioning techniques allow a relation to be de-
gether as operands of database operators (e.g., join) to theclustered based on multiple attributes. As an example, let us
same disk group. Having different DoDs for various relationsconsider the case of partitioning a relation using two attri-
is not a good approach because the set of disks used by eachbutes, say age and salary. Each data fragment is character-
relation would usually overlap with many sets of disks usedized by a unique combination of age range and salary range.
for other relations. Under the circumstances, scheduling oneFor instance, [2,4] denotes the data fragment whose tuples
operator for execution will cause most of the other concurrenthave the age and salary values falling within the second age
queries to wait due to disk contention. This approach gener-range and fourth salary range, respectively. These data frag-
ally results in very poor system utilization.ments can be allocated among the disks in different ways (8–

11). As an example, the following function can be used to map
a fragment [X1, X2, . . ., Xn] to a disk:

PARALLEL EXECUTION

Today, essentially all parallel database servers support the
relational data model and its standard query language: SQL
(structured query language). SQL applications written for un-
iprocessor systems can be executed in these parallel servers
without needing to modify the code. In a multi-user environ-

DISK ID(X1, X2, · · ·, Xn) =
[

d∑
i=2

⌊
Xi · GCDi

N

⌋

+
d∑

i=1

(Xi · Shf disti)

]
mod N

(1)



606 PARALLEL DATABASE MANAGEMENT SYSTEMS

Figure 3. Two-dimensional data partitioning
based on age and salary. The 9 � 9 data frag-
ments are assigned to nine processing nodes.
Range queries based on age, salary, or both can
be supported effectively.

0

3 4

7

2

5

8

3

6

0

5

8

3

6

0

4

7

1

6 7 8 0 1 2

6

1

4

7

2

5

8

1 2 3 4 5 6 7 8

0

4

7

1

5

8

2

1

5

8

2

6

0

3

2

6

0

3

7

1

4

3

7

1

4

8

2

5

4

8

2

5

0

3

6

5

0

3

6

1

4

7

Range 0

Range 1

Range 2

Range 3

Range 4

Range 5

Range 6

Range 7

Range 8
R

a
n

g
e

 0

R
a

n
g

e
 1

R
a

n
g

e
 2

R
a

n
g

e
 3

R
a

n
g

e
 4

R
a

n
g

e
 5

R
a

n
g

e
 6

R
a

n
g

e
 7

R
a

n
g

e
 8

A check row

This fragment is
assigned to disk 3.

Tuples in this fragment
have age in range 8 and salary

in range 7.

Age

Salary

ment, queries submitted to the server are queued up and are first come first serve (FCFS). When a coordinator is assigned
to a query, it becomes responsible for scheduling the opera-processed in two steps:
tors in the corresponding query tree. For each operator in the
tree, the coordinator competes with other coordinators for the• Compile Time. Each query is translated into a query tree
required operator servers. When the coordinator has success-which specifies the optimized order for executing the nec-
fully acquired all the operator servers needed for the task, itessary database operators.
coordinates these servers to execute the operation in parallel.• Execution Time. The operators on these query trees are
An obvious advantage of this approach is its simplicity. It as-scheduled to execute in such a way to maximize system
sumes that the number of coordinators has been optimally setthroughput while ensuring good response times.
by the system administrator, and deals only with ways to re-
duce service times. The scheduling strategy is fair in the

Three types of parallelism can be exploited: interquery paral- sense that each query is given the same opportunity to com-
lelism, intraquery parallelism, and intra-operator paral- pete for the computing resources.
lelism.

Planning-Based SchedulingIntra-operator parallelism is achieved by executing a sin-
gle database operator using several processors. This is possi- In this approach, all active queries share a single scheduler.
ble if the operand relations are already partitioned and dis- Since this scheduler knows the resource requirements of all
tributed across multiple disks. For instance, a scan process the active queries, it can schedule the operators of these que-
can be precreated in each processor at system startup time. ries based on how well their requirements match the current
To use a number of processors to scan a relation in parallel, condition of the parallel system. For instance, a best-fit strat-
we need only request the scan processes residing in these pro- egy can be used to select from among the pending operators
cessors to carry out the local scans in parallel. In order to the one that can make the maximum use of currently avail-
effectively support various types of queries, it is desirable to able operator servers to execute first. The motivation is to
create at least one process in each processor for each type of maximize the resource utilization. This approach, however, is
primitive database operator. These processes are referred to not as fair as the competition-based technique. Queries which
as operator servers. They behave as a logical server specializ- involve very small or very large relations can experience star-
ing in a particular database operation. Once an operator vation. The scheduler can also become a bottleneck. To ame-
server completes its work for a query, the logical server is liorate the latter problem, a parallel search algorithm can be
returned to the free pool awaiting another service request to used to determine the best fit.
come from some pending query. By having queries share the We note that the scheduling techniques discussed pre-

viously do not preclude the possibility of executing two oroperator servers, this approach avoids the overhead associ-
more operators of the same query simultaneously. This formated with process creation.
of parallelism is referred to as intraquery parallelism. BothInterquery parallelism is realized by scheduling database
of these scheduling techniques try to maximize the systemoperators from different queries for concurrent execution.
performance by strategically mixing all three forms of paral-Two scheduling approaches have been used:
lelism discussed herein.

Competition-Based Scheduling
LOAD BALANCING

In this scheme, a set of coordinator processes is precreated at
system startup time. They are assigned to the queries by a Since each PN in an SN system processes the portion of the

database on its local disks, the degree of parallelism is dic-dispatcher process according to some queuing discipline, say



PARALLEL DATABASE MANAGEMENT SYSTEMS 607

tated by the placement of the data across the PNs. When the not exceed the ideal size each PN would have if the load were
uniformly distributed. The excessive buckets are made avail-distribution is seriously skewed, balancing the load on these

PNs is essential to good system performance (12,13). Al- able for redistribution among the PNs, using some bin-pack-
ing technique (e.g., largest processing time first), so as to bal-though SE systems allow the collaborating processors to

share the workload more easily, load balancing is still needed ance the workload. This strategy is referred to as partition
tuning (12). It handles severe skew conditions very well. How-in such systems to maximize processor utilization (14). More

specifically, the load balancing task should equalize the load ever, when the skew condition is mild, the overhead associ-
ated with load balancing outweighs its benefits causing thison each disk, in addition to evenly dividing the data-pro-

cessing tasks among the processors. As an example, let us technique to perform slightly worse than methods which do
not perform load balancing at all. This is because this loadconsider an extreme scenario in which a large portion of the

data which needs to be processed happens to reside on a sin- balancing scheme scans the entire operand relations in order
to determine the redistribution strategy. To reduce this over-gle disk. Since little I/O parallelism can be exploited in this

case, the storage subsystem cannot deliver a level of I/O per- head, the distribution of the tuples among the buckets can be
estimated in the early stage of the bucket formation processformance commensurate with the computational capabilities

of the SE system. Although the data processing tasks can still as follows:
be perfectly balanced among the processors by sharing the
workload stored on that one disk, the overall performance of • Sampling Phase. Each PN independently takes a sample
the system is deteriorated due to poor utilization of the avail- of both operand relations by retrieving the leading con-
able I/O bandwidth. Similarly, balancing the data load among secutive pages from it own disk. The size of the sample is
the disks is essential to the performance of SD systems. In chosen such that the entire sample can fit in the memory
summary, none of the architectures is immune to the skew capacity. As the sampling tuples are brought into mem-
effect. We shall see shortly that similar techniques can be ory, they are declustered into a number of in-memory
used to address this problem in all three types of systems. buckets by hashing on the join attributes.

SE and SD systems, however, do have the advantage un- • Partition Tuning Phase. A predetermined coordinating
der the following circumstances. Let us consider a transac- processor computes the sizes of the sampling buckets by
tion-processing environment in which frequently accessed adding up the sizes of the corresponding local buckets.
data are localized to only a few disks. Furthermore, the sys- It then determines how the sampling buckets should be
tem memory is large enough to keep these frequently used assigned among the PNs, using some bin-packing tech-
data in the memory buffer most of the time. In this case, it is nique, so as to evenly distribute the sampling tuples
very easy for the processors of an SE or SD system to share among the PNs.
the workload since each processor is allowed to access the

• Split Phase. Each processor collects the assigned localshared disks. In contrast, when an SN system is faced with
sampling buckets to form the corresponding samplingthis situation, only a couple of the PNs which own the disks
join buckets on its own disk. When all the samplingwith the frequently used data are overly busy. The remaining
tuples have been stored to disks, each PN continues toPNs are idle most of the time. This phenomenon, however, is
load the remaining tuples from the relations and redis-most likely due to bad data placement and usually can be
tribute them among the same buckets on disks. We noterectified by redistributing the tuples.
that tuples are not written to disk one at a time. Instead,Many load-balancing techniques have been developed for
each processor maintains a page buffer for each hashparallel database systems. Let us first examine techniques
value. Tuples having the same hash values are piggy-designed for the SN environment. Several parallel join algo-
backed to the same page buffer, and the buffer is sent torithms have been proposed. Among them, hash-based algo-
its disk destination when it is full.rithms are particularly suitable for SN systems. In these

• Join Phase. Each PN performs the local joins of respec-strategies, the operand relations are partitioned into buckets
tively matching buckets.by applying the same randomizing hash function to the join

key value, e.g., the join key value modulo the desired number
of buckets. The buckets of the two relations, which correspond The sampling-based load balancing technique has the follow-

ing advantages. First, the sampling and load balancing pro-to the same hash value, are assigned to the same PN. These
matching bucket pairs are evenly distributed among the PNs. cesses are blended with the normal join operation. As a result,

the sampling phase incurs essentially no overhead. Second,Once the buckets have been assigned, each processor joins its
local matching bucket pairs independently of the other PNs. since the sample is a byproduct of the normal join operation

and therefore is free, the system can afford to use a largeThis strategy is very effective unless there is a skew in the
tuple distribution, i.e., the sizes of some buckets are substan- sample whose size is limited only by the memory capacity.

Although the technique must rely on page-level sampling totially larger than the remaining buckets. When severe fluc-
tuations occur among the bucket sizes, some processors are keep the I/O cost low, studies show that a sample size as

small as 5% of the size of the two operand relations is suffi-assigned significantly more tuples on which to perform the
local join operation. Since the computation time of the join cient to accurately estimate the tuple distribution under prac-

tical conditions. With the capacity of today’s memory technol-operation is determined by the slowest PN, skew in the tuple
distribution seriously affects the overall performance of the ogy, this scheme is effective for a wide range of database

applications.system.
To minimize the skew effect, the buckets can be redistrib- We note that although we focus our discussion on the join

operation, the same technique can also be used for other rela-uted among the PNs as follows. At the end of the hashing
stage, each PN keeps as many of the larger local buckets as tional operators. For instance, load balancing for the union

operation can be implemented as follows. First, each PNpossible; however, the total number of tuples retained should



608 PARALLEL DATABASE MANAGEMENT SYSTEMS

hashes its portion of each operand relation (using an attribute lowed to write to a set of shared buckets as determined by the
hash values, some mechanism would have been necessary towith a large number of distinct values) into local buckets and

stores them back on the local disks. A predetermined coordi- synchronize the write conflicts. This is not a good approach
since the contention for some of the buckets would be verynating PN then assigns the respectively matching bucket-

pairs to the PNs using the partition tuning technique. Once severe under a skew condition.
the distribution of the bucket pairs has been completed, each
PN independently processes its local bucket pairs as follows.
For each bucket pair, one bucket is first loaded to build an in- FUTURE DIRECTIONS AND RESEARCH PROBLEMS
memory hash table. The tuples of the other bucket are then
brought into memory to probe the hash table. When a match Traditional parallel computers were designed to support com-

putation-intensive scientific and engineering applications. Asis found for a given tuple, it is discarded; otherwise, it is in-
serted into the hash table. At the end of this process, the hash the processing power of inexpensive workstations has doubled

every two years over the past decade, it has become feasibletables located across the PNs contain the results of the union
operation. Obviously, the sampling-based technique can also to run many of these applications on workstations. As a re-

sult, the market for parallel scientific and engineering appli-be adapted for this and other relational operators.
Partition tuning can also be used to balance workload in cations has shrunk rapidly over the same period. A few major

parallel computer manufacturers having financial difficultiesSE and SD systems. Let us consider an SE system, in which
the operand relations are evenly distributed among n disks. A in recent years is evidence of this phenomenon. Fortunately,

a new and much stronger market has emerged for those man-parallel join algorithm which uses n processors is given below.
ufacturers that could make the transition to adapt their ma-
chines to database applications. This time, business is much• Sampling Phase. Each processor is associated with a dis-
more profitable for following reasons. Firstly, the databasetinct disk. Each processor independently takes a local
market is a lot larger than that of scientific and engineeringsample of both operand relations by reading the leading
applications. In fact, significantly more than half of the com-consecutive pages from its disk unit. The size of the local
puting resources in the world today are used for data-pro-samples is chosen such that the entire sample can fit in
cessing related tasks. Secondly, advances in microprocessorthe available memory. As the sampling tuples are
technology do not make workstations more suitable for han-brought into memory, they are declustered into a number
dling database management tasks which are known to be I/Oof in-memory local buckets by hashing on the join attri-
intensive. It would be impractical to pack a workstation withbutes. Each processor also counts the number of tuples
a very large number of disks. This is not even desirable be-in each of its local buckets.
cause most data should be centralized in a repository to allow• Partition Tuning Phase. A predetermined coordinating
data sharing. Thirdly, managing a large amount of multime-processor computes the sizes of the sampling buckets by
dia data has become a necessity for many business sectors.adding up the sizes of the corresponding local buckets.
Only parallel database servers can have the scalable band-It then determines how the sampling buckets should be
width to support such applications.assigned among the disks, using some bin-packing tech-

As parallel database systems displaced scientific and engi-nique, so as to distribute the sampling tuples evenly
neering applications as the primary applications for parallelamong the disks.
computers, manufacturers put a great deal of attention in im-

• Split Phase. Each processor collects the assigned local proving the I/O capabilities of their machines. With the emer-
sampling buckets to form the corresponding sampling gence of multimedia applications, however, a new hurdle, the
join buckets on its disk. When all the sampling tuples network-I/O bottleneck (15,16), is facing the database com-
have been collected to disks, each PN continues to load munity. Essentially all of today’s parallel database servers
from its disk the remaining tuples of the two relations are designed for conventional database applications. They are
and redistribute them among the same buckets. not suitable for applications that involve multimedia data.

• Join Phase. Each PN joins the matching buckets located For conventional database applications, the server requires a
on its disk independently of the other PNs. lot of storage-I/O bandwidth to support query processing. On

the other hand, the demand on the network-I/O bandwidth is
minimal since the results returned to the clients are typicallyWe observe in this algorithm that each disk performs the

same number of read and write operations assuming the op- a very small fraction of the data examined by the query. In
contrast, the database server must deliver very large multi-erand relations were evenly distributed across the disks. Fur-

thermore, each processor processes the same number of media objects as query results to the clients in a multimedia
application. As an example, the network-I/O bottleneck is en-tuples. The workload is perfectly balanced among the comput-

ing resources. An important advantage of associating a pro- countered in Time Warner Cable’s Full Service Network proj-
ect in Orlando. Although each of the SGI Challenge serverscessor with a distinct disk unit is to avoid contention and to

allow sequential access of the local partitions. Alternatively, used in this project can sustain thousands of storage-I/O
streams, the network-I/O bottleneck limits its performance tothe load can be evenly distributed by spreading each bucket

across all the disks. This approach, however, requires each less than 120 MPEG-1 video streams. This is reminiscent of
a large crowd funneling out of the gates after a footballdisk to serve all the processors at once during the join phase

causing the read head to move in an anarchic way. On an- match. To address this bottleneck, eight servers had to be
used at Time Warner Cable to serve the 4,000 homes signifi-other issue, each processor using its own local buckets and

page buffers during the sampling phase and split phase, re- cantly increasing the hardware cost and the costs of hiring
additional system administrators. It is essential that future-spectively, also avoids contention. If the processors were al-



PARALLEL DATABASE SYSTEMS 609

5. M. Stonebraker, The case for shared nothing, Database Eng., 9generation servers have sufficient network-I/O bandwidth to
(1): 1986.make their storage bandwidth available to clients for retriev-

6. K. A. Hua, C. Lee, and J. Peir, Interconnecting shared-nothinging large multimedia data.
systems for efficient parallel query processing, Proc. Int. Conf.Today’s parallel database systems use only sequential al-
Parallel Distrib. Info. Sys., 1991, pp. 262–270.gorithms to perform query optimization despite the large

7. D. DeWitt and J. Gray, Parallel database systems: The futurenumber of processors available in the system. Under time
of high performance database systems, Commun. ACM, 35 (6):constraints, no optimizer can consider all the parallel algo-
85–98, 1992.rithms for each operator and all the possible query tree orga-

8. L. Chen and D. Rotem, Declustering objects for visualization,nizations. A parallel parallelizing query optimizer is highly
Proc. Int. Conf. Very Large Data Bases, 1993, pp. 85–96.desirable. It would have the leeway to examine many more

9. H. C. Du and J. S. Sobolewski, Disk allocation for Cartesian prod-possibilities. A potential solution is to divide the possible
uct files on multiple disk systems, ACM Trans. Database Sys., 7plans among a number of optimizer instances running on dif-
(1): 82–101, 1982.ferent processors. The costs of various plans can be estimated

10. C. Fabursos and P. Bhagwat, Declustering using fracals, Proc.in parallel. At the end, a coordinating optimizer compares the
Int. Conf. Parallel Distrib. Inf. Sys., 1993, pp. 18–25.best candidates nominated by the participating optimizers

11. K. A. Hua and C. Lee, An adaptive data placement scheme forand selects the best plan. With the additional resources, it
parallel database computer systems, Proc. Int. Conf. Very Largealso becomes feasible to optimize multiple queries together to
Data Bases, 1990, pp. 493–506.allow sharing of intermediate results. Considering the fact

12. K. A. Hua and C. Lee, Handling data skew in multicomputerthat most applications access 20% of their data 80% of the
database systems using partitioning tuning, Proc. Int. Conf. Verytime, this approach could be a major improvement. More
Large Data Bases, 1991, pp. 525–535.work is needed in this area.

13. J. Wolf, D. Dias, and P. Yu, An effective algorithm for paralleliz-Parallel database systems offer parallelism within the da-
ing hash joins in the presence of data skew, Proc. Int. Conf. Datatabase system. On the other hand, existing parallel program-
Eng., 1991, pp. 200–209.ming languages are not designed to take advantage of parallel

14. E. Omiecinski, Performance analysis of a load balancing hash-database systems. There is a mismatch between the two tech-
join algorithm for shared memory multiprocessor, Proc. Int. Conf.nologies. To address this issue, two strategies can be consid-
Very Large Data Bases, 1991, pp. 375–385.ered. One approach is to introduce new constructs in the par-

15. K. Hua and S. Sheu, Skyscraper broadcasting: A new broadcast-allel programming language to allow computer programs to
ing scheme for metropolitan video-on-demand systems, Proc.be structured in a way to exploit database parallelism. Alter-
ACM SIGCOMM’97 Conf., 1997.natively, one can consider implementing a persistent parallel

16. S. Sheu, K. Hua, and W. Tavanapong, Chaining: A generalizedprogramming language by extending SQL with general-pur-
batching technique for video-on-demand systems, Proc. IEEE Int.pose parallel programming functionality. Several companies
Conf. Multimedia Com. Sys., 1997.have extended SQL with procedural programming constructs

such as sequencing, conditionals, and loops. However, no par-
KIEN A. HUAallel processing constructs have been proposed. Such a lan- University of Central Florida

guage is critical to applications that are both I/O intensive
and computationally intensive.

As the object-oriented paradigm becomes a new standard
for software development, SQL is being extended with object PARALLEL DATABASES. See DISTRIBUTED DATABASES.
functionality. The ability to process rules is also being incor-
porated to support a wider range of applications. How to en-
hance existing parallel database server technology to support
the extended data model is a great challenge facing the data-
base community. For instance, SQL3 supports sequence and
graph structures. We need new data placement techniques
and parallel algorithms for these nonrelational data objects.
Perhaps, techniques developed in the parallel programming
language community can be adapted for this purpose.

BIBLIOGRAPHY

1. H. Borak et al., Prototyping bubba, a highly parallel database
system, IEEE Trans. Knowl. Data Eng., 2: 4–24, 1990.

2. D. DeWitt et al., The gamma database machine project, IEEE
Trans. Knowl. Data Eng., 2: 44–62, 1990.

3. K. A. Hua and H. Young, Designing a highly parallel database
server using off-the-shelf components, Proc. Int. Comp. Symp., pp.
17–19, 1990.

4. M. Kitsuregawa, H. Tanaka, and T. Moto-oka, Application of
hash to data base machine and its architecture, New Gen. Comp.,
1 (1): 63–74, 1983.


