
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright c© 1999 John Wiley & Sons, Inc.

SEARCHING

Searching is the process of seeking a desired element in a set of related elements. The task of searching is
one of the most frequent operations in computer science. There exist several basic variations of the theme
of searching, and many different approaches, data structures, and algorithms have been developed on this
subject.

Figure 1 describes graphically the basic components of searching in the natural and the digital world.
In our natural world, a human having an information need is searching a data set. In the digital world, an
information need (or query) of a user or application is pursued over a data set stored in computer memory.
An algorithm is used to carry out the task of searching. As searching is a very frequent operation, in many
cases the data are structured and stored in such a way so that it facilitates that task. However, the efficiency
of searching is not the only factor that determines the structuring of data. Other factors are the storage space
required, the efficiency of updating, and so on. As a consequence, in many cases auxiliary data structures are
created and maintained in order to speed up the task of searching. These auxiliary data structures store data
that are derived from the original data set and are exploited by the searching algorithm.

Outline

We can categorize the searching approaches and techniques according to three basic questions: where, what,
and how.

The first question, where, concerns the type and the structure of the data set over which searching takes
place. Roughly, we can distinguish the following kinds of data set:

• Sequences of Records For example, the data set can be a (sorted) table (or a file) of integers (or records).
• Sequences of Characters For example, the data set can be a string stored in main memory, or a text file

stored in secondary memory.
• Graphs For example, the data set can be the map of a metro network. A special case of graphs is trees;

for example, the data set can be a taxonomy of classes, a set of geographical names structured by spatial
inclusion relation, or a game tree.

• Tables For example, the data set can be a relational database.
• k-Dimensional Spaces For example, the data set can be a set of points in a three-dimensional space or a

two-dimensional array of pixels (a digital image).

We can also distinguish data sets that consist of composite data elements. For instance, the data set can
be:

• A set of documents, where a document can be seen as a sequence of strings and images, and furthermore,
a document may be structured in sections, subsections etc.

1

2 SEARCHING

Fig. 1. The basic components of searching in the natural and the digital world.

• A set of Web pages, where we can view the Web as a distributed stored graph where each node is a document

Searching in this kind of data sets is more sophisticated.
The second question, what, concerns the objective of searching and the method used for specifying this

objective. In particular, the objective of searching may be an element or a set of elements. The desired element(s)
can be specified by some key, by other information related to the key, or by specifying the conditions that the
desired elements must fulfil. Furthermore, in some cases the specification of the objective is done gradually,
that is, it is the outcome of a process (e.g. the navigation process in a hierarchy of subjects, or the query
reformulation through relevance feedback in information retrieval systems).

The third question, how, concerns the algorithm, that is, the sequence of steps, for finding the desired
element(s) in the data set. As mentioned earlier, for speeding up searching, auxiliary data structures are
usually created and maintained along with the original data set.

For the same search problem there may be several algorithms, and this raises the question of how to decide
which of them is preferable. There are two different approaches for answering this question. The empirical (or a
posteriori) approach consists in programming the competing algorithms and trying them on different instances
with the help of a computer. The theoretical (or a priori) approach consists in determining mathematically the
quantity of resources (execution time, memory space, etc.) needed by each algorithm as a function of the size
of the instances considered (this is also referred to as computational complexity).

It is natural to ask at this point what unit should be used to express the theoretical efficiency of an
algorithm. There can be no question of expressing this efficiency in seconds, say, since we do not have a
standard computer to which all measurements might refer. An answer to this problem is given by the principle
of invariance, according to which two different implementations of the same algorithm will not differ in
efficiency by more than some multiplicative constant. More precisely, if two implementations take t1(n) and
t2(n) seconds, respectively, to solve an instance of size n, then there always exists a positive constant c such
that t1(n) ≤ ct2(n) whenever n is sufficiently large. This principle remains true regardless of the computer used
(provided it is of a conventional design), of the programming language used, and of the skill of the programmer
(provided that he or she does not actually modify the algorithm).

SEARCHING 3

Coming back to the question of the unit to be used to express the theoretical efficiency of an algorithm,
there will be no such unit: we express this efficiency only to within a multiplicative constant. We say that an
algorithm takes time on the order of t(n), for a given function t, if there exist a positive constant c and an
implementation of the algorithm capable of solving every instance of the problem in time bounded above by
ct(n) seconds, where n is the size of the instance considered. We also say than the algorithm has O(t(n)) running
time. By the principle of invariance, any other implementation of the algorithm will have the same property,
although the multiplicative constant may change from one implementation to another.

Certain orders occur so frequently that it is worthwhile giving them names. For example, if an algorithm
takes time on the order of the size n of the instance to be solved, we say that it takes linear time. In this case
we also talk about a linear algorithm. Similarly, an algorithm is quadratic, cubic, polynomial, or exponential if
it takes a time in the order of n2, n3, nk, or cn, respectively, where k and c are appropriate constants.

For more about computational complexity, see Ref. 1.
Below we discuss searching according to the type and structure of the data set.

Searching a Sequence of Records

Assume that the data set is an array (or file) of integers (or records), and suppose that we are searching for a
desired element. The simplest method for searching involves testing elements in sequential order, starting at
the beginning and stopping when the desired element is found or proved to be missing. This is a serial search;
it takes linear time, and the average time for finding an element in a data set of n elements in n/2.

As mentioned earlier, the data set can be stored so as to speed the searching. This raises the question:
given a set of elements characterized by a key (upon which an ordering relation is defined), how is the set to be
organized so that the retrieval (seeking) of an element with a given key involves as little effort as possible?

Hashing is one answer to this question. Because in a computer each element is ultimately accessed by
specifying a storage address, hashing essentially consists of finding an appropriate mapping, or hash function
h, of keys (K) into addresses (A), that is, a function h : K→A (or h : K→{1,. . ., N}). If we assume an array
structure, then h is a mapping transforming keys into array indices. The fundamental difficulty in using a key
transformation is that the set of possible key values is much larger than the set of available store addresses
(array indices). The function h is therefore obviously a many-to-one function. For example, if K is a set of
integers, then modulo N is a hash function. A hash function is a good choice if it efficiently disperses all the
possible elements, that is, if h(x) �= h(y) for most of the pairs x�=y that are likely to be found. When x �= y but h(x)
= h(y), we say that there is a collision between x and y. The hash table is an array T[1,. . ., N] of lists in which
T[i] is the list of those items such that h(x) = i. Thus searching for an element with key q requires searching
sequentially the list T[h(q)]. The ratio a = n/N, where n is the number of distinct elements in the data set,
is called the load factor of the table. Increasing the value of N reduces the average search time but increases
the space occupied by the table. However, hashing is not efficient in range queries, that is, queries of the form:
find all elements x such that qmin ≤ x ≤ qmax. Range queries can be evaluated efficiently if instead of creating
a hash table we sort the data set, or create a search tree.

As mentioned earlier, an alternative approach to hashing is to build a search tree (which is discussed in a
subsequent section) or to sort the elements. Assume that the data set is a sorted array, a sorted list, or a sorted
file of records. In this case algorithms more sophisticated than serial search can be employed. A widely used
algorithm is binary search.

Binary searching predates computing. In essence, it is the algorithm used to look up a word in a dictionary
or a name in a telephone directory. It is probably the simplest application of divide-and-conquer. To speed up
the search, divide-and-conquer suggests that we should look for the desired element x either in the first half
of the array or in the second half. To find out which of these searches is appropriate, we compare x with an
element in the middle of the array: if x is less than this element, then the search for x can be confined to the

4 SEARCHING

first half; otherwise it is sufficient to search the second half. Binary search runs in O(log n). This is significantly
better than serial search for large data sets. However, binary search requires the data set to be random-access.
Arrays are random-access, but sorted lists or files are not.

If the data set is not random-access (e.g. a sorted list or a file of ordered records), then there is no obvious
way to select the middle of the list, which would correspond to the first step of binary search. In this case,

probabilistic algorithms, such as the Sherwood algorithm [whose expected execution time is O()] can be
employed.

For more about these algorithms see Ref. 2.

Searching a Sequence of Characters

Assume that the data set is a sequence of characters (that is, a string) stored in main memory, or a text file
stored in secondary memory. The search problem is formulated as follows:

Commonly, n is much larger than m. The simplest algorithm is brute-force (BF), or sequential, text
searching. It consists of merely trying all possible positions in the text. For each position it verifies whether
the pattern matches at that position. Since there are O(n) text positions and each one is examined at O(m)
worst-case cost, the worst-case time for brute-force searching is O(nm).

There are several more efficient algorithms (e.g. the Knuth–Morris–Pratt or the Boyer–Moore algorithm),
which use a modification of this scheme. They employ a window of length m, which is slid over the text. It is
checked whether the text in the window is equal to the pattern (if it is, the window position is reported as a
match). Then, the window is shifted forward. The algorithms mainly differ in the way they check and shift the
window. For instance, the Knuth–Morris–Pratt (KMP) algorithm does not try all window positions as BF does.
Instead, it reuses information from previous checks. For doing this, the pattern p is preprocessed to build a
table called “next”. A prefix of a string s is any substring of s that starts from the first character of s, while a
suffix of s is any substring of s that ends at the last character of s. The “next” table at position j says which is
the longest proper prefix of p[1,. . ., j − 1] that is also a suffix and is such that the characters following prefix
and suffix are different. Hence j − next[j] − 1 window positions can be safely skipped if the characters up to
j − 1 matched and the jth did not. For example, when searching for the word “abracadabra,” if a text window
matched up to “abracab”, five positions can be safely skipped, since next[7] = 1, as shown in Table 1:

Since at each text comparison the window or the pointer advances by at least one position, the algorithm
performs at most 2n comparisons (and at least n).

Sequential searching is appropriate when the text is small (a few megabytes). If the text is big, then we
can build data structures over the text, called indices, to speed up search. The most widely used techniques
for indexing are inverted files, suffix trees (and suffix arrays), and signature files. Examples of these techniques
are given in Fig. 2. Inverted files are currently the best choice for most applications.

The inverted file structure is composed of two parts: the vocabulary and the occurrences. The vocabulary
is the set of all different words in the text. For each such word a list of all the text positions where the word
appears is stored. The search algorithm on an inverted index follows three general steps. First, the words (or
patterns) in the query are sought in the vocabulary. Then the lists of occurrences of all the words found are
retrieved. Finally the occurrences are processed with regard to phrases, proximity, or Boolean operations.

SEARCHING 5

Queries such as phrases are expensive to answer using inverted indices, as inverted indices actually view
the text as a sequence of words. A type of index that allows answering efficiently more complex queries (e.g.
phrases) is the suffix tree. These indices view the text as one long string. Each position in the text is considered
as a text suffix, that is, a string that goes from that text position to the end of the text. Each suffix is uniquely
identified by its position. In essence, a suffix tree is a trie data structure built over all the suffixes of the text. A
trie is a tree for storing strings in which there is one node for every common prefix. The strings are stored in
extra leaf nodes. In a suffix tree the pointers to the suffixes are stored at the leaf nodes of the trie.

A problem with this data structure is its size. However, not all text positions need to be indexed. Index
points can be selected from the text, which point to the beginning of text positions that will be retrievable.
Suffix arrays provide essentially the same functionality as suffix trees with much less space requirements.
Their main drawbacks are their costly construction process, the fact that the text must be readily available at
query time, and the fact that the results are not delivered in text position order.

Signature files are word-oriented index structures based on hashing. A signature file uses a hash function
(or signature) that maps words to bit masks of B bits. It divides the text into blocks of b words each. To each
text block of size b, a bit mask of size B will be assigned. This mask is obtained by bitwise ORing the signatures
of all the words in the text block. The main idea is that if a word is present in a text block, then all the bits set
in its signature are also set in the bit mask of the text block. Hence, whenever a bit is set in the mask of the
query word and not in the mask of the text block, the word is not present in the block. Signature files require
only a low storage space overhead, at the cost of forcing a sequential search over the index. However, we may
encounter false drops, that is, it is possible that all the corresponding bits are set even though the word is not
there. The most delicate part of the design of a signature file is to ensure that the probability of a false drop is
low enough while keeping the signature file as short as possible.

Inverted files outperform signature files for most applications.
For more about inverted files, suffix trees, and signature files see Chap. 8 of Ref. 3.

Searching in Graphs

Many important searching problems can be formulated in terms of graphs. A graph is a pair G = 〈N, A〉 where
N is a set of nodes and A ⊆ N × N is a set of edges. We can distinguish directed and undirected graphs. An edge

6 SEARCHING

Fig. 2. An inverted index, a suffix tree, and a signature file for the same text.

from node n to node n′ of a directed graph is denoted by the ordered pair (n, n′), whereas an edge joining nodes
n and n′ in an undirected graph is denoted by the set {n, n′}.

In an undirected graph a sequence of nodes n1,. . ., nk where {ni, ni+1} ∈ A for i = 1,. . ., k − 1 is called a
path of length k from node n1 to node nk. Often it is convenient to assign positive costs to edges; for example,
c(n, n′) may denote the distance between two cities denoted by n an n′. The cost of a path is the sum of the
costs of all edges in the path. In certain search problems, given two nodes n and n′, we want to find a path of
minimal cost among all paths from n to n′.

In a directed graph, if an edge is directed from a node n to a node n′, then we say that n is the parent (or
ancestor) of n′ and that n′ is a child (or successor) of n. A sequence of nodes n1,. . ., nk with each ni+1 a successor
of ni, for i = 1,. . ., k − 1, is called a path of length k from node n1 to node nk. If c(n, n′) denotes the cost of an
edge directed from n to successor node n′, then the cost of a path is the sum of the costs of all edges connecting
in the path. In certain search problems, given two nodes n and n′, we want to find a path of minimal cost among
all paths from n to n′. Such paths are called optimal paths. Figure 3 shows a directed graph consisting of four
nodes and five edges.

A special case of directed graph is the directed acyclic graph (DAG). A DAG is a directed graph with no
cycles, where a cycle is defined to be a path whose initial and final node coincide. For example the directed
graph shown in Figure 3 is not a DAG, as there is the cycle (1,2,4,1). DAGs are used in many applications.

SEARCHING 7

Fig. 3. Graph notation.

Fig. 4. Tree notation.

For example, they are used to represent the structure of an arithmetic expression that includes repeated
subexpressions; or the different stages of a complex project: the nodes represent the different states of the
project, from the initial state to the final completion state of the project, and the edges correspond to activities
that have to be completed to pass from one state to another. Moreover, DAGs offer a natural representation for
partial orderings.

Another special case of directed graph is the directed tree, in which each node has exactly one parent,
except for a single node that has no parent and is called the root of the tree. A node in the tree having no
successors (children) is called a tip node or a leaf . Two nodes are siblings if they have the same parent. The
depth of the root node is 0, and the depth of any other node in the tree is defined to be the depth of its parent
plus 1. Certain trees have the property that all nodes except the leaves have the same number of successors,
say b. In this case, b is called the branching factor of the tree. Figure 4 shows an example of a tree.

The following three subsections describe, respectively, an application of trees for speeding up searching in
a sequences of records; searching in explicit graphs, that is, in graphs that are stored explicitly in the computer
memory; and searching in implicit graphs, that is, in graphs for which we have available a description of the
nodes and edges, but that are not stored explicitly in the computer memory.

8 SEARCHING

Fig. 5. Search trees.

Search Trees. An ordered tree is a tree in which the branches of each node are ordered. The number of
successors of a node is called its degree. The maximum degree over all nodes is the degree of the tree. A binary
tree is an ordered tree of degree 2. Trees with degree greater than 2 are called multiway trees. Binary trees are
frequently used to represent a set of data whose elements are to be retrievable through a unique key. If a tree is
organized in such a way that for each node n all keys in the left subtree are (numerically or lexicographically)
less than the key of n, and those in the right subtree are greater than the key of n, then this tree is called a
search tree. The upper part of Fig. 5 shows a binary search tree. Note that all keys in the left subtree of node
10 (i.e. the keys {5,3,8}) are less than 10, and that all keys in the right subtree (i.e. the keys {15,13,18}) are
greater than 10. In a search tree it is possible to locate an arbitrary key by starting at the root and proceeding
along a search path switching to a node’s left or right subtree by a decision based on inspection of the node’s
key only. As n elements may be organized in a binary tree of a height as small as log n, a search among n
elements may be performed with as few as log n comparisons if the tree is perfectly balanced.

An AVL tree is a binary search tree in which for every node the heights of its two subtrees differ by at
most 1.

An application of multiway trees is the construction of large-scale search trees where the primary store
of a computer is not large enough (or is too costly) to be used for long-term storage. An example of such tree is
the B tree. A B tree of degree 2 and depth 3 is shown in Fig. 5.

If information about the probabilities of access to individual keys is available, then we can structure the
search tree so as to minimize the average path length. For example suppose we have an ordered set c1<. . .<cn
of n distinct keys, and let pi be the probability that a request refers to key ci, i = 1,2,. . ., n. If some key ci is held
in a node at depth di, then di + 1 comparisons are needed to find it. Thus for a given tree the average number
of comparisons needed for finding a key is

SEARCHING 9

Trees whose structure minimizes the quantity C are called optimal search trees.
For more about search trees and optimal search trees, see Ref. 4.
Explicit Graphs. Suppose the objective of searching is to see whether a node (or the information

assigned to a node) exists in a graph. This requires traversing the graph. We can distinguish the depth-first
traversal (or search) and the breadth-first traversal (or search).

To carry out a depth-first search (dfs for short) of a graph, we choose any node of G, say n, as the starting
node and mark it to show that it has been visited. Next, if there are nodes adjacent to n (or successors of n, if
G is a directed graph) that have not been visited yet, we choose one as the new starting node and call the dfs
procedure recursively. When all nodes adjacent to n have been marked, the search starting at n is finished. If
there remain any nodes of G that have not been visited yet, we choose one of them as a new starting node, and
continue in this way until all nodes of G have been marked. Dfs can be also used for detecting whether a given
directed graph is acyclic.

In breadth-first search (bfs for short), when we arrive at some node n, we first visit all the nodes adjacent
to n (or all siblings of n, if G is a directed graph), and not until this has been done do we go on to look at nodes
farther away. Unlike dfs, bfs is not naturally recursive. For example, a dfs traversal of the tree shown in Fig. 4
will visit the nodes of the tree in the following order: a, b, e, c, d, f , g, while a bfs traversal will visit the nodes
in the order a, b, c, d, e, f , g.

Given a graph, there are many cases where we need to search for paths, or for subgraphs, that satisfy
certain conditions. For example, given an explicit graph, we might want to find a path from a node n to each of
the other nodes in the graph. Such a collection of paths constitutes a spanning tree of the graph—a tree rooted
at n—and a famous problem is finding a minimal spanning tree. Other famous graph-searching problems of
this kind include the shortest-route problem and the topological sort. A topological sort of the nodes of a directed
acyclic graph is the operation of arranging the nodes in a linear order in such a way that if there exists an edge
(n, n′), then n precedes n′ in the linear order. The necessary modification to the procedure depth-first search
to make it into a topological sort is immediate. For more on the computational aspects of graphs and on graph
algorithms see Chap. 6 of Ref. 4 and Chap. 6 of Ref. 5.

In artificial intelligence (AI), directed graphs are used to model the world of an agent and the effects of its
actions on the world model. These graphs are called state-space graphs. The nodes are labeled by representations
of the individual worlds, and the edges by operators, that is, the actions that an agent can take. If the number of
different distinguishable world situations is sufficiently small, a graph representing all of the possible actions
and situations is stored explicitly. To find a set of actions that will achieve a specified goal (a world situation),
an agent needs to find a path in the graph from a node representing its initial world state (the start node) to
a node representing a specified goal state, the goal node. The actions that will achieve the goal can then be
read out as the labels on the edges of this path. The operators labeling the edges along a path to a goal can be
assembled into a sequence called a plan, and searching for such a sequence is called planning. Searching such
graphs involves propagating “markers” over the nodes of the graph. We start by labeling the start node with
a 0, and then we propagate successively larger integers out in waves along the edges until an integer hits the
goal node. Then, we trace a path back from the goal to the start along a decreasing sequence of numbers. The
actions along this path, from start to goal, are the actions that should be taken to achieve the goal (if there
is a single goal node, the process could also be implemented in the reverse direction—starting with the goal
node and ending when an integer hits the start node). The stages of marker propagation correspond to a bfs
traversal. The process of marking the successors of a node is called expansion.

Implicit Graphs. In certain situations a graph exists only implicitly. For instance, we often use abstract
graphs to represent games, such as chess: each node corresponds to a particular position of the pieces on the
board, and the fact that an edge exists between two nodes means that it is possible to get from the first to the
second of these positions by making a single legal move. Often the original problem translates to searching
for a specific node, path, or pattern in the associated graph. If the graph contains a large number of nodes,
it may be wasteful or infeasible to build it explicitly in computer memory before applying one of the search

10 SEARCHING

Fig. 6. Iterative-deepening search.

techniques that we have encountered so far. For example, the number of nodes in the state-space graph of chess
is approximately 1040. Most of the time, all we have is a representation of the current position. An implicit
graph is one for which we have available a description of its nodes and edges. Relevant portions of the graph
can thus be built as the search progresses. Therefore computing time is saved whenever the search succeeds
before the entire graph has been constructed.

We can distinguish two broad classes of search processes in implicit graphs. In the first, called uninformed,
we have no problem-specific reason to prefer one part of the search space to another, as far as finding a path
to the goal is concerned. In the second class, called heuristic, we do have problem-specific information to help
focus on a specific search. (The word heuristic comes from the Greek word ευρı́σκειν (heuriskein), meaning to
“discover.”)

Uninformed Search. The simplest uninformed search procedure is breadth-first search. The basic prop-
erty of this search is that when a goal node is found, we have found a path of minimal length to that goal. It
has the disadvantage, however, that it requires the generation and storage of a tree whose size is exponential
in the depth of the shallowest goal node.

Uniform-cost search is the analog of bfs for graphs that have costs assigned to their edges. In uniform-cost
search, nodes are expanded outward from the start node along contours of equal cost rather than equal depth.

Another method is dfs, or backtracking. To prevent the search process from running away towards nodes
of unbounded depth from the start node, a depth bound is used. No successor is generated whose depth is
greater than the depth bound. The memory requirements of dfs are linear in the depth bound. A disadvantage
of dfs is that when a goal is found, we are not guaranteed to have found a path to it having minimal length.

A technique called iterative deepening offers the linear memory requirements of dfs while guaranteeing
that a goal node of minimal length will be found. In iterative deepening, successive depth-first searches are
conducted—each with depth bounds increasing by 1—until a goal node is found. Figure 6 shows an example of
iterative-deepening search.

Heuristic Search. Suppose the search proceeds preferentially through nodes that problem-specific in-
formation indicates as being on the best path to a goal. We call such processes best-first or heuristic search.
For doing this we define a heuristic (evaluation) function f to help decide which node is the best one to expand
next. It is a real-valued function of state descriptions, and its definition is based on information specific to
the problem domain. During searching we expand next the node n satisfying a certain condition expressed by
f—for example, we may expand next the node n resulting in the smallest value of f (n)—and we terminate when
the node to be expanded is a goal node. Usually we also take into account the depth of node n, that is, f has the
form f (n) = g(n) + h(n), where g(n) is an estimate of the depth of n in the graph (i.e., the length of the shortest
path from the start to n), and h(n) is a heuristic evaluation of node n. There are conditions on graphs and on h
that guarantee that the best-first algorithm applied to these graphs is admissible, that is, it is guaranteed to
find an optimal path to the goal (for more see Chap. 9 of Ref. 6.

SEARCHING 11

The classic book on heuristic search is Ref. 7.
Approximate Search. Relaxing the requirement of producing optimal paths often reduces the computa-

tional cost of finding a plan. This reduction can be done either by searching for a complete path to a goal node
without requiring that this path be optimal, or by searching for a partial path that does not take us all the way
to a goal node.

A best-first search can be used in both cases. In the first, we use a nonadmissible heuristic function, and in
the second, we quit searching before reaching the goal—using either an admissible or a nonadmissible heuristic
function. Examples of this kind of algorithms include the island-driven search, the hierarchical search, and
the limited-horizon search. For instance, in the island-driven search, heuristic knowledge from the problem
domain is used to establish a sequence of island nodes in the search space, through which it is suspected that
goal paths pass. Suppose that n0 is the start node, ng is the goal node, and (n1,. . ., nk) is a sequence of such
islands. In this case a heuristic search is initiated with n0 as the start node and with n1 as the goal node, using
a heuristic function appropriate for that goal. When the search finds a path to n1, another search starts with
n1 as the start node and n2 as the goal node, and so on, until a path to ng is found.

Rewards Instead of Goals. In the previous discussions we assumed that the objective of searching is a
goal node. In many problems the common task cannot be so simply stated. Instead, the task may be an ongoing
one. The user expresses his or her satisfaction and dissatisfaction with task performance by occasionally giving
the agent positive or negative rewards. The task for the agent is to maximize the amount of reward it receives.
The special case of a simple goal-achieving task can be cast in this framework by rewarding the agent positively
(just once) when it achieves the goal, and negatively (by the amount of an action’s cost) every time it takes
an action. In this sort of task environment, we seek to describe an action policy that maximizes reward. One
problem for ongoing, nonterminating tasks is that the future reward might be infinite, so it is difficult to decide
how to maximize it. A way of proceeding is to discount future rewards by some factor. That is, the agent prefers
rewards in the immediate future to those in the distant future.

Constraint Satisfaction and Constraint Propagation. There are applications of search techniques be-
yond the problem of selecting actions for an agent. These applications include finding solutions to problems
of assigning values to variables subject to constraints and solving optimization problems. When the goal node
is defined not by a specific data structure but by conditions or constraints, it might be that the problem is to
exhibit some data structure satisfying those conditions; the steps that produce it using the above graph-search
methods might be irrelevant. We call these problems constraint-satisfaction problems. A prominent subclass
of this class involves assigning values to variables subject to constraints. Such problems are called assignment
problems.

We can solve constraint-satisfaction problems by graph-search methods. A goal node is a node labeled
by a data structure (or state description) that satisfies the constraints. Operators change one data structure
to another. The start node is some initial data structure. A good example of an assignment problem is the
eight-queens problem: to place (assign) eight queens on a chess board in such a way that there is a queen in
every row and column but with the additional constraint that only one queen can be in any single row, column,
or diagonal. We call this an assignment problem because it can be posed as a problem of assigning values from
the set {row 1,. . ., row 8} to variables from the set {position of queen in column 1,. . ., position of queen in
column 8}). In assignment problems, since the path to the goal is not the important thing, we often have many
choices about what the start state and operators can be.

Constructive methods try assigning a value to each variable in turn (e.g. the position of a queen). A
computational technique called constraint propagation often helps markedly in reducing the size of the search
space. It is used in combination with a constructive solution technique—assigning a value to each variable in
turn. Constraints are represented in a directed graph called a constraint graph. Each node in this graph is
labeled by a variable name together with a set of possible values for that variable. A directed constraint edge,
say (i, j), connects a pair of nodes i and j if the value of the variable labeling i is constrained by the value of the
variable labeling j. We say that a directed edge (i,j) is consistent if each value of the variable at the tail of the arc

12 SEARCHING

has at least one value of the variable at the head of the arc that violates no constraints. After assigning values
to one or more variables, we can use the concept of edge consistency to rule out some of the values of other
variables. The process of constraint propagation iterates over the edges in the graph and eliminates values
of variables at the tails of arcs in an attempt to enforce edge consistency. The process halts when no more
values can be eliminated. Figure 7 shows a constraint graph for the four-queens problem. In this problem, each
variable constrains all of the others. The lower part of the figure shows the constraint propagation assuming
q1 = 2. At each step, the arrow that determines the elimination of values is in boldface.

Constraint propagation has been applied to a variety of interesting problems, including the problem of
labeling lines in visual scene analysis and that of propositional satisfiability. For a survey of the method, its
extensions, and its applications, see Ref. 4

Function Optimization (Hill Climbing). In some problems, instead of having an explicit goal condition,
we may have some function ν over data structures and seek a structure having a maximum (or minimum)
value of that function. If we view the data structures as points in a space, this function can be thought of as
a landscape over the space. One class of methods consists of those that traverse the landscape, looking for
points of high elevation. Since we may not know the value of the global maximum, we may never know for
sure if we have reached a point having maximal height. Among the techniques for traversing a space are the
hill-climbing methods, which traverse by moving from one point to that adjacent point having the highest
elevation. Hill-climbing methods typically terminate when there is no adjacent point having a higher elevation
than the current point—thus, they can get stuck on local maxima. We can use graph-searching methods to do
hill climbing. As in assignment problems, the path to the goal is not important in this kind of problems. Hill
climbing follows a single path (much like a dfs without backup), never descending to a lower point.

Game Trees. Most games of strategy can be represented in the form of directed graphs. A node of the
graph corresponds to a particular position in the game, and an edge corresponds to a legal move between two
positions. The graph is infinite if there is no a priori limit on the number of positions possible in the game. For
simplicity we assume that two players, A and B, play the game, each of whom moves in turn, that the game is
symmetric (the rules are the same for both players), and that chance plays no part in the outcome (the game
is deterministic).

To determine a winning strategy for a game of this kind, we need only attach to each node in the graph a
label chosen from the set {win, lose, draw}. The label corresponds to the situation in which neither player will
make an error.

The purpose of a game tree search is to find the best possible move given a game position—ideally, to find
a move for which even if the opponent plays perfectly, victory is still guaranteed. However, most games are
sufficiently complex that it is impossible to follow the tree all the way to the end condition (win, lose, or draw).
Thus an evaluation function is needed to evaluate the quality of a given position. This function attributes some
value to each possible position. Ideally, say in a chess game, we want the value of eval(u) to increase as the
position u becomes more favorable to A. It is customary to give values not far from zero to positions where
neither side has a marked advantage, and large negative values to positions that favor B. When applied to a
terminal position (i.e., a position that does not offer any legal move), the evaluation function should return +∞
if B has been mated, −∞ if A has been mated, and 0 if the game is a draw.

Figure 8 shows the part of the graph corresponding to some game. In this example we suppose that player
A is trying to maximize the evaluation function and that player B is trying to minimize it. The values attached
to the leaves are obtained by applying the function eval to the corresponding positions. The values for the
other nodes can be calculated using the minimax rule. We see why the technique is called minimax: B tries to
minimize the advantage of A, and A tries to maximize the advantage he obtains from each move.

The basic minimax technique can be improved in a number of ways. According to alpha–beta pruning, the
exploration of certain branches are abandoned early if the information we have about them is already sufficient
to show that they cannot possibly influence the values of nodes farther up the tree.

SEARCHING 13

Fig. 7. Constraint propagation for solving the four-queens problem.

Branch-and-bound is another technique for exploring an implicit directed graph. At each node we calculate
a bound on the possible value of any solutions that might happen to be farther on in the graph. If the bound
shows that any such solution must necessarily be worse than the best solution we have found so far, then we
do not need to go on exploring this part of the graph. In the simplest version, calculation of these bounds is
combined with a bfs or dfs, and serves only, as we have just explained, to prune certain branches of a tree or to

14 SEARCHING

Fig. 8. The minimax principle: player A is trying to maximize, and player B to minimize, the evaluation function.

close certain paths in a graph. More often, however, the calculated bound is used not only to close off certain
paths, but also to choose which of the open paths looks the most promising, so that it can be explored first.

Some games, such as backgammon, involve an element of chance. For example, the moves that one is
allowed to make may depend on the outcome of a throw of the dice. We can use game trees in such games too.
A’s and B’s turns now each involve a throw of a die. We might imagine that at each throw, a fictitious third
player, DICE, makes a move. That move is determined by chance. In the case of throwing a die, the six outcomes
are all equally probable, but the chance element could also involve an arbitrary probability distribution. Values
can be backed up in game trees involving chance moves also, except that when backing up values to nodes at
which there was a chance move, we might back up the expected (average) values of the successors instead of a
maximum or minimum.

A good overview of graph-searching algorithms and their application in AI is Ref. 6; a good overview of
game tree searching algorithms can be found in Ref. 9.

Searching in Tables

Here the data set is a table or a set of tables. A table T consists of a scheme denoted sch(T) and an instance.
The scheme is a set of column headings, also called attributes, and the instance is a set of rows over these
attributes. A row is a mapping that associates each attribute with a value from the set of values, or domain,
of that attribute. For example, Fig. 9(a) shows a table whose scheme consists of the attributes A, B, and C and
whose instance consists of four rows. In the example, we assume that all attributes have the same domain,
namely the set of characters.

Searching a given table means asking for a new table to be constructed by keeping some of the columns
and/or some of the rows of the given one. The specification of the new table is done using two operations,
projection and selection.

The projection operation takes as input a table T and a subset X of the attributes of T and returns a table,
denoted by πX (T), whose scheme is X and whose instance consists of the restrictions of all rows of T over the
attributes of X. For example, if T is the table of Fig. 9(a) and X = {A, B}, then πX (T) is the table shown in Fig.
9(b).

The selection operation takes as input a table T and a selection condition C and returns a table, denoted
by σC(T), whose scheme is that of T and whose instance consists of those rows of T that satisfy C. Elementary

SEARCHING 15

Fig. 9. Searching in tables using projection and selection.

conditions of the form 〈attribute = value〉, where value is taken from the domain of attribute, are the building
blocks of selection conditions. A selection condition is formed by combining elementary conditions using the
traditional logical connectives (&, not, or). For example, if T is the table of Fig. 9(a) and C = 〈A = a〉&〈C = c′〉,
then σC(T) is the table shown in Fig. 9(c).

One important generalization of searching a table is that of searching a relational database. A relational
database is a set of tables, and users search it by submitting queries. A query is a well-formed expression whose
operands are tables and whose operations are projection and selection (for searching one table, as we have seen
earlier) plus a few binary operations for combining two or more tables. For more on relational databases and
their query languages see Ref. 10.

Data Mining. Data mining (also known as knowledge discovery in databases—KDD) is a new kind of
searching. Here, the objective is to discover prefiously unknown relationships among the data. These relation-
ships, or rules, can lead to reasonable predictions about the future. For example, marketers use data mining in
trying to distill useful consumer data from Web sites. Let I = {i1,. . ., im} be a set of items, and let D be a set of
transactions, where each transaction T is a set of items such that T ⊆ I. An association rule is an implication
of the form X ⇒ Y, where X and Y are subsets of I, and X ∩ Y = Ø. A rule X ⇒ Y holds in the transaction set
D with confidence c if c% of transactions in D that contain X also contain Y. A rule X ⇒ Y has support s in the
transaction set D if s% of transactions in D contain X ∪ Y.

Specifically, high-level languages are used where the user specifies two parameters, namely the minimum
support and the minimum confidence, and the system searches for and finds all association rules whose support
and confidence are greater than the given values.

Other kinds of mining include classification and clustering. For more see Ref. 11.

Searching in Semistructured Data

In order to represent data with loosely defined or irregular structure, the semistructured data model has
emerged. At the same time the document community has developed XML as a format in which more structure
is added to documents in order to simplify and standardize the transmission of data via documents. It turns
out that these two representations are essentially identical.

From a database point of view, semistructured data are often described as “schemaless” or “self-describing,”
because there is no separate description of the type or structure of the data (as in the relational data model). One
of the main strengths of semistructured data in comparison with other data model is its ability to accommodate

16 SEARCHING

Fig. 10. Semistructured data.

variations in structure. The variations typically consist of missing data and duplicated fields. An example is
given in Fig. 10.

The semistructured data model is actually a directed acyclic graph (N,A) with a labeling function L :
A→LA, where LA is the domain of edge labels. The model usually also includes node labels, though those
are typically confined to leaf nodes. The semistructured data model can be used to represent several kinds of
databases, including the relational ones.

The objective of searching is that of database query languages, that is, to select and transform information
from large sources. Query languages for semistructured data emphasize on restructuring. However there is
no accepted notion of completeness for semistructured data restructuring. The building blocks of any query
language are path expressions. A path expression is a simple query whose result, for a given data graph, is
a set of nodes. For example the result of the path expression “person.name.first” is the set of nodes {“Tonia”,
“Yannis”}. Path expressions may contain regular expressions allowing the specification of paths that have some
properties. For example, the regular expression “first | last” matches either a first name or a last name. In
addition, there are wildcards that match any label, and symbols that specify arbitrary repeats of a regular
expression. Roughly, a high-level query language for semistructured data supports path expressions and pat-
terns to extract data, variables to which the data are bound, and templates that determine the construction of
the output.

An XML document is actually a labeled ordered tree whose leaves are text. There are only some slight
differences from the semistructured data model: XML trees are ordered, and the labels are not attached to edges
but to nodes. XML has already become a standard for knowledge representation on the Web. For more about
semistructured data XML see Ref. 12.

Searching in Metric Spaces (Multimedia)

Assume that the data set is a set of images, fingerprints, or audio or video segments. These data sets cannot be
meaningfully searched in the classical sense. Not only can they not be ordered, but also they cannot even be
compared for equality. There is no interest in an application for searching an audio segment exactly equal to
a given one. The probability that two different images are pixelwise equal is negligible unless they are digital

SEARCHING 17

copies of the same source. In multimedia applications, all the queries ask for objects similar to a given one.
This is called similarity searching or proximity searching. Some example applications are face recognition,
fingerprint matching, voice recognition, or similarity searching in general multimedia databases.

In similarity searching the data set is a metric space, that is, a set of elements X equipped with a metric
function d. The function d : X × X→ denotes a measure of “distance” between objects (i.e., the smaller the
distance, the more similar are the objects). Distance functions have the following properties, for any x, y, z in
X:

(1) Positiveness: d(x,y) ≥ 0
(2) Symmetry: d(x,y) = d(y,x)
(3) Reflexivity: d(x,x) = 0
(4) Triangle inequality: d(x,y) ≤ d(x,z) + d(z,y)

If the elements of the metric space (X,d) are tuples of real numbers (actually tuples of any field), then the
pair is a finite-dimensional vector space. A k-dimensional vector space is a metric space where the objects are
identified with k real-valued coordinates (x1,. . ., xk). There are a number of options for the distance function to
use, but the most widely used is the family of Ls distances defined as

For instance, the L1 distance equals the sum of the differences along the coordinates. It is also called
“block” or “Manhattan” distance, since in two dimensions it corresponds to the distance to walk between two
points in a city of rectangular blocks. The L2 distance is better known as “Euclidean” distance, as it corresponds
to our notion of spatial distance. The other most used member of the family is L∞, which corresponds to taking
the limit of Ls when s goes to infinity.

Thus the data set is a finite subset U of X. Possible types of searches (objectives) are range queries (retrieve
all elements that are within distance r of the query q) and k-nearest-neighbor queries (retrieve the k closest
elements to q). For evaluating these kinds of queries (similarity or proximity queries), auxiliary data structures,
called indexes, are used in order to reduce the number of distance evaluations at query time. Indexes can be
distinguished to (a) tree indexes for discrete distance functions, (functions that deliver a small set of values);
(b) tree indexes for continuous distance functions (functions where the set of alternatives is infinite or very
large); and (c) non-tree-based indexes.

Examples of tree indexes for discrete distance functions include the Burkhard–Keller tree (BKT) (13), the
fixed query tree (FQT) (14), and many others. In the BKT an arbitrary element p in U is selected as the root of
the tree. For each distance i > 0, we define Ui = {u ∈ U| d(u,p) = i} as the set of all the elements at distance i
to the root p. Then, for any nonempty Ui, we build a child of p (labeled i), and we recursively build the BKT for
Ui. This process can be repeated until there is only one element to process, or until there are no more than b
elements (and we store a bucket of size b). All the elements selected as roots of subtrees are called pivots. The
left part of Figure 11 shows the division of the elements of a metric space when u3 is taken as a pivot, while the
right part shows the first level of BKT with u3 as root. The distances have been discretized and return integer
values.

An FQT (which is a variation of the BKT) built over n elements has O(log n) height on average. It is built
using O(n log n) distance evaluations, and the average number of distance computations is O(na), where 0 < a
< 1 is a number that depends on the range of the search and the structure of the space.

18 SEARCHING

Fig. 11. A BKT for a data set consisting of eight elements.

If we have a continuous distance or if the distance function gives too many different values, it is not possible
to have a child of the root for any such value. However the indexes for discrete functions can be adapted to a
continuous distance by assigning a range of distances to each branch of the tree. Other examples indexes for
continuous distance functions include vantage-point trees (VPTs), multi-vantage-point trees (MVTs), Voronoi
trees (VTs), and M-trees (MTs). Vantage-point trees, also called metric trees, are actually binary trees. One
builds them by taking any element p as the root and taking the median of the set of all distances, M =
median(d(p,u) | u ∈ U}. Those elements u such that d(p,u) ≤ M are inserted into the left subtree, while those
such that d(p,u) > M are inserted into the right subtree. The VTP takes O(n) space and is built in O(n log n)
worst-case time. The query complexity is O(log n).

Other, non-tree-based indexes include the approximating eliminating search algorithm (AESA) and the
linear AESA (LAESA).

Search structures for vector spaces are called spatial access methods (SAMs). Among the most popular
are kd trees, R trees, quadtrees, and X trees. These techniques make extensive use of coordinate information to
group and classify points in the space. For example, kd trees divide the space along different coordinates, and
R trees group points in hyperrectangles.

All these techniques are very sensitive to the vector-space dimensions. Closest-point and range search
algorithms have an exponential dependence on the dimension of the space (this is called the curse of dimen-
sionality). Vector spaces may suffer from large differences between their representational dimension (k) and
their intrinsic dimension, that is, the real number of dimensions in which the points can be embedded while
keeping the distances among them. For example, a plane embedded in a 50-dimensional space has intrinsic
dimension 2 and representational dimension 50. This is, in general, the case of real applications, where the
data are clustered, and it has led to attempts to measure the intrinsic dimension, such as the concept of fractal
dimension. Despite the fact that no technique can cope with intrinsic dimensions higher than 20, much higher
representational dimensions can be handled by dimensionality reduction techniques. For search techniques for
vector spaces see Ref. 15.

This kind of searching has several applications: querying by content of multimedia objects, text retrieval,
computational biology, pattern recognition, function approximation, and audio and video compression.

A comprehensive survey of searching in metric spaces can be found in Ref. 16.

SEARCHING 19

Fig. 12. Functional overview of information retrieval.

Searching in Documents (Information Retrieval)

Suppose, the data set is a collection of documents with natural language text stored in digital form. Users want
to search such collections in order to find information about a subject, or topic. This kind of searching is usually
referred to as information retrieval (IR). Whereas searching for data (or data retrieval) aims at retrieving
elements that satisfy clearly defined conditions, IR aims at retrieving elements that satisfy conditions that are
not always defined clearly. Whereas a data retrieval system (such as a relational database) deals with data
that have a well-defined structure and semantics, an IR system deals with natural language text, which is not
always well structured and may be semantically ambiguous. Data retrieval, while providing a solution to the
user of a database system, does not solve the problem of retrieving information about a topic. To be effective
in its attempt to satisfy the user information need, the IR system must somehow interpret the contents of the
information items (documents) in a collection and rank them according to a degree of relevance to the user
query. This interpretation of a document’s content involves extracting syntactic and semantic information from
the document text and using this information to match the user information need. The difficulty is not only
knowing how to extract this information but also knowing how to use it to decide relevance. Thus, the notion
of relevance is a central notion of IR. In fact, the primary goal of an IR system is to retrieve all documents that
are relevant to a user query while retrieving as few nonrelevant documents as possible.

An IR system can be described as consisting of a set of documents D, a set of requests Q, and some
mechanism Sim for determining which of the documents meets the requirements of, or is relevant to, the
requests. In practice, the relevance of specific documents to particular requests is not determined directly.
Rather, the objects are first converted to a specific form using a classification or indexing language (L). The
requests are also converted into a representation consisting of elements of this language. The mapping of
objects to the indexing language is known as the indexing process, while the mapping of the information
requests to the indexing language is known as the query formulation process. The procedures for determining
which objects should be retrieved in response to a query are based on the representations of the objects and
the requests in the indexing language. Figure 12 shows a functional overview of information retrieval.

The set of indexing terms may be controlled, that is, limited to a predefined set of index terms, or
uncontrolled, that is, allowing use of any term that fits some broad criteria. If the indexing language is
uncontrolled, then automatic indexing techniques are usually employed. These techniques are based on text
analysis (e.g., see Ref. 17). If the indexing language is controlled, then the indexing of the documents is usually
done manually. Manual indexing involves some intellectual effort to identify and describe the content of a

20 SEARCHING

document. However there are techniques that allow the automatic indexing of objects under a controlled
vocabulary.

We use the term statistical information retrieval to refer to the case where the indexing language is free
and the indexing of documents is done automatically. On the other hand, we use the term knowledge-based
retrieval to refer to the case where the indexing language is controlled.

Much of the research in information retrieval has used the statistical approach. The retrieval strategies
and indexing techniques used in this approach are simple, easily implemented, and reasonably effective. The
knowledge-based approach is less well understood. Loosely speaking, this approach is concerned more with
the cognitive than with the engineering aspects of information retrieval. By trying to understand more about
how people retrieve information and by emphasizing representation and reasoning using domain knowledge,
researchers pursuing a knowledge-based approach hope to build systems that achieve significantly better
retrieval effectiveness than those based on statistical techniques. Table 1 lists the basic differences between
the statistical and knowledge-based approaches (for more see Ref. 18).

The statistical approach provides techniques that can deal with very large databases in a variety
of domains and languages, whereas the knowledge-based approach promises to provide techniques for
retrieving passages and extracting facts more accurately. Knowledge-based approaches include natural-
language-processing techniques for analyzing the text of documents and queries; inference and domain knowl-
edge used in the retrieval process; learning techniques used to improve performance; and user modeling for
responding to individual needs. The challenge is to discover how these approaches can be merged into a single
theoretical framework and combined in efficient, effective system implementations.

Statistical Information Retrieval. Here the indexing language consists of those words that appear in
the documents of the collections. The three classic models in IR are called Boolean, vector, and probabilistic.
In the Boolean model, documents and queries are represented as sets of index terms (this model can be called
set-theoretic). In the vector model, documents and queries are represented as vectors in a finite-dimensional
space (this model can be called algebraic). In the probabilistic model, the framework for modeling document and
query representations is based on probability theory (this model can be called probabilistic). Several alternative
modeling paradigms have been proposed. Regarding alternative set-theoretic models, we distinguish the fuzzy
and the extended Boolean model. Regarding alternative algebraic models, we distinguish the generalized vector,
the latent semantic indexing, and the neural network models. Regarding alternative probabilistic models, we
distinguish the inference network and the belief network models. In all these models, users specify their
information need by a query that can be a phrase (or a document).

Consider a collection D of documents, which together contain n different words. It is common practice
to exclude words that do not carry any information when isolated, such as “and,” “or,” “has,” or “why” (this
is called elimination of stopwords). Sometimes words are stemmed before weight vectors are calculated. This
reduces distinct words to their common grammatical root.

The Boolean model is a simple retrieval model based on set theory and Boolean algebra. According to
this model, keywords are either present or absent in a document, and the queries are specified as Boolean
expressions, that is, a query is composed of keywords linked by the three connectives and, or, not. The Boolean
model predicts that each document is either relevant or nonrelevant to the query. The main advantages of the
Boolean model are the clean formalism behind the model and its simplicity; the main disadvantage is that
exact matching may lead to retrieval of too few or too many documents. This problem does not occur in the
vector model and in the probabilistic model, as these models take into account the frequencies of the words
that appear in documents and queries.

In the vector model, documents are represented as vectors of keywords. Each query or document is
represented as an n-dimensional vector where each component corresponds to one keyword in the collection.
The weight of term ti in document dj, denoted wij, is the product wij = tfij·idfi, where tfij is the term frequency of
ti in dj, and idfi is the inverted document frequency of ti in the collection D. Specifically, the term frequency tfij
of a term ti in the document dj is the number of occurrences of ti in dj; while the inverted document frequency

SEARCHING 21

idfi of a term ti in a collection D of documents is defined as

The motivation for this representation is that there is a natural means of comparing two vectors: the
angle, or inverse cosine of the dot product, between the two vectors. The smaller the angle, the more similar
the two vectors are—and so, therefore, are the documents they represent. If d1 and d2 are document vectors,
the similarity is expressed as the cosine of the angle between the two document vectors:

For a description of the probabilistic model, see Ref. 19.
The evaluation of an IR system commonly concerns the retrieval efficiency and effectiveness. Retrieval

efficiency concerns issues like the user effort and the time needed for retrieving the desired information. The
evaluation of retrieval effectiveness is based on a test reference collection and on an evaluation measure. The
test reference collection consists of a collection of documents, a set of example requests, and a set of relevant
documents (provided by specialists) for each example information request. Given a system S, the evaluation
measure quantifies (for each example request) the similarity between the set of documents retrieved by S and
the set of relevant documents provided by the specialists. This provides an estimation of the goodness of the
system S. The most widely used evaluation measures are recall and precision, defined as follows. Let R be
the set of relevant documents for a given information request, and assume that the system being evaluated
processes the information request and generates a document answer set A. The recall and precision are defined
as follows:

Alternative measures that have been proposed include the harmonic mean and the E measure. The E
measure allows the user to specify whether he or she is more interested in recall or precision, and it is defined
as follows:

where recall(j) is the recall for the jth document in the ranking, precision(j) is the precision for the jth
document in the ranking, E(j) is the evaluation measure relative to recall(j) and precision(j), and b is a user-
specified parameter that reflects the relative importance of recall and precision. Other user-oriented evaluation
measures that have been proposed include coverage and novelty.

Frequently, the initial query yields an answer that does not satisfy the user’s information need. In such
cases, the user can reformulate the query. Relevance feedback is the most popular query reformulation strategy.
In a relevance feedback cycle, the user is presented with a list of retrieved documents and, after examining
them, marks those that are relevant. In practice only the top-ranked documents need to be examined. The

22 SEARCHING

main idea consists of selecting important terms, or expressions, attached to the documents that have been
identified as relevant by the user, and enhancing the importance of these terms in a new query formulation.
The expected effect is that the new answer will be moved towards the relevant documents and away from the
nonrelevant ones.

For more on information retrieval see Refs. 17, 4, and 20.
Knowledge-Based Retrieval. Here the indexing language is a controlled vocabulary, which may con-

tain terms that do not appear in the documents of the collection. Usually, these vocabularies are structured, by
a small set of relations such as subsumption and equivalence. The so-called thesauri (21) constitute an impor-
tant example of such indexing languages. They capture an adequate body of real world (domain) knowledge,
which is exploited through some form of reasoning for improving the effectiveness of retrieval. The adoption
of thesauri has proved its usefulness in improving the effectiveness of retrieval and in assisting the query
formulation process by expanding queries with synonyms, hyponyms, and related terms.

However, when the indexing process is done manually, indexing of objects can also be done with respect
to more expressive conceptual models, usually called ontologies. These models represent domain knowledge in
a more detailed and more precise manner, using logic-based formalisms and their reasoning mechanisms for
retrieving the objects. Recently, several works have followed this approach to IR (e.g. relevance terminological
logics or four-valued logics). Even ontologies that have no clear semantic interpretation, such as some linguistic
ontologies, can nevertheless be made useful in IR by applying techniques such as spreading activation (22) or
by representing objects and queries by lexical conceptual graphs (23).

Searching in the Web

Here, the data set is the World Wide Web. Roughly, we can view the Web as a distributed stored directed
graph where each node is a Web page, that is, an HTML page. Each page contains text (and probably other
media such as images, audio, and videos) and hyperlinks that originate from specific positions in the page and
point to other pages. The distinguishing characteristics of the Web are that it is very big, it is not stored in a
single machine, and it is subject to continuous change. However, the basic objective of searching in the Web is
identical to the objective of searching in documents (IR, viz., to find information that is relevant to a topic.

There are basically three different ways of searching the Web. The first is to use search engines that index
(a portion of) the Web as a full-text database. In this case, the objective of searching can be specified by a
set of words, a phrase, or a pattern (using proximity operators or wildcards), or by a page that is similar to
the desired ones. The second is to use Web catalogues, which classify selected Web pages by subject. Here the
objective is specified gradually, by browsing a hierarchy of subject terms until the area of interest has been
reached. The corresponding node then provides the user with links to related pages. The third is to search the
Web by exploiting its hyperlink structure. Here the objective is related to the connectivity of the graph (e.g.,
find all pages that have links pointing to a specific page).

Search Engines. Search engines are usually based on IR techniques. However, in the case of the Web,
the data set is not stored in a single machine, so the IR techniques for searching cannot be applied directly. In
order to apply them, most search engines use a centralized crawler-indexer architecture as shown in Fig. 13.
A specialized program called a crawler traverses the Web and sends pages to a main server, where they are
indexed. Crawlers (also called robots, spiders, or knobots) start from a given set of (popular) pages and traverse
the Web in breadth-first or depth-first fashion. One problem here is how to avoid visiting the same page more
than once. Moreover, as the Web is subject to continuous change, efficient techniques are needed for keeping
up to date the indexes stored at the server.

For the indexing of the gathered pages, search engines use variants of the inverted file approach. Moreover,
in order to give the user some idea about each page retrieved, the index is complemented with a short description

SEARCHING 23

Fig. 13. The crawler-indexer architecture for searching the Web.

of each Web page. A query is answered by doing binary search on the sorted list of words (vocabulary) of the
inverted file.

Concerning relevance, most search engines use variants of the Boolean or vector model to do ranking.
As the Web is very big, the link structure is exploited in order to deduce the pages that contain valuable
information. This is an important difference between the Web and normal IR databases. The number of
hyperlinks that point to a page provides a measure of its popularity and quality. Also, many links in common
between pages, or many pages referenced by the same page, often indicate a relationship between those pages.
A popular ranking scheme is hypertext-induced topic search (HITS) (24). It considers the set S of pages that
point to or are pointed to by pages in the answer. Pages that have many links pointing to them in S are called
authorities (they should have relevant content). Pages that have many outgoing links to pages in S are called
hubs (they should point to similar content). A positive two-way feedback exists: better authority pages come
from incoming links from good hubs, and better hub pages come from outgoing links to good authorities. Let
H(p) and A(p) be the hub and the authority value of a page p. These values are defined so that the following
equations are satisfied for all pages p:

where p → u means that page p has a link pointing to page u.
Another ranking scheme is page rank, which is part of the ranking algorithm used by the popular search

engine Google (25). This scheme simulates a user navigating randomly in the Web who jumps to a random page
with probability q or follows a random hyperlink (on the current page) with probability 1 − q. This process can
be modeled with a Markov chain, from which the stationary probability of being in each page can be computed.
This value is then used as part of the ranking mechanism. Let C(a) be the number of outgoing links of page a,
and suppose that page a is pointed to by pages p1 to pn. Then the page rank of a, PR(a), is defined as

24 SEARCHING

where q must be set by the system (a typical value is 0.15). The page rank can be computed using an
interactive algorithm, and corresponds to the principal eigenvector of the normalized link martrix of the Web
(which is the transition matrix of the Markov chain).

Page rank is a global ranking scheme that can be used to rank search results, while the HITS algorithm
identifies, for a given search query, a set of authority pages and a set of hub pages. A comparison of the
performance of these link-based ranking techniques can be found in Ref. 26.

There are several variants of the crawler-indexer architecture. Among them, the most popular is Harvest,
which uses a distributed architecture to gather and distribute data.

Web Catalogs. Web catalogs, such as Yahoo! (www.yahoo.com) or Open Directory (http://dmoz.org), use
structured and controlled indexing languages for indexing the pages of the Web. These catalogs turn out to be
very useful for browsing and querying. Although they index only a fraction of the pages that are indexed by the
search engines using statistical methods, they are hand-crafted by domain experts and are therefore of high
quality. Recently, the search engines have started to exploit these catalogs in order to enhance the quality of
retrieval and to offer new functionalities. Specifically, the search engines now employ catalogs for computing
“better” degrees of relevance, and for determining and presenting to the user a set of relevant pages for each
page in the answer set. In addition, some search engines now employ taxonomies in order to enable limiting
the scope (or defining the context) of search.

For example, one can first select a category (e.g. Sciences/CS/DataStructures) from the taxonomy of a
catalog and then submit a natural language query (e.g. “Tree”). The search engine will compute the degree
of relevance with respect to the natural language query “Tree” only of those pages that fall in the category
Sciences/CS/DataStructures of the catalogue. Clearly, this enhances the precision of retrieval and reduces the
computational cost.

Searching Using Hyperlinks. There are paradigms for searching the Web that are based on exploiting
its hyperlinks. For example, one might like to search for all Web pages that contain at least one image and that
are reachable from a given site following at most three links. To pose this kind of query, the Web is viewed as
a labeled graph. Examples of this kind of approach are the Web query languages and dynamic searching. The
existing Web query and manipulation languages provide access to the structure of Web pages and allow the
creation of new structures as a result of a query.

Dynamic search in the Web is equivalent to sequential text searching. The idea is to use an online search
to discover relevant information by following links. The main advantage is that searching is carried out in the
current structure of the Web, and not in what is stored in the index of a search engine.

Metasearching. Metasearchers are also employed for searching the Web. A metasearcher is actually
a mediator, that is, a secondary information source aiming at providing a uniform interface to a number of
underlying sources (which may be primary or secondary). Users submit queries to the mediator. Upon receiving
a user query, the mediator queries the underlying sources. This involves selecting the sources to be queried
and formulating the query to be sent to each source. Finally, the mediator appropriately combines the returned
results and delivers the final answer to the user.

The main advantages of metasearchers are that (a) they combine the results of many sources and (b) they
allow the user to avoid posing the same query to multiple sources, by providing a single common interface.
Metasearchers differ mainly in the way ranking is performed in the result, and in how well they translate the
user query to the query language of each search engine.

For more details see Chap. 13 of Ref. 3, and for an overview of current Web search engine design see Ref.
27.

SEARCHING 25

BIBLIOGRAPHY

1. M. R. Garey D. S. Johnson Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W. H.
Freeman, 1979.

2. D. Knuth The Art of Computer Programming, Vol. 3: Sorting and Searching, Reading, MA: Addison-Wesley, 1973.
3. R. Baeza-Yates B. Ribeiro-Neto Modern Information Retrieval, New York: ACM Press, Addison-Wesley, 1999.
4. G. Brassard P. Bratley Algorithmics: Theory and Practice, Upper Saddle River, NJ: Prentice-Hall, 1988.
5. T. Cormen A. Thomas Introduction to Algorithms, Cambidge, MA and New York: MIT Press and McGraw-Hill, 1990.
6. N. J. Nilsson Artificial Intelligence—A New Synthesis, San Francisco: Morgan Kaufmann, 1998.
7. J. Pearl Heuristics: Intelligent Search Strategies for Computer Problem Solving, Boston: Addison-Wesley, 1984.
8. V. Kumar Algorithms for constraint-satisfaction problems: A survey, Artif. Intell. Mag., 13 (1): 32–44, 1992.
9. T. A. Marsland Tree Searching Algorithms, Computer, Chess and Cognition, 1991, pp 133–158.

10. R. Ramakrishnan Database Management Systems, New York: WCB/McGraw-Hill, 1998.
11. D. J. Hand et al. Principles of Data Mining, Cambridge, MA: MIT Press, 2001.
12. S. Abiteboul et al. Data on the Web: From Relations to Semistructured Data and XML, Morgan Kaufmann, 1999.
13. W. Buthard R. Keller Some approaches to best-match file searching, Comm. ACM, 16 (4): 230–236, 1973.
14. R. Baeza-Yates et al. Proximity matching using fixed-queries trees, Proc. 5th Combinatorial Pattern Matching Conf.

(CPM’94), Lecture Notes in Computer Science, Vol. 807, 1994, pp. 198–212.
15. C. Bohn et al. Searching in multidimensional spaces, ACM Comput. Surveys, 33 (3): 322–373, 2001.
16. E. Chavez et al. Searching in metric spaces, ACM Comput. Surveys, 33 (3): 273–321, 2001.
17. G. Salton M. J. McGill Introduction to Modern Information Retrieval, New York: McGill, 1983.
18. B. Croft Knowledge-based and statistical approaches to text retrieval, IEEE Expert, 9: 8–12, 1993.
19. S. E. Robertson K. Sparck Jones Relevance weighting of search terms, J. Amer. Soc. Inf. Sci., 27 (3): 129–146, 1976.
20. R. R. Korfhage Information Storage and Retrieval, New York: Wiley, 1997.
21. International Organization for Standardization, Documentation—Guidelines for the Establishment and Development

of Monolingual Thesauri, Ref. No. ISO 2788-1986, 1988.
22. C. Paice A thesaural model of information retrieval, Inf. Process. Manage., 27 (5): 433–447, 1991.
23. N. Guarino et al. OntoSeek: Content-based access to the Web, IEEE Intell. Syst., 14 (3): 70–80, 1999.
24. J. Kleinberg Authoritative sources in a hyperlinked environment, Proc. 9th ACM-SIAM Symp. on Discrete Algorithms,

San Francisco, 1998.
25. S. Brin L. Page The anatomy of a large-scale hypertextual Web search engine, Proc. 7th Int. WWW Conf., Brisbane,

Australia, 1998.
26. B. Amento et al. Does authority mean quality? Predicting expert quality ratings of Web documents, Proc. 23rd ACM

SIGIR Conf., 2000.
27. A. Arasu et al. Searching the Web, ACM Trans. Internet Technol., 1 (1): 2001.

NICOLAS SPYRATOS
Université de Paris-Sud
YANNIS TZITZIKAS
University of Crete

