
130 KNOWLEDGE MANAGEMENT

KNOWLEDGE MANAGEMENT lection, and computation. Metaclasses describe the role that
a group of concepts plays in the reasoning process (e.g.,

The introduction by Allen Newell in 1982 of the knowledge- observable, hypothesis, solution). The third layer contains
knowledge describing how inferences are combined to fulfilllevel principle (1) has cast a whole new light on the defini-

tion of the knowledge management discipline. According to a certain goal, that is, how to achieve operations on met-
aclasses. The most important type of knowledge in thisthis principle, knowledge level represents the highest level

in the description of any structured system. Situated above category is the ‘‘task.’’ A task is a description of a problem-
solving goal or subgoal, for example, ‘‘diagnose a patientthe symbol level and independent from this, it describes

the observed behavior of the system as a function of the with these particular symptoms.’’ The fourth category of
knowledge is the strategic knowledge, that settles the gen-knowledge employed, independently of the way this knowl-

edge has been represented at the symbolic level. As Newell eral goals relevant for solving a particular problem. How
each goal can be achieved is determined by the task knowl-says: ‘‘The knowledge level permits predicting and under-

standing behavior without having an operational model of edge. The software counterpart of this structured methodol-
ogy is a set of tools (a workbench) including, for example,the processing that is actually being done by the agent’’ (1,

p. 108). An arbitrary system is interpreted as a rational a domain text editor to analyze interview transcripts, a
concept editor for the domain layer modeling, an inferenceagent that interacts with its environment to attain, based

on the knowledge it has, a given goal in the best way. From structure editor, a task model tool supporting the identifi-
cation of the structure of a particular problem solving taskthe viewpoint of a strict knowledge level, it is considered a

sort of ‘‘black box’’ to be modeled on the basis of its input/ by decomposing the task and establishing the relevant task
and domain features, libraries, graphical tools, etc. At theoutput behavior without making any hypothesis about its

internal structure. To sum up, the knowledge-level principle top, an advice and guidance module controls the general
development of the KBS and provides advice on the basisemphasizes the ‘‘why’’ (i.e., the goals), and the ‘‘what’’ (i.e.,

the different tasks to be accomplished and the domain of the KADS methodology. KADS tools are commercialized,
for example, by the French ILOG company, also establishedknowledge) more than the ‘‘how’’ (i.e., the way of imple-

menting these tasks and of putting this domain of knowl- in the United States. Recent developments are concerned
with, inter alia, establishing an advanced formal modelingedge to use).

The emergence of this principle has transferred interest language (ML2) to describe the conceptual model and with
some standardization work (Common KADS).in the knowledge management field from the pure repre-

sentational aspects to the modeling aspects, that is, a shift COMMET (4) is a methodology that has some points in
common with KADS. It is based on the principle that thefrom the production of tools for directly representing the

knowledge a system uses to that of tools for building knowledge-level description of expertise includes three major
components: the model perspective, the task perspective, andup models of the system’s behavior in terms of that knowl-

edge. A well-known example of this tendency is a European the method perspective. In a more specific context of knowl-
edge acquisition, we can mention PROTÉGÉ-II (5). This is aresult, the Knowledge Acquisition and Design Structuring

(KADS) methodology (2,3), with its developments and deriva- knowledge-acquisition shell that uses problem-solving meth-
ods to drive the modeling of some specific tasks. For example,tives.

A fundamental step in the KADS approach is the setup given a set of symptoms for a faulty device, like manual obser-
vations and instruments readings, produce a diagnosis and aof a general conceptual model of the system that an ob-

server (a knowledge engineer) creates by abstracting from remedy. Method configuration in PROTÉGÉ-II is carried out
by using a library of basic building blocks (black boxes) calledthe problem-solving behavior of some experts. According to

the knowledge principle, the conceptual model does not in- ‘‘mechanisms.’’
One of the main attractions of this new, structured andclude any detailed constraints about the implementation

level. This last function is specific for the design model, analytical approach to knowledge management is that all of
the methodologies based implicitly or explicitly on the knowl-which can be considered a high-level system description of

the final knowledge-based system (KBS), and which repre- edge-level principle embrace the idea that the setup of KBSs
is facilitated by developing libraries of reusable components.sents the transformations to be executed on the conceptual

model when we take into account the external requirements These pertain mainly to two different classes: reusable ontolo-
gies, that is to say, (normally tangled) taxonomies defining(e.g., specialized interfaces, explanation modules, etc.). The

conceptual model is built up according to a four-layer struc- the concepts (important notions) proper to a given domain
and their relationships (6), and reusable problem-solvingtured approach. Each successive layer interprets the de-

scription given at the previous layer. The first layer (cate- methods, which define classes of operations for problem solv-
ing. In this last context, we can mention Chandrasekaran’sgory of knowledge) is concerned with the static domain of

knowledge, the domain concepts and their attributes, the work (7). Chandrasekaran was one of the first scholars to sug-
gest developing reusable components under the form of ‘‘ge-domain facts, the structures representing complex relation-

ships etc. Static knowledge can be viewed as a declarative neric tasks.’’ A generic task defines both a class of application
tasks with common features and a method for performingtheory of the domain. A second type of knowledge (inference

layer) is concerned with the knowledge sources and the these tasks. In this respect, these new knowledge manage-
ment methodologies have many points in common with themetaclasses. A knowledge source is defined as an elemen-

tary step in the reasoning process (an inference) that de- work accomplished within the ARPA Knowledge Sharing Ef-
fort (8). A concrete product of this work is KIF, a general,rives new information from the existing source. KADS pre-

supposes the existence of a set of canonical inferences such declarative specification language for Knowledge Interchange
Format, that has declarative semantics and provides, amongas abstraction, association, refinement, transformation, se-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

KNOWLEDGE MANAGEMENT 131

other things, for asserting arbitrary sentences in the first- to rediscovering (downgraded) versions of traditional seman-
tic networks under the form of ‘‘concept maps’’ or to producingorder predicate calculus, expressing metaknowledge, and rep-

resenting nonmonotonic reasoning rules (9). a further, paper-implemented catalogue of generic axioms. In
this article, knowledge management is described essentiallyAn additional manifestation of this general tendency to-

ward generalization, abstraction, and reuse is the activities as an application of the usual knowledge representational
(and processing) techniques. Creating and using large corpo-aimed at constructing general and reusable ‘‘corporate memo-

ries.’’ In the recent years, knowledge has been recognized as rate memories requires, first of all, that the knowledge can be
represented, stored, and computer-managed realistically andone of the most important assets of an enterprise and a possi-

ble success factor for any industrial organization if it is con- efficiently.
trolled, shared, and reused effectively. Accordingly, the core of
the organization can be conceived of as a general and shared

THE TWO MAIN CLASSES OF KNOWLEDGE REPRESENTATIONcorporate memory, that is, an on-line, computer-based store-
(AND PROCESSING) SYSTEMShouse of expertise, experience, and documentation about all

the strategic aspects of the organization (10). Then the con-
‘‘Knowledge is power,’’ according to the well-known sloganstruction and practical use of corporate memories becomes
spread by Edward Fegenbaum. More precisely, Fegenbaumthe main activity in the knowledge management of a com-
stated that: ‘‘. . . the power . . . does not reside in the infer-pany, a focal point where several computer science and artifi-
ence method; almost any inference method will do. The powercial intelligence disciplines converge: knowledge acquisition
resides in the knowledge’’ (11, p. 101). Even those researchers(and learning), data warehouses, database management, in-
(e.g., the advocates of a strictly formal logical approach), whoformation retrieval, data mining, case-based reasoning, deci-
do not appreciate this way of reducing the importance of thesion support systems, and querying (and natural language
algorithmic aspects of the artificial intelligence (AI) endeavor,querying) techniques.
will agree on the fact that knowledge representation is proba-The knowledge-level revolution has been of fundamental
bly the key problem in AI. One could object that some knowl-import for the methodological renovation of the knowledge
edge about a particular problem domain is, in fact, embeddedmanagement discipline. However, from a more practical point
in every computer program. The simplest word processor con-of view, the concrete results have not been so immediate as
tains a considerable amount of knowledge about formats,were expected and, after a peak of interest at the beginning
characters, styles, editing techniques, and printing. However,of the nineties, all of the issues concerning, for example,
in ordinary computer programs, knowledge is not representedknowledge sharing and reuse now have attained a more re-
explicitly and cannot be smoothly reconstructed, extracted, orlaxed cruising speed. There are in fact several factors that
manipulated. This contrasts strongly with the AI approach,can contribute to delaying the fulfillment of all of the benefits
at least in its symbolic form (see later), where the importancewe can expect from applying the new methodologies. For ex-
(from a strictly quantitative point of view) and the complexityample, from a theoretical point of view, some methodologies
of the notions inserted into a machine that lead it to behavethat refer to the knowledge-level principle in reality run
in some sort of ‘‘intelligent’’ way implies that these notionscounter to Newell’s approach because the structure they im-
(the knowledge) must be studied, represented, and manipu-pose on the knowledge is a function of ‘‘how’’ a specific class
lated in themselves. Then the aim of AI is to produce descrip-of applications is implemented and dealt with and the models
tions of the world so that, fed into a machine, it behaves intel-they produce are then valid only in a very specific context. On
ligently simply by formally manipulating (knowledgea more pragmatic level, reuse can be very difficult to obtain
management) these descriptions (12). If we renounce anybecause there is often a significant semantic gap between
strong hypothesis about the final achievements of AI, that is,some abstract, general method and a particular application
if we admit that AI will at best simulate some external resultstask. Moreover, discovering and formalizing a set of elemen-
of human intellectual activities, but not the inner mechanismtary tasks in a way that is really independent of any specific
itself, the emphasis on knowledge representation becomes oneapplication domain is a particularly difficult endeavor which
of the most important criteria to justify identifying AI with aencounters all sort of embarrassing problems, ranging from
well-defined and separate subfield of computer science.the difficulties in defining the building blocks in a sufficiently

Now the problem is how to represent formally the knowl-general way to the ambiguities about which aspects (the
edge that must be supplied to the machine, knowledge thatmodel or the code) of the blocks can really be reused. This
we can think of as formulated initially by some sort of verbalexplains why a (not trivial) number of knowledge-level pro-
representation. A useful, if somewhat simplified, classificationposals are still theoretical and are characterized by a limited
consists of isolating the following two main groups of knowl-or no implementation effort.
edge representational techniques (all sort of mixed ap-But the main problem of these new methodologies based
proaches are obviously possible):on a pervasive modeling approach is linked with the fact they

forget that the core technology for knowledge management is
still represented by knowledge representational (and pro- • Techniques that follow the classical, symbolic approach.

They are characterized by (a) a well-defined, one-to-onecessing) techniques. To be concretely used, the building
blocks, the generic tasks, the reusable modules, and the correspondence between all of the entities of the domain

to be modeled and their relationships, and the symbolsshareable ontologies must eventually be formalized by using
one or more of the ordinary knowledge representational tech- used in the knowledge representational language; and (b)

by the fact that the knowledge manipulation algorithmsniques, rules, logic, frames, or whatever. Forgetting this com-
mon sense rule to emphasize the modeling and methodologi- (inferences) take this correspondence into account explic-

itly.cal virtues of the knowledge principle can lead, for example,

132 KNOWLEDGE MANAGEMENT

• Techniques that we can define as biologically inspired,
like genetic algorithms or neural nets. In these tech-
niques, only the input and output values have an ex-
plicit, one-to-one correspondence with the entities of a
given problem to be modeled. For the other elements and
factors of the problem, (a) it is often impossible to estab-
lish a local, one-to-one correspondence between the sym-
bols of the knowledge representational system and such
elements and factors; (b) the resolution processes are not
grounded on any explicit notion of correspondence; (c)
statistical and probabilistic methods play an important
part in these resolution processes.

Biologically inspired techniques are dealt with in depth in

Output layer

Hidden layer

Input layer

. . . .

y1 y2

x1 x2
separate articles of the encyclopedia. See, for example, the

Figure 1. A typical three-layer neural network, including an input,MACHINE LEARNING article. In the next section, then we limit
hidden and output layer. Each neuron in each layer is connected with

ourselves to evoking briefly the main properties of neural net- all the neurons of the previous layer; the strength of the connec-
works and genetic algorithms, also briefly mentioning the tion (‘‘synapsis’’) between two neurons is given by an associated
fuzzy logic approach that is often associated with the two pre- weight w.
vious techniques. Expressions like ‘‘soft logic’’ or ‘‘soft pro-
gramming’’ are often employed to designate the union of these
three unconventional techniques. The remaining sections of two steps (see Fig. 2). First, we calculate the weighted sum of
the article are devoted totally to the symbolic approach. the j inputs to this neuron:

sn,i =
∑

j

wn,i, jan−1, j

THE BIOLOGICALLY INSPIRED APPROACH
where an,i is the output (the activation level) of the neuron i
in layer n, and wn,i, j is the weight associated with the connec-Neural Networks
tion between the neuron i in layer n and neuron j in layer

After a period of oblivion due to the demonstration by Minsky n � 1, that is, the strength of this connection. The weights
and Papert (13) of the shortcomings inherent in the pattern- can be either positive, tending to excite the receiving neuron,
recognition capabilities of a particular class (perceptrons) of or negative, tending to inhibit the receiving neuron. An im-
first-generation neural networks, neural nets again became a portant point is that the activation level of each neuron must
very fashionable subject study at the beginning of the 1980s. be bounded, and then permitted to vary between values that
More than loosely analogous with the organization of the can be, for example, 0 and 1.0. This is linked, inter alia, with
brain—in this last contest, only the (very simplified) concepts the fact that the activation level of an artificial neuron (called
of ‘‘neuron’’ and ‘‘synapsis’’ have been preserved—the biologi- sometimes a neurode) is intended to simulate the frequency
cal foundations of neural networks reside in the self-organiz- of neuronal firing in an animal. Given that negative frequen-
ing principles characteristic of living systems. When a thresh- cies have no meaning, no negative values are usually admit-
old number of interconnections (synapes) have been ted for the activation levels. Moreover, the values are
established between a set of neurons and if the network has
been carefully programmed, a form of self-organizing activity
appears that allows an external observer to affirm that the
network learns. For example, it learns to associate a pattern
with another, to synthesize a common pattern from the a set
of examples, to differentiate among input patterns, where
pattern is understood as its more general meaning. See Refs.
14 and 15 for a detailed account of neural networks theory.

A neural network is generally composed of several layers,
in which any number of neurons can be present in each of the
layers. Figure 1 shows a typical three-layer network: The first
layer is the input layer, the last the output layer, and the
layer in between is the hidden layer. Each neuron in each
layer is connected with all the neurons of the previous layer.
All of the neurons act as processing units. Each neuron maps

Transfer
(activation)

function

Weighted sum

f (sn,i)

an–1,0 an–1,1 an–1,2 an–1, jthe multidimensional inputs received from all of the other
neurons (processing units) situated in a lower layer (or some Figure 2. The activation level of a generic neuron is determined in
external stimuli) to a one-dimensional output. Then the acti- two steps. First, we calculate the weighted sum of the inputs to this

neuron. Secondly, a transfer or activation function is applied.vation level of a generic neuron i in layer n is determined in

KNOWLEDGE MANAGEMENT 133

For a given input pattern of the training set, indicated here
simply by xpi, we have to minimize the average squared error
between the corresponding output pattern (the desired val-
ues yk) associated with the m neurons in the output layer and
their actual activation values. As already stated, these values
result from the repeated application of an activation function
f to some values s which depend generally on both the input
values to the network, xpi in this case, and the weights w: w
is the parameter to be adjusted (the variable). Finding the
minimum of the above expression implies finding the first de-
rivative of f . This is really simple to calculate if f is a syg-
moid, expressed as f (x) � 1/(1 � e�x) (see above), its derivative
is simply f (x) [1 � f (x)]. The backpropagation activity begins

Sine or logistic or sigmoid
function

Linear function

Piecewise linear function Hard limiter function
with calculating the errors for the output layer. Then the cu-

Figure 3. Four possible transfer or activation functions considered mulative error is backpropagated from the output layer to the
in an (�1, 1) domain. connections between the internal layers to the input layer and

is used to reassign the weights. The correction of the weights
wn,i, j for the connection between neurons in layer n and neu-
rons in layer (n � 1) uses an error gradient, which is a func-bounded because biological neurons have a maximum firing
tion of the first derivative of f evaluated at layer n, of thefrequency beyond which they cannot go. Then the final activa-
total signal error backpropagated from the subsequent layertion level of neuron i in layer n is given by
(n � 1) and of the weights of the connections between layer
(n � 1) and layer n.an,i = f (sn,i)

Some advantages of the neural network approach and the
conceptual differences with the symbolic approach are wellwhere f is the transfer function or activation function. See
illustrated by the following example derived from (16). It rep-Fig. 2 again.
resents the neural network solution to a well-known problemThe most commonly used transfer function is the sine, or
in robotics, the inverse kinematic problem. It can be schema-logistic, or sigmoid (because of its S shape) function, but many
tized as in Fig. 4, where a robotic arm made of two linearother functions are possible. The four transfer functions nor-
segments of fixed length l1 and l2 can modify the joint anglesmally mentioned in a neural network context are represented
�1 and �2 and move in a two-dimensional plane. The problemin Fig. 3. The equation of the linear function is, obviously,
consists of finding the values of �1 and �2 for some expectedy � x. If a linear transfer function is used, then an,i � sn,i. The
positions (x, y) of the free end point of l2. From Fig. 4, it isequation of the sigmoid is y � 1/(1 � e�x) in the interval
easy to see that the Cartesian position of this end point is(0, 1), and it is y � tanh(x) in the global interval (�1, 1). The
given bypiecewise linear function has a linear behavior in a given in-

terval of x, and it is squared outside this interval. For y lim-
ited to a (0, 1) interval, we could have, for example, y � (1/6) x = l1 cos θ1 + l2 cos(θ1 + θ2) (1)
� x � 0.5 for (�3 � x � 3); y � 1 for (x � 3); and y � 0 for y = l1 sin θ1 + l2 sin(θ1 + θ2)
(x � �3). For y spanning the whole (�1, 1) interval, we could
have y � (2.0/4.0) � x for (�2 � x � 2); y � 1 for (x � 2); and
y � �1 for (x � �2). The hard limiter function has only a
historical significance, associated with the old perceptron era.
In the interval (0, 1), it takes a value y � 1 when x � 0.
Otherwise y � 0. In the interval (�1, 1), it takes a value y �
1 when x � 0. Otherwise y � �1.

Many alternatives have been proposed with respect to
learning techniques. We mention briefly the backpropagation
method, probably the most widely used learning technique. It
is based on the principle of adjusting the weights using the
difference, for a given distribution (pattern) of input values
to the network, between the desired activation levels for the
neurons of the output layer and the levels really obtained.
Then using a training set composed of couples of input-output
patterns, the weights are cyclically modified so that the differ-
ences are eventually minimized according to a least-squares
approach. In the multilayer case considered in this section

1.0

0.5

0.0
0.0 0.5 1.0

l2

l1

θ1

θ2

and simplifying greatly the real situation for comprehensibil-
Figure 4. The inverse kinematic problem. A robotic arm made of twoity—we have to solve equations that have this general form:
linear segments of fixed length l1 and l2 that can modify the joint
angles �1 and �2 and may move in a two-dimensional plane. The prob-
lem consists of finding the values of �1 and �2 for some expected posi-
tions (x, y) of the free endpoint of l2.

min
w

1/m
m∑

k=1

[yk − f (xm, w)]2

134 KNOWLEDGE MANAGEMENT

Using equivalencies like edge representation is distributed and linked with the inter-
action, at a given instant, between the topology of the
network and a given distribution of weights without the possi-
bility of attributing to a particular element of the system

cos(a − b) = cos a cos b + sin a sin b

tan x = sin x/ cos x
(neuron, weight, connection . . .) a very precise representa-
tional function within this global type of representation.we can express Eq. (1) in terms of �1 and �2 to obtain

Genetic Algorithms

The biological metaphor that constitutes the inspiring princi-
ples for the development of the genetic algorithms (GAs) is
that of Darwinian evolution, based on the principle of the

cos θ2 = (x2 + y2 − l2
1 − l2

2)

2 l1l2

θ1 = arctan
�y

x

�
− arctan

[
l2 sin θ2

(l1 + l2 cos θ2)

] (2)

‘‘only the fittest survive’’ strategy. Individuals compete in na-
ture for food, water refuge, and attracting a partner. TheA concrete use of equations like Eq. (2) requires, in prac-
most successful individuals survive and have a relativelytice, a cumbersome manipulation of predefined tables of coor-
large number of offspring. Then their (outstanding) geneticdinate transformations. Moreover, the use of the tables may
material is transmitted to an increasing number of individu-be ineffective for minimal changes in the robotic structure re-
als in each successive generation. The combination of suchsulting from natural or accidental causes. Then the neural
genes (of such outstanding characteristics) produces individu-network approach described in Ref. 16 uses a three-layer net-
als whose suitability (fitness) to the environment sometimeswork like that of Fig. 1, where the two neurons of the input
transcends that of their parents. In this way, species evolve.layer represent the (x, y) Cartesian coordinates of the free end
John Holland (17) and his colleagues at the University ofpoint, the single hidden layer is made up of 32 neurons, and
Michigan are unanimously recognized as the first researchersthe two neurons of the output layer represent the �1 and �2

to envisage utilizing this strategy for solving the usual com-values. A backpropagation learning algorithm is used. The re-
puter science problems.sults of Ref. 16 show that a precision of about 100% (with a

Then the first step in utilizing the GA approach consists inpredefined tolerance of 0.025) is already obtained after less
creating a population of individuals (from a few tens to a fewthan ten training examples. This means that, when the net-
hundreds) represented by chromosomes (sometimes called ge-work is presented with additional and unseen examples of
notypes). From the viewpoint of the problem to be solved,end-point coordinates, it can compute the corresponding joint
each chromosome represents a set (list) of parameters thatangles with a precision that is well in agreement with the
constitutes a potential solution for the problem. For example,predefined error. The advantages with respect to conventional
in a problem requiring a numerical solution, a chromosomecomputational schemes are evident. Neural networks can
may represent a string of digits; in a scheduling problem, alearn to transform from Cartesian coordinates to angles from
chromosome may represent a list of tasks; in a cryptographicexamples only, without any need to derive or program the
problem, a string of letters. Each item of the list is called asolution of inverse equations. Natural or accidental changes
‘‘gene.’’ Traditionally, the parameters (genes) are coded byin the topology of the device are automatically taken into con-
some sort of binary alphabet. For example, let us suppose wesideration by the network. Using a neural network approach,
are using GAs to optimize a function f (x, y, z). Then a chromo-the solution space does not need to be very precisely defined,
some (a possible solution) consists of three genes (the threethat is, the robot learns to behave in a more approximate en-
variables), each represented in binary form, for example in 10vironment. Of course, the astonishing success of this particu-
bits, which means that we have a range of 1024 discrete val-lar type of application—which can be reduced to a pattern
ues that can be associated with each variable. Then a chromo-recognition problem, a domain where the utilization of neural
some takes the form of a string of 30 binary digits. Note, how-networks is particularly recommended—must not be overesti-
ever, that this binary technique is not at all mandatory.mated. The symbolic approach can cover, in fact, a number of

The fitness function constitutes another essential aspect ofpossible domains of utilization that are surely more important
the GA approach. It consists of some predefined criterion ofgenerally than the number of domains where some biologi-
quality that is used to evaluate the utility of a given chromo-cally inspired approach is particularly appropriate.
some (of a solution). Because the fitness of a solution is al-We conclude this section with some general remarks. The
ways defined with respect to the other members of the popula-example considered in the previous paragraphs is a good il-
tion, the fitness for a particular chromosome is sometimeslustration of the differences between the symbolic and biologi-
defined as f i/f av, where f i is the result produced for the chro-cally inspired approach. In a symbolic approach, the situation
mosome by an evaluative function that measures performanceof Fig. 4 is represented by Eqs. (1) and (2). The inference pro-
with respect to the chosen set of parameters (genes), and f avcedure consists of solving Eq. (2) for a given couple (x, y), for
is the average result of the evaluation for all of the chromo-example, by using predefined tables. The same situation is
somes of the current population. In an optimization problemrepresented in a neural network approach by a network like
of a function f (x, y, z), like that mentioned previously, thethat of Fig. 1 where a correct distribution of weights has al-
fitness function simply corresponds presumably, to an abso-ready been learned. The inference procedure corresponds
lute minimum or maximum of the function but, in other prob-again to running the network for a given couple (x, y). In the
lems, it measures, for example, a number of generations, asymbolic approach, there is a very precise, one-to-one corre-
processing time, a real cost, a particular parametric ratio.spondence between entities to be modeled and symbols. For

The fitness function alone would only permit statisticallyexample, the first segment of the arm corresponds to the sym-
bol l1, the first angle to �1, etc. In the second case, the knowl- selecting some individuals without improving the initial or

KNOWLEDGE MANAGEMENT 135

current population. This task is achieved by the genetic oper- Briefly, Genetic Programming can be seen as a variation of
GAs where the evolving individuals are computer programsators, crossover and mutation. In a given population some in-

dividuals are selected for reproducing with a probability (sto- instead of chromosomes formed of fixed-length bit strings.
When executed, the programs solve the given problem (19).chastic sampling) proportional to their fitness. Then the

number of times an individuals is chosen represents a mea- One of the main features of Genetic Programming is that the
programs are not represented as lines of ordinary code, butsure of its performance within the original population. In con-

formance with the principle of the ‘‘strongest survive’’ para- rather as parse trees corresponding to a coding syntax in pre-
fix form, analogous to that of the LISP programming lan-digm, outstanding individuals have a better chance of

generating a progeny, whereas low-fitness individuals are guage. The nodes of the parse trees correspond to predefined
functions (function set) that are supposed to be appropriatemore likely to vanish.

Crossover takes two of the selected individuals, the ‘‘par- for generally solving problems in a domain of interest, and
the leaves, that is, the terminal symbols, correspond to theents’’, and cuts their gene strings at some randomly (at least

in principle) chosen position, producing two head and two tail variables and constants (terminal set) that are suited to the
problem under consideration. Then crossover is implementedsubstrings. Then the tail substrings are switched, giving rise

to two new individuals called offspring, each of which inherit by swapping randomly selected subtrees among programs.
Normally, mutation is not implemented.some genes from each of the parents. The offspring are cre-

ated through the exchange of genetic material. Crossover is Now we add some details about crossover, the most im-
pressive of the GA techniques. Figure 6 is an example of sin-considered the most important genetic operator because it can

direct the search towards the most promising regions of the gle-point crossover. For simplicity, we suppose we are dealing
with the optimization of an f (x) function. In this case, the twosearch space. Mutation is applied to the offspring after cross-

over, and consists of random modification of the genes with parent chromosomes represent two values of x, coded as 10-
bit binary numbers ranging between 0000000000 anda certain probability (normally small, e.g., 0.0001) called the

mutation rate. Mutation’s function is reintroducing diver- 1111111111. These values represent the lower and upper
bounds of the validity interval for x. To operate the crossover,gence into a converging population, that is, ensuring that no

point in the search space is neglected during processing. In a random position in the chromosome string is selected, six in
Fig. 6. Then the tails segments are swapped to produce thefact a correct GA should converge, which means that, genera-

tion after generation, the fitness of the average individual offspring, which are then inserted in the new population in
place of their parents. Note that crossover is not systemati-must come closer to that of the best individual, and the two

must approach a global optimum. Mutation can be conceived, cally applied to all the possible pairs formed by the individu-
als selected for reproduction, but it is activated with a cross-in biological terms, as an error in the reproductive process,

the only way to create truly new individuals (crossover uses over rate typically ranging from 0.6 to 1.0, as compared with
the very low mutation rate, see previous discussion. Mutationof already existent genetic material).

Solving a problem using a GA approach consists of devel- consists of changing, for example, the second offspring of
Fig. 6 from 1110011010 to 1110011110, assuming then thatoping a sort of biological cycle based on selecting the fittest

individuals and using the genetic operators, which can be vis- the eighth gene has been mutated (we identify here, for sim-
plicity’s sake, bits with genes). After producing a certain num-ualized with the algorithm of Fig. 5.

Genetic algorithms are part of a wider family of biologi- ber of generations, we should find (for our minimization prob-
lem) a set of values of x, corresponding to the bestcally inspired methods generally called evolutionary algo-

rithms (18), which are search and optimization procedures all chromosomes in each generation, all clustered around the
value of x corresponding to the absolute minimum of f (x).based on the Darwinian evolution paradigm discussed at the

beginning of this section. They consist of simulating the evo- Note that crossover and mutation can produce new chromo-
somes characterized by fitness lower than the fitness of thelution of particular individuals by applying the processes of

selection, reproduction, and mutation. Apart from GAs, other parents, but they are unlikely to be selected for reproduction
in the next generation.evolutionary methodologies are known under the name of

Evolutionary Strategies, Evolutionary Programming, Classi- Single-point crossover, as illustrated in Fig. 6, is not the
only technique used to execute crossover. In the two-pointfier Systems, and Genetic Programming. Genetic Program-

ming has emerged in recent years as particularly important. crossover, each chromosome to be paired is absorbed into a

Figure 5. Pseudocode schematically describing a

BEGIN /* genetic algorithm */
produce an initial population of individuals
evaluate the fitness of all the initial individuals

WHILE termination condition not satisfied DO
BEGIN /* produce a new generation */

select fitter individuals for offspring production
recombine the parents’ genes to produce new individuals
mutate some individuals stochastically
evaluate the fitness of all the new individuals
generate a new population by inserting some good news

individuals and by discarding some old bad ones
END

END standard genetic algorithm.

136 KNOWLEDGE MANAGEMENT

Figure 6. The single-point crossover
technique. Two offspring are generated
from two parents by a crossover of length
4 (the length of the tail segments). The
tails segments are swapped to simulate
an exchange of genetic material.

1 00 0 0 1 1 0 1 0 1 01 1 0 1 0 0 0 1

1 00 0 0 1 0 0 0 1 1 01 1 0 1 1 0 1 0

Parents

Offspring

Crossover
point

Crossover
point

ring by joining the ends of the bit string together. To remove eration of a GA can be shown (schema theorem) for low-order
schemata with short �. Because � is a parameter linked witha segment from this ring and execute swapping, two cut

points are necessary. Multipoint crossover operates according crossover, and o with mutation, a search for the condition of
an optimum behavior of a GA can limit itself to consideringto the same principle. Other techniques exist, for example,

uniform crossover (see Refs. 20 and 21). �. A building block is an above average schema with a short
�. Then the power of a GA consists of being able to find goodFrom the viewpoint of view of symbolic, biologically in-

spired approaches, it is clear that the GA solution, like the building blocks. Successful coding option is an option that en-
courages the emerging of building blocks, etc. These resultsneural network approach examined in the previous section,

does not satisfy the requirements of (1) having all the ele- are obtained under very idealized conditions and can only
supply very general indications of trend.ments of the problem explicitly represented by dedicated sym-

bols and (2) being able to trace exactly the contribution of The classical reference in the GAs field is Ref. (23). Refs.
22 and 24 are two good introductory papers. Ref. 25 is a morethese symbols in constructing the final solution. As for neural

networks, an explicit representation of the intervening factors advanced introduction.
is given only for the input and output values, and stochastic
processes come in at any step of the global procedure (see Some Remarks About Fuzzy Knowledge
the previous discussion of the stochastic sampling that selects Representational Techniques
some individuals for reproduction, where the probabilities are

The fuzzy logic paradigm is also based on some sort of biologi-represented by the crossover and mutation rates). There is no
cally inspired approach, even if the analogy looks less evident.accepted general theory which explains exactly why GAs have
It consists of the fact that fuzzy logic intends to simulate thethe properties they do (22, p. 64). One of the first attempts to
way humans operate in ordinary life, that is, on a continuum,explain rigorously how GAs work is given by the so-called
not according to crisp all-or-nothing Aristotelian logic. Hu-schema theorem proposed first by Holland (17). A schema is a
mans use, for example, some forms of gradually evolving lin-pattern or template that, according to the usual binary coding
guistic expressions to indicate, with respect to a given ther-option, corresponds to a string of symbols chosen in the fol-
mal environment, that they are comfortable, cold, or freezing.lowing alphabet: �0, 1, #�; # is a wild card symbol that can
Fuzzy logic allows quantifying such fuzzy concepts represent-stand for both 0 and 1. Then schema like [1#0#1] is equiva-
ing our sensations about temperature by using numeric val-lent to the following family of strings (chromosomes or parts
ues in the range of 0 (e.g., comfortable) to 1 (e.g., freezing andof chromosomes): [10001], [10011], [11001], [11011]. Holland’s
0.7 representing ‘‘cold’’).idea was that, having evaluated the fitness of a specific string,

More precisely, according to the fuzzy sets theory everythis value could also supply partial information about all of
linguistic term expressing degrees of qualitative judgements,the strings pertaining to the same family. Then the influence
like tall, warm, fast, sharp, close to etc., corresponds to a spe-of the basic GA operations, selection, crossover and mutation,
cific fuzzy set. This theory, introduced by Zadeh in Ref. 26, ison the good behavior of an algorithm could be established by
the core of the fuzzy logic paradigm; see also Refs. 27 and 28.evaluating their action on the schemata. By determining the
The elements of the set represent different degrees of mem-‘‘good’’ schemata, and by passing these to the chromosomes
bership able to supply a numeric measure of the congruenceproduced in each following generation, the probability of pro-
of a given variable (e.g., temperature) with the fuzzy conceptducing even better solutions could be increased.
represented by the linguistic term.Three of the essential parameters that intervene in the

In very simple terms, knowledge representation accordingschema theorem are the length l of a schema (the global num-
to the fuzzy logic approach consists in computing the degreeber of symbols, five in the above schema), the defining length
of membership with respect to a group of fuzzy sets for a col-�, and the order o of a schema. � is the distance between the
lection of input values. For example, we will assume that, forfirst and the last non-# symbols in a schema (again five in the
a fuzzy application dealing with a temperature regulatingprevious schema, three for the schema [#0#1]); o � l � num-
system, the fuzzy sets to be considered for the variable ‘‘tem-ber of the # symbols (three for the first schema, two for the
perature’’ are cold, cool, comfortable, warm and hot. The pro-second). Now an exponential growth of schemata having a

fitness value above the average value in the subsequent gen- cess that allows us to determine, for each of the inputs, the

KNOWLEDGE MANAGEMENT 137

corresponding degree of membership with respect to each one tiplying all of the fuzzy values of the antecedent together. The
truth value obtained is associated with all of the fuzzy setsof the defined sets is called ‘‘fuzzification.’’ The degrees are

calculated by using appropriate membership functions that representing the variables, like cooling and speed, that make
up the consequent (then part) of the rule. Then we could find,characterize each one of the sets. The values resulting from

the calculus are collected into fuzzy input variables like, for for example, that the degree of membership (fuzzy output) for
the fuzzy set ‘‘speed equals high’’ is 0.8. Fuzzy outputs mustexample, temperature_is_cold.

The definition of the membership functions for the fuzzy then be ‘‘defuzzificated’’ to obtain crisp values, for example,
an exact value for the speed of the fans. A common defuzzifi-sets is essential for executing the fuzzification process. Usu-

ally, the functions are created experimentally on the basis of cation technique is the centroid (or center-of-gravity) method;
see Ref. 29 for the technical details.the intuition or experience of some domain expert. Even if

any suitable mathematical function can be used, at least in As a last remark, we can note that, when a fuzzy logic
system is in operation, the membership functions are fixed.principle, to represent the membership, normally only trian-

gles and trapezoids are utilized because their use favors all of However, it is possible to envisage fuzzy systems that employ
adaptive techniques to adjust their membership functions andthe operations of construction, maintenance, manipulation.

For example, Figure 7 shows some possible membership func- are therefore better able to better reflect a given environment.
It is also possible to use adaptive techniques to dispose of antions for the five fuzzy sets introduced previously. As can be

seen on this figure, an input value of 83�F is translated into evolving system of rules. In this case, a close relationship
with neural network systems can then be established. For atwo fuzzy values, 0.2 which represents the degree of member-

ship with respect to the fuzzy set ‘‘hot,’’ and 0.8 representing recent paper on the theory of fuzzy neural integration see Ref.
30. See Ref. 31 for an example of a neuro-fuzzy learning con-the degree of membership with respect to the fuzzy set

‘‘warm.’’ Imprecise, approximate concepts like warm and hot trol system.
are translated into computationally effective, smooth, and
continuous terms. THE SYMBOLIC APPROACH

Then the fuzzy values calculated by using the membership
functions are utilized within systems of if-then rules in the A symbol is a physical mark that can be reproduced and that
style of ‘‘If the temperature is warm and the humidity is high, can be associated with a precise and unequivocal meaning by
then cooling must be maximum and fans speed is high.’’ In a an observer. According to A. Newell and H. A. Simon (32),
rule like this, humidity, cooling, and speed are obviously, like ‘‘Physical symbol systems are collections of patterns and pro-
temperature, defined in terms of fuzzy sets and associated cesses, the latter being capable of producing, destroying and
membership functions. There will be, for example, a triangle- modifying the former’’ (32, p. 125). In practice, the knowledge
or trapezoid-shaped function that represents the membership representational paradigms associated with the symbolic ap-
function for the fuzzy set ‘‘speed equals high.’’ The actual val- proach range between two possible basic forms:
ues of the variables, like temperature and humidity men-
tioned in the antecedents (if parts) of the rules are translated • Pure rule-based representations supporting inference by

resolution. Inside this first pole, we can differentiate theinto the corresponding fuzzy values (degrees of membership)
systems developed in a logic programming context fromcomputed through the fuzzification process. Then a truth
the simplest Expert Systems shells based on the produc-value for the rule can be calculated. Normally, it is assumed
tion rules paradigm.that this corresponds to the weakest (last-true) antecedent

fuzzy value, but other methods can be used, for example, mul- • Pure frame- or object-based representations, supporting
inference by inheritance, defaults and procedural attach-
ment. A particular class of inheritance-based systems
that are particularly fashionable today are the so-called
description logics (or terminological logics) systems.

In the following, we deal first with the resolution principle
and its associated representational systems, logic program-
ming, and production rules. Then we describe the inheritance
principle, and the corresponding representational systems,
frames—more generally knowledge engineering software en-
vironments (KESEs)—and the terminological languages. We
do not deal explicitly with a (once very popular) knowledge
representational paradigm like semantic networks because
the modern realization of this paradigm coincides practically
with the frame-based systems. See, however, Ref. 33. For ad-
vanced types of representation which are derived in some way
from semantic networks, like Conceptual Graphs and Narra-

D
e

g
re

e
 o

f
m

e
m

b
e

rs
h

ip

0.5

0.2

0.0

1.0

0.8

50 60 70 8083 90 100

Temperature (°F)

Cold
Comfortable

Cool Warm Hot

tive Knowledge Representation Language (NKRL), see, re-
Figure 7. Membership functions for the five fuzzy sets cold, cool, spectively, Refs. 34 and 35.
comfortable, warm, and hot defined for the variable temperature. An
input value of 83�F is translated (knowledge representation) into two The Resolution Principle
fuzzy values, 0.2 (degree of membership with respect to the fuzzy

The resolution principle originates in the area of automaticset hot), and 0.8 (degree of membership with respect to the fuzzy
set warm). theorem proving, an AI discipline where people try to use

138 KNOWLEDGE MANAGEMENT

computers to prove that a theorem, that is, a clause (see later) 2. Put the new list of axiom in clausal form, obtaining
whose truth value is yet unknown, can be derived from a set then a global set of clauses.
of axioms, that is, clauses that are assumed to be true. The 3. Simplify the clauses and produce the corresponding re-
resolution principle was introduced by J. A. Robinson in a solvents through the application of the chain rule Eq.
famous paper (36); see also Ref. 37. (3) to the clauses of the global set.

In its most simple formulation (chain rule), the resolution
4. Add these resolvents to the global set, and recursivelyprinciple can be reduced to an inference rule expressed as

produce new resolvents through the systematic applica-
tion of Eq. (3).

From (A ∨ B) and (¬A ∨ C), deduce that (B ∨ C) (3) 5. Halt the procedure when a contradiction can be found,
that is, when an empty clause is produced. In this case,
report that the theorem is TRUE. If the empty clause,In Eq. (3), we follow the usual conventions of the predicate
sometimes noted as �, cannot be produced, report thatcalculus in logic. Then A, B, and C are atomic formulas or
the theorem is FALSE.literals, that is, in their most general form they are expres-

sions of the type P(t1 . . . tn) where P is a predicate and t1
Resolution is a particularly powerful procedure because it. . . tn are terms. Predicates represent statements about indi-

can be shown that resolution is complete for first-order predi-viduals, both by themselves and in relation to other individu-
cate logic (i.e., it can prove all of the theorems in this particu-als. From a semantic point of view, they can assume the value
larly useful form of logic). Moreover, it is sound, that is, itof either TRUE or FALSE. Terms may be constant symbols,
will not affirm that some nontheorems are true. Note, how-like ‘‘Peter.’’ Constant symbols are the simplest form of term,
ever, that, if the theorem is FALSE (i.e., the empty clauseand they are used to denote the interesting entities (physical
cannot be produced), the process generally cannot terminate.objects, people, concepts, etc.) in a given domain of discourse.

As a very simple example, let us consider the case of theThen a simple atomic formula can be ‘‘love (Peter, Mary)’’
well-known modus ponens in logic, which affirms that, fromwhere ‘‘love’’ is the predicate, and ‘‘Peter’’ and ‘‘Mary’’ are the
p and p � q (i.e., p and p � q, the axioms, both have a truthterms. But terms may also be variables or expressions of the
value � TRUE), we can deduce the theorem q. Using the logi-form f (t1 . . . tn), where f is a n-place function and t1 . . . tn cal equivalence: ¬ x1 ∨ x2 eq. x1 � x2, we can reduce the twoagain are terms. It is important to recall here that functions,
axioms to the clauses (1) p and (2) ¬ p ∨ q, which are congru-as the difference of predicates, do not return TRUE or
ent with Eq. (3). Now we have to add to these two clauses aFALSE, but that they behave like operators returning objects
third clause given by the negation of the theorem, that is, (3)related to their arguments. For example, the function ‘‘father- ¬ q. Resolving the three clauses against each other leads im-of ’’ applied to the argument (a term represented by a constant
mediately to the reciprocal cancellation of p and ¬ p in (1)

symbol) ‘‘Peter’’ would supply the value ‘‘John.’’ The symbols and (2), leaving us with the final contradiction q and ¬ q.∨ and ¬ (logical connectives) represent, respectively, the in- Then the theorem has the truth value TRUE.
clusive or and the negation. From what we have said until now, a first phase in the

The ‘‘disjunctions’’ (A ∨ B), (¬ A ∨ C) and (B ∨ C) in Eq. (3) resolution process consists of converting the (negation of the)
are particularly important types of well-formed formulas (wff) theorem and the axioms into a set of disjointive clauses. Even
of the first-order predicate calculus called clauses. It can be if, as already stated, it can be proven that this conversion is
shown (see also later) that each standard expression of the feasible for any possible wff, the real implementation can be
predicate logic can be reduced to a set of disjunctive clauses, relatively complex, especially in the presence of functions,
where the variables possibly included in the clauses are (im- variables and quantifiers. The details of this conversion pro-
plicitly) universally quantified. However, the intuitive mean- cess can be found in (Ref. 38, pp. 145–149). It consists of a
ing (the direct translation into an English statement) of the series of transformations that use well-known properties of
original logic expression is often completely lost after the the predicate calculus and result in eliminating the symbols
translation into clausal form. different from ∨ and ¬ and the quantifiers 	 (for all) and

From Eq. (3), it is evident that the resolution process, (there exists) in a progressive simplification of the original
when applicable, can take a pair of parent well-formed formu- formulas.
las (wffs) in the form of clauses to produce a new, derived For example, the first step of the transformation process
clause (the resolvent), on condition that one of these clauses consists of getting rid of the implication symbol, �. This is
contains a literal (atomic formula), ¬ A, which is the exact eliminated by using the property: x1 ∨ x2 eq. to ¬ x1 � x2. The
negation of one of the literals, A, in the other clause. The two de Morgan laws: ¬ (x1 ∧ x2) eq. to ¬ x1 ∨ ¬ x2; ¬ (x1 ∨ x2)
literals A and ¬ A appear as cancelled. Then the resolution eq. to ¬ x1 ∧ ¬ x2 are used to reduce the scope of the negation

symbols, that is, to constrain the negation symbols to applymethod for automatic theorem proving is a form of proof by
to at most a single literal (moving inward). Existential quan-contradiction. In its more general formulation this method
tifiers
 are generally simply eliminated by introducing a con-consists in assuming that, if a theorem follows from its
stant c, for example,
 x P(x) is replaced by P(c). Then weaxioms, the axioms and the negation of the theorem cannot
claim that an x exists by selecting a particular constant tobe simultaneously true. The proof of a theorem using resolu-
replace x. Existential quantifiers
 that occur within thetion is as follows:
scope of a universal quantifier 	 present additional problems.
They are eliminated by replacing their variables with a func-

1. Negate the theorem to be proved, and add the negated tion (skolem function) of the universally quantified variable.
Let us consider, for example, 	y
x P(x, y), to be read as ‘‘fortheorem to the list of axioms.

KNOWLEDGE MANAGEMENT 139

all y, there exists an x such that P(x, y).’’ Because the existen- formulas. Then we can generally write a clause as
tial quantifier is within the scope of the universal quantifier,
we can suppose that the x ‘‘that exists’’ depends on the value A1 ∨ A2 . . . ∨ Am ∨ ¬B1 ∨ ¬B2 . . . ∨ ¬Bn m, n ≥ 0 (4)
of y, that is, that it is always possible to find a function that

Now clause (4) can be written as A1 ∨ A2 . . . ∨ Am ∨ ¬ (B1 ∧takes argument y and systematically returns a proper x. A
B2 . . . ∧ Bn) using one of the two of de Morgan’s laws, andfunction like this is called a skolem function, Skolem(y),
then: ¬ (A1 ∨ A2 . . . ∨ Am) � ¬ (B,B2 . . . ∧ Bn) using thewhich maps each value of y into x. Then using this Skolem
equivalence: x1 ∨ x2 eq. to ¬ x1 � x2. Now we can use the so-function in place of the x ‘‘that exists,’’ we can eliminate the
called contrapositive law: x1 � x2 eq. to ¬ x2 � ¬ x1 (see Ref.existential quantifier and rewrite the original formula as
38, p. 138) to write Eq. (4) as:	y P[(Skolem(y), y)]; (see Ref. 38, pp. 146–47). The explicit

occurrences of the symbol ∧, ‘‘and,’’ in the transformed for-
(B1 ∧ B2 . . . ∧ Bn) ⊃ (A1 ∨ A2 . . . ∨ Am) (5)mula are eliminated, with breaking this formula into a set of

disjointed clauses as required by the resolution principle. This
The result obtained is particularly interesting because it af-makes sense because each part of a conjunction must be
firms that any clause is equivalent to an implication, whereTRUE for the whole conjunction to be TRUE. The transforma-
(B1 ∧ B2 . . . ∧ Bn) is the antecedent, or the conditions of thetion process also includes (1) renaming, if necessary, all of the
implication, and (A1 ∨ A2 . . . ∨ Am) is the consequent, or the(universally quantified) variables so that no two variables are
conclusion of the implication. Stated in different terms, Eq.the same in different disjunctive clauses; (2) eliminating the
(5) says that, if the different conditions B1, B2 . . ., Bn are alluniversal quantifiers (in reality, this elimination is only a for-
verified (TRUE), they imply a set of alternative conclusionsmal step because, as already stated, all the variables are as-
expressed by A1, A2, . . ., Am. The standard conventions forsumed implicitly universally quantified within the resulting
expressing implications, (see Ref. 42, pp. 425–427), elude theclauses).
use of the usual logical connectives like ∧, � and ∨. Then weNow we must mention a very important point about the
write Eq (5) asresolution principle. As we have seen before, a fundamental

step in the procedure consists in identifying two literals, A A1, A2, . . ., Am ← B1, B2, . . ., Bn m, n ≥ 0 (6)
and ¬ A, where the second is the exact negation of the first.
This allows us to eliminate the two. If the literals are reduced where the arrow � is the connective ‘‘if ’’ that represents the
to atomic constants or if the terms they include do not imply implication, B1, . . ., Bn are the joint conditions and A1, . . .,
the presence of variables, their identification is immediate. Am the alternative conclusions. B1, . . ., Bn and A1, . . ., AmThis is not true when variables and skolem functions are are literals (atomic formulas), as defined previously. We can
present. To give a simple example, to cancel the literals P(a) add that the variables x1, . . ., xk that can appear in a clause
and ¬ P(x), where a is a constant and x a variable, it is neces- C are implicitly governed by the universal quantifier 	, so
sary to recognize that (1) the literal ¬ P(x) asserts that there that a clause C like the clause represented by Eq. (6) is, in
exists no x for which P(x) is true (x is universally quantified), reality, an abbreviation for 	x1, . . ., 	xk C. Examples of
while (2) P(a) asserts that there is an object a for which P(a) clauses written according to the format of Eq. (6) are: ‘‘Grand-
is true. Then generally to be authorized to cancel two literals, parent(x, y) � Parent(x, z), Parent (z, x); (m � 1),’’ which ex-
it is necessary first to execute their ‘‘unification.’’ We recall presses the implication that ‘‘x is grandparent of y if x is par-
here that unification is informally defined as the process of ent of z and z is parent of y’’, and ‘‘Male(x), Female(x) �
finding a common substitution instance for the arguments of Parent(x, y);(n � 1),’’ saying that ‘‘x is male or x is female if x
the predicates making up two literals that render these liter- is parent of y,’’ where the alternative or/and is linked with
als identical; see Ref. 39. In our case, the substitution in- the different meaning of the symbol ‘‘,’’ in the condition
stance is obviously the constant a. (‘‘and’’) and conclusion (‘‘or’’) segments of the implication; see

the original formula in Eq. (5).
Logic Programming

Horn Clauses. Now we can introduce the Horn clausesLogic programming refers to a programming style based on
(named after Alfred Horn, who first investigated their proper-writing programs as sets of assertions in predicate logic
ties). Horn clauses are characterized by having at most one(clauses): these clauses have both (1) a declarative meaning
positive literal. Then expression (4) can be written asas descriptive statements about entities and relations proper

to a given domain (knowledge representation) and, in addi- A ∨ ¬B1 ∨ ¬B2 . . . ∨ ¬Bn n ≥ 0 (7)
tion, (2) they derive a procedural meaning because they are
executable by an interpreter. This last process is based solely Executing the same transformations on (7) we have applied
on the resolution principle, where unification involving a pat- to (4) and expressing the result according to the standard con-
tern matching algorithm represents the central element. Re- vention, we obtain finally:
striction to a resolution theorem prover for the Horn clauses
subset of logic (see Ref. 40 and 41) provides the logical basis A ← B1, B2, . . ., Bn n ≥ 0 (8)
for the well-known programming language PROLOG (PRO-
gramming in LOGic), and supplies PROLOG and its deriva- Eq. (8) translates the fact that Horn clauses represent a par-
tives with a relative tractability of deductions; see also later. ticular sort of implication which contains at most one conclu-

As we have already seen, a clause is a particular form of sion. Restriction to Horn clauses is conceptually equivalent to
logical formula that consists of a disjunction of literals, that disallowing the presence of disjunctions (∨) in the conclusive

part of the clause. Note that, in Eq. (8), we can now give tois, a disjunction of atomic formulas and of negations of atomic

140 KNOWLEDGE MANAGEMENT

the comma, ‘‘,’’, the usual meaning of ‘‘logical and’’, ∧. When Unification must, of course, be used to derive the empty
clause � that, according to the procedural interpretation, nown � 0, the implication becomes an assertion, and the symbol

� can be dropped. Then the following example: Grandpar- can be considered a STOP instruction.
Following Ref. 42 (p. 428), now we can describe the generalent(John, Lucy), asserts the fact that John is a grandparent

of Lucy. The interest in using Horn clauses, less expressive, format of a logic program (slightly) more formally. Let us as-
sume a set of axioms represented by a set of Horn clauses (8),from a knowledge representational point of view, than the

general clauses considered until now, is linked with the well- and let us assume the procedural interpretation. The conclu-
sions we can derive from the previous set must, according toknown principle (see Ref. 43 and later, the section on termino-

logical logics) that suggests reducing the power of the knowl- the resolution principle, be negated (i.e., represented as a de-
nial) and added to the set of axioms. According to what isedge representational languages so that formalizing interest-

ing applications is still possible but, at the same time, the already expounded, they are expressed as a clause of the form
Eq. (9), consisting solely, according to the procedural interpre-corresponding computational tasks are computationally feasi-

ble, that is, polynomially tractable or at least decidable. For tation, of procedural calls Ci which behave as goals:
example, linear algorithms exist for dealing with proposi-
tional logic in Horn clauses form (see Ref. 44). ← C1, C2, . . ., Cm m > 0 (9)

Until now, we have implicitly associated a declarative
meaning with our (Horn) clauses, which represent then static Now the proof consists of trying to obtain the empty clause
chunks of knowledge such as x is grandparent of y if x is par- � through a resolution process, expressed as follows. A proce-
ent of z and z is parent of y (whatever may be the values of dural call Ci in the goal statement Eq. (9) invokes a procedure
the variables x and y) or John is a grandparent of Lucy. But Eq. (8) pertaining to the original set of axioms according to
we can also associate a procedural meaning with a clause like the following modalities:
Eq. (8). In this case, and assuming a top-down resolution
strategy, Eq. (8) may be viewed as a procedural declaration a. by unifying the call Ci in Eq. (9) with the head (the
that reduces the problem of the form A to subproblems B1, name) of Eq. (8);
B2, . . ., Bn, where each subproblem is interpreted in turn as

b. by replacing the call Ci in Eq. (9) with the body of Eq.a procedural call to other implications. The conclusion A of
(8), then the new goal statement isthe implication is the head or the name of the procedure, and

it identifies the form of the problems that the procedure can
� C1, . . ., Ci�1, B1, . . ., Bn, Ci�1, . . ., Cm;solve. The procedural calls Bi, or goals, form the body of the

procedure. Looked at this way, the first example previously
c. by applying the substitution instance � to Eq. (9),(an implication) can be interpreted as follows: to find an x

that is a grandparent of y, try to find a z who has x as a
parent and who is, in turn, a parent of y, and the second (an � (C1, . . ., Ci�1, B1, . . ., Bn, Ci�1, . . ., Cm)�,
assertion) can be interpreted as follows: when looking for the
grandparent of Lucy, return the solution John. where � replaces variables by terms to render the head A and

Now to complete the procedural interpretation of Horn the call Ci identical, A� � Ci�.
clauses and to show how this interpretation is perfectly coher- Now we give a very simple, self-evident example. Let us
ent with the mechanisms of the resolution principle intro- suppose the following set of Horn clauses, which includes both
duced in the previous section, we must introduce, after the implications and assertions:
‘‘implications’’ and the ‘‘assertions,’’ a third form of Horn
clause, the ‘‘denials.’’ In this case, the literal A of Eq. (8) dis-

1. Grandparent(x, y) � Parent(x, z), Parent (z, y)appears, and a denial is represented as � B1, B2, . . ., Bn,
2. Parent(x, y) � Mother(x, y)with n � 0. The name ‘‘denial’’ comes from the fact that, if we
3. Parent(x, y) � Father(x, y)drop the only positive literal A from the original expression

of a Horn clause Eq. (7), and we apply one of the two of de 4. Father (John, Bill)
Morgan’s law, Eq. (7) is transformed into: (¬ B1 ∨ ¬ B2 . . . ∨ 5. Father (Bill, Lucy).
¬ Bn) eq. ¬ (B1 ∧ B2 . . . ∧ Bn). Then, a denial like: � Male
(x), Grandparent(x, Lucy), means literally, in a declarative in-

Note that 2 and 3 are the Horn equivalents of a generalterpretation, that, for no x, x is male and he is the grandpar-
implication which could be expressed as follows: Father(x, y),ent of Lucy.
Mother(x, y) � Parent(x, y), that is, ‘‘x is the father of y or xDenials are used in a logic programming context to express
is the mother of y if x is parent of y.’’ Now we will use a goalthe problems to be solved. To be congruent with the resolution
statement likeprinciple process, we assume that a particular denial (all the

denials comply with the clause format) is the negation of the
6. � Grandparent(John, Lucy)theorem to be proved and, as usual, we will add the denial to

the existing assertions and implications (clauses), the axioms,
to try to obtain the empty clause, therefore proving the theo- that is we want to prove that John is really a grandparent of

Lucy. According to the previous algorithm, we must find (a),rem. Returning to the previous example, Male(x), Grandpar-
ent(x, Lucy), this can represent a theorem to be proved. In the a clause head which can unify the (unique) procedural call

given by 6. This clause head is, of course, the head of 1, andprocedural interpretation, we will assume this as query that,
according to the top-down strategy chosen (see above), charac- the unification produces, see (c), the bindings x � John, y �

Lucy. Taking these bindings into account and applying stepterizes the starting point of the normal resolution process.

KNOWLEDGE MANAGEMENT 141

(b) of the algorithm, we obtain a new goal statement from the in the body of that clause for the original literal in the query
(see the logic programming example illustrated before), PRO-body of 1:
LOG follows these two rules:

7. � Parent(John, z), Parent (z, Lucy).
• The clauses that together make up the program are

tested strictly in the order they appear in the text of theAgain we apply the algorithm using the first procedural call
program. In the current goal statement, the leftmost lit-C1 of 7, that is, Parent(John, z). This unifies both the heads
eral (procedural call) is systematically chosen.of 2 and 3 producing two new goal statements, 8 and 9, with

the bindings x � John, y � z: • When a success or a failure is attained, the systems
backtracks, that is, the last extensions (substitutions,

8. � Mother(John, z), Parent (z, Lucy) transformations) in the goal statement are undone, the
previous configuration of the statement is restored (chro-9. � Father(John, z), Parent (z, Lucy).
nological backtracking), and the system looks for alterna-
tive solutions starting from the next matching clause forThe procedural call C1 of 8, Mother(John, z), fails to unify the
the leftmost literal of the reinstated statement.set of Horn clauses. The procedural call C1 of 9, Father(John,

z), on the contrary unifies with 4 linking z to Bill. Given that
In practice this means, among other things, that PROLOG’s4 is not endowed with a body, the steps (b) and (c) of the
goals are executed in the very order in which they are speci-algorithm simply reduce the goal statement 9 to Parent(Bill,
fied. Therefore, PROLOG programmers order their goals soLucy) that, through 3, becomes Father(Bill, Lucy) finally pro-
that the more selective ones are declared first. To optimizeducing the empty clause � through the unification with 5.
this search mechanism (i.e., depth-first search with back-
tracking), PROLOG uses other extralogical features, like thePROLOG AND DATALOG. Now, if we substitute the sym-
built-in predicates ‘‘fail’’ (which automatically triggers a fail-bol ‘‘�’’ in Eq. (8) with ‘‘:-’’, with the same meaning, we obtain
ure) and ‘‘cut’’. Cut is represented as ‘‘/’’ or ‘‘!’’ and it is usedthe usual representation of a PROLOG clause:
to limit searches in the choice-tree which are too expensive
because of the systematic use of backtracking (see later).A : −B1, B2, . . ., Bn n ≥ 0 (10)
Moreover, PROLOG provides some limited data structures
(e.g., lists, trees), means for dealing with variables (e.g., isvar,where A (the head) and Bi (the body) have the same interpre-
rreal, integer), and arithmetic. Finally, some utilities for de-tation as in the previous sections and the symbol ‘‘:-’’ stands
bugging and tracing programs are also provided. Some offor the logical implication ‘‘from right to left’’, meaning that,
these features could also be expressed in first-order logic.to solve the goal expressed in the head, one must solve all
Others (read/write, cut) have no logical equivalent.subgoals expressed in the body. A fact is represented in PRO-

We will not dwell on the technicalities of the PROLOG pro-LOG by a headed clause with an empty body and constant
gramming, which are outside the scope of this article (see,terms as the head’s arguments: father(Bill, Lucy). A rule is
e.g., AI LANGUAGES AND PROCESSING), and we only mention tworepresented by a headed clause with a nonnull body. See the
particularities of this language that have generated a largewell-known PROLOG example
theoretical debate, that is, the absence of the ‘‘occur test’’ in
the standard implementations of PROLOG and the ‘‘cut.’’ancestor(X ,Y) :- father(Z,Y), ancestor(X ,Z)

As already seen for the resolution method in general and
for logic programming in particular, PROLOG makes useswhich means that, for all of the PROLOG variables X, Y, and

Z, if Z is the father of Y and X an ancestor of Z, then X is an unification extensively. The first modern algorithm for unifi-
cation proposed by Robinson (36) already contained what isancestor of Y. A query is represented by a headless clause

with a nonempty body, for example, :-father(Lucy), ‘‘who is now known as the ‘‘occur check.’’ Very informally, it says that,
when one of the two terms t1 and t2 to be unified is a variablethe father of Lucy?.’’ A query without variable arguments pro-

duces a ‘‘yes’’ or ‘‘no’’ answer. See -father(Bill, Lucy), ‘‘is it x and when the same variable occurs anywhere in the second
term t, that is, if occur (x, t) is true, then the unification fails;true that Bill is the father of Lucy?.’’ PROLOG was originally

a strongly constrained resolution theorem prover. About 1972, see Ref. 39 for more details. The reason for introducing the
check is linked with the aim of avoiding any infinite loop be-it was turned into a normal programming language to imple-

ment a natural language question-answering system by a cause, when trying to unify x and f (x), the substitution � that
renders the two terms identical is �x � f (f(f(. . .)))�. In theteam led by Alain Colmeraurer in Marseilles; see Refs. 45, 46.

Then van Emden and Kowalski (47) provided an elegant for- original implementation of PROLOG, Colmerauer left out the
occur check for efficiency, e.g., it can be shown, see Ref. 48,mal model of the language based on Horn clauses.

To fulfill its functions as a normal programming language, that the concatenation of two lists, a linear-time operation in
the absence of the occur check, becomes an O(n2) time opera-PROLOG introduces, however, several important modifica-

tions (some extralogical features) with respect to the pure tion in the presence of this check. Then PROLOG implemen-
tations that follow Colmeraurer are based, more than on uni-logic programming paradigm. First, it must obviously intro-

duce some built-in predicates for input and output to allow fication, on ‘‘infinite unification,’’ which can lead in particular
cases, to incorrect conclusions.clauses to be read and written to and from terminals and da-

tabases. Secondly, PROLOG adopts a very strict discipline for The cut mechanism allows a programmer to tell PROLOG
that some choices made during the examination of the goalcontrol. When executing a program, that is, when seeking the

match of a literal in the goal statement (query) against the chain need not be considered again when the system back-
tracks through the chain of the goals already satisfied. Thehead of some clause and then to substitute the goals (if any)

142 KNOWLEDGE MANAGEMENT

main reason for using this mechanism is linked with the fact sertion or a fact when Eq. (12) consists only of the head A.
Then each A or Bi is a literal of the form P(t1 . . . tn) where Pthat the system will not waste time while attempting to sat-

isfy goals that the programmer knows will never contribute is a predicate and ti are the terms. The basic DATALOG re-
stricts however the type of terms, which can be only constantsto finding a solution. From a syntactical point of view, a cut

is equivalent to a goal that is represented by the predicate ‘‘!’’ or variables, to the exclusion then, for example, of the function
symbols. Extension to the basic DATALOG language intended(or an equivalent symbol) without any argument. Then it can

be inserted into the subgoal chain that makes up the right- to deal with functions, with the negation of predicates Pi, etc.
has been proposed; see also the AI LANGUAGES AND PROCESSING.hand side of a PROLOG clause. As a goal, it is immediately

satisfied, and the program continues exploring the chain of A literal, clause, rule, or fact which does not contain any vari-
able is called ‘‘ground.’’ In particular, to have a finite set of allgoals at its right; as a side effect, it freezes all of the decisions

made previously since the clause considered was entered. In the facts that can be derived from a DATALOG program P,
the following two conditions must be satisfied:practice, this means that all of the alternatives still opened

between the invocation of the rule by the parent goal and the
• each fact associated with P must be ‘‘ground;’’goal represented by the cut are discarded.

Now if we transform clause (10) into (11) by adding a cut • each variable that appears in the head of a rule of P must
goal, also appear in the body of the same rule.

A DATALOG program is a finite set of clauses divided intoA : −B1, B2, B3, !, B4, B5, . . ., Bn n ≥ 0 (11)
two disjoint subsets, a set of ground facts, called the exten-

the result is that the system backtracks regularly among the sional database (EDB) and a set of DATALOG rules, called
three subgoals B1, B2, B3 and, when B3 succeeds, it crosses the the intensional database (IDB). The important point here is
‘‘fence’’ (the ‘‘one-way door’’) represented by the cut goal to that, given the restriction to constants ci of the terms included
reach B4 and continues in the usual way, backtracking in- in a DATALOG ground fact, the EDB can physically coincide
cluded, until Bn; see Ref. 49, pp. 66–67. But, if backtracking with a normal, relational database. Now if we call EDB predi-
occurs and if B4 fails—then causing the fence to be crossed to cates all of those that occur in the EDB and IDB predicates
the left—given that the alternatives still opened have been those that occur in IDB without also occurring in EDB, we
discarded, no attempt can be made to satisfy goal B3 again. require as additional conditions that (1) the head predicates
The final effect is that the entire conjunction of subgoals fails of each clause (rule) in IDB (the ‘‘core’’ of the DATALOG pro-
and the goal A also fails. gram) be only IDB predicates (sometimes, IDB predicates are

Apart from its appearance as a ‘‘patch’’ from a strictly logi- therefore called intensional predicates) and that (2) EDB
cal point of view, the use of the cut introduces some very prac- predicates may occur in the IDB rules, but only in the Bi

tical problems, all linked fundamentally with the necessity of (clause bodies). The correspondence between EDB (ground
knowing perfectly well the behavior of the rules (PROLOG facts) and the relational database is implemented so that each
clauses) where the cut must be inserted. In fact given that EDB predicate Gi corresponds to one and only one relation
its use precludes in practice the production of some possible Rj of the base. Then each ground fact Gi(c1 . . . cn) of EDB is
solution, the use of the cut in an environment not completely stored as a tuple �c1 . . . cm� of Rj. Also the IDB predicates
controlled can lead to the impossibility of producing a per- can be identified with relations, called IDB relations which,
fectly legal solution; again see (Ref. 49, pp. 76–78). To control in this case, are not stored explicitly in the DB. Therefore
an expensive tree search, several researchers have suggested they are sometimes called derived or intensional relations
using tools external (metalevel control) to the specific clause and correspond to the ‘‘views’’ of the relational DB theory. The
processing mechanism of PROLOG; see, among many others, main task of a DATALOG compiler or interpreter is precisely
the work described in Ref. 50. that of calculating these views efficiently. The output of a suc-

In the context of an article about knowledge management, cessful DATALOG program is a relation for each IDB pred-
the DATALOG language must be mentioned. It has been spe- icate.
cifically designed to interact with large (traditional) data- Without entering into any further technical details, we can
bases (DBs) because of the possibility of immediately translat- say that
ing DATALOG programs in terms of (positive) relational

• A DATALOG program P can be considered a queryalgebraic expressions. Its importance in the context of the
against the extensional database EDB of the groundsetup of effective strategies for managing large knowledge
facts. Then the definition of the correct answer to P canbases—at least those conceived under the form of the associa-
be reduced to the derivation of the least model of P.tion of an artificial intelligence component with a (traditional)

database management system, see later—therefore is abso- • As already stated, a relationship exists between DAT-
lutely evident. ALOG and relational databases. Now we can add that

From a syntactical point of view, DATALOG can be consid- DATALOG can deal with recursivity, which is not al-
ered a very restricted subset of general logic programming. In lowed in relational algebra. On the contrary, relational
its formalism, both facts and rules are represented as Horn queries that make use of the ‘‘difference’’ operator cannot
clauses having the general form reproduced in Eq. (12): be expressed in pure DATALOG. To do this, it is neces-

sary to enrich DATALOG with the logical negation (¬).
A : −B1, B2, . . ., Bn n ≥ 0 (12)

We can conclude by saying that DATALOG, as a restricted
subset of general logic programming, is also a subset of PRO-According to the procedural interpretation of Horn clauses

Eq. (12) also represents a DATALOG rule, reduced to an as- LOG. Hence, each set of DATALOG clauses could be parsed

KNOWLEDGE MANAGEMENT 143

and executed by a PROLOG interpreter. However, DATALOG cal expressions and then submitted to the usual procedures
of first-order logic. Also the procedural interpretation that isand PROLOG differ in their semantics. As we have seen,

DATALOG has a purely declarative semantics with a strong characteristic of the use of production rules, (see the purpose
of the Post’s productions mentioned before) is not really con-flavor of set theory. Therefore, the result of a DATALOG pro-

gram is independent from the order of the clauses in the pro- tradictory with the basic declarative nature of logic, as ap-
pears clearly from the procedural interpretation of Horngram. On the contrary, the meaning of PROLOG programs is

defined by an operational semantics, that is by the specifica- clauses. This explains why, whenever it is necessary to estab-
lish some theoretically sound result in a particular field in-tion of how the programs must be executed. A PROLOG pro-

gram is executed according to a depth-first search strategy volving the application of production rules, the usual strategy
consists of converting the set of rules into a set of logic formu-with backtracking. Moreover, PROLOG uses several special

predicates, like the cut, that accentuate its procedural charac- las in the form of (5) and then operating on it by using the
customary logic tools. As an example, we can mention the re-ter. This strategy does not guarantee the termination of re-

cursive PROLOG programs. cent Vermesan paper (54) where, in the first part, the author
explains how a knowledge base of production rules of theNotwithstanding its nice formal properties linked with its

clean declarative style, sometimes DATALOG has been se- form B1 ∧ B2 . . . ∧ Bn � A (‘‘�’’ is the implication symbol,
and Bi and A are first-order literals) can be converted into averely criticized from a strictly programming point of view.

As a programming language, DATALOG can be considered set of first-order formulas which are used to set up a theoreti-
cal framework to verify the consistency and completeness oflittle more than a toy language, a pure computational para-

digm which does not support many ordinary, useful program- the original knowledge base.
ming tools like those extralogic added to PROLOG to avoid
the same sort of criticism. Moreover, from an AI point of view, Putting Production Systems to Work. A typical system (an
a very strict declarative style may be dangerous when it is expert system) that uses production rules operates in the fol-
necessary to take control on inference processing by stating lowing way:
the order and method of execution of rules, as happens in
many expert systems (ES) shells. • The system contains a rule base, an unordered collection

of production rules. In this base, rules r can assume the
Production Rules as a Knowledge Representational Paradigm general form c1 ∧ c2 . . . ∧ cn � a1 ∧ a2 . . . ∧ am. This

last form does not contradict Eq. (5), as can be seen if weNow returning to formula Eq. (5) given at the beginning of
split (5) into as many rules as the terms of its consequentthe ‘‘Logic Programming’’ section,
and assume that each single term in the consequent part
of each new rule is expressed by the necessary conjunc-(B1 ∧ B2 . . . ∧ Bn) ⊃ (A1 ∨ A2 . . . ∨ Am) (5a)
tion ∧ of several low-order terms. Now we give to ci the
meaning of conditions (facts) that must be satisfied andwe have already noticed that this formula establishes a very
to ai the meaning of actions that must be performed ifimportant result, namely, that any clause of first-order logic
the conditions are satisfied. The ci represent the left-is equivalent to an ‘‘implication,’’ where (B1 ∧ B2 . . . Bn) is
hand side (LHS) of r, ai the right-hand side (RHS).the antecedent or the conditions of the implication, and (A1 ∨

A2 . . . ∨ Am) is the consequent, or the conclusion of the impli- • The system also includes a working memory (WM) where
cation. Formula (5) states that, if the different conditions B1, we store the facts that are submitted as input to the sys-
B2, . . ., Bn are all verified (TRUE), they imply a set of alter- tem or that are inferred by the system itself while it
native conclusions which are expressed by A1, A2, . . ., Am. functions.
Expressing (5) succinctly as

While it functions, the system repeatedly performs a ‘‘recog-
I f B Then A (13)

nize-act’’ cycle, which can be characterized as follows in the
case of conventional expert systems (condition-driven ESs,

where we preserve for B and A the meaning of, respectively,
see later):

a conjunction and a disjunction of terms, we obtain the well-
known notation used for the production rules that still consti-

• In the selection phase, for each rule r of the rule base,tutes the basic knowledge representational tool used in a
the system (1) determines whether LHS(r) is satisfied bymajority of expert systems. Production rules were first
the current WM contents, that is, if LHS(r) matches theintroduced in symbolic logic by Emil Post (51) as a general
facts stored in the WM (match subphase), and, if so, (2)symbolic manipulation system, which used grammar-like
adds the rule r to a particular rule subset called the con-rules to specify string replacement operations. An example of
flict set (CS) (addition subphase). When all the LHS aresuch a rule could be C1XC2 � C1YC2, meaning that any occur-
false, the system halts.rence of string X in the contest of C1 and C2 would be replaced

• In the conflict resolution phase, a rule of the CS is se-by the string Y. Then production rules were used in mathe-
lected for execution. If it is impossible to select a rule,matics under the form of Markov normal algorithms (52) and
the system halts.by Chomsky as rewrite rules in the context of natural lan-

guage processing (53). They became very popular in the AI • In the act phase, the actions included in RHS(r) are exe-
cuted by the interpreter. This is often called ‘‘firing amilieus in the mid-sixties because of the development of the

first expert systems, like DENDRAL and MYCIN. rule.’’ Firing a rule normally changes the content of WM
and possibly the CS. To avoid cycling, the set of factsBecause of the equivalence between Eqs. (5) and (13), now

it is evident that production rules can be interpreted as logi- (instantiation) that has instantiated the LHS variables

144 KNOWLEDGE MANAGEMENT

of the fired rule becomes ineligible to provoke the firing Production systems can be classified into two different cat-
of the same rule, which, of course, can fire again if in- egories according to the way the rules are compared with the
stantiated with different facts. data of WM. In the conventional production systems, the

comparison is between LHS(r) and WM as illustrated pre-
viously (condition-driven, or forward-chaining systems). ButA schematic representation of the recognize-act cycle is given
is also possible to compare RHS(s) with WM (action-driven,in Fig. 8. The name conflict set results from the fact that,
or backward-chaining systems). In this last case that we haveamongst all the competing selected rules that agree with the
taken, Eq. (14) is generally representative of the productioncurrent state of WM, it is necessary to choose the only one to
rules:be executed by the interpreter in the current cycle. Choosing

and executing multiple rules is possible in theory but very
impractical in practice. The specific strategy chosen to resolve c1 ∧ c2 . . . ∧ cn → a1 ∧ a2 . . . ∧ am (14)
the conflicts depends on the application and can be relatively
complex, because the execution of a rule may lead other rules is used in a way that coincides particularly well with the in-
to ‘‘fire’’ or, on the contrary, it may prevent the execution of terpretation of logical clauses as implications. The ai, for ex-
other rules. Then it is possible to use user-defined priorities. ample, act as the subgoals to be satisfied to prove the condi-
The user is allowed to choose a particular approach, such as tion. Then we can say that logic programming and PROLOG
giving preference to rules that operate on the most recent in- and DATALOG in particular, work by backward-chaining
formation added to WM or that match the highest number of from a goal.
items, or to the most specific rule, the one with the most de- Generally we can say that the condition-driven, forward
tailed LHS that matches the current state of WM. Otherwise,

chaining production systems are useful in dealing with largeit is possible to use predefined criteria for ordering that may
rule sets, where the number of possible goal states is verybe static (i.e., a priority ordering is assigned to the rules when
high and it is impossible to select some ‘‘best goal’’ a priori.they are first created) or dynamic.
Then it is better to deal with the data opportunistically, asThis type of architecture is at the origin of a very impor-
they arrive in the environment of the system, and to be driventant property of production systems: the independence of
by the data towards a suitable goal. The action-driven, back-knowledge from the control of how the knowledge is applied.
ward-chaining production systems allow implementing moreEach set of rules making up a particular knowledge base is
efficient and more focused strategies. In these systems, a goalcreated totally independently from the control structure. Each
G is chosen—in its initial state, WM is reduced to G—andrule in the set must express a relationship between LHS and
the system selects all of the rules that may lead to G, that is,RHS which must hold a priori in a static way. In other words,
all of the rules where G appears among the ai of the RHS. Ifthe validity, the ‘‘truth’’ of the rule must subsist indepen-
several rules are selected, again we have a CS nonempty anddently of when it is applied. Comparing with conventional
a conflict resolution problem. In the act phase, the ci in theprogramming techniques, we can also say that, in a produc-
LHS of the fired rule are chosen as the new subgoals. Theytion (or, more generally, rule-based system), a change in the
are added to WM, and a new recognize-act cycle begins. Theknowledge base is not propagated throughout the program as
process continues until all of the inferred subgoals are satis-a change in a procedural program can be. This means also
fied. The efficiency is linked with the fact that the rules arethat the LHS must express, at least in principle, all of the
selected in a sequence which proceeds toward the desirednecessary and sufficient conditions that allow the RHS to be

applied. goal.

Figure 8. A schematic representation of the
recognize-act cycle for an expert system using
a set of production rules.

Selection
phase

Match
subphase

Addition
subphase

Rule
memory

Conflict
set (CS)

Input data

Working
memory (WM)

Act
phase

Interpreter

Output
Conflict resolution

phase

KNOWLEDGE MANAGEMENT 145

Figure 9. An example of MYCIN’s rule. MYCIN
is a backward-chaining system. The aim of rule
88 is to deduce the simultaneous existence of the
facts ‘‘the infection type is primary bacteremia’’,
‘‘the suspected entry point is . . .’’, etc., from the
assertion ‘‘there is evidence that the organism

Rule 88 IF :
1) the infection type is primary-bacteremia, and
2) the site of the culture is one of the sterile sites, and
3) the suspected portal of entry of the organism is the

gastro-intestinal tract
THEN :

there is suggestive evidence (0.7) that the identity of the
organism is bacteroids. is bacteroides.’’

Now to give an example of an actual rule, we propose in tions are executed according to the ad hoc rules suited to the
certainty factor theory. Among them, three sorts of rules areFig. 9 the English version of a production rule, ‘‘rule 88’’,

which is part of about 500 rules used in one of the best known particularly important, the parallel combination rule, the
propagate changes rule, and the Boolean combination rule.and historically important expert systems the MYCIN sys-

tem; see Ref. 55. MYCIN, built up in the mid 1970s, was de- The first is used when several rules (at least two) are char-
acterized by the presence of sure (but distinct) LHSs—that issigned to perform medical diagnosis (prescribe antibiotic ther-

apy) in the field of bacterial infections, based on medical the LHSs are facts that, as in the LHS of the Rule 88 before,
are not affected by any sort of uncertainty—and asserting theknowledge of approximately 100 causes of infection buried in

its rules. The MYCIN system was a backward-chaining sys- same RHSs which are, however, characterized by different
CFs according to the different rules. Indicating with u and vtem, that is, the aim of rule 88 was to deduce from the asser-

tion ‘‘there is evidence that the organism is bacteroids’’, the the CFs associated, respectively, with the RHS of two rules
r1 and r2, then r1 � LHS1 � RHS,u; r2 � LHS2 � RHS,v. Tosimultaneous existence of the facts ‘‘the infection type is pri-

mary bacteremia,’’ ‘‘the suspected entry point is . . .,’’ etc. reuse the (identical) RHS in the chain of deductions, it must
be associated with a new CF, w. This last depends on the
signs of u and v:Additional Technical Details. The numeric value that ap-

pears in the RHS of rule 88 is a certainty factor (CF), a way
of estimating belief in the conclusions of a rule-based system
that has been popularized by MYCIN. We can say that the
presence of the CFs constitutes the main difference between
a simple production system and a real expert system (ES)

u, v > 0 ⇒ w = u + v − uv

u < 0 ∨ v < 0 ⇒ w = (u + v)

[1 − min(|u|, |v|)]
u, v < 0 ⇒ w = u + v + uv

and, a fortiori, between a logic programming system and an
The propagate changes rule modifies the CF associated withexpert system. Through the CFs and other more sophisticated
RHS(r) when the rule r itself is uncertain, that is, as the re-mechanisms (see below), ESs can express, even very roughly,
sult, for example, of a chain of inferences. In this case,the uncertainty linked with a given assertion, instead of, as
LHS(r) is as well associated with a CF. If the rule r now isin PROLOG and DATALOG, affirming that all of the asser-
LHS(r),u � RHS(r),v, the new CF w associated with RHS(r)tions are simply true or false (see the analogous remarks that
isare at the origin of the fuzzy logic systems). Another impor-

tant difference of an ES with respect to a simple rule system
concerns the possibility for an ES to provide a sort of explica- w = v max(0, u)

tion of its behavior. This can be obtained by printing the
Finally, the Boolean combination rule must be used whenchain of rules that have led to a given conclusion and by using
LHS(r) is, as usual (see rule 88 before), a Boolean combina-of the fact that each rule expresses directly the information
tion of literals. The CF w resulting from the ‘‘and’’ and ‘‘or’’on which its particular deduction is based and the reasons
combinations of two LHS literals ll and ll, characterized, re-why this deduction holds.
spectively, by the CFs u and v, areA CF varies in value between �1 and �1. If the value is

zero, this means that there is no evidence for the hypothesis
being examined. When the value of CF is � 0, and is moving
toward �1, this means that evidence increasingly supports

l1, u ∧ l2, v ⇒ w = min(u, v)

l1, u ∨ l2, v ⇒ w = max(u, v)

the hypothesis. When CF � 0, and is moving toward �1, the
hypothesis is increasingly unsupported by the evidence. An This means that, if the literals (predicates) are ‘‘anded,’’ the

lowest value CF is propagated in the LHS. If they are ‘‘ored,’’important point here is that CFs, like the fuzzy sets, are not
probabilities. They do not deal with the dependence/indepen- on the contrary, the maximum value CF is propagated.

The CF approach has several advantages. The main ad-dence problems typical of probabilities, and moreover, they
are defined and combined through a very ad hoc system of vantages are (1) they are considerably less difficult to evalu-

ate than probabilities and (2) they are independent, so thatrules.
The CFs associated a priori (off-line) with the rules of a we can consider their modifications a rule at a time. Indepen-

dence also means that adding or deleting rules does not implyproduction system can be modified when the rules are
chained together during functioning of the system. Because any remodeling of the entire system of CFs. On the other

hand, they can also lead to very strange results, as happensthe rules fire according to the recognize-act cycle of Fig. 8,
there is a sort of propagation of the CFs down the inference when the number of parallel rules supporting the same hy-

pothesis is high. In this case, for example, the application ofchain that results in an increase, decrease or stabilization of
the different CFs encountered along the chain. The modifica- the parallel combination rule produces CFs that systemati-

146 KNOWLEDGE MANAGEMENT

cally approach one even in the presence of small values for belled as Changes to WM and the output Changes to CS (59,
p. 22). In practice, the black box is implemented as a data-the original CFs; see (Ref. 56, p. 562). Moreover, the results

of applying of the above rules are monotonic, that is, the CFs flow graph (the RETE network). A very clear description of
a practical implementation of RETE algorithm is given incannot be adjusted if some facts used in the processing are

later retracted. The Dempster–Shafer approach, (57,58), has Ref. 61.
more reliable mathematical foundations than the CF ap-
proach, even if it is neatly more complex from a computa- Representation and Inference by Inheritance
tional point of view. It is based on the idea of adopting a com-

Inheritance is one of the most popular and powerful conceptsbination calculus where, given a set of hypotheses, all of the
used in the artificial intelligence domain. At the same time itpossible combinations in the hypothesis set are considered,
has very high value at least asand includes both the classical Bayesian approach and the CF

approach as special cases. The actual tendency seems, how-
• a static structuring principle that allows grouping simi-ever, to ground uncertain reasoning techniques for knowl-

lar notions in classes and economizing in the descriptionedge-based-systems (KBSs) generally on Bayesian probability
of the attributes of the entities at the lower levels of atheory; see again Ref. 58 and the article BELIEF MAINTENANCE
class, given that they can be inherited from the high-for the so-called Bayesian belief networks, a graphical data
level entities;structure that exploits conditional dependencies (causal rela-

• a dynamic inferencing principle that allows deductionstionships) between events to represent the joint probability
about the properties of the low-level entities becausedistribution of a problem domain—an arc from node A to node
these properties can be deduced from those that charac-B means that the probability value of A has a direct effect on
terize the high-level entities. In this context, some well-the probability of B.
known problems are linked with the fact that, for exam-Now we conclude this section by mentioning the RETE al-
ple, penguins and ostriches pertain to the class birds, butgorithm. Returning to the differentiation between backward
they cannot inherit the property ‘‘can_fly’’ from the de-chaining and forward chaining, forward chaining often in-
scription of this general class.volves dealing with a large quantity of data and a large set

of rules. Unlike backward chaining systems where the goal- • a generative principle that allows defining new classes as
directed reasoning guides the execution of the rules, in a for- variants of the existing classes. The new class inherits
ward chaining system every fact entered into WM must be the general properties and behavior of the parent class,
compared with every LHS of every rule, leading to a number and the system builder must specify only how the new
of combinations that became unmanageable without some class is different.
mechanism to improve efficiency. The RETE algorithm, devel-
oped by Charles L. Forgy in the mid 70s (59) and inserted in In an AI domain, the inheritance principle is normally used
the OPS5 production rules language, allows speeding up this to set up hierarchies of concepts, ontologies, to use an up-to-
heavy matching process. OPS5 is one of the most popular date and very fashionable term, (62,63). The intuitive idea
tools for developing ESs according to the production rule par- of concept is not easy to define very precisely. As a useful
adigm. Its latest version, OPS/R2, supports both forward and approximation, we can say that we can think of concepts in
backward chaining and objects with inheritance. See Ref. 60 the context of a practical application as the important notions
for an historical overview of the development of the OPS lan- that it is necessary to represent to obtain correct modeling of
guage. the particular domain examined. Moreover, the most general

To understand more precisely the need for such a mecha- among them, like human_being or physical_object, are com-
nism, it is necessary to understand exactly the modalities of mon to a majority of domains. Concepts in AI correspond to
constructing the conflict set (CS). Suppose that a fact of WM classes in object-oriented representations, and to types in the
is used to instantiate a rule r1 and that the firing of another standard procedural programming languages. In this intro-
rule r2 produces the deleting of this fact. This modifies the ductory section, we deal mainly with the general architectural
conditions under which the LHS of r1 has been instantiated, issues related to constructing well-formed hierarchies of con-
and the rule r1 must be suppressed from the conflict set. That cepts. In the next two sections we examine the specific issues
is to say, the conflict set must be recreated for every cycle by concerning the internal structure of the concepts, that is, how
examining all of the rules and producing for each of them a the attributes (properties, roles, slots etc.) that characterize a
list of all the possible instantiations according to the contents given concept are represented.
of the working memory. This process is particularly inefficient The main conceptual tool for building up inheritance hier-
because, in most production systems, WM changes slowly archies is the well-known IsA link, also called AKindOf (ako),
from cycle to cycle (less than 10% of the facts are changed in SuperC, etc. (see Fig. 10). We attribute to IsA, at least for the
a cycle). This means that a majority of the production rules moment, the less controversial and plain interpretation [see
are not affected by changes with respect to their instantia- (64)] saying that this link stands for the assertion that
tions and that a program that reiterates the construction of concept_b (or simply B) is a specialization, IsA, of the more
the conflict set on each cycle probably repeats the same large general concept_a (A). This sort of relationship is normally
number of operations, again and again. The main idea of the expressed in logical form as
RETE algorithm is saving the state of the CS at the end of a
given cycle and generating in the next cycle only a list of the ∀x(B(x) ⊃ A(x)) (15)
changes to be incorporated to the CS as a function of the
changes that have affected the WM. Then the pattern This expression means that, if any elephant_ (B) IsA

mammal_ (A) and if clyde_ is an elephant_, then clyde_ is alsomatcher can be viewed as a black box where the input is la-

KNOWLEDGE MANAGEMENT 147

strictly independent of the concept nodes; (2) even limiting
the notion of instance to this last interpretation, there is still
an ambiguity about the possibility (or not) of having several
levels of instances, that is, instance of instances.

If a very liberal interpretation of the notion of instance is
admitted, clyde_ is an instance of elephant_ but elephant_ can
also be considered, to a certain extent, an instance of
mammal_. This is accepted, in some object-oriented systems.
In this case, the logical properties of the instances are likely
to become strongly dependent on the particular choice of pri-
mary concepts selected to set up a given inheritance hierar-

animal_

reptile_ mammal_ insect_

dog_ cat_ elephant_

chow_ poodle_

IsA

chy. For example, in front of a figure like Fig. 10, we could
Figure 10. An example of a simple inheritance network where the infer that the InstanceOf relationship is, like IsA, always
concepts are linked by IsA links. transitive: if fido_ InstanceOf poodle_, it is also, evidently, an

instance of animal_. But if, in this same figure, we substitute
the root animal_ with the root species_, we can still consider
that poodle_ InstanceOf species_, but it becomes very difficulta mammal_ (Here we adopt the convention of writing the

concepts_ in italics, and their instances_ (individuals) in ro- to assert fido_ InstanceOf species_; see also (Ref. 66 pp. 332–
339). Then we prefer adding to the set-oriented definition ofman characters). When this law is interpreted in a strict way,

it also implies that the instances of a given concept B must an instance a sort of extensional definition in the Woods style
(67). We propose considering that all the nodes of a well-inherit all the features (properties) of all the more general

concepts in the hierarchy that have B as a specialization. This formed inheritance hierarchy like that of Fig. 10 must be con-
sidered only as concepts, that is, general descriptions/defini-law is called the ‘‘strict inheritance’’ law (it often admits ex-

ceptions; see later). An important aspect of the semantic in- tions of generic intensional notions, like that of poodle. When
necessary, an InstanceOf link can be added to each of theseterpretation of the inheritance hierarchies consists of the fact

that the ordering relation giving rise to the algebraic struc- nodes; this link has the meaning of a specific existence predi-
cate. In this way, we will declare that a specific, extensionalture of the inheritance hierarchies is the ‘‘property inclusion’’

or entailment. The property exclusion also intervenes in the incarnation of the concept poodle_ is represented by the indi-
vidual fido_. Now the introduction of instances becomes adefinition of the semantics of the well-formed hierarchies by

assuming that the siblings immediately descended from the strictly local operation to be executed explicitly, when needed,
for each node (concept) of the hierarchy (see also the overrid-same parent node are mutually exclusive. This means that, if

we consider that dog_, cat_ and elephant_ are all siblings de- ing phenomena later). Another consequence is represented by
the fact that, in this way, concepts participate in the inheri-riving directly from mammal_, the properties (obviously, not

inherited from mammal_) that characterize them as separate tance hierarchy directly. Instances participate indirectly in
the hierarchy through their parent concepts.concepts must all be mutually exclusive.

The clyde_ example allows us to introduce the indispens- Localizing the introduction of instances considerably clari-
fies the meaning and the practical modalities of using thisable complement of IsA to construct well-formed inheritance

hierarchies, the InstanceOf link. Note that the awareness of notion, but it is not yet sufficient to eliminate any ambiguity.
It remains to be decided if the instances are to be systemati-this necessity is a relatively recent acquisition of the knowl-

edge representational domain. In the eighties, several op- cally considered as terminal symbols, or whether it can be
admitted that an instance can be characterized in turn by theerating systems (commercial and not) based on inheritance

mechanisms still could not distinguish between concepts and presence of more specific instances. The classical example, see
Ref. 35, is given by paris_, an individual that is an instanceinstances of the concepts. A well-known example in this con-

text is that of KEE, see Ref. 65, one of the early and most of the concept city_, but which could be further specialized
by adding proper instances (i.e., viewpoints) like Paris of thepowerful commercial environments for developing complex

knowledge-based systems (KBSs); see also the following sec- tourists, Paris as a railway node, Paris in the Belle Epoque,
etc. If, for clarity, instances are always considered terminaltions. Followers of a uniform approach in which all the units,

to adopt the KEE terminology have the same status claim symbols, viewpoints can be realized according to a solution
which goes back to the seminal paper by Minsky about framesthat, for many applications, this distinction is not very useful

and only adds all sorts of unnecessary complications (see (68). This consists of introducing specialized concepts in the
inheritance hierarchy like tourist_city, railway_node,later).

The difference between B IsA A and C InstanceOf B is nor- historical_city that admit the individual paris_ as an in-
stance. Then paris_ inherits from each of them particular,mally explained in terms of the difference between the fact

that B is a subclass of A in the first case, operator �, and bundled sets of attributes (slots) like �UndergroundStations,
TaxisBaseFare, EconomyHotels. . .� from tourist_city,that C is a member of the class B in the second, operator �.

Unfortunately, this is not sufficient to eliminate any ambigu- �TypesOfMerchandise, DailyCommutersRate. . .� from
railway_node, etc.ity about the notion of instance, and this last notion is, even-

tually, much more controversial than the notion of concept. The precise definition of the meaning of InstanceOf is not
the only problem that affects the construction and use of in-The main problems involve: (1) the possibility (or not) of ac-

cepting all of the concepts of an inheritance hierarchy to the heritance hierarchy, especially when the inheritance consid-
ered is more behavioral than structural, that is, more inter-exclusion of the root as instances of higher level concepts, in-

stead of deciding that the instances can only be derived nodes ested in the actual behavior and meaning of the properties

148 KNOWLEDGE MANAGEMENT

inherited than in the pure mechanical aspects of the propaga- concepts must now be interpreted simply as ‘‘defaults’’ that
are always possible to modify. Brachman also evokes the pos-tion. From a behavioral point of view, the two main problems

are ‘‘overriding’’ (or defeasible inheritance or inheritance with sibility that not only the values of the properties, but the
properties themselves can be overriden, possibly leaving theexceptions) and ‘‘multiple inheritance.’’

Overriding consists of admitting exceptions to the strict in- values unchanged: a giraffe_ is an elephant_ where the value
cylinder_ associated with the property TrunkOf of elephant_heritance law introduced previously. In a strict inheritance

world, from fido_ InstanceOf poodle_, we could automatically does not change, but the property itself has been overridden,
and it is now called NeckOf for giraffe_ (69, pp. 85–86). As adeduce fido_ InstanceOf mammal_ and fido_ InstanceOf

animal_ (see Fig. 10), without being obliged to assert explic- consequence, now it becomes impossible to use the internal
structure of the different concepts, that is, the presence ofitly when needed, that fido_ is also an instance of mammal_

and animal_. Now consider this group of assertions: particular properties and values, to determine if a given con-
cept is more general or more specific than another and then
to determine automatically the position of a new concept ina. Elephants are gray, except for royal elephants.
the inheritance network. Moreover, given that all the proper-b. Royal elephants are white.
ties of the concepts are now purely local, any concept acts asc. All royal elephants are elephants.
a primitive whose properties must be explicitly asserted each
time (69). Then the benefits associated with using the inheri-Assertion (c) introduces a new concept, royal_elephant, as a
tance hierarchies seem close to vanishing. Without completelyspecialization of elephant_ of Fig. 10. Now if clyde_ In-
endorsing such catastrophic conclusions, it appears clearlystanceOf royal_elephant, the strict inheritance law would lead
that an uncontrolled amount of overriding can introduce someus to conclude that the property (slot) ColorOf of clyde_ is
really serious coherence problems.filled with the value gray_, but from (a) and (b) we know that

Giving, however, that dealing with exceptions is an evidentthe correct filler is instead white_. This means that
necessity in the knowledge representational domain, AI re-royal_elephant has an overriding property, ColorOf or, in
searchers have tried to avoid the danger of uncontrolled useother terms, that the property ColorOf of elephant_ must not
of overriding techniques by using some form of nonclassicalbe considered as a systematically inheritable property. Then
logic to provide formal semantics for inheritance hierarchiesa differentiation at least implicit between overriding proper-
with defaults. For example, both Etherington (70,71) andties and nonoverriding properties is introduced in the set of
Nado and Fikes (72) use Reiter’s Default Logic with this aimproperties (attributes, slots etc.) that characterize a given
(73,74). Very briefly, a default theory is a pair (D, W) whereconcept: for elephant_ and all of its instances and specific
D is a set of ‘‘default rules’’ (seen as a sort of inference rules)terms we can say that FormOfTheTrunk is a nonoverriding
normally concerning the properties of the concepts, like ‘‘Typi-property because its associated value is always cylinder_. Col-
cally, elephants have four legs,’’ and W is a set of ‘‘hard facts’’orOf is, on the contrary, overriding. We can visualize in Fig.
like ‘‘All elephants are mammals’’ (or ‘‘Margaret Mitchell11 the situation described in the three previous assertions.
wrote ‘Gone with the Wind’‘‘). Formally, W is a set of first-The crossed line (cancel link) indicates that the value associ-
order formulas, whereas a typical default rule of D can beated with the overriding property ColorOf has been actually
denoted aschanged passing from elephant_ to royal_elephant. Note that,

in most of the implemented knowledge-based systems (KBSs),
the cancel link is not explicitly implemented, and the overrid-

α(x1, . . ., xn) : β(x1, . . ., xn)

γ (x1, . . ., xn)
(16)

ing can be systematically executed.
In a well-known paper, R.J. Brachman (69) warns about

where �, �, and � again are first-order formulas whose freethe logical inconveniences linked with introducing an unlim-
variables are among x1, . . ., xn. The notation �(xi) is anited possibility of overriding. Under the overriding hypothe-
abridged logical-like notation to express generally that xi IsAsis, the values associated with the different properties of the
�, xi InstanceOf �, � PropertyOf xi. Informally then, a rule
like Eq. (16) means that for any individuals x1, . . ., xn, if
�(x1, . . ., xn) is inferable, and if �(x1, . . ., xn) can be consis-
tently assumed, then infer � (x1, . . ., xn). For our previous
example concerning royal elephants, Eq. (16) becomes

elephant (x) : gray (x) ∧ ¬royal elephant(x)

gray (x)

From the previous definition, it can be seen that, if we assume
simply clyde_ InstanceOf elephant_, we can say that clyde_
ColorOf gray_ and ¬ clyde_ InstanceOf royal_elephant are
consistent with this assumption. Hence, clyde_ ColourOf
gray_ can be inferred. In logical notation, from the initial as-

elephant_ gray_

royal_elephant

clyde_

white_

white_

ColorOf

ColorOf

ColorOf

IsA

InstanceOf

sumption elephant_(clyde_) and having verified that
gray_(clyde_) and ¬ royal_elephant(clyde_) are consistentFigure 11. Overriding properties: in this figure, the crossed line
with the assumption, we can infer gray_(clyde_). On the other(cancel link) indicates that the value associated with the overriding
hand, if the initial assumption now is royal_elephant(clyde_),property ColorOf has been changed passing from elephant_ to

royal_elephant. using the hard fact royal_elephant IsA elephant_ (see Fig. 11),

KNOWLEDGE MANAGEMENT 149

we are reduced again to the situation of the previous example,
that is elephant_(clyde_). In this case, however, the consis-
tency condition �(x1, . . ., xn) � gray_(x) ∧ ¬
royal_elephant(x) is violated given the initial assumption
royal_elephant(clyde_) that blocks the default rule, then pre-
venting the derivation of gray_(clyde_).

The inheritance hierarchy of Fig. 10 is a tree. Each node
(concept) has only one node immediately above it (its parent
node) from which it can inherit the properties. In this case,
the mode of transmission of the properties is called single in-
heritance. Normally, however, in real-world inheritance hier-
archies, a concept can have multiple parents and can inherit
properties along multiple paths. For example, dog_ of Fig. 10
can also be seen as a pet_, then inheriting all of the properties
of the ancestors of pet_, pertaining maybe to a branch
private_property of the global inheritance hierarchy. This phe-
nomenon is called multiple inheritance. Now the inheritance
hierarchy becomes a ‘‘tangled hierarchy’’ as opposed to a tree,
a partially ordered set (poset) from a mathematical point of
view. We note here that the inheritance hierarchies admitting
multiple inheritance can be assimilated with the standard
form of semantic networks (33).

Multiple inheritance contributes strongly to the simplifi-
cation of the inheritance hierarchies by eliminating the need
for duplicating some concepts and the corresponding in-
stances that would be necessary to execute to reduce the hier-

physical_object

lump_

mineral_lump

generic_concept

substance_

gold_

gold_nugget

HasInstances = yes HasInstances = no

archy to a simple tree. A possible example of duplicated
Figure 12. Inheritance conflict because gold_nugget may inherit

concepts could be dog_as_valuable_object and from both physical_object and gold_ (a substance_).
dog_as_carnivore_mammal. The use of the multiple inheri-
tance approach, however, can give rise to conflicts about the
inheritance of the values associated with particular prop- is mineral_lump. Constructing the precedence list proceeds

by visiting depth-first the nodes in the left branch, then thoseerties.
To illustrate this problem, we use an example that relates of the right branch, then the join, and up from there. In our

example, this list is (mineral_lump, lump_, physical_object,to one of the most intricate issues in constructing well-formed
ontologies, the classification of ‘‘substances’’ (35,66). Ac- gold_, substance_, generic_concept). Then gold_nugget inherits

the properties of mineral_lump, including HasInstances �cording to a majority of researchers, concepts like substance_
and color_ are to be regarded as examples of ‘‘nonsortal con- yes, as required.

Obviously, this technique strictly depends on the particu-cepts.’’ The sortal concepts correspond to notions that can be
directly materialized into enumerable specimens (i.e., in- lar arrangement adopted in the constructing the inheritance

hierarchy and can oblige one to insert a number of dummystances), like chair or lump (which correspond to physical ob-
jects). Nonsortal concepts cannot be directly materialized into concepts (analogous to the ‘‘mixins’’ of object-oriented pro-

gramming) to establish a correct precedence list. The secondinstances. Note that a notion like white gold is a specializa-
tion of gold, not an instance. Now let us consider Fig. 12, that technique for dealing with conflict resolution is an explicit

technique that attributes to the user the responsibility ofcan be viewed as a first, rough solution to the problem of cor-
rectly classifying a notion like nuggets of gold. The entire sit- specifying from which superconcept a given conflicting prop-

erty must be inherited. Advanced environments (knowledgeuation of course, is highly schematized. This notion corre-
sponds certainly to physical_object—and, because of this fact, engineering software environments (KESEs), see the next

sections) for the setup of large KBSs, like Knowledge Craft orit admits the existence of direct instances, gold_nugget_1,
gold_nugget_n, etc. On the other hand, it can also be consid- ROCK by the Carnegie Group Inc., allow for a particularly

neat implementation of this principle. They supply the userered, to a certain extent, a specialization of gold_ because it
inherits at least some intrinsic properties, like ColorOf, Melt- with tools for specifying exactly the inheritance semantics for

the properties of a given concept, that is, the informationingPoint, etc., and the corresponding values. In adopting a
solution like that of Fig. 12, however, an explicit inheritance passing characteristics that indicate which slots and values

must be included, excluded, introduced further, or trans-conflict appears, because according to the organization
adopted in this figure, gold_nugget may inherit both the val- formed during inheritance (‘mapped’). In this way, when de-

fining the properties of gold_nugget, it becomes very easy toues ‘‘yes’’ and ‘‘no’’ for the property HasInstances.
A multiple inheritance conflict can be resolved by two basic require that this last concept is a specialization of

mineral_lump (and, therefore, of physical_object) and that ittechniques. In the first, implicit technique, a precedence list
is computed mechanically by starting with the first leftmost only inherits the set of intrinsic properties from gold_. The

new arrangement is depicted in Fig. 13, which gives a moreconcept that represents a generalization (superconcept) of the
concept where the conflict has been observed. In the case of precise representation of the relationships between the con-

cepts involved in this (very stereotyped) situation.Fig. 12, the leftmost immediate superconcept of gold_nugget

150 KNOWLEDGE MANAGEMENT

the presence of an intermediate concept like
republican_having_quaker_convictions, which specializes
both republican_ and quaker_ and to which we could attach
the nixon_ instance, would not change the essence of the prob-
lem. If we ask now: Is Nixon a pacifist or not?, we are in
trouble given that, as a Quaker, Nixon is (typically) a pacifist
but, as a Republican, Nixon is (typically) not a pacifist. Then
a reasoner dealing with this situation must choose between
two possible attitudes. A reasoner with skeptical attitude will
refuse to draw conclusions in ambiguous situations and,
therefore, will not opine whether or not Nixon is a pacifist.
With a credulous attitude, the reasoner will try to deduce as
much as possible, generating all of the possible extensions of
the ambiguous situation. In the Nixon Diamond case, both
solutions, pacifist_ and ¬ pacifist_, are generated.

This problem (and the similar ones) has given rise to a
flood of theoretical work without leading to real, definite solu-
tions. Among the classics, we mention Refs. 75–77. Padgham
(78) proposes some solutions to the Nixon Diamond quandary
by introducing specific assumptions about the concepts to be
considered, for example, by stating that only typical Quakers
are pacifist or, on the contrary, that Quakers are always paci-
fist. This approach confirms a well-known principle that to
obtain sound solutions to the most complex knowledge repre-
sentational problems, the possibility of disposing of large

physical_object

lump_

mineral_lump

generic_concept

substance_

gold_

gold_nugget

HasInstances = yes HasInstances = no

Intrinsic properties :
ColorOf

MeltingPoint
...

amounts of domain knowledge is at least as important as the
conception of clever formal solutions.Figure 13. Resolution of the inheritance conflict requiring that

gold_nugget (a specialization of mineral_lump and, therefore, of
physical_object) inherits only the set of intrinsic properties from
gold_. FRAME SYSTEMS AND KNOWLEDGE ENGINEERING

SOFTWARE ENVIRONMENTS

When defeasible inheritance (materialized by the presence In the previous section, we considered concepts characterized
of cancel links) and multiple inheritance combine, we are con- solely by (1) a conceptual label (a symbolic name); (2) hierar-
fronted with very tricky situations like the notorious Nixon chical relationships with other concepts that are symbolized
Diamond (Fig. 14). In this version of the Diamond, the most by the IsA links. In reality, the main reason for the persistent
frequently used, we admit that it is possible to have an indi- popularity of frame-based systems in industry and research
vidual, nixon_, as a common instance of two different con- is that these systems allow associate with any concept a
cepts, republican_ and quaker_. Several inheritance-based ‘‘structure’’ often very naturally reflecting the ordered knowl-
systems do not allow this possibility. Postulating, however, edge human beings have about the intrinsic properties of

these concepts and the network of relationships, other than
hierarchical, which the concepts have with each other. Then
the current interpretation of frames corresponds to a sort of
‘‘assertional interpretation’’ that views frames as knowledge
representational systems able to represent a collection of
statements about the important notions of a given application
domain. This interpretation only partly coincides with the
original motivations behind the introduction of frames by
Minsky (68). These can be roughly summarized by saying
that, for him, the utility of frames consisted mainly of the
possibility of using them to semantically direct the reasoning
of scene-analysis systems by instantiating the descriptions of
stereotypical situations. For the well-known debate initiated
by Hayes about the possibility of fully reducing frames to a

republican_ quaker_

pacifist_

IsA

IsNotA

IsA

IsA

nixon_
simple notational variant of first-order logic (FOL) see Refs.

Figure 14. The Nixon Diamond. Asking: ‘‘Is Nixon a pacifist or not?’’, 79 and 80.
we are in trouble given that, as a Quaker, Nixon is (typically) a paci- A frame is basically a named data structure, very similar
fist but, as a Republican, Nixon is (typically) not a pacifist. With a

to the ‘‘objects’’ of the database domain (see DATABASE LAN-skeptical attitude, we refuse to draw any opinion as to whether or not
GUAGES) that includes a flexible collection of named ‘‘slots’’ (orNixon is a pacifist. With a credulous attitude, we will try to deduce as
fields, roles, etc.) which can be associated with ‘‘values.’’ Usu-much as possible, then generating all of the possible extensions of the
ally, the slots are distinguished from their fillers (values); see,ambiguous situation, and then we will generate both the solutions,

pacifist_ and ¬ pacifist_. however, Ref. 81. Usually there is no fixed number of slots nor

KNOWLEDGE MANAGEMENT 151

a particular order imposed on these slots. The slots may be other frames. These slots represent the privileged tools to set
up complex systems of frames. NKRL provides for eight gen-accessed by their names; they generally represent the impor-

tant ‘‘properties’’ necessary to introduce to characterize a eral system-defined relationships: IsA, and the inverse Has-
Specialisation; InstanceOf, and the inverse HasInstance;given concept completely. Unfortunately, a definition like this

is too vague and imprecise to constitute a valid direction for MemberOf (HasMember) and PartOf (HasPart). IsA and
InstanceOf have been discussed at length in the previous sec-creating the ‘‘correct’’ set of slots. The arbitrariness linked

with the subjective choice of the slots in the frame systems tion. MemberOf and PartOf correspond, respectively, to the
Aggregation and Grouping relationships that, with General-has been criticized often (82). In some powerful knowledge

representational tools conceived to facilitate constructing ization (IsA), characterize the semantic models in the data-
base domain. Some of the properties of the direct relation-complex frame-based systems, like Knowledge Craft or ROCK

already mentioned, this arbitrariness is (very partially) obvi- ships are shown in Fig. 16.
Note that because of the definitions of concept and instanceated by using metastructures that describe precisely the com-

putational behavior of a given slot. For example, in the previ- given in the previous section and of the properties of IsA, In-
stanceOf, PartOf and MemberOf illustrated in Fig. 16, a con-ous tools, a ‘‘slot-control schema’’, a particular structured

object containing information about the properties of a spe- cept or an individual (instance) cannot use the totality of the
eight relations. More exactly,cific slot, for example, the restrictions concerning the domain,

the range and the cardinality, the inheritance specifications,
etc., can be added to each slot as a sort of formal definition. In • The relation IsA, and the inverse HasSpecialisation, are
other frame-oriented languages, like Knowledge Engineering reserved to concepts.
Environment (KEE) by Intellicorp, this function is assigned • HasInstance can be associated only with a concept, and
to the ‘‘facets’’ that represent annotations on the slots. Like InstanceOf with an individual (i.e., the concepts and
the slots, facets can have values. Facets are normally used to their instances, the individuals, are linked by the In-
specify a slot constraint, a method for computing the value of stanceOf and HasInstance relations).
a slot, or simply to introduce some documentation string

• Moreover, MemberOf (HasMember) and PartOfabout the slot itself (DOCUMENTATION facet). The most
(HasPart) can be used only to link concepts with conceptscommonly used facets are those used to specify a type restric-
or instances with instances, but not concepts with in-tion on the values of the slot (VALUE-TYPE facet) and to
stances.specify the exact number of possible values that a slot may

take on (CARDINALITY facet). Some facets on the PREM-
Note also that, in NKRL as in many other semantic networkISE and Procedure 1 slots are shown later in Fig. 18.
systems (in the widest meaning of these words) (83), only twoA relatively clear understanding of the functioning of a set
meronymic relations, MemberOf and PartOf (and of their in-of slots, however, can be obtained by using a sort of ‘‘func-
verses), are included among the system-defined relationships.tional’’ definition. For example, in the (standard) frame com-
The basic criterion for differentiating between the two is theponent of Narrative Knowledge Representation Language
homogeneity (HasMember) or not (HasPart) of the component(NKRL), see Ref. 35 for a more complete description, the slots
parts. Moreover, PartOf is characterized by a sort of func-are grouped in three different classes, relations, attributes,
tional quality—see, for example, ‘‘a handle is part of a cup’’—and procedures. A general schema of a frame representing an
that is absent in MemberOf. As is well known, six differentNKRL concept or individual is represented in Fig. 15. Object
meronymic relations are defined in Ref. 84. component/inte-IDentifier (OID) stands for the symbolic name of the particu-
gral object (corresponding to PartOf in NKRL), member/col-lar concept or individual.
lection (corresponding to MemberOf); portion/mass; stuff/ob-The slots of the relation type are used to represent the
ject; feature/activity; place/area. Note that Ref. 84 is still therelationships of an NKRL frame, concept or individual, to
best reference paper for people interested mainly in the prac-
tical implications of using of meronymic concepts. For an
overview of some more theoretical (and description logic-ori-
ented) approaches, see Ref. 85. The justification of the NKRL
(and similar systems) approach is twofold:

• A first point concerns the wish to keep the knowledge
representational language as simple as possible. In this
context, the only ‘‘relations’’ which are absolutely neces-
sary to introduce (in addition, of course, to IsA, In-
stanceOf, and their inverses) are MemberOf and Has-
Member. In NKRL, for example, they are systematically
used to represent plural situations (35).

• On the other hand, dealing systematically with the ex-
amples of non-NKRL relations given by Winston and his

{ OID
[Relation (IsA | InstanceOf :

HasSpecialization | HasInstance :
MemberOf | HasMember :
PartOf | HasPart :)
(UserDefined1 :
...
UserDefinedn :)

Attribute (Attribute1 :
...
Attributen :)

Procedure (Procedure1 :
...
Proceduren :)] }

colleagues in Ref. 84 by using only the existing NKRLFigure 15. A general schema of frame where the slots are grouped
tools leads to results which are not totally absurd, evenin three different classes, relations, attributes, and procedures, ac-
if, sometimes, some aspects of the original meaning arecording to a sort of functional organization. Object IDentifier (OID) is
lost. For example, ‘‘this hunk is part of my clay’’ (portion/the symbolic name of the particular concept or individual defined by

the frame. mass) can also be interpreted as a MemberOf relation,

152 KNOWLEDGE MANAGEMENT

Figure 16. Some of the axioms that define
the properties of IsA, InstanceOf, MemberOf
and PartOf. MemberOf and PartOf corre-
spond, respectively, to the Aggregation and
Grouping relationships that, with Generaliza-
tion (IsA), characterize the semantic models in
the database domain.

(A IsA B) ∧ (B IsA A) } A � B
(A IsA B) ∧ (B IsA C) � (A IsA C) {IsA is a partial order relationship}
(A IsA B) ∧ (A IsA C) �
D (B IsA D) ∧ (C IsA D)
(A PartOf B) �¬ (B PartOf A)
(A PartOf B) ∧ (B PartOf C) � (A PartOf C)
(A IsA B) ∧ (B PartOf C) � (A PartOf C)
(A IsA B) ∧ (A PartOf C) � (B PartOf C)
(B IsA C) ∧ (A IsA C) � (A PartOf B)
(A IsA B) ∧ (B MemberOf C) � (A MemberOf C)
(C InstanceOf A) ∧ (A IsA B) � (C InstanceOf B)
(C PartOf D) ∧ (C InstanceOf A) ∧ (D InstanceOf B) � (A PartOf B)
(A PartOf B) ∧ (D InstanceOf B) �
C (C InstanceOf A) ∧ (C PartOf D)

like ‘‘this tree is part of the forest,’’ given that we can class of fillers that are men, can be doctors or lawyers,
but cannot be Fred (65, pp. 90, 91).interpret an individual like generic_portion_of_clay_1 as

formed by several hunks, hunk_1 . . . hunk _n which,
like the trees in the forest, are all homogeneous and play As an example of the possibility of having slot fillers for the
no particular functional role (as in the PartOf examples) concepts that are not necessarily concepts, we reproduce in
with respect to the whole, that is, generic_portion_ Fig. 17 a fragment of Fig. 10 above where the concepts are
of_clay_1. ‘‘A martini is partly alcohol’’ (stuff/object) can now associated with their (highly schematized) defining
easily be rendered by using the attribute slots (see later). frames. Note, however, that the two fillers male_/female_
‘‘An oasis is a part of a desert’’ (place/area) can be re- could have been replaced by a hypothetical, subsuming con-
garded as PartOf. cept sex_. Among other things, now this figure makes explicit

what inheritance of the properties means. Supposing that the
We conclude the discussion of the relation slots by saying that frame for mammal_ is already defined and supposing now we
NKRL allows using of specific user-defined relations to en- tell the system that the concept dog_ is characterized by the
hance the system-defined relations. See in Ref. 35 the use of two specific properties Progeny and SoundEmission, what
a user-defined GetIntrinsicProperties to solve the problems the frame dog_ really includes is represented in the lower
of intrinsic properties inheritance discussed in the previous part of Fig. 17.
section. In these cases, of course, the properties of the new The convenience of being equipped with slots of the proce-
relation (see Fig. 16) and the inheritance semantics (i.e., the dural type is linked with the remark that because frame-
information passing characteristics indicating which slots and based systems are very popular tools for setting up commer-
values can be inherited over that relation) must be explicitly cial KBSs, they tend to be configured as independent but suf-
specified. ficient knowledge engineering software environments

The slots of the attribute type are used to represent the (KESEs) for applications development. Then they must nor-
characteristic properties of an object. For example, for a con- mally provide alternative inferential and representational
cept like tax_, possible attributes are TypeOfFiscalSystem, schemes in addition to the inheritance-based methods and
CategoryOfTax, Territoriality, TypeOfTaxPayer, TaxationMo- representations. This is the function assigned to the slots of
dalities, etc. The arbitrariness in the choice of the properties the procedural type which generally provide various ways of
to be selected for a given frame is particularly evident for this attaching to frames procedural information normally ex-
class of slots. Fillers of the attribute slots can be both of the pressed by using ordinary programming languages like LISP
following or C. In the KEE environment, two standard forms of proce-

dural attachment are used, methods and active values (65,
1. Real fillers (instances): this is the normal (but not man- pp. 90–92) both derived from research in the object-oriented

datory) situation for the slot fillers of individuals. For and database fields. In KEE, methods are LISP procedures,
example, the slot filler of the ColorOf slot of the individ- stored in slots of the procedural type identified as message
ual rose_27 is velvety_crimson. responders, that can respond to messages sent to the frame.

The messages must specify the target message-responder slot2. Potential slot fillers represented by concepts that define
and must include any argument needed to activate thethe set of legal, real fillers: this is the normal (but not
method stored at that slot. Active values are implemented inmandatory; see later) situation for the slot fillers of the
KEE under the form of production rules stored in the proce-concepts. For example, the slot filler of the ColorOf slot
dure slots. The rules are invoked when the slot’s values arein the concept rose_ could be the concept color_ (a su-
accessed or stored. Then active values in KEE behave likeperconcept of red_) indicating that, in the individuals
‘‘daemons.’’ The procedure slots and their values implementedwhich represent the instances of rose_, this particular
under the form of methods or active values can be defined, ofslot can be filled only by instances of color_, for exam-
course, at the concept level and then inherited by their associ-ple, instances of red_, like velvety_crimson. Note that
ated instances (individuals).generally the restrictions about the sets of legal fillers

Then this way of using the procedure slots to transformcan also be expressed by particular combinations of con-
the (relatively static) frame systems into real KESEs can becepts for example, in the KEE formalism, an expression
generalized by specializing some of these slots so that theylike ‘‘(INTERSECTION human_being (UNION

doctor_lawyer_) (NOT.ONE.OF fred_))’’ designates a can represent, for example, the CONDITION, CONCLU-

KNOWLEDGE MANAGEMENT 153

Figure 17. A fragment of the inheritance hierarchy concern-
ing mammal_ where now the concepts are associated with
their (highly schematized) defining frames. The meaning of
the locution inheritance of the properties appears here clearly.
Supposing that the frame for mammal_ is already defined,
and now supposing we tell the system that the concept dog_
is characterized by the two specific properties Progeny and
SoundEmission, what the frame dog_ really includes is repre-

mammal_

dog_

dog_

Tegmen: fur_
BirthStatus: living_offspring
Sex: male_ | female_

Tegmen: fur_
BirthStatus: living_offspring
Sex: male_ | female_
Progeny_ : puppies_
SoundEmission_ : barking_

IsA: mammal_
Progeny_ : puppies
SoundEmission: barking_

sented in the lower part of the figure.

SION, and ACTION parts of a production rule (see previous). the general concept norms_for_indirect_transfer_of_revenues_
abroad. In this case also the translation from natural lan-In this way, production rule systems can be implemented as

frame systems with the following advantages: guage into formal language can also be executed (at least
partly) automatically (86,87).

• Recalling that frames � concepts � classes or types, the
fact that each single production rule is realized like a Terminological Logics and the Fundamental Tradeoff
frame means that all of these rules can be easily grouped

Terminological languages (also called concept or descriptioninto classes and that then it is easy to realize powerful
logic languages), such as KRYPTON (88), NIKL (89), LOOMindexing schemata to superpose on to the simple, sequen-
(90), CLASSIC (91), KRIS (92), and BACK (93), originate intial list of rules.
Brachman’s KL-ONE (94), a highly influential knowledge rep-• The reasoning mechanisms suited to the frame systems
resentational system founded on formalization and general-(mainly, inheritance) may be used to obtain the values
ization of the basic principles of frames and semantic net-needed to instantiate the different parts of the rules, fa-
works and intended to permit constructing complex andcilitating the task of the production rule inferential en-
structured conceptual descriptions. In KL-ONE, the primi-gines.
tives used to represent the internal structure of a concept are
called roles which, like the slots in the frame systems, repre-As an example, in Fig. 18 we give two (fragmentary) examples
sent the attributes associated with the concepts. Roles (1)to show the use of frame-like structures in implementing rule-
supply information about the function of the attribute, thatlike structures. The first part of the figure displays an exam-
is the intension of the attribute and, moreover, (2) carry theple adapted from (Ref. 65, p. 913), which involves using a
description of the potential fillers, that is the extension (theframe (unit in KEE jargon) BIG.NON.RED.TRUCKS.RULE,
instances) of the attribute. See also the previous section. Thespecific term (Member) of the class TRUCK.CLASSIFICA-
mutual relationships between the roles are managed by theTION.RULES, to implement a rule for identifying big nonred
structural description, that is a set of relationships betweentrucks. Only the slot PREMISE is shown. Note that the wff
the role fillers that must hold when the concept and hence(well-formed formulas) that constitute this premise are auto-
the roles are instantiated. The complexity in managing thematically parsed by the KEE system starting from a more
structural description is one of the most common criticisms ofreadable formulation of this premise expressed by the system
KL-ONE. Concepts are inserted in an inheritance hierarchybuilder in a first-order logic language. The second part of the
(inheritance lattice). To avoid at least some of the ‘‘overriding’’figure is an example adapted from Ref. 86 showing the NKRL
problems, (see previous discussion), a role is considered a nec-representation of the beginning (the topic part of a complex
essary attribute of a concept and, therefore, it is not cancella-rule) of a normative text (the rule) which corresponds to arti-
ble. One of the most important contribution of KL-ONE to thecle n� 57 of the French ‘‘General Taxation Law.’’ See Ref. 35
theory of knowledge representation is the precise definition offor some details about the descriptive formalism suited to
the notion of subsumption. By subsumption, BrachmanNKRL. The introduction says, in a rough English translation,
means that, given a concept D and a SuperConcept C (higher‘‘In order to determine the income tax payable by companies
than D in the hierarchy) that subsumes D (i.e., D is a special-which are under the authority of, or which exercise a control
ization of C), an instance of D will always be, by definition,over, companies domiciled abroad’’ As it appears from
also an instance of C. In a more concise way, C subsumes DFig. 18, art._57 (the global NKRL representation of the nor-

mative rule) is interpreted as an individual instance of if the extension of D is a subset of the extension of C. Then

154 KNOWLEDGE MANAGEMENT

KL-ONE includes a classifier that, on the basis of the sub-
sumption relationships, automatically places new concepts
into their correct place in the hierarchy.

Terminological languages generalize KL-ONE’s ideas by
operating, among other things, a very precise distinction be-
tween terminological (TBox) and assertional (ABox) knowl-
edge. Terminological knowledge captures the intensional as-
pects of a domain. The domain representation is expressed,
as in KL-ONE, in terms of concepts and roles. Concepts de-
scribe a set of notions of the domain, whereas the associated
roles denote binary relations among concepts. A set of opera-
tors is provided, which allow defining complex concepts in
terms of existing concepts and restrictions on roles. Asser-
tional knowledge describes the extensional aspects of a do-
main and concerns the individuals constituting factual enti-
ties which are instances of the concepts proper to the
terminological component. Considering an implemented ter-
minological application as a knowledge base (KB), the TBox
is the general schema of the KB that concerns the classes of
individuals to be represented, their general properties, and
mutual relationships. The ABox is a partial instantiation of
this schema that contains assertions linking individuals with
classes or individuals with each other.

For example, the description of an individual mary (asser-
tional knowledge, ABox) in BACK is expressed as in Fig. 19
(93). The meaning of the different coding elements used in
Fig. 19 is the following (here we use for the concepts, in-
stances and roles � slots, the usual typographical conventions
we have used until now):

• mary_ is the symbolic name which characterizes a
unique individual in the knowledge base. mary_ is an in-
stance of the concept person_.

• There is at most one different individual in the Child re-
lation (role) with mary_. All individuals in the Child rela-
tion are instances of the concept female_.

• The Age of all the individuals in the Daughter relation
with mary_ has a value greater than 10, and there is
an individual named louise_ in the Child relation with
mary_.

• person_ and female_ are concepts which must be defined
by the user. Child, Daughter, and Age are roles which
must also be defined by the user.

• and, atmost, all, gt, and : are built-in term-forming op-
erators for building complex descriptions; see also Fig.
20 later. The term-forming operators introduce the roles
associated with the concepts or individuals and the con-
straints linked with these roles. The constraints concern

Unit: BIG.NON.RED.TRUCKS.RULE
Member: TRUCKS.CLASSIFICATION.RULES
...

OwnSlot: PREMISE
Inheritance: UNION
ActiveValues: WFFINDEX
Values: /Wff: (?X IS IN CLASS TRUCKS)

/Wff: (THE WEIGHT OF ?X IS ?VAR29)
/Wff: (GREATERP ?VAR29 10000)
/Wff: (?X HAS AT LEAST 10 WHEELS)
/Wff: (NOT (THE COLOR OF ?X IS RED))

art._57

InstanceOf : norms_for_indirect_transfer_of_reve-
nues_abroad
...

SubjectOfTheImposition : transnational_company
TerritorialValidity : france_
ValidityStart :
ValidityEnd :
DocumentationSource : french_general_taxation_law
...

Procedure1 :
topic : bloc-1
premise : bloc-2
norm : bloc-3
exceptions :
commentaries :
...

BLOC-1 : (ALTERN (COORD t1 t2 t3) (COORD t1 t4 t5))

t1) PRODUCE SUBJ x1
OBJ (SPECIF calculation_ income_tax)
DEST x2 : france_

x1 = human_being_or_social_body ; x2 = company_

t2) OWN SUBJ x2 : france_
OBJ (SPECIF control_power x3)

x3 = company_ ; x2 �)(x3

t3) EXIST SUBJ x3 :foreign_country

t4) OWN SUBJ x3 : foreign_country
OBJ (SPECIF authority_ x2)

t5) EXIST SUBJ x2 : france_

"determination of the income tax payable by companies
under the authority of companies domiciled abroad, or
which control such companies"

...
in general (1) the co-domain of the role (all), that is the

Figure 18. Two examples of the use of frame-like structures to im- concept which is the target of the relation established by
plement rule-like structures. The first part of the figure concerns the the role; and (2) the cardinality of the role (atmost, gt),
use of a frame (‘‘Unit’’ in KEE jargon) BIG.NON.RED.TRUCKS.
RULE—specific term (Member) of the class TRUCK.CLASSIFICA-
TION.RULES—to implement a rule for identifying big nonred trucks.
Only the slot PREMISE is shown. The second part of the figure shows
the NKRL representation of the beginning (the topic part of a com-
plex rule) of a normative text (the rule) which corresponds to article
n� 57 of the French ‘‘General Taxation Law’’: ‘‘In order to determine
the income tax payable by companies which are under the authority

mary_ :: person_ and
atmost (1,Child) and
all(Child,female_) and
all(Daughter, all(Age, gt(10))) and
Child:louise_.

of, or which exercise a control over, companies domiciled abroad . . .’’.
Figure 19. An example of individual entity (assertional knowledge,art._57 (the global NKRL representation of the normative rule) is in-
ABox) according to one of the best known terminological languages,terpreted as an individual instance of the general concept
BACK.norms_for_indirect_transfer_of_revenues_abroad.

KNOWLEDGE MANAGEMENT 155

Figure 20. Definition of concepts and roles in
BACK. Concepts and roles can be primitive or de-
fined. In this figure, :� and :� are the operators
for introducing, the first, primitive concepts and

person_ :< anything_.
female_ :< not (male_).
Child :< domain(person_) and range(person_).
Daughter := Child and range(female_).
parent_ := atleast(1, Child).
mother_ := parent_ and female_.
grandmother_ := female_ and atleast(1,Child and range(parent_)). roles, and the second, defined concepts and roles.

that is the minimum and maximum number of elemen- fined for a given terminological application. For example, que-
rying a system that contains the description of Fig. 19 for alltary values that can be associated with the role. :: is the

built-in operator for associating individuals with their of the individuals older than 10 after having introduced the
rule: atleast(1, Child) ⇒ all[Age, gt(13)], which states thatdescriptions.
the restriction of having at least a child implies that age must
be greater than 13, allows retrieving both mary_ and louise_.The definitions (descriptions) of the concepts and roles used

in Fig. 19 (and of some related concepts and roles) are given The first value is retrieved because of the application of the
rule, and the second because the constraint for Daughter inin Fig. 20. Note that
the description of mary_ is propagated to the filler of Child,
given that Daughter, according to Fig. 20, must be a Child.• Concepts, in BACK as in KL-ONE and the other termino-

logical languages, can be primitive concepts or defined The last modality of reasoning is proper to the terminologi-
cal languages, and involves the process of automatically find-concepts. The former are atomic (without definition), and

are used in describing the latter. If a concept is defined, ing the correct position of a concept in the hierarchy of all of
then it is linked with a description. Analogously, roles the concepts. In particular, for each concept it is possible to
can be primitive or defined. In Fig. 20, :� and :� are the find the more general ones, the most specific ones, and the
operators for introducing, first, primitive concepts and disjoint ones. This process is based on the subsumption prin-
roles, and second, defined concepts and roles. The fea- ciple (see previous discussion). For example, according to the
tures associated with a primitive concept are ‘‘neces- so-called ‘‘Normalization-Comparison’’ approach, subsump-
sary.’’ Those associated with a defined concept are neces- tion can be determined by making syntactic comparisons be-
sary and sufficient. The insertion of a defined concept in tween the defining structures of concepts C and D. After a
the concept hierarchy is achieved under the control of a normalization phase in which all the components of a descrip-
classifier à la KL-ONE; see also later. tion are developed and rearranged, the defined concepts are

replaced by their definitions (in this way, all the symbols de-• anything_ is the built-in universal concept, which is true
note primitive roles and concepts). Now it becomes possible tofor any individual. nothing_ is the dual empty concept.
compare two descriptions by executing relatively few opera-• The built-in operator and indicates generally that a con-
tions, usually by comparing pairs of terms built with the samecept (role) is defined as a conjunction of concepts (roles),
operator. Let us suppose a concept C whose defining descrip-which are the immediate ancestors of the new concept
tion is: game_ and atleast(2, Participant). Now suppose that(role) in the hierarchy. Then the roles are also inserted
we introduce a concept D defined as: game_ and atleast(4,in a hierarchical organization. See in Fig. 20 the role
Participant) and all�Participant, [person_ and all(Gender,Daughter which is subsumed by Child. atleast is a built-
female_)]�, that is a game with at least four participantsin operator used to specify the cardinality of a role. do-
where the fillers of the Participant role must be instances ofmain and range are built-in operators for building role
the concept person_, which have themselves the Gender roledescriptions. domain specifies the sort of concept with
filled with instances of the concept female_. Concept D will bewhich the role can be associated. range is the sort of
subsumed by concept C.concept that can fill the role.

Subsumption (and more generally terminological reason-
ing) is a very complex problem. This fact is intuitively evidentReasoning in BACK and in the other terminological lan-
when considering the complexity of the description that canguages includes at least the following operations: consistency
be used to define the concepts and describe the individualschecking, completion of partial descriptions and classification
with respect, for example, to the relatively simple organiza-(95). Consistency checking involves coherence control in the
tion of the frame systems examined in the previous section.definitions (descriptions) of concepts and the description of in-
All of the proposed terminological languages mentioned be-dividuals. For example, the following constraint expression
fore (with the exception of KRIS) are characterized by incom-for a role: atmost(0, R) and atleast(1, R), is not admissible
plete reasoning procedures. This means that some inferencesfor any possible R, given that this role should be filled simul-
are missing and that, in some cases, it is also impossible totaneously by at least a value and at most zero values. Another
identify precisely their semantic characteristics. For severalexample involves the definition of a concept where the role
systems, like LOOM, it is not even known if complete proce-Child is filled by individuals that are, at the same time, in-
dures can ever exist. From the point of view of computationalstances of male_ and mother_. A definition like this is not
complexity, a well-known result established first in Ref. 96contradictory per se, but it is in contrast with the definition
and confirmed by later research says, in very simple termsof mother_ in Fig. 20, where mother_ is defined as female_.
that subsumption is tractable (i.e., it is solvable in polynomialCompletion means being able to derive all of the consequences
time in the worst case) for the simplest terminological lan-from the definition of the concepts, the descriptions of the in-

dividuals, and the application of all of the possible rules de- guages, but it becomes intractable even for very slight exten-

156 KNOWLEDGE MANAGEMENT

sions of these languages (e.g., when adding a term-forming first place, by the use of data models derived from AI research
in the knowledge representational domain. We recall herelike restrict to avoid the use of cumbersome combinations of

or, and, and not). Moreover, it was proved undecidable for that a data model, according to the database (DB) terminol-
ogy, represents a logical organization of real-world objectslanguages like KL-ONE and NIKL.

Note that these sorts of problems, even if they have been (entities), of the constraints on them, and of their relation-
ships. A DB system implements a data model. Then the useparticularly studied in a terminological logic context (95) are

absolutely general, and they involve all of the types of sym- of AI data models implies the possibility, unfeasible in the
traditional (relational) database management systemsbolic knowledge representation (KR) we have examined until

now. For example, FOL has well-defined semantics and very (DBMSs) of using advanced inferential techniques.
Also note that the most advanced KBMSs adopt (at leaststrong deductive capabilities but, when its expressive power

is extended to cope exactly with all of the relevant facts and implicitly) architecture based on an organization in the expert
systems (ESs) style, that is, composed of a fact databaseentities of a given application domain, it becomes quickly

computationally intractable, where intractability ranges from (FDB) and of a rule base (RLB). The FDB is concerned with
the so-called persistency problem. In ordinary expert systems,undecidability (i.e., the impossibility to determine whether

one sentence follows from another) to NP-completeness (i.e., data needed for an application are (normally) introduced by
the user according to the system’s requests (i.e., in smallthe impossibility of solving a problem in time polynomially

proportional to the size of the problem description). Faced quantity and only when necessary). They reside in volatile
memory and, therefore, they disappear as soon as the particu-with this problem of the tractability of reasoning, all of the

proposed approaches to symbolic KR lay between two ex- lar application is finished. The same happens to the interme-
diate results deduced in the course of the reasoning process.treme positions:
This cannot be accepted for the facts of a knowledge base. As

• The first considers only KR languages that have limited with information in an ordinary DB, it must be possible to
expressive power (accepting the risk that they could be reuse them (i.e., facts must be permanently maintained inde-
of a limited practical interest for describing a certain pendently of any application, even when the FDB is not being
number of domains) but that show tractable inferential accessed). Because of this and its huge dimensions, normally
capabilities. Following this approach, some terminologi- the fact database of a KBMS cannot reside in volatile memory
cal languages for example, KRYPTON and CLASSIC, (central memory), but it must be organized on secondary
supply limited tractable formalism for expressing con- memory (mass memory).
cepts. Filling the gap between what can be expressed in KBMSs (IDBSs) can be classified according to the knowl-
the language and what is needed by a specific application edge representational technique used to encode their own
is left to the user, who normally resorts to programs writ- knowledge. For example, deductive databases are based on
ten in a procedural language. the cooperation between (1) an intensional database corre-

• The second accepts, on the contrary, the fact that gen- sponding to the RLB that contains logic formulas, that is, sets
eral-purpose symbolic KR languages are intractable or of assertions in PROLOG, DATALOG, etc. style, and (2) an
even undecidable, and then favors expressiveness with extensional database corresponding to the FDB that contains
respect to the computational tractability. Note also that, base relations stored explicitly in the secondary storage (e.g.,
from a practical point of view, problems about computa- a relational DB). The aim is to apply the inferential mecha-
tional tractability normally concern only the worst cases. nisms proper to the logic approach to the RLB formulas to
Then incomplete procedures are considered acceptable in derive, from base relations, information not explicitly stored
terminological languages like NIKL, LOOM, and BACK. in the FDB (virtual relations). The RLB rules can also be rep-

resented, obviously, as production rules, frames, or termino-
To sum up, ‘‘There is a tradeoff between the expressiveness logical logics statements. In this last case, the Tbox and the
of a representational language and its computational tracta- Abox are, respectively, good candidates for implementing the
bility . . . We do believe, however, that the tradeoff discussed RLB and FDB. Many of these solutions, even if, at least po-
here is fundamental. As long as we are dealing with computa- tentially, very powerful from a deductive point of view, are
tional systems that reason automatically (without any special characterized, however, by a low level of computational effec-
intervention or advice) and correctly (once we define what tiveness. Very often knowledge bases and IDBSs are very
that means), we will be able to locate where they stand on the small, given that their FDB resides only in central memory.
tradeoff: they will either be limited in what knowledge they In general, they provide only limited services for recovery,
can represent or unlimited in the reasoning effort they may protection, integrity maintenance, concurrent access to dis-
require (43, pp. 42–43).’’ tributed knowledge bases, etc., if any are provided at all.

Then a standard solution for realizing powerful KBMSs
KNOWLEDGE MANAGEMENT: SOME PRACTICAL ASPECTS consists of coupling some sort of KBSs with (traditional) DBs.

DBs are supposed to supply the KBSs with the correct quan-
We conclude this article by describing briefly two specific ap- tity of data required to drive their inferencing mechanisms,
plications of the representational principles examined in the while still preserving their basic functions (concurrency, etc.).
previous sections, knowledge base management, and tools This coupling has been realized by using all possible forms of
and support for knowledge management. association between DBs and KBSs, all sorts of loose or tight

coupling. We limit ourselves to mentioning here the most pop-
Knowledge Base Management ular type of coupled systems, the solutions involving coupling

of traditional DBMSs with KESEs and ES shells where theKnowledge base management systems (KBMSs), or intelli-
gent database systems (IDBSs) (97), are characterized, in the two cooperating systems still preserve their autonomy. Nor-

KNOWLEDGE MANAGEMENT 157

mally (but not mandatory, see later), the KBS acts as a front • A third type of mismatch involves the granularity of the
data to be handled (granularity mismatch). An AI rea-end to be used as a repository for the domain-specific knowl-

edge and to implement the reasoning mechanisms required soning mechanism uses data to instantiate its variables.
Therefore, it requires some data during each inferencefor user tasks. Then the DBMS is used as a back end, con-

taining facts required for front-end reasoning. An important and under an atomic form (individual tuples of data val-
ues). To the contrary, a relational DBMS answers apoint here is that, even when this distribution of duties is not

exactly respected, an essential component of the overall sys- query by returning results as sets of tuples. Accordingly,
when the KBS breaks down a query into a sequence oftem always consists of an already available, existing on-line

database. Therefore, no need exists for restructuring and re- queries on tuples, each of them incurs a heavy DBMS
performance overhead. Therefore we lose the benefits ofcoding the database information in-depth, nor for executing

any unreasonable amount of change in existing applications. the set-oriented optimization characteristic of DBMSs.
Moreover, unlike what happens with traditional algorith-This advantage has been sometimes defined as the 80–20 rule

(98). Using this type of approach for the setup of KBSs and mic programming, it is impossible to completely antici-
pate the data access needs of a KBS given that, in theseIDBSs allows, at least in principle, achieving 80% of the bene-

fits of integration at only 20% of the costs. Then, it is not systems, control knowledge is separated from the (do-
main-specific) problem-solving knowledge, resulting in asurprising that, today, practically all existing commercial

KBSs provide some (sometimes rudimentary) facilities to im- reasoning process which is highly problem-dependent.
plement coupling with an existing DBMS. Note that architec-

To realize the coupling, the five architectural solutions in Fig.tural solutions very similar to these have also been developed
21 have been described in the literature (98).in a logic programming context; see the so-called heteroge-

Figure 21(a) corresponds to what we could call the ‘‘fullneous approach for constructing deductive databases.
bridge’’ solution. Coupling KBSs with existing DBMSs is real-Note that the attempt to couple a KBS and a DBMS while
ized here by explicitly building up a third component, an inde-preserving their independence is not an easy task. Several
pendent subsystem acting as a communication channel be-authors (99,100), have noticed that there is a fundamental
tween the first two. No system dominates (at least inmismatch between the two types of subsystems that takes, at
principle). This allows the DBMS to operate as a totally sepa-least, three different forms:
rate system with its own set of DB users. We note, however,
that the appeal of this general solution is balanced by the

• The first involves the knowledge representational as-
practical difficulty of implementing efficient systems. All of

pects (semantic mismatch). Simple relational algebra the mismatches described previously come in fully. Figure
and ‘‘flat’’ relations proper to DBs are not always compat- 21(a) has at least two variants, depending on whether the
ible with some advanced knowledge representational sys- control of the interactions between the two subsystems is lo-
tems, for example, frames, which are used in many cated on the central bridge or distributed, as the processing,
KESEs, to say nothing of the ad hoc ways of structuring between the two original components. A simple solution in
the fact database which are current in many ES shells this category, which has been intensively used in the early
and which are realized only according to the constraints times of the KBSs/DBMSs integration era, consists of using a
imposed by the characteristics of a particular inferential flat file as the intermediary medium. To transfer information
engine and by the properties of the problem at hand. Se- from the KBS to the database, the former writes the informa-
vere performance problems arise from this mismatch, of- tion into the file. This is transferred to the DBMS, which re-
ten requiring, inter alia, the use of redundant data de- ads it and stores it as rows. The DBMS transfers information
scriptions to make data exchange possible. to the KBS by the converse procedure. Of course, this

• A second type of mismatch involves the operational as- straightforward approach, which can be considered the proto-
pects of the global system (impedance mismatch). The in- type of any loose coupling approach, and which does not scale
ferential knowledge of an AI system, that is, the knowl- up well, is suitable only for knowledge-based applications
edge taking charge of the operational aspects of this that reason over a well-specified data set and where the inter-
system, is basically static because it is represented action between the DBMS and the KBS is kept to a minimum.
mainly by the declarative knowledge stored in the RLB. An early, well-known full bridge solution is represented by
To the contrary, the operational component of a database the Dictionary Interface for Expert Systems and Databases
system is dynamic and is represented by the knowledge (DIFEAD) system, implemented at Trinity College, Dublin, in
embedded, in a procedural way, inside an application the mideighties (101). DIFEAD is particularly interesting for
program. In complex applications, the data is retrieved at least two reasons:
from a DBMS using a DB query language, such as SQL,

• it is one of the first systems explicitly based on an archi-and then manipulated through routines written in a con-
tecture in the full-bridge style;ventional programming language, such as C or PL/1. Co-

operation between the two systems therefore implies, at • it is among the first realizations that have grounded the
least in principle, continuously translating static inferen- functionalities of the KBS/DBMS interface (the KBSs are
tial processes into dynamic queries, and vice versa. An- simple ESs in this case) on a concept proper to the data-
other aspect of this mismatch involves optimization. Al- base domain, the data dictionary concept.
though optimizing the KBS programs is left largely to
the programmer, optimizing the relational DB is left to We recall here that a data dictionary stores, in compiled for-
the system. Overall global optimization of computations mat, both the different schemata (conceptual, etc.) which de-

fine the corresponding database and the rules assuring corre-is, at least in principle, precluded.

158 KNOWLEDGE MANAGEMENT

Figure 21. Architectural solutions proposed for coupling
KBs (KESEs and ES shells) with (traditional) DBs. In these
solutions, the two cooperating systems still preserve their
autonomy. DBs are supposed to supply the KBSs with the
correct quantity of data required to drive their inferencing
mechanisms, while still preserving their basic functions (con-
currency etc.). Normally (but not mandatory), the KBS acts
as a front end to be used as a repository for the domain-
specific knowledge and for implementing the reasoning
mechanisms required for user tasks. Then the DBMS is used
as a back end, containing facts required for front-end rea-

DBMS KESE/ES

DBMS KESE/ES

DBMS

DBMS

KESE/ES

KESE/ES

DBMS

KESE/ES

User User

User

User

User

(a)

(b)

(c)

(d)

(e)

soning.

spondence among the different levels, along with a the Data Dictionary Directory System (DD/DS) that, in
description of the meaning of the data. The dictionary itself DIFEAD, is realized as a proper DBMS system (DIFEAD
may be conceived as a database. In this case, it fulfills the DBMS).
role of a metabase, that is, of a DB which describes the other • The third module is the data update module (DUM) that
DBs. In DIFEAD, the independent, central bridge module is is responsible for updating the DD/DS automatically
called the metalevel component (MLC). It includes three after the ES has inferred a new fact.
main modules:

• The user interface module (UIM), whose main function The KBS systems included in DIFEAD were (relatively) sim-
is that of decoding a user request and sending it to the ple systems based on the production rules paradigm (medical
KBSs (ESs) via a second module, the metadata query ESs). The reduction of the KBS to an ES can scale down
module (MQM). greatly the semantic mismatch risk. The �Attribute, Object,

Value� format (associative triples) often used for representing• The MQM is responsible for the communication between
the terms in the rules of the simplest ES shells is, in fact,the ESs and the DB. In particular, it can decide whether
very compatible with the pairs attribute-value stored in a re-an ES request can be answered automatically from the
lational DB. When the conceptual model of the KBS is moreapplication DB or whether it is necessary to require in-

put from the user. This choice is carried out by checking complex, it becomes very difficult to implement a sort of gen-

KNOWLEDGE MANAGEMENT 159

eral solution for the coupling that uses the full bridge ap- lating SQL queries to move data between the DB (Fact
DataBase) and the KB (Rule Base).proach.

To give only an idea of the difficulty of this task, we men- • The second type of modifications involves the inferential
tion here the Advanced Information Management Systems engine of the KBS, which now must be provided with
(AIMS) project, developed in the framework of the ESPRIT data management functions allowing it to gain direct ac-
programme of the European Communities. One of the AIMS’ cess to a generalized DBMS. The database functionalities
objective was integrating BACK (see the previous ‘‘termino- of the inferential engine can be realized according to a
logical logics’’ section) with existing external relational DBs. loose or tight coupling approach. It must be noted that,
A specific high-level language, Europe-Brücke (EB), was de- especially when a tight coupling is chosen and in spite
fined to implement an authentic full bridge between the two of the use of a general-purpose DBMS, the DB itself is
systems, that is, to allow an explicit and complete description completely devoted to the KBS application. This fact is
of the links between the concepts in the BACK front end and symbolized, in Fig. 21(b), by indicating that the user
the relations in the DB. The aim was that of realizing a gains access to the global system only through the KBS
wholly free connection, that is, to allow the possibility of map- subsystem.
ping several relations on a single concept, of spreading a sin-

Because of the previous modifications which affect in-depthgle relation on a concepts hierarchy, and of creating instances
the normal characteristics of the KBS, Fig. 21(b) is less gen-and attribute values as the result of complex queries.
eral (but more easy to implement) than that of Fig. 21(a).Then the mapping information associated with a single
Moreover, the KBS subsystem can access the associated DB(s)BACK concept must provide a complex, two-level description
only if the logical schema of this last component has beenof links between concept instances and DB relationships:
explicitly enclosed in the interface’s structure, for example by
using again some sort of data dictionary approach. This is• Main data source links: databases and relations (tables)
why, until very recently, in the systems implementing the ar-from which the keys of the tuples containing the in-
chitecture of Fig. 21(b) each KBS/DB link provided access tostances description must be retrieved. The corresponding
a specific version of a DBMS product running under a specificEB predicate is
operating system on a specific machine.

For example, in Trinzic’s KBMS, the back end component
link(concept_name, tables_specification & condition is made up of external DBMSs (it is possible to access multi-

(condition) & name_from_backbase (role_list)) ple DBs simultaneously). When a rule needs a data object,
KBMS can automatically retrieve it through an automatic da-

• Fillers retrieval links: information about the DB links tabase interface. For example for applications requiring infor-
that must be followed to obtain the role fillers of the in- mation from relational systems, KBMS automatically gener-
stances. DB links are expressed in terms of the involved ates the SQL statement needed to access or update the data.
DB tables, the relationships among the fields, and the If the data is moved to a different storage facility, no changes
conditions that must be satisfied by the tuples retrieved to the application rules are needed. Automatic database inter-
in this way. Then the corresponding EB predicate is faces are based on the Automatic Data Definition (ADD) facil-

ity. ADD automatically loads data definition information from
a data dictionary or catalogue into KBMS. ADDs are offeredlink (role_name, for_concept(back_concept_name) &
for the most popular DBMS and file storage systems: DB2,with_range(range_type) & extract (extract_state-
SQL/DS, IMS, CA-IDMS, VSAM, Adabas, Teradata, etc. (IBMment) & group_by (field_name) & option (option_
mainframe environment); Rdb, ORACLE, RMS (DEC environ-name))
ment); OS/2 Database Manager (PC environment). KBMS
also provides a manual DB interface, relying on user-writtenThe architectural solutions of Fig. 21(b) consist of extending
data access procedures and allows building applications thata KBS with components proper to a DBMS. This implies nor-
require access to data not automatically accessed by KBMS.mally implementing two sorts of modifications in the charac-
Analogously, KEEConnection can connect with a fixed num-teristic features of the KBS:
ber of DBMSs using different network protocols, but only if
these systems are anticipated in the product design.

• The first consists of an extension with database function- Even if the basic implementing techniques of the solutions
alities of the AI language used in the KBS. For example, of Fig. 21(b) have not substantially changed with respect to
in a well-known product in Fig. 21(b) style distributed by the choices outlined before, the most modern realizations of
Trinzic Corporation Limited, whose name is KBMS (sic), this architecture try to be as general as possible, and solution
the left-hand side of the ‘‘if-then’’ rules includes support 21(b) represents the architectural solution adopted by the
for ANDs and ORs, relations, algebraic expressions, vendors of the main ES tools to provide their systems with
parametric functions, and also a SQL-like dot qualifica- some elementary possibilities of extracting information from
tion of attribute names to allow for multiple bindings of a database. To give only an example, see the 4.0 version of
an object. Analogously, the right hand side includes com- the EXSYS Professional tool (EXSYS Inc., Albuquerque, NM)
mands like CREATE, UPDATE, DELETE, CALL, which can now access up to 17 different SQL DBMSs.
PRINT, RUN, etc. Similar solutions have been adopted Note, however, that
in IntelliCorp’s KEEConnection product, one of the first
realizations in this domain. These allow KEE (see previ- 1. no standard approach exists for realizing the access
ous discussion) to access DB information, as if it were functions, even if variants of the data dictionary tech-

nique are largely used;part of the KEE knowledge base, by automatically formu-

160 KNOWLEDGE MANAGEMENT

2. the automatic behavior of the connection is often very installed base of DBs is definitely larger than the KBSs base.
A number of conventional applications already use the DBMSrudimentary, and a lot of additional programming effort

is often necessary to retrieve the data correctly from technology. Therefore, at least in a context of strong integra-
tion, DBs are probably a better place for incorporating KBSthe DB.
functionalities than vice versa.

We can mention two running systems using the Fig. 21(e)The approach described by Fig. 21(c) is a symmetrical version
of the previous one and consists of extending a DBMS with solution, American Red Cross Health Education System

(ARCHES), which relatively simple, and the KBase system,components proper to a KBS. When the database application
must access the inferential engine and the knowledge base which is more complex and is used to simulate the behavior

of a scheduling expert in building construction (98).of the KBS subsystem, two strategies are usually employed,
resulting in an explicit or implicit access procedure (102). In
the first case, which uses a procedural call interface, an ex- Tools and Support for Knowledge Management
plicit call to the KBS must be inserted in the application pro-

Before the mid-1970s, no real tool existed for facilitating thegram. This is the strategy followed in many of the commercial
development of KBSs. These (ESs in the majority) were setsolutions (Cullinet. . .) to the integration problem. In the sec-
up by writing directly large amounts of LISP or PROLOGond case, the application itself does not explicitly call the
code. LISP (and its various dialects) was the language ofKBS, and all access to the inferential engine is through the
choice in the US. A beginning of normalization in the LISPsame query interface used to access data. Queries look like
field was reached in the seventies with the introduction of aordinary QSL queries without any explicit mention of a possi-
LISP standard called COMMON LISP. In Europe and laterble intervention of the KBS side. When some of the attributes
in Japan (Fifth Generation Project), developers of KBSs pre-mentioned in the query must be derived (i.e., their values are
ferred PROLOG. Given the complexity of these two lan-not explicitly stored in the DB), their values are obtained by
guages, the necessity of building up the systems from scratchinference from the KBS. Information about how to deal with
(with the consequence of experiencing very large developmentsuch attributes is transparent to the user and stored in an
times) and the existence of few LISP and PROLOG program-active repository. For example in a query like ‘‘select amount,
mers who worked mainly in an academic environment, veryrecommendation from credit approval where . . .’’, which re-
few KBSs (in the great majority in prototypical academic sys-fers to a credit authorization application (103, p. 28), the re-
tems) were built up in the first twenty years of the existencepository knows that amount and recommendation are derived
of artificial intelligence (AI). We recall here that the officialattributes and triggers the corresponding rules in the rule
year of birth of AI is 1956 on the occasion of a famous Sum-base of the KBS. Note that all the architectural solutions in
mer Workshop at Dartmouth College.the Fig. 21(c) style can also be classed under the label ‘‘rule-

The mid-1970s’ turning point resulted from the success ofbased extensions’’ of the DBMSs and OODBMSs. For more
the MYCIN project. Developed in INTERLISP, a dialect oftechnical details see, the ‘‘Database’’ articles in the Encyclo-
LISP, and including a knowledge base of about 500 produc-pedia.
tion rules, this system was developed according to the archi-In the approaches described in Fig. 21(d) and 21(e), the
tecture now considered the standard for developing ESs (seefunctionalities of the DB and KBS systems are strongly inte-
Fig. 8), which separates the proper knowledge base from thegrated, and the designer is concerned with only one environ-
other modules of the system, working memory, inference en-ment. This means that data model used in the DB component
gine, interfaces etc. MYCIN developers realized that, by sup-and the knowledge representational language of the KBS
pressing the medical knowledge base of MYCIN, they couldcomponent are now unified. As a consequence, any possibility
obtain an empty system, a shell, ready to be ported to otherof semantic mismatch (see previous discussion) is avoided.
applications, based on inserting in the shell the knowledgeSystems like these represent, however, a (at least partial) de-
base suited to the new application. Then the first shell, Es-parture from the traditional approaches to integration. In the
sential MYCIN (EMYCIN) was born. One of the first utiliza-literature, descriptions of systems based on the solutions in
tions of EMYCIN was the construction of PUFF, another ESFig. 21(d) and 21(e) which are not simply general suggestions
in the medical field, where the rules of the knowledge baseor, at best, experimental prototypes are, therefore, still rela-
now related to diagnosing of pulmonary problems, instead oftively rare. We can add that commercial systems based on the
dealing with infectious blood diseases, as in MYCIN. In 1988,architecture of Fig. 21d will probably constitute an exception
the percentage of ESs (more generally KBSs) developed byin the future, at least from a strict KBS/DB integration point
using a shell was already about 50%. About 25% of the appli-of view. When advanced semantic models (frames, objects, de-
cations still developed in pure LISP, and the rest were sharedscription logics . . .) are used to describe even the informa-
among PROLOG, OPS5, and other programming languages.tion in the FDB to achieve complete knowledge/data trans-

The first ES tools were strictly rule-based. Then a secondparency, we obtain some unconventional (and controversial)
revolution occurred in the mid-1980s, when the first environ-pure AI systems in the style of TELOS (103), and CYC (104).
ments for constructing complex frame-based KBSs arrived onFrom a standard KBS/DB point of view, the main disadvan-
the market. We have called these powerful environmentstage of solution 21(d) is that it requires constructing ex nihilo
knowledge engineering software environments (KESEs). KEEa DB system after (or during) the set up of the KBS. In many
was introduced in 1983. ART by Inference Corp. was disclosedcases, this implies the need for long sessions of sequential
at the American Association for Artificial Intelligence (AAAI)dialogue with the user to collect the input data, whereas us-
Conference in Austin in the summer of 1985. Knowledgeing the solution 21(e), the DB already contains the data
Craft by the Carnegie Group was commercialized later in theneeded to feed the KBS. Moreover, the DBMS technology is

more stable and mature than the KBS technology, and the same year. For a good while KEE, ART, and Knowledge Craft

KNOWLEDGE MANAGEMENT 161

have represented the inescapable trilogy of high-level tools for 1990, in the sale of tools specifically configured for PC and
Macintoshes, as well as a decrease in the sale of the main-constructing the most powerful KBSs. Note that KBSs are not

only ESs but also, to give only an example, complex computa- frame tools. Sales of workstation tools have, to the contrary,
increased each year since 1988, and this trend will probablytional linguistic applications.

An up-to-date review of the most important tools on the continue.
market today, arranged into seven classes, and an account of
the criteria for selecting them can be found in Ref. 105. The

BIBLIOGRAPHYfirst class of tools includes the pure AI languages, LISP, PRO-
LOG (and, more recently, C and C��) and mainly OPS5

1. A. Newell, The knowledge level, Artif. Intell., 18: 87–127, 1982.(OPS � Official Production Language), a rule-based program-
2. G. Schreiber, B. Wielinga, and J. Breuker, KADS: A Principledming language (see also the previous section ‘‘Production

Approach in Knowledge-Based System Developments, London:Rules’’) whose popularity is linked mainly with the success of
Academic Press, 1993.the R1 (later called XCON) expert system, built up by John

3. J. Breuker and W. van de Velde (eds.), Common KADS LibraryMcDermott to help DEC configure VAX computer systems au-
for Expertise Modeling, Amsterdam: IOS Press, 1994.tomatically (106). In the rule-based tools, tools basically fol-

4. L. Steels, The componential framework and its role in reusabil-lowing the EMYCIN philosophy, we can recall CLIPS, devel-
ity, in J.-M. David and J.-P. Krivine (eds.), Second Generationoped about 1985 at the NASA Johnson Space Center and
Expert Systems, Berlin: Springer-Verlag, 1993.freely available for a nominal fee. CLIPS adds procedural and

5. H. Eriksson et al., Task modeling with reusable problem-solvingobject-oriented facilities to the basic production rules para-
methods, Artif. Intell., 79: 293–326, 1995.digm for knowledge representation. Other well-known tools in

6. N. F. Noy and C. D. Hafner, The state of the art in ontologythe rule-based class are Gensym’s G2, Ilog’s RULES, Tek-
design-A survey and comparative review, AI Mag., 18 (3): 53–nowledge’s M4, etc. In the frame-based tools class, KEE is
74, 1997.now supplanted in practice by the new Intellicorp products,

7. B. Chandrasekaran, Design problem solving: A task analysis, AIProKappa and Kappa. C/C�� versions of ART and Knowl-
Mag., 11 (4): 59–71, 1990.edge Craft have been developed. The C/C�� version of Car-

8. R. Neches et al., Enabling technology for knowledge sharing, AInegie Representation Language (CRL), the frame-based
Mag., 12 (3): 36–56, 1991.knowledge representation language at the core of Knowledge

9. M. R. Genesereth and R. E. Fikes (eds.), Knowledge InterchangeCraft, is now called ROCK. A fourth class of tools includes the
Format-Version 3.0 Reference Manual (Report Logic-92-1). Stan-fuzzy logic tools. For example, FuzzyCLIPS 6.02 is a version
ford, CA: Computer Science Dept. of Stanford Univ., 1992.of the CLIPS shell enhanced with extensions for representing

10. G. van Heijst, R. van der Spek, and E. Kruizinga, Organizingand manipulating fuzzy facts and rules. Attar Software’s
corporate memories, Proc. 10th Banff Knowledge AcquisitionXpertRule for Windows includes, with the usual Es tools, spe-
Knowledge-Based Syst. Workshop, 1996.cific tools for fuzzy logic and genetic algorithm optimization.

11. E. A. Fegenbaum, Knowledge engineering: The applied side ofThe next class of tools, induction tools, generates rules from
artificial intelligence, Ann. NY Acad. Sci., 246: 91–107, 1984.examples and are the result of AI research in machine learn-

12. R. J. Brachman and H. J. Levesque (eds.), Readings in Knowl-ing (see the article MACHINE LEARNING). An example is the free
edge Representation, San Francisco: Morgan Kaufmann, 1985.FOCL software tool, that learns Horn clause programs from

13. M. Minsky and S. Papert, Perceptrons: An Introduction to Com-examples and (optionally) background knowledge. The sixth
putational Geometry, Cambridge, MA: MIT Press, 1969.class of tools is represented by the case-based reasoning

14. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning(CBR) tools that use past experience (solved cases) to solve
internal representations by error propagation, Parallel Distrib-similar current problems (see the PLANNING articles). Well-
uted Processing: Explorations in the Microstructures of Cognition,known tools in this class are Inference Corporation’s CBR Ex-
Cambridge, MA: MIT Press, 1986.press, Haley’s Easy Reasoner, Cognitive’s ReMind, etc. The

15. P. D. Wasserman, Neural Computing: Theory and Practice, Newseventh and last class is associated with the so-called domain-
York: Van Nostrand Reinhold, 1989.specific tools, tools used for developing KBSs in a particular

16. G. Josin, Integrating neural networks with robots, AI Expert, 3problem-solving domain (control, design, diagnosis, instruc-
(8): 50–58, 1988.tion, planning etc.). Some of them are commercially available,

17. J. H. Holland, Adaptation in Natural and Artificial Systems, Annand others are developed by professional organizations for
Arbor: Univ. Michigan Press, 1975.their specific needs. The tools of this class have gained partic-

18. W. M. Spears et al., An overview of evolutionary computation,ular importance in recent years.
Proc. 1993 Eur. Conf. Mach. Learning, 1993, ECML-93.Reference 105 contains a series of diagrams that summa-

rize visually the major trends in the KBS tools market in re- 19. J. Koza, Genetic Programming, Cambridge, MA: MIT Press,
1992.cent years. For example, it can be seen that annual global

sales of development tools decreased between 1990 and 1991, 20. L. J. Eshelman, R. Caruna, and J. D. Schaffer, Biases in the
crossover landscape, Proc. 3rd Int. Conf. Genet. Algorithms, 1989.as a final consequence of the ‘‘AI winter’’ of the second half of

the 1980s. After 1992, they rebounded quite well, as 21. G. Syswerda, Uniform crossover in genetic algorithms, Proc. 3rd
Int. Conf. Genet. Algorithms, 1989.proof of the renewed confidence of the software industry in AI

possibilities, and sales were about $200 millions in 1995. The 22. D. Beasley, D. R. Bull, and R. R. Martin, An overview of genetic
diagrams also show a very sharp decline in annual sales of algorithms: Part 1, Fundamentals, Univ. Comput., 15 (2): 58–

69, 1993.pure AI languages tools (mainly LISP tools) after 1990, and
an outstanding increase in sales of domain-specific tools. A 23. D. E. Goldberg, Genetic Algorithms in Search Optimization, and

Machine Learning, Reading, MA: Addison–Wesley, 1989.final interesting phenomenon involves the decline, after

162 KNOWLEDGE MANAGEMENT

24. D. Beasley, D. R. Bull, and R. R. Martin, An overview of genetic 49. W. F. Clocksin and C. S. Mellish, Programming in PROLOG,
Berlin: Springer-Verlag, 1981.algorithms: Part 2, research topics, Univ. Comput., 15 (4): 170–

181, 1993. 50. H. Gallaire and C. Lasserre, Metalevel control for logic program-
25. D. Whitley, A Genetic Algorithm Tutorial Technical Report CS- ming, in K. L. Clark and S.-A. Tärnlund (eds.), Logic Program-

93-103, Fort Collins, CO, Computer Science Dept. Colorado ming, London: Academic Press, 1982.
State Univ., 1993. 51. E. L. Post, Formal reductions of the general combinatorial deci-

26. L. A. Zadeh, Fuzzy sets, Inf. Control, 8: 338–353, 1965. sion problem, Amer. J. Math., 65: 197–268, 1943.
27. B. Kosko, Neural Networks and Fuzzy Systems—A Dynamical 52. A. Markov, Theory of Algorithms, Moscow: USSR National Acad-

Systems Approach to Machine Intelligence, Englewood Cliffs, NJ: emy of Sciences, 1954.
Prentice-Hall, 1992.

53. N. Chomsy, Syntactic Structures, The Hague: Mouton, 1957.
28. H. J. Zimmermann, Fuzzy Set Theory and its Applications, 2nd

54. A. I. Vermesan, Foundation and application of expert systemed., Norwell, MA: Kluwer, 1991.
verification and validation, in J. Liebowitz (ed.), The Handbook

29. G. Viot, Fuzzy logic: Concepts to constructs, AI Expert, 8 (11):
of Applied Expert System, Boca Raton, FL: CRC Press LCC,

26–33, 1993.
1998.

30. I. B. Türksen, Hybrid systems: Fuzzy neural integration, in J.
55. E. H. Shortliffe, Computer-Based Medical Consultations:Liebowitz (ed.), The Handbook of Applied Expert Systems, Boca

MYCIN, New York: American-Elsevier, 1976.Raton, FL: CRC Press, 1998.
56. P. Norvig, Paradigms of Artificial Intelligence Programming:31. C.-C. Hung, Building a neuro-fuzzy learning control system, AI

Case Studies in Common Lisp, San Francisco: Morgan Kauf-Expert, 8 (11): 40–49, 1993.
mann, 1992.32. A. Newell and H. A. Simon, Computer science as empirical in-

57. G. Shafer, A Mathematical Theory of Evidence, Princeton, NJ:quiry: Symbols and search, Commun. ACM, 19: 113–126, 1976.
Princeton Univ. Press, 1976.33. F. Lehmann (ed.), Semantic Networks in Artificial Intelligence,

58. P. R. Harrison and J. G. Kovalchik, Expert Systems and Uncer-Oxford, UK: Pergamon Press, 1992.
tainty, in J. Liebowitz (ed.), The Handbook of Applied Expert34. J. F. Sowa, Conceptual Structures: Information Processing in
Systems, Boca Raton, FL: CRC Press, 1998.Mind and Machine, Reading, MA: Addison-Wesley, 1984.

59. C. L. Forgy, Rete: A fast algorithm for the many pattern/many35. G. P. Zarri, NKRL, a knowledge representation tool for encoding
object match problem, Artif. Intell., 19: 17–37, 1982.the ‘meaning’ of complex narrative texts, Natural Language

Eng.—Special Issue on Knowledge Representation Natural Lan- 60. C. L. Forgy, The OPS languages: A historical overview, PC AI,
guage Process. Implemented Syst., 3: 231–253, 1997. 9 (5): 16–21, 1995.

36. J. A. Robinson, A machine-oriented logic based on the resolution 61. P. Graham, Using the RETE algorithm, AI Expert, 5 (12): 46–
principle, J. ACM, 12: 23–41, 1965. 51, 1990.

37. J. A. Robinson, Expressing expertise through logic program-
62. N. Fridman Noy and C. D. Hafner, The state of the art in ontol-

ming, in D. Michie (ed.), Introductory Readings in Expert Syst.,
ogy design-A survey and comparative review, AI Mag., 18 (3):

New York: Gordon and Breach, 1982.
53–74, 1997.

38. N. J. Nilsson, Principles of Artificial Intelligence, Palo Alto, CA:
63. A. Gomez-Perez, Knowledge sharing and reuse, in J. LiebowitzTioga, 1980.

(ed.), The Handbook of Applied Expert Systems, Boca Raton, FL:
39. K. Knight, Unification: A multidisciplinary survey, ACM Com- CRC Press LCC, 1998.

put. Surv., 21: 93–124, 1989.
64. R. J. Brachman, What IS-A is and isn’t: An analysis of taxo-40. R. A. Kowalski, Logic as a computer language, in K. L. Clark

nomic links in semantic network, IEEE Comput., 16 (10): 30–and S.-A. Tärnlund (eds.), Logic Programming, New York: Aca-
36, 1983.demic Press, 1982.

65. R. Fikes and T. Kehler, The role of frame-based representations41. J. W. Lloyd, Foundations of Logic Programming, 2nd ed., New
in reasoning, Commun. ACM, 28: 904–920, 1985.York: Springer-Verlag, 1987.

66. D. B. Lenat et al., CYC: Toward programs with common sense,42. R. A. Kowalski, Algorithm � logic � control, Commun. ACM,
Commun. ACM, 33 (8): 30–49, 1990.22: 424–436, 1979.

43. R. J. Brachman and H. J. Levesque, A fundamental tradeoff in 67. W. A. Woods, What’s in a link: Foundations for semantic net-
knowledge representation and reasoning, in R. J. Brachman and work, in D. G. Bobrow and A. M. Collins (eds.), Representation
H. J. Levesque (eds.), Readings in Knowledge Representation and and Understanding: Studies in Cognitive Sciences, New York:
Reasoning, San Francisco: Morgan Kaufmann, 1985. Academic Press, 1975.

44. W. P. Dowling and J. H. Gallier, Linear-time algorithms for test- 68. M. Minsky, A framework for representing knowledge, in P. H.
ing the satisfiability of propositional Horn formulae, J. Logic Winston (ed.), The Psychology of Computer Vision, New York:
Programming, 1: 267–284, 1984. McGraw-Hill, 1975.

45. A. Colmerauer et al., Un système de communication Homme- 69. R. J. Brachman, ‘I lied about the trees’ or, defaults and defini-
machine en Français (Rapport de recherche). Marseille: Groupe tions in knowledge representation, AI Mag., 6 (3): 80–93, 1985a.
d’Intelligence Artificielle de l’Université Aix-Marseille II, 1973.

70. D. W. Etherington, Formalizing nonmonotonic reasoning sys-
46. P. Roussel, PROLOG, Manuel de référence et d’utilisation. tems, Artif. Intell., 31: 41–85, 1987.

Luminy: Groupe d’Intelligence Artificielle de l’Université Aix-
71. D. W. Etherington, Reasoning with Incomplete Information. SanMarseille II, 1975.

Francisco: Morgan Kaufmann, 1988.47. M. H. van Emden and R. A. Kowalski, The semantics of predi-
72. R. Nado and R. Fikes, Saying more with frames: Slots ascate logic as a programming language, J. ACM, 23: 733–742,

classes, in F. Lehmann (ed.), Semantic Networks in Artificial1976.
Intelligence, Oxford, UK: Pergamon Press, 1992.48. A. Colmeraurer, PROLOG and Infinite Trees, in K. L. Clark and

73. R. Reiter, A logic for default reasoning, Artif. Intell., 13: 81–S.-A. Tärnlund (eds.), Logic Programming, London: Academic
Press, 1982. 182, 1980.

KNOWLEDGE VERIFICATION 163

74. R. Reiter and G. Criscuolo, Some representational issues in de- 96. H. J. Levesque, Foundations of a functional approach to knowl-
edge representation, Artif. Intell., 23: 155–212, 1984.fault reasoning, in N. J. Cercone (ed.), Computational Linguis-

tics, Oxford, UK: Pergamon Press, 1983. 97. E. Bertino and G. P. Zarri, Intelligent Database Systems, Lon-
don: Addison-Wesley, in press.75. S. E. Fahlman, NETL: A System for Representing and Using

Real-World Knowledge, Cambridge, MA: MIT Press, 1979. 98. C.-K. Soh, A.-K. Soh, and K.-Y. Lai, An approach to embed
knowledge in database systems, Eng. Appl. Artif. Intell., 5: 413–76. D. S. Touretzky, The Mathematics of Inheritance Systems, Lon-
423, 1992.don: Pitman, 1986.

99. S. Tsur, LDL-A technology for the realization of tightly cou-77. E. Sandewall, Non-monotonic inference rules for multiple inher-
pled expert database systems, IEEE Expert, 3 (3): 41–51,itance with exceptions, Proc. IEEE, 74: 1345–1353, 1986.
1988.78. L. Padgham, Defeasable inheritance: A lattice based approach,

100. S. Khoshafian, Modeling with object-oriented databases, AI Ex-in F. Lehmann (ed.), Semantic Networks in Artificial Intelligence,
pert, 6 (10): 27–33, 1991.Oxford, UK: Pergamon Press, 1992.

101. A. Al-Zobaidie and J. B. Grimson, Expert systems and database79. P. J. Hayes, The logic of frames, in D. Metzing (ed.), Frame
systems: How can they serve each other?, Expert Syst., 4 (1):Conceptions and Text Understanding, Berlin: de Gruyter,
30–37, 1987.1979.

102. B. Cohen, Merging expert systems and databases, AI Expert, 480. G. Ringland, Structured object representation—Schemata and
(2): 22–31, 1989.frames, in G. A. Ringland and D. A. Duce (eds.), Approaches to

103. J. Mylopoulos et al., TELOS: Representing knowledge aboutKnowledge Representation: An Introduction, Letchworth: Re-
information systems, ACM Trans. Inf. Syst., 8: 325–362,search Studies Press, 1988.
1990.81. D. Skuce, Conventions for reaching agreement on shared ontolo-

104. D. B. Lenat and R. V. Guha, Building Large Knowledge Basedgies, Proc. 9th Banff Knowledge Acquisition for Knowledge-Based
Systems, Reading, MA: Addison-Wesley, 1990.Syst. Workshop, 1995.

105. J. Durkin, Expert System Development Tools, in J. Liebowitz82. R. Wilensky, Some Problems and Proposals for Knowledge Repre-
(ed.), The Handbook of Applied Expert Systems, Boca Raton, FL:sentation (UCB/CSD Report n� 87/351), Berkeley, CA: Univer-
CRC Press, 1998.sity of California Computer Science Division, 1987.

106. J. McDermott, R1: The formative years, AI Mag., 2 (2): 21–29,83. U. Schiel, Abstractions in semantic networks: Axiom schemata
1981.for generalization, aggregation and grouping, ACM Sigart

Newsl., (107): 25–26, 1989.
GIAN PIERO ZARRI84. M. E. Winston, R. Chaffin, and D. Herrmann, A taxonomy of
CNRS-CAMSpart-whole relations, Cognitive Sci., 11: 417–444, 1987.

85. A. Artale et al., Part-whole relations in object-centered systems:
An overview, Data Knowledge Eng., 20: 347–383, 1996.

86. G. P. Zarri, Semantic modeling of the content of (normative)
natural language documents, in Actes des dizèmes journées int.
d’Avignon ‘Les systèmes experts et leurs applications’-Conf. spé-
cialisée sur le traitement du langage naturel, Paris, 1992.

87. G. P. Zarri, Knowledge acquisition from complex narrative texts
using the NKRL technology, Proc. 9th Banff Knowledge Acquisi-
tion for Knowledge-Based Syst. Workshop, 1995.

88. R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque, An es-
sential hybrid reasoning system: Knowledge and symbol level
accounts in KRYPTON, Proc. 9th Int. Joint Conf. Artif. Intell.,
San Francisco, 1985.

89. T. S. Kaczmarek, R. Bates, and G. Robins, Recent developments
in NIKL, Proc. 5th Natl. Conf. Artif. Intell., 1986.

90. R. MacGregor and R. Bates, The LOOM Knowledge Representa-
tion Language (Technical Report ISI/RS-87-188). Marina del
Rey, CA: USC/Information Science Institute, 1987.

91. R. J. Brachman et al., Living with CLASSIC: When and how to
use a KL-ONE-Like language, in J. F. Sowa (ed.), Principles of
Semantic Networks, San Francisco: Morgan Kaufmann, 1991.

92. F. Baader and B. Hollunder, A terminological knowledge repre-
sentation system with complete inference algorithm, Proc. Work-
shop on Processing Declarative Knowledge, 1991.

93. T. Hoppe et al., BACK V5 Tutorial and Manual (KIT Report
100). Berlin: Department of Computer Science of the Technische
Universität, 1993.

94. R. J. Brachman and J. G. Schmolze, An overview of the KL-
ONE knowledge representation system, Cognitive Sci., 9: 171–
216, 1985.

95. M. Buchheit, F. M. Donini, and A. Schaerf, Decidable reasoning
in terminological knowledge representation systems, J. Artif. In-
tell. Res., 1: 109–138, 1993.

