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AI LANGUAGES AND PROCESSING

Programming languages have been crucial in the develop-
ment of the artificial intelligence (AI) branch of computer sci-
ence, for at least two reasons. First, they allow convenient
implementation and modification of programs that demon-
strate and test AI ideas. Second, they provide vehicles of
thought—they allow the user to concentrate on higher-level
concepts. Frequently, new ideas in AI are accompanied by a
new language in which it is natural to apply these ideas.

The process of programming a solution to a problem is in-
herently difficult. This has been recognized by conventional
programmers for many years and has been one of the motiva-
ting forces behind both structured and object-oriented pro-
gramming techniques. The problem seems to be that the hu-
man brain does not have the capacity to handle the
complexity of the programming task for nontrivial problems.
The solution has been to use first structured and then object-
oriented techniques, which break problems up into manage-
able ‘‘chunks.’’ However, this divide et impera technique did
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not solve the problem of the imperative (procedural, com- Although both Lisp and Prolog have been supported with
almost religious intensity by passionate advocates, the con-manding) description of the solution, that is, of the explicit
flict between them has softened over the years, and many nowordering of the actions leading to the solution. Moreover, the
believe in a combination of ideas from both worlds (see sectionsequence of statements in imperative language also implies
on hybrid languages).the need to have explicit commands to alter the sequence, for

Before we discuss specific AI programming paradigms andexample, control structures such as ‘‘while . . ., do,’’ ‘‘repeat
languages, it will be useful to underline the specific features. . . until,’’ or even ‘‘goto.’’ Many errors in imperative lan-
that facilitate the production of AI programs as distinct fromguages are introduced because the specified sequencing is not
other types of applications. Apart from the features that arecorrect. On the other hand, in declarative languages, used
now needed for building almost any kind of complex systems,mainly for AI programming, we describe the problem itself
such as possessing a variety of data types, a flexible controlrather than the explicit way to solve it or the order in which
structure, and the ability to produce efficient code, the fea-things must be done. The explicit ordering has been replaced
tures that are particularly important in building AI systemsby the implicit ordering, conditioned by the relationships be-
are (1,2):tween the objects. The avoidance of an explicit sequence of

control relieves the user of the burden of specifying the con-
• Good symbol manipulation facilities, because AI is con-trol flow in the program.

cerned with symbolic rather than numeric processingDeclarative programming is the umbrella term that covers
• Good list-manipulating facilities, because lists are theboth functional programing and relational programming.

most frequently used data structures in AI programsWhile the two approaches do have many superficial similari-
• Late binding times for the object type or the data struc-ties—both classes of languages are nonprocedural and, in

ture size, because in many AI systems it is not possibletheir pure forms, involve programming without side effects—
to define such things in advancethey have different mathematical foundations. In writing

• Pattern-matching facilities, both to identify data in thefunctional programs, the programmer is concerned with speci-
large knowledge base and to determine control for thefying the solution to a problem as a collection of many-to-one
execution of production systemstransformations. This corresponds closely to the mathemati-

• Facilities for performing some kind of automatic deduc-cal definition of a function. On the other hand, a relational
tion and for storing a database of assertions that provideprogram specifies a collection of many-to-many transforma-
the basis for deductiontions. Thus in relational programming languages, there is a

set of solutions to a particular application rather than the • Facilities for building complex knowledge structures,
single solution that is produced from a functional application. such as frames, so that related pieces of information can

be grouped together and assessed as a unitAlthough the execution mechanisms that have been proposed
for relational programming languages are radically different • Mechanisms by which the programmer can provide addi-
from the approaches for functional programming languages, tional knowledge (metaknowledge) that can be used to
both approaches have been widely used in AI programming. focus the attention of the system where it is likely to be

To provide AI-related comparison, we have included two the most profitable
equally popular AI-language alternatives, a functional lan- • Control structures that facilitate both goal-directed be-
guage Lisp and relational language Prolog. From the begin- havior (top-down processing or backward chaining) and
ning, Lisp was the language of choice for US AI researchers. data-directed behavior (bottom-up processing or forward
The reasons are many, but primarily result from the strong chaining)
mathematical roots of the language, its symbolic rather than • The ability to intermix procedural and declarative knowl-
numeric processing, and its ability to treat its own code as edge in whatever way best suits a particular task
data. Researchers have exploited this capability of Lisp pro- • A good programming environment, because AI programs
grams to modify themselves at run time for research in ma- are among the largest and most complex computer sys-
chine learning, natural language understanding, and other tems ever developed and present formidable design and
aspects of AI. Moreover, AI programming requires the flexi- implementation problems
bility, the extensibility, the modularity, and the underlying
data structures and data abstraction facilities that Lisp pro- No existing language provides all of these features. Some lan-
vides. Although Lisp is one of the older programming lan- guages do well at one at the expense of others; some hybrid
guages in use, it has remained the most widely used language languages combine multiple programming paradigms trying
in AI programming. to satisfy as many of these needs as possible. However, the

The logic programming language Prolog has been growing main differentiator between various AI programming lan-
in popularity since it was originally introduced in Europe in guages is their ability to represent knowledge clearly and

concisely. Therefore, in the following section we present athe early 1970s. Prolog is most easily matched to tasks involv-
summary of some of the basic knowledge representation para-ing logic and prooflike activities. A Prolog program is essen-
digms. As each language is discussed, we look at some of thetially a description of objects and relations between them. A
ways in which language represents various types of knowl-subset of formal logic (called Horn clause logic) is used to
edge and satisfies other above-mentioned demands.specify the desired conditions. Prolog’s adherents believe that

it is easier to learn and use than Lisp. They say that it uses
less memory and is more easily moved from one computer to KNOWLEDGE REPRESENTATION
another. In the past, it has run with reasonable speed only
on mainframes, but recent modifications are running satisfac- Knowledge representation is one of the most basic and ac-

tively researched areas of artificial intelligence. This researchtorily even on personal computers.
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has thrown up a number of schemes for knowledge represen- • How do we formally specify the semantics of a knowledge
base?tation, each of which has both strong and weak points. The

computational efficiency and the clarity of the representation • How do we deal with incomplete knowledge?
are the most important aspects, both of which strongly de-

• How do we extract the knowledge of an expert to initially
pend on the nature of the AI application. Therefore, the choice ‘‘stock’’ the knowledge base?
of the representation formalism should be based on an analy-

• How do we automatically acquire new knowledge as timesis of the task to be performed with it, so as to ensure that
goes on so that the knowledge base can be kept current?the representation is well matched to the problem. The choice

must not be based on any advocacy of a particular representa-
tional paradigm as adequate or natural, independent of the In most early AI systems, knowledge representation was

not explicitly recognized as an important issue in its ownproblem to be solved.
We may distinguish three types of adequacy of the repre- right, although most systems incorporated knowledge indi-

rectly through rules and data structures. During the mid-sentation of knowledge: metaphysical adequacy, epistemologi-
cal adequacy, and heuristic adequacy. Metaphysical adequacy 1960s knowledge representation slowly emerged as a separate

area of study. Several different approaches to knowledge rep-obtains if there are no contradictions between the facts we
wish to represent and our representation of them. Epistemo- resentation began to manifest themselves and have resulted

in the various formalisms in use today. The most importantlogical adequacy is about the ability to express knowledge in
our representation, and heuristic adequacy obtains if we can approaches are first-order logic, semantic networks, O–A–V

triples, frames, and production systems. This is necessarilyexpress in our representation the problem-solving process
that we need to tackle a problem. Given a representation that an oversimplification, since not all knowledge representation

formalisms will fit into one of these approaches.is adequate on the above criteria, it is vital to check whether
it is computationally tractable. For instance, natural lan- All of them have both strong and weak points. From our

representational paradigm we want first computational effi-guage is an epistemologically adequate way of representing
anything at all, but it fails on the computational criterion, ciency and second clarity of represented knowledge, both of

which depend on the nature of our application. Therefore wesince we cannot build AI systems that can make use of knowl-
edge represented in this way in anything like an efficient need to base our choice of representation on an analysis of

the task to be performed with it. Also, all these knowledgemanner.
Apart from the computational efficiency, we will need to representation paradigms have cross-fertilized each other.

Currently popular are hybrid or multiparadigm languagesconsider a variety of other factors that are relevant to the
desirability of a representation. One of the reasons for sepa- and commercial products know as AI toolkits, which enable a

wider variety of representational paradigms and thereforerating knowledge into a knowledge base is that by so doing it
is possible to isolate the knowledge used in problem solving have been successful in a huge spectrum of applications.

The usefulness of first-order logic in a knowledge represen-from the problem-solving strategies themselves, as well as to
use the same problem-solving strategies in a variety of do- tation context became evident during the 1960s, primarily as

an outgrowth of research into automatic theorem proving. Inmains.
Another important factor is the clarity and comprehensi- this paradigm, the knowledge is represented as a set of

axioms, while the inference comprises the proving of theo-bility of representation, because the builder of a system is
rarely an expert in the field covered by the system, and both rems from these axioms. Much research was directed at in-

vestigating the use of the resolution principle as an inferencethe knowledge engineer and the domain expert should under-
stand the representation. technique in various applications. Other research attempted

to recast logical formalisms in a more computationally ori-Related to the clarity is the conciseness of the representa-
tion. Other things being equal, the more concise a representa- ented framework. This has led to intense discussion regarding

the pros and cons of logic-based approaches to representation.tion, the more likely it is to be easily understood. Conciseness
can also have implications for computational efficiency. Concern has been expressed about the lack of an explicit

scheme to index into relevant knowledge, the awkwardnessAnother factor that cannot be overlooked is the tools that
will be available to support building of the knowledge base. of handling changing or incomplete knowledge, and perceived

limitations of deductive inference. However, logic advocatesIn contrast to conventional database systems, AI systems re-
quire a knowledge base with diverse kinds of knowledge. muster counterarguments to many of these concerns, and

there is no doubt that the formal precision and interpretabil-These include, but are not limited to, knowledge about ob-
jects, knowledge about processes, and hard-to-represent com- ity of logic are useful and supply expressiveness that other

knowledge representation schemes lack. This kind of repre-monsense knowledge about goals, motivations, causality,
sentation has experienced a surge of popularity, largely be-time, actions, etc. Attempt to represent this breadth of knowl-
cause of the availability of Prolog, which effectively providesedge raise many questions:
an efficient theorem prover for a subset of first-order logic.

One of the oldest and the most general representational
• How should the explicit knowledge be structured in a

schemes, which came to prominence during the mid- to lateknowledge base?
1960s, is the semantic network. Such networks are usually

• How should rules for manipulating a knowledge base’s thought of as graphs consisting of a set of nodes representing
explicit knowledge be encoded to infer knowledge con- concepts, linked by arcs representing the relationships be-
tained implicitly within the knowledge base? tween the concepts and associated with specialized inference

• When do we undertake and how do we control such infer- procedures that can operate on the structure. Concepts are
used to represent either physical objects that can be seen orences?
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touched, or conceptual entities such as events, acts or ab- actors or actions. After this step, much ‘‘precompiled’’ knowl-
edge can be gleaned directly from frames or deduced via infer-stract categories. A link or arc may represent any type of rela-

tionship. The most popular are: ence. Often a distinction is made between scripts with little
capability for inference and more procedurally oriented

• The IS-A link, used to represent the class–instance or su- frames.
perclass–subclass relationships (for instance, a relation- Production system architectures are another way of rep-
ship between the subclass ‘‘dog’’ and its superclass resenting knowledge. Proposed by A. Newell (4), production
‘‘mammal,’’ i.e., ‘‘Dog IS-A mammal,’’ or the instance systems were originally presented as models of human rea-
Layka and the class ‘‘dog,’’ i.e., ‘‘Layka IS-A dog’’). The soning. A set of production rules (each essentially a condi-
most popular kind of inference has involved the inheri- tion–action or a premise–conclusion pair) operate on a short-
tance of information from the top levels of hierarchy term memory buffer of relevant concepts. A basic control loop
downward, along these IS-A links. Such an organization tries each rule in turn, executing the action part of the rule
allows information to be shared among many nodes and only if the condition part matches. Additionally, there will be
thus leads to a large-scale representational economies. some principle, known as a conflict resolution principle, that

determines which rule fires when several rules match. Repre-• The HAS-A link, which identifies nodes that are properties
senting knowledge as condition–action pairs has proved to beof another nodes and shows part–subpart relationships.
a very natural way of extracting and encoding rule-based
knowledge in many applications, and now production systemsFlexibility is a major advantage of this representational

scheme. New nodes and links can be defined as needed. are widely used to construct special-purpose knowledge-based
systems, so called expert systems. Some expert systems haveSome AI researchers use object–attribute–value (O–A–V)

triples that each look like a link on a semantic net. However, rules that incorporate pattern-matching variables. In such
systems, the variable rule allows the system to substitutean O–A–V scheme is sometimes used to represent known

facts, rather than a particular logical structure as in the se- many different facts into the same general format.
Given the diversity of these knowledge representation par-mantic net. In an expert system, a program may simply

gather information before fitting it into the knowledge base. adigms, we need to consider how we should approach the se-
lection of one against other. Although people have been pre-Alternatively, O–A–V triples may be used to create a data

structure like a blank form. The blanks are said to be unin- pared to champion one formalism against another, in fact, as
regards expressive power, they can all be viewed as equiva-stantiated values. In exercising an expert system, general and

case-specific information exist, and both can be represented lent to first-order logic or a subset thereof. However, the im-
portant point is that they are not all equivalent in terms ofusing O–A–V triples. This representational scheme is used

in MYCIN, the first well-known expert system, built at Stan- pragmatic considerations, most obviously that of computa-
tional efficiency. But the computational and other pragmaticford University at 1972.

Marvin Minsky (3) postulated that a useful way to orga- benefits from one representation form to another will vary
according to the problem at hand. There is therefore littlenize a knowledge base was to break it into highly modular

‘‘almost decomposable’’ chunks called frames (sometimes also point in arguing the merits of the various formalisms inde-
pendently of an understanding of the work that we wish to doreferred to as schemata). They associate an object with a col-

lection of features, and are similar to a property list or record, with the formalism in our system.
A serious shortcoming of all above-mentioned conventionalused in conventional programming. Each feature is stored in

a slot (frame variable). Slots may also contain default values, approaches to knowledge representation is that they are
based on bivalent logic and therefore do not provide an ade-pointers to other frames, sets of rules, or procedures by which

values may be obtained. Default values are quite useful when quate model for representing and processing of uncertain and
imprecise knowledge. Fuzzy logic, which may be viewed asrepresenting knowledge in domains where exceptions are

rare. A procedural attachment is another way that a slot in a an extension of classical logical systems, provides an effective
conceptual framework for dealing with the problem of knowl-frame can be filled. In this case the slot contains instructions

for determining an entry. These are essentially pieces of code edge representation in an environment of uncertainty and im-
precision.(often called demons) associated with slots, which are invoked

when the slots are accessed. The inclusion of procedures in
frames joins together in a single representational strategy
two complementary (and historically competing) ways to state LOGIC PROGRAMMING
and store facts: procedural and declarative representation.
The two perspectives, considered as two complementary as- Logic programming began in the early 1970s as a direct out-

growth of earlier work in automatic theorem proving and arti-pects of knowledge, are often referred to as dual semantics.
Frames gain power, generality, and popularity by their ability ficial intelligence. It can be defined as the use of symbolic

logic for the explicit representation of problems, together withto integrate both procedural and declarative semantics, and
so they became the basis for another major school of knowl- the use of controlled logical inference for the effective solution

of those problems (5)edge representation. Dividing a knowledge base into frames
has become common in a variety of applications, such as com- Constructing automatic deduction systems is central to the

aim of achieving artificial intelligence. Building on work ofputer vision and natural language understanding. Frames are
particularly useful when used to represent knowledge of cer- Herbrands (6) in 1930, there was much activity in theorem

proving in the early 1960s by Prawitz (7), Gilmore (8), Davistain stereotypical concepts or events. When one of these stan-
dard concepts or events is recognized, slots inside the appro- and Putnam (9), and others. This effort culminated in 1965

with the publication of the landmark paper by Robinson (10),priate frame can be filled in by tokens representing the actual
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which introduced the resolution rule. Resolution is an infer- It is clear that logic provides a single formalism for appar-
ently diverse parts of computer science. Logic provides usence rule that is particularly well suited to automation on

a computer. with a general-purpose, problem-solving language, a concur-
rent language suitable for operating systems, and also a foun-The credit for the introduction of logic programming goes

mainly to Kowalski and Kuehner (11,12) and Colmerauer et dation for database systems. This range of applications, to-
gether with the simplicity, elegance, and unifying effect ofal. (13), although Green (14) and Hayes (15) should also be

mentioned in this regard. In 1972, Kowalski and Colmerauer logic programming, assures it of an important and influen-
tial future.were led to the fundamental idea that logic can be used as a

programming language. The name Prolog (for ‘‘programming
Deductive Databasesin logic’’) was conceived and the first Prolog interpreter was

implemented in the language Algol-W by Roussel in 1972. The last decade has seen substantial efforts in the direction
The idea that first-order logic, or at least substantial sub- of merging logic programming and database technologies for

set s of it, can be used as a programming language was revo- the development of large and persistent knowledge bases (see
lutionary, because until 1972, logic had been used only as a e.g. Refs. 16–21). The efforts differ in the degree of coupling
specification language in computer science. However, it has between the two paradigms. A lot of pragmatic attempts fall
been shown that logic has a procedural interpretation, which into the loose coupling category, where existing logic program-
makes it very effective as a programming language. Briefly, a ming and database environments (usually Prolog and rela-
program clause A ⇐ B1, . . ., Bn is regarded as a procedure tional databases) are interconnected through ad hoc inter-
definition. If ⇐C1, . . ., Ck is a goal clause, then each Cj is faces. Although some interesting results have been achieved,
regarded as a procedure call. A program is run by giving it recent research results have shown that simple interfaces are
an initial goal. If the current goal is ⇐C1, . . ., Ck, a step in not efficient enough and that an enhancement in efficiency
the computation involves unifying some Cj with the head A of can be achieved by intelligent interfaces. It has become obvi-
a program clause A ⇐ B1, . . ., Bn and thus reducing the cur- ous that stronger integration is needed and that knowledge
rent goal to the goal ⇐(C1, . . ., Cj
1, B1, . . ., Bn, Cj�1, . . ., base management systems should provide direct access to
Ck)�, where � is the unifying substitution. Unification thus data and should support rule-based interaction as one of the
becomes a uniform mechanism for parameter passing, data programming paradigms. Deductive databases and the Data-
selection, and data construction. The computation terminates log language are the first steps in this direction, and will be
when the empty goal is produced. discussed in detail later in this entry.

One of the main ideas of logic programming, which is due Deductive database systems are database management
to Kowalski, is that an algorithm consist of two disjoint com- systems whose query language and storage structure are de-
ponents, the logic and the control. The logic is the statement signed around a logical model of data. As relations are natu-
of what the problem is that has to be solved. The control is rally thought of as the ‘‘values’’ of logical predicates, and rela-
the statement of how it is to be solved. The ideal of logic pro- tional languages such as SQL are syntactic sugarings of a
gramming is that the programmer should only have to specify limited form of logical expression, it is easy to see deductive
the logic component of an algorithm. The logic should be exer- database systems as an advanced form of relational system.
cised solely by the logic programming system. Unfortunately, Compared with other extensions of relational systems (the
this ideal has not yet been achieved with current logic pro- object-oriented system, for instance), deductive databases
gramming systems, because of two broad problems. The first have the important property of being declarative, that is, of
of these is the control problem. Currently, programmers need allowing the user to query or update by saying what he or
to provide a lot of control information, partly by the ordering she wants, rather than how to perform the operation. Since
of clauses and atoms in clauses and partly by extralogical con- declarativeness is a major peculiarity of relational systems
trol features, such as cut. The second problem is the negation and is now being recognized as an important driver of their
problem. The Horn clause subset of logic does not have suffi- success, deductive databases are nowadays considered the
cient expressive power, and hence Prolog systems allow nega- natural development of relational systems.
tive literals in the bodies of clauses. Even though deductive database systems have not yet ob-

Logic has two other interpretations. The first of these is tained success on the database market, we see deductive
the database interpretation. Here a logic program is regarded database technology infiltrating other branches of database
as a database. We thus obtain a very natural and powerful systems, especially the object-oriented world, where it is be-
generalization of relational databases, which correspond to coming increasingly important to interface object-oriented
logic programs consisting solely of ground unit clauses. The and logical paradigms in so-called declarative and object-
concept of logic as a uniform language for data, programs, oriented databases (DOODs).
queries, views, and integrity constraints has great theoretical A deductive database D consists of the following (16):
and practical potential.

The third interpretation of logic is the process interpreta-
• A set P of base predicates and, for each predicate, an

tion. In this interpretation, a goal ⇐B1, . . ., Bn is regarded associated set of facts
as a system of concurrent processes. A step in the computa-

• A set Q of built-in predicates (their associated sets oftion is the reduction of a process to a system of processes.
facts are assumed to be known)Shared variables act as communication channels between

• A set R of derived predicates, and for each predicate, anprocesses. There are now several Prologs based on the process
associated set of rules (each predicate is the head of eachinterpretation. This interpretation allows logic to be used for
of its associated rules)operating-system applications and object-oriented pro-

gramming. • A set S of integrity constraints
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The predicates in P, Q, and R are disjoint. The first two sets Maarten van Emden at Edinburgh (experimental demon-
stration), and Alain Colmerauer at Marseilles (implementa-are referred to as the extensional database (EDB), and the

last two sets are referred to as the intensional database (IDB). tion). The present popularity of Prolog is largely due to
David Warren’s efficient implementation at Edinburgh inThe entire database is understood as collection of axioms (it

must be consistent), and the resolution principle is estab- the mid 1970s.
Prolog has rapidly gained popularity in Europe as a practi-lished as a rule of inference. A query is a rule, whose head

predicate is always called Q. The variables that appear only cal programming tool. The language received impetus from
its selection in 1981 as the basis for the Japanese Fifth Gen-in its head are free. Assuming that Q has free variables X �

(X1, . . ., Xn), a tuple of constants a � (a1, . . ., an) belongs to eration Computing project. On the other hand, in the United
States its acceptance began with some delay, due to severalthe (extensional) answer to Q if the substitution of ai for Xi

(i � 1, . . ., n) yields a theorem. Relatively little effort (e.g., factors. One was the reaction of the ‘‘orthodox school’’ of logic
programming, which insisted on the use of pure logic thattabulation, sorting, grouping) is required for adequate presen-

tation of an extensional answer to the user. This is because should not be marred by adding practical facilities not related
to logic. Another factor was previous US experience with thethe extensional information is relatively simple, and all users

may be assumed to be familiar with its form and meaning. Microplanner language, also akin to the idea of logic program-
ming, but inefficiently implemented. And the third factor thatIntensional information is more complex (e.g., rules, con-

stants, hierarchies, views), and the user may not always be delayed the acceptance of Prolog was that for a long time Lisp
had no serious competition among languages for AI. In re-assumed to be familiar with its form and meaning. Hence, the

presentation of intensional answers may require more effort. search centers with a strong Lisp tradition, there was there-
fore natural resistance to Prolog.

The language’s smooth handling of extremely complex AIInductive Logic Programming
problems and ability to effect rapid prototyping have been big

Inductive logic programming (ILP) is a research area formed factors in its success, even in the US. Whereas conventional
at the intersection of machine learning and logic program- languages are procedurally oriented, Prolog introduces the
ming. ILP systems develop predicate descriptions from exam- descriptive, or declarative view, although it also supports the
ples and background knowledge. The examples, background procedural view. The declarative meaning is concerned only
knowledge, and final descriptions are all described as logic with the relations defined by the program. This greatly alters
programs. A unifying theory of ILP is being built up around the way of thinking about problem and makes learning to pro-
lattice-based concepts such as refinement, least general gen- gram in Prolog an exciting intellectual challenge. The declar-
eralization, inverse resolution, and most specific corrections. ative view is advantageous from the programming point of
In addition to a well-established tradition of learning-in-the- view. Nevertheless, the procedural details often have to be
limit results, some results within Valiant’s PAC learning considered by the programmer as well.
framework have been demonstrated for ILP systems. U-lear- Apart from this dual procedural–declarative semantics,
nability, a new model of learnability, has also been developed. the key features of Prolog are as follows (22,23):

Presently successful applications areas for ILP systems in-
clude the learning of structure–activity rules for drug design,

• Prolog programming consists of defining relations andfinite-element mesh analysis design rules, primary–
querying about relations.secondary prediction of protein structure, and fault diagnosis

• A program consists of clauses. These are of three types:rules for satellites.
facts, rules, and questions.

• A relation can be specified by facts, simply stating the n-
LOGIC LANGUAGES

tuples of objects that satisfy the relation, or by stating
rules about the relation.One of the most important practical outcomes of the research

• A procedure is a set of clauses about the same relation.in logic programming has been the language Prolog, based on
the Horn clause subset of logic. The majority of logic program- • Querying about relations, by means of questions, resem-

bles querying a database. Prolog’s answer to a questionming systems available today are either Prolog interpreters
or Prolog compilers. Most use the simple computation rule consists of a set of objects that satisfy the question.
that always selects the leftmost atom in a goal. However, logic • In Prolog, to establish whether an object satisfies a query
programming is by no means limited to Prolog. It is essential is often a complicated process that involves logical infer-
not only to find more appropriate computation rules, but also ence, exploring among alternatives, and possibly back-
to find ways to program in larger subsets of logic, not just tracking. All this is done automatically by the Prolog sys-
clausal subsets. In this entry we will also briefly cover a data- tem and is, in principle, hidden from the user.
base query language based on logic programming, Datalog,
and several hybrid languages supporting the logic program-

Different programming languages use different ways ofming paradigm (together with some other paradigms—
representing knowledge. They are designed so that the kindfunctional, for instance).
of information you can represent, the kinds of statements you
can make, and the kinds of operations the language can han-

Prolog
dle easily all reflect the requirements of the classes of prob-
lems for which the language is particularly suitable. The keyProlog emerged in the early 1970s to use logic as a program-

ming language. The early developers of this idea included features of Prolog that give it its individuality as a program-
ming language are:Robert Kowalski at Edinburgh (on the theoretical side),
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• Representation of knowledge as relationships between tell whether or not any specific conclusion could be deduced
from those facts. In knowledge engineering terms, Prolog’sobjects (the core representation method consists of rela-

tionships expressed in terms of a predicate that signifies control structure is logical inference.
Prolog is the best current implementation of logic program-a relationship and arguments or objects that are related

by this predicate) ming, given that a programming language cannot be strictly
logical, since input and output operations necessarily entail• The use of logical rules for deriving implicit knowledge
some extralogical procedures. Thus, Prolog incorporates somefrom the information explicitly represented, where both
basic code that controls the procedural aspects of its opera-the logical rules and the explicit knowledge are put in
tions. However, this aspect is kept to a minimum, and it isthe knowledge base of information available to Prolog
possible to conceptualize Prolog as strictly a logical system.• The use of lists as a versatile form of structuring data,

Indeed, there are two Prolog programming styles: a declar-though not the only form used
ative style and a procedural style. In declarative program-

• The use of recursion as a powerful programming tech- ming, one focuses on telling the system what it should know
nique and relies on the system to handle the procedures. In proce-

• The assignment of values to variables by a process of pat- dural programming, one considers the specific problem-solv-
tern matching in which the variables are instantiated, or ing behavior the computer will exhibit. For instance, knowl-
bound, to various values edge engineers who are building a new expert system concern

themselves with procedural aspects of Prolog. Users, however,
The simplest use of Prolog is as a convenient system for need not to worry about procedural details and are free sim-

retrieving the knowledge explicitly represented, i.e., for inter- ply to assert facts and ask questions.
rogating or querying the knowledge base. The process of ask- One of the basic demands that an AI language should sat-
ing a question is also referred to as setting a goal for the isfy is good list processing. The list is virtually the only com-
system to satisfy. One types the question, and the system plex data structure that Prolog has to offer. A list is said to
searches the knowledge base to determine if the information have a head and a tail. The head is the first list item. The tail
one is looking for is there. is the list composed of all of the remaining items. In Prolog

The next use of Prolog is to supply the system with part of notation, the atom on the left of vertical bar is the list head,
the information one is looking for, and ask the system to find and the part to the right is the list tail.
a missing part. The following example illustrates the way the list ap-

In both cases, Prolog works fundamentally by pattern pending operation is performed in Prolog:
matching. It tries to match the pattern of our question to the

append ([], L,L).various pieces of information in the knowledge base.
append ([X�L1],L2,[X�L3]).The third case has a distinguishing feature. If a question
:-append (L1,L2,L3).contains variables (a word beginning with an uppercase let-

ter), Prolog also has to find what are the particular objects (in This simple Prolog program consists of two relations. The first
place of variables) for which the goal are satisfied. The partic- says that the result of appending the empty list ([]) to any
ular instantiations of variables to these objects are shown to list L is simply L. The second relation describes an inference
the user. rule that can be used to reduce the problem of computing the

One of the advantages of using Prolog is that a Prolog in- result of an append operation involving a shorter list. Using
terpreter is in essence a built-in inference engine that draws this rule, eventually the problem will be reduced to appending
logical conclusions using the knowledge supplied by the facts the empty list, and the value is given directly in the first rela-
and rules. tion. The notation [X�L1] means the list whose first element

To program in Prolog, one specifies some facts and rules is X and the rest of which is L1. So the second relation says
about objects and relationships and then asks questions about that the result of appending [X�L1] to L2 is [X�L3] provided
the objects and relationships. For instance, if one entered that it can be shown that the result of appending L1 to L2
the facts is L3.

likes (peter, mary)
likes (paul, mary) Datalog
likes (mary, john)

Datalog (24) is a database query language based on the logic
and then asked programming paradigm, and in many respects represents a

simplified version of general logic programming. In the con-?-likes (peter, mary)
text of general logic programming it is usually assumed that

Prolog would respond by printing all the knowledge (facts and rules) relevant to a particular
application is contained within a single logic program P. Dat-

yes.
alog, on the other hand, has been developed for the applica-
tions that use a large number of facts stored in a relationalIn this trivial example, the word likes is the predicate that

indicates that such a relationship exists between one object, database. Therefore, two different sets of clauses should be
considered—a set of ground facts, called the extensional data-peter, and a second object, mary. In this case Prolog says

that it can establish the truth of the assertion that Peter likes base (EDB), physically stored in a relational database, and a
Datalog program P called the intensional database (IDB). TheMary, based on the three facts it has been given. In a sense,

computation in Prolog is simply controlled logical deduction. predicates occurring in the EDB and in P are divided into two
disjoint sets: the EDB predicates, which are all those oc-One simply states the facts that one knows, and Prolog can
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curring in the extensional database, and the IDB predicates, FUNCTIONAL PROGRAMMING LANGUAGES
which occur in P but not in the EDB. It is necessary that the
head predicate of each clause in P be an IDB predicate. EDB Historically, the most popular AI language, Lisp, has been

classified as a functional programming language in whichpredicates may occur in P, but only in clause bodies.
Ground facts are stored in a relational database; it is as- simple functions are defined and then combined to form more

complex functions. A function takes some number of argu-sumed that each EDB predicate r corresponds to exactly one
relation R of the database such that each fact r(c1, . . ., cn) of ments, binds those arguments to some variables, and then

evaluates some forms in the context of those bindings.the EDB is stored as a tuple �c1, . . ., cn�.
Also, the IDB predicates of P can be identified with rela- Functional languages became popular within the AI commu-

nity because they are much more problem-oriented than conven-tions, called IDB relations, or derived relations, defined
through the program P and the EDB. IDB relations are not tional languages. Moreover, the jump from formal specification

to a functional program is much shorter and easier, so the re-stored explicitly, and correspond to relational views. The ma-
terialization of these views, i.e. their effective computation, is search in the AI field was much more comfortable.

Functional programming is a style of programming thatthe main task of a Datalog compiler or interpreter.
The semantics of a Datalog program P can be defined as a emphasizes the evaluation of expressions, rather than execu-

tion of commands. The expressions in this language aremapping from database states (collections of EDB facts) to
result states (IDB facts). A more formal definition of the logi- formed by using functions to combine basic values. A func-

tional language is a language that supports and encouragescal semantics of Datalog a be found in Ref. 24, p. 148:
programming in a functional style.

Each Datalog fact F can be identified with an atomic formula F* For example, consider the task of calculating the sum of
of First-Order Logic. Each Datalog rule R of the form L0: -L1, . . ., the integers from 1 to 10. In an imperative language such as
Ln represents a first-order formula R* of the form �X1, . . ., �Xm C, this might be expressed using a simple loop, repeatedly
(L1 � � � � � Ln ⇒ L0), where X1, . . ., Xm are all variables oc- updating the values held in an accumulator variable total
curring in R. A set S of Datalog clauses corresponds to the con-

and a counter variable i:junction S* of all formulas C* such that C � S.
total = 0;

The Herbrand base HB is the set of all facts that we can for (i=1; i<=10; ++i)
express in the language of Datalog, i.e., all literals of the total += i;
form P(c1, . . ., ck) such that ci are constants. Furthermore,

In a functional language, the same program would be ex-let EHB denote the extensional part of the Herbrand base,
pressed without any variable updates. For example, in Has-i.e., all literals of HB whose predicate is an EDB predicate,
kell, nonstrict functional programming language, the resultand, accordingly, let IHB denote the set of all literals of HB
can be calculated by evaluating the expressionwhose predicate is an IDB predicate. If S is a finite set of

Datalog clauses, we denote by cons(S) the set of all facts that sum [1..10]
are logical consequences of S*.

Here [1..10] is an expression that represents the list of in-The semantics of a Datalog program P can be described as
tegers from 1 to 10, while sum is a function that can be useda mapping M P from EHB to IHB which to each possible ex-
to calculate the sum of an arbitrary list of values.tensional database E � EHB associates the set M P(E) of in-

The same idea could be used in strict functional languagestensional result facts defined by M P(E) � cons(P � E) �
such as SML or Scheme, but it is more common to find suchIHB.
programs with an explicit loop, often expressed recursively.When a goal ?-G is given, then the semantics of the pro-
Nevertheless, there is still no need to update the values of thegram P with respect to this goal is a mapping M PG from
variables involved:EHB to IHB defined as follows:

SML:∀ E ⊆ EHB MPG(E) = {H|H ∈ MP(E) ∧ 
 > H}
let fun sum i tot � if i�0 then tot else

sum (i
1) (tot�i)The semantics of Datalog is based on the choice of a specific
in sum 10 0model, the least Herbrand model, while first-order logic does
endnot prescribe a particular choice of a model.

Pure Datalog syntax corresponds to a very restricted sub- Scheme:
set of first-order logic. To enhance its expressiveness, several (define sum
extensions of pure Datalog have been proposed in the litera- (lambda (from total)
ture. The most important of these extensions are built-in (if (� 0 from)
predicates, negation, and complex objects. For instance, the total
objects handled by pure Datalog programs are tuples of rela- (sum (
 from 1) (� total from))
tions made of attribute values. Each attribute value is atomic, (sum 10 0)
so the model is both mathematically simple and easy to imple-
ment. On the other hand, more complex contemporary appli- It is often possible to write functional-style programs in an

imperative language, and vice versa. It is then a matter ofcations require the storage and manipulation of structure ob-
jects of higher complexity. Therefore, the relational model has opinion whether a particular language can be described as

functional or not. It is widely agreed that languages such asbeen extended to allow a concise representation of complex
structured objects. One of the best known extensions of Dat- Haskell and Miranda are ‘‘purely functional,’’ while SML and

Scheme are not. However, there are some small differences ofalog is LDL (logic data language) from MCC, Austin, TX (25).
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opinion about the precise technical motivation for this distinc- because of the differences in the implementation environ-
ments.tion. One definition that has been suggested says that purely

functional languages perform all their computations via func- This section provides enough detail for the reader to get a
general understanding of the Lisp programming languagetion application. This is in contrast to languages, such as

Scheme and SML, that are predominantly functional, but also and to follow basic programming examples.
allow computational effects caused by expression evaluation
that persist after the evaluation is completed. Sometimes, the The History. Lisp (from ‘‘list processing’’) is a family of lan-

guages with a long history. Early key ideas in Lisp were de-term ‘‘purely functional’’ is also used in a broader sense to
mean languages that might incorporate computational ef- veloped by John McCarthy during the Dartmouth Summer

Research Project on Artificial Intelligence in 1956. Of the ma-fects, but without altering the notion of ‘‘function’’ (as evi-
denced by the fact that the essential properties of functions jor programming languages still in use, only Fortran is older

then Lisp. Since then it has grown to be the most commonlyare preserved). Typically, the evaluation of an expression can
yield a ‘‘task,’’ which is then executed separately to cause used language for AI and expert systems programming. Mc-

Carthy’s motivation was to develop an algebraic list-pro-computational effects. The evaluation and execution phases
are separated in such a way that the evaluation phase does cessing language for AI work.

Implementation efforts for early dialects of Lisp were un-not compromise the standard properties of expressions and
functions. The input/output (I/O) mechanism of Haskell, for dertaken on the IBM 704, the IBM 7090, and the Digital

Equipment Corporation (DEC) PDP-1, PDP-6, and PDP-10.example, is of this kind.
There is also much debate in the functional programming The primary dialect of Lisp between 1960 and 1965 was Lisp

1.5. By the early 1970s there were two predominant dialectscommunity about the distinction and the relative merits of
strict and nonstrict functional programming languages. In a of Lisp, both arising from these early efforts: MacLisp and In-

terlisp.strict language, the arguments to a function are always evalu-
ated before it is invoked, while in a nonstrict language, the MacLisp (26,27), improved on the Lisp 1.5 notion of spe-

cial variables and error handling. It also introduced thearguments to a function are not evaluated until their values
are actually required. It is possible, however, to support a concept of functions that could take a variable number of

arguments, macros, arrays, nonlocal dynamic exits, fastmixture of these two approaches, as in some versions of the
functional language Hope. arithmetic, the first good Lisp compiler, and an emphasis

on execution speed.It is not possible to discuss the mathematical foundation
of functional programming without a formal notation for func- Interlisp (28) introduced many ideas into Lisp program-

ming environments and methodology. One of the Interlisption definition and application. The usual notation that is
used in applicative functional languages is so-called � ideas that influenced Common Lisp was an iteration construct

implemented by Warren Teitelman that inspired the loop(lambda) calculus. It is a simple notation and yet powerful
enough to model all of the more esoteric features of functional macro used both on the Lisp Machines and in MacLisp, and

now in Common Lisp.languages. The basic symbols in the � calculus are the vari-
able names, �, dot (.), and open and close brackets. The gen- The concept of a Lisp machine was developed in the late

1960s. In the early 1970s, Peter Deutsch and Daniel Bobroweral form for a function definition is
implemented a Lisp on the Alto, a single-user minicomputer,
using microcode to interpret a byte-code implementationλx.M
language. Shortly thereafter, Richard Greenblatt began

which denotes the function F such that for any value of x, work on a different hardware and instruction set design at
F(x) � M, and the value of F can be computed on an argument MIT. An upward-compatible extension of MacLisp called
N by substituting N into the defining equation. A valid � ex- Lisp Machine Lisp became available on the early MIT Lisp
pression, described in Backus normal form (BNF) notation, is machines. Commercial Lisp machines from Xerox, Lisp Ma-
as follows: chine Incorporated (LMI), and Symbolics were on the mar-

ket by 1981.Expression :: = Variable_name �
During the late 1970s, Lisp Machine Lisp began to expandExpression Expression �

toward a much fuller language. Sophisticated � lists, sets,l Variable_name_list .
multiple values, and structures like those in Common LispExpression �
are the results of early experimentation with programming( Expression )
styles by the Lisp Machine group.

The primary relevance of the � calculus to AI is through the Around 1980, Scott Fahlman and others at CMU began
medium of Lisp. Lisp’s creator McCarthy used � calculus as work on a Lisp to run on the Scientific Personal Integrated
the basis of Lisp’s notation for procedures. Since that time Computing Environment (SPICE) workstation. One of the
other programming languages have used the � calculus in a goals of the project was to design a simpler dialect than Lisp
more pervasive way. However, from the point of view of AI, Machine Lisp.
the most important among functional languages is definitely The Macsyma group at MIT began a project during the late
Lisp, which will be given more attention in the rest of this 1970s called the New Implementation of Lisp (NIL) for the
section. VAX. One of the stated goals of the NIL project was to fix

many of the historical, but annoying, problems with Lisp.
Common Lisp

At about the same time, a research group at Stanford Uni-
versity and Lawrence Livermore National Laboratory beganCommon Lisp originated in an attempt to focus the work of

several implementation groups, which had begun to diverge the design of a Lisp to run on the S-1 Mark IIA supercom-
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puter. S-1 Lisp, never completely functional, was the test structs from not only MacLisp but also Interlisp, other
Lisp dialects, and other programming languages.bed for adapting advanced compiler techniques to Lisp im-

plementation. • Compatibility. Unless there is a good reason to the con-
One of the most important developments in Lisp, occurring trary, Common Lisp strives to be compatible with Lisp

during the second half of the 1970s, was Scheme, designed by Machine Lisp, MacLisp, and Interlisp, roughly in that or-
Gerald J. Sussman and Guy L. Steele, Jr. The major contribu- der.
tions of Scheme were lexical scoping, lexical closures, first- • Efficiency. Common Lisp has a number of features de-
class continuations, and simplified syntax. signed to facilitate the production of high-quality com-

In April 1981, after a DARPA-sponsored meeting concern- piled code in those implementations whose developers
ing the splintered Lisp community, Symbolics, the SPICE care to invest effort in an optimizing compiler.
project, the NIL project, and the S-1 Lisp project joined to-

• Power. Common Lisp is a descendant of MacLisp, whichgether to define Common Lisp. Initially spearheaded by
has traditionally placed emphasis on providing system-White and Gabriel, the driving force behind this grassroots
building tools. Although these tools are not part of theeffort was provided by Scott Fahlman and Guy Steele (CMU),
Common Lisp core specification, they are expected to beDaniel Weinreb and David Moon (Symbolics), Richard
built on top of it.Greenblatt (LMI), Jonl White (MIT), and Richard Gabriel

• Stability. It is intended that Common Lisp will change(LLNL). Common Lisp was designed as a description of a fam-
only slowly and with due deliberation. Any extension willily of languages. The primary influences on Common Lisp
be added to Common Lisp only after careful examinationwere Lisp Machine Lisp, MacLisp, NIL, S-1 Lisp, and
and experimentation.Scheme. It was defined in the book written by Guy Steele

(who helped invent Common Lisp and Scheme) Common
Lisp BasicsLISP: The Language (1st ed., Maynard, MA: Digital Press,

1984). Its semantics were intentionally underspecified in John McCarthy, the language’s creator, describes the key
places where it was felt that a tight specification would overly ideas in Lisp as follows (29):
constrain Common Lisp research and use. The first edition of
Steel’s book was eagerly adopted by language vendors, third- • Computing with symbolic expressions rather than num-
party developers, and programmers as a de facto Lisp bers (that is, bit patterns in a computer’s memory and
standard. registers can stand for arbitrary symbols, not just those

In 1986 X3J13 was formed as a technical working group to of arithmetic)
produce a draft for an ANSI Common Lisp standard. Because • List processing, that is, representing data as linked-list
of the acceptance of Common Lisp, the goals of this group structures in the machine and as multilevel lists on pa-
differed from those of the original designers. These new goals per
included stricter standardization for portability, an object-ori-

• Control structure based on the composition of functionsented programming system, a condition system, iteration
to form more complex functionsfacilities, and a way to handle large character sets. To accom-

• Recursion as a way to describe processes and problemsmodate those goals, a new language specification was devel-
• Representation of Lisp programs internally as linkedoped. The specification of the Common Lisp Object System

lists and externally as multilevel lists, that is, in the(CLOS) alone took nearly two years and seven of the most
same form as all data are represented.talented members of X3J13.

In 1988, the Institute of Electrical and Electronic Engi- • The function EVAL, written in Lisp itself, serves as an
neers (IEEE) Scheme working group was also formed to pro- interpreter for Lisp and as a formal definition of lan-
duce an IEEE standard, and in the year 1990 the group com- guage.
pleted its work, producing relatively small and clean standard
Scheme. This, however, was only of limited commercial inter- One of the major differences between Lisp and conven-

tional programming languages (such as Fortran, Pascal, Ada,est. Common Lisp is used internationally and serves as de
facto standard. C) is that Lisp is a language for symbolic rather than numeric

processing. Although it can manipulate numbers as well, itsAs G. Steele points out in his book, Common Lisp is in-
tended to meet the following goals: strength lies in being able to manipulate symbols that repre-

sent arbitrary objects from the domain of interest. Processing
pointers to objects and altering data structures comprising• Commonality. Common Lisp serves as a common dialect
other such pointers is the essence of symbolic processing.to which each implementation makes any necessary ex-
Symbols, also called atoms because of the analogy to thetension.
smallest indivisible units, are the most important data types

• Portability. Common Lisp intentionally excludes fea- in Lisp. Their main use is as a way of describing programs
tures that cannot be implemented easily on a broad class and data for programs. A symbol is a Lisp object. It has a
of machines. name associated with it, and a number of aspects or uses.

• Consistency. The definition of Common Lisp avoids in- First, it has a value, which can be accessed or altered using
consistencies by explicitly requiring the interpreter and exactly the same forms that access or alter the value of a
compiler to impose identical semantics on correct pro- lexical variable. In fact, the methods of naming symbols are
grams as far as possible. the same as those used for naming a lexical variable. In addi-

tion to a value, a symbol can have a property list, a package,• Expressiveness. Common Lisp culls what experience has
shown to be the most useful and understandable con- a print name, and possibly a function definition associated
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with it. A property list is simply a list of indicators and values The list-appending function in Lisp is as follows:
used to store properties associated with some objects that the

(DE APPEND (L1 L2)symbol is defined by the programmer to represent. A print
(COND (( NULL L1) L2)name is usually the string of characters that constitutes the
(( ATOM L1) (CONS L1 L2)identifier. A package is a structure that establishes a map-
( TRUE (CONS (CAR L1) (APPEND (CDR L1)ping between an identifier and a symbol. It is usually a hash
L2)0000table containing symbols. A function is normally associated

with a lexical variable or a symbol. The printed representa-
The Lisp function returns a list that is the result of ap-tion of a symbol is as a sequence of alphabetic, numeric, pseu-
pending L1 to L2. It uses the Lisp function CONS to attachdoalphabetic, and special characters.
one element to the front of a list. It calls itself recursivelyOther typical data types are lists, trees, vectors, arrays,
until all of the elements of L1 have been attached. The Lispstreams, structures, etc. Out of these data structures can be
function CAR returns the first element of the list it is given,built representations for formulas, real-world objects, natu-
and the function CDR returns the list it is given minus theral-language sentences, visual scenes, medical concepts, geo-
first element. ATOM is true if its argument is a single objectgraphical concepts, and other symbolic data (even other Lisp
rather than a list.programs). It is important to note that in Lisp it is data ob-

Lisp relies on dynamic allocation of space for data storage.jects that are typed, not variables. Any variable can have any
Memory management in Lisp is completely automatic, andLisp object as its value.
the application programmer does not need to worry about as-Historically, list processing was the conceptual core of
signing storage space. To change or extend a data structureLisp, as its name suggests. Lists in Lisp are reprinted in two
in a Lisp list, for example, one need only change a pointer atbasic forms. The external, visible, form of a list is composed
a CONS cell (see Fig. 1). In Fig. 1 one can see that we can addof an opening parenthesis followed by any number of symbolic
Mary’s name to a list without otherwise changing the pro-expressions followed by a closing parenthesis. A symbolic ex-
gram. If we wanted to rearrange a Fortran array to insertpression can be a symbol or another list. Internally, a list is
Mary’s name, we would need to change everything afterrepresented as a chain of CONS cells. The CONS cell is the
Mark, which could easily turn out to be a very time-consum-original basic building block for Lisp data structures. Each
ing procedure. To make Mary’s name occur in several lists,weCONS cell is composed of a CAR (the upper half, the ‘‘data’’
would simply point to it from each list in which we wanted topart) and a CDR (the lower half, the ‘‘link’’ part). Lists are
include it. Mary and her associated property list, however,represented internally by linking CONS cells into chains by
would occur in memory only once. Also, a list could containusing the CDR of each cell to point to the CAR of the next cell.
another list within it, i.e., lists can be nested with arbitraryCONS cells can be linked together to form data structures of
depth. Elements of lists need not be adjacent in memory—itany desired size or complexity. NIL is the Lisp symbol for
is all done with pointers. This not only means that Lisp isan empty list, and it is also used to represent the Boolean

value ‘‘false.’’ very modular, it also means that it manages storage space

Figure 1. List processing in Lisp.
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very efficiently and frees the programmer to create complex troduced by CLOS are classes, methods, and generic func-
tions.and flexible programs.

Multidimensional arrays, with general as well as special- Classes determine the structure and behavior of other ob-
jects (their instances). Every Common Lisp data object be-ized elements, are also defined. An array can have any non-

negative number of dimensions and can have any Lisp object longs to some class.
Methods are chunks of code that operate on arguments sat-as a component (a general array), or it may be a specialized

array, meaning that each element must be of a given, re- isfying a particular pattern of classes. Methods are not func-
tions; they are not invoked directly on arguments, but insteadstricted type.

One-dimensional arrays are called vectors. General vectors are bundled into generic functions.
Generic functions are functions that contain, among othermay contain any Lisp object. Vectors whose elements are re-

stricted to character type are called strings. Vectors whose information, a set of methods. When invoked, a generic func-
tion executes a subset of its methods. The subset chosen forelements are restricted to bit type are called bit vectors.

Strings, like all vectors, may have fill pointers. String opera- execution depends in a specific way on the classes or identi-
ties of the arguments to which it is applied.tions generally operate only on the active portion (below the

fill pointer). Most Lisp programs are in the form of functions or collec-
tions of functions, which return values, and programming inCommon Lisp provides for a rich character set, including

ways to represent characters of various type styles. A variety Lisp is very much like functional composition. Historically,
Lisp has been classified as a functional programming lan-of string operations is provided.

The numeric data types defined in Common Lisp are inte- guage in which simple functions are defined and then com-
bined to form more complex functions. A function takes somegers, ratios, floating-point numbers, and complex numbers.

Many numeric functions will accept any kind of number (ge- number of arguments, binds those arguments to some vari-
ables, and then evaluates some forms in the context of thoseneric functions), while others will accept only specific kinds.

Hash tables provide the means for mapping any Lisp object bindings.
The evaluator is the mechanism that executes Lisp pro-to an associated object. Each hash table has a set of entries,

each of which associates a particular key with a particular grams. The evaluator accepts a form and performs the compu-
tation specified by the form. This mechanism is made avail-value. Finding the value is very fast, even if there are many

entries, because hashing is used. This is an important advan- able to the user through the function EVAL. The evaluator is
typically implemented as an interpreter that traverses thetage of hash tables over property lists.

Structures are user-defined record structures, objects that given form recursively, performing each step of the computa-
tion as it goes. An alternative approach is for the evaluatorhave named components. The user can define a new data type

and to take advantage of type checking, modularity, and con- first to completely compile the form into machine-executable
code and then invoke the resulting code. Various mixed strat-venience of user-defined record data types. Constructor, ac-

cess, and assignment constructs are automatically defined egies are also possible. However, the implementors should
document the evaluation strategy for each implementation.when the data type is defined.

A package is a data structure that establishes a mapping After the evaluation takes place, a value or values are re-
turned. The argument-passing convention is call by value—from print names (strings) to symbols. At any given time one

package is current, and the parser recognizes symbols by every argument to a function is first evaluated, and then Lisp
pointers to those values are passed to the function. Obviously,looking up character sequences in the current package.

Streams represent sources or sinks of data, typically char- the values that are passed are de facto pointers to values, so
that if the value is a complex data structure, the data struc-acters or bytes. Character streams produce or absorb charac-

ters, while binary streams produce or absorb integers. They ture is not copied, but a pointer to it is passed.
The concept of evaluation, i.e., the Lisp terminology for ex-are used to perform I/O and for internal purposes (string

parsing, for instance). Common Lisp provides a rich set of ecuting a procedure and returning the result, is important to
understanding the nature of Lisp. The values of simple ex-facilities for performing I/O. All I/O operations are performed

on streams of various kinds. A frequent use of streams is to pressions are computed, and those values are passed on to
other functions, which use them to evaluate further values.communicate with a file system to which groups of data (files)

can be written and from which files can be retrieved. An expression is either a constant, a variable, a symbol, a
combination, or a special form. A constant is a number, aPathnames represent names of files, used to interface to

the external file system. string, or a quoted object. The value of a constant is a con-
stant itself. The value of a symbol is the contents of the valueRandom states are data structures used to encapsulate the

state of a built-in random-number generator. cell of the symbol, and the value of a variable is obtained from
its associated location. The value returned by a function isConditions are objects used to affect control flow in certain

conventional ways by means of signals and handlers that in- simply a transient result that is presented back to the higher-
level function. A combination can be a function invocation, atercept those signals.

X3J13 voted in June 1988 to adopt CLOS, thereby intro- macro invocation, or a special form. Special forms look like
combinations.ducing new categories of data objects. This object-oriented ex-

tension of Lisp, now one of the most important aspects of the Conventional programming languages normally consists of
sequential statements and associated subroutines. Lisp con-ANSI X3J13 standard, has been designed to provide a porta-

ble, flexible, and extensible object-oriented programming in- sists of a group of modules, each of which specializes in per-
forming a particular task. This makes it easy for program-terface to standard Common Lisp. Many Lisp users regard

CLOS as an extremely important feature of any Common Lisp mers to subdivide their efforts into numerous modules, each
of which can be handled independently. Also, it is easily possi-implementation. The most important categories of objects in-
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ble to see in Lisp’s CONS cells the germs of the if–then rules The most natural Lisp control structure is recursion, which
often represents the most appropriate control strategy forthat are so popular in expert systems. Likewise, it is possible

to see the beginnings of frames in the property lists that are many problem-solving tasks.
Moreover, Lisp possesses the ability to treat its own codeattached to atoms (objects).

as data. Researchers have exploited this capability of Lisp
Good Environments. Today’s Lisp environment support programs to modify themselves at run time for research in

windowing, fancy editing (where the text editor can also be machine learning, natural language understanding, and other
accessed by means of Lisp functions), good debugging (includ- aspects of AI. Lisp implementation also encourages an inter-
ing text-based stepper, trace facility, inspector, and break- active style of development ideally suited to exploring solu-
loop debuggers), graphically examining data structures, and tions for difficult or poorly specified problems. This is of cru-
even automatic testing, automatic cross-referencing, and so cial importance in AI application areas where the problems
on (30). As Richard Gabriel states in his 1991 article (31), a are too hard to be solved without human intervention.
lot of modern development environment features originated Perhaps the most successful AI application in the business
from the Lisp world: world is expert-system technology. Lisp is tailored to expert-

system creation because the language is rich, with its flexible
• Incremental compilation and loading list data types and excellent support for recursion; because it

is extensible; and because it has facilities for rapid prototyp-• Symbolic debuggers
ing, which lets the implementor experiment with design and• Source-code-level single stepping
customize the expert system. Programmers can use the built-

• Help on built-in operators in list data type for easy creation of the data structures neces-
• Window-based debugging sary to represent parameters, rules, premise clauses, conclu-
• Symbolic stack backtraces sion actions, and other objects that constitute the knowledge

base. Even the expert systems that could process a wealth of• Structure editors
expertise about such esoteric disciplines as chemistry, biol-
ogy, avionics, and handle complex and rapidly changing pro-In the same article, Gabriel pointed out that Lisp provides
cess in real time have been built in Lisp. A Lisp-based expert-a means for multiparadigm programming owing to its ability
system shell G2, manufactured by Gensym of Cambridge,to coexist with other languages (C, Pascal, Fortran, etc.).
MA, has been used all around the world for building real timeThese languages can be invoked from Lisp and in general can
expert systems. Even the most complex applications, such asreinvoke Lisp. Such interfaces allow the programmer to pass
Space Shuttle fault diagnosis or launch operation support,Lisp data to foreign code, pass foreign data to Lisp code, ma-
have been Lisp-based (32).nipulate foreign data from Lisp code, manipulate Lisp data

Also, representing knowledge using frames conforms nicelyfrom foreign code, dynamically load foreign programs, and
with object-oriented programming ideas, so thinking aboutfreely mix foreign and Lisp functions. Therefore, if the user
representing frames in CLOS is only natural. Using CLOS aswants to program low-level functions in C but write the pro-
a foundation for knowledge representation provides a layer ofgram logic in Lisp, it is easily accomplished. However, it is
system support that the implementer of frame-based systemsnot necessary to go to C�� or to Smaltalk to switch to the
can use effectively (33).new object-oriented paradigm, since it is fully supported by

CLOS supports features such as classes, call hierarchies,the CLOS extension.
slots, and instances, as well as generic functions and meth-
ods. A generic function is a function that can have instancesLisp and Artificial Intelligence. Lisp is a very good choice for

an AI project programming for several reasons. Most AI proj- of different classes as an argument (called overloading). The
code that runs is dependent on the classes of the arguments;ects involve manipulation of symbolic rather than numeric

data, and Lisp provides primitives for manipulating symbols each piece of code is called a method. Since CLOS is designed
as an object-oriented programming language and not as aand collections of symbols. Lisp also provides automatic mem-

ory management facilities, eliminating the need to write and frame-based knowledge representation language, it does not
directly support every feature of frame-based systems.debug routines to allocate and reclaim data structures. Lisp

is extensible and contains a powerful macro facility that However, CLOS can be customized straightforwardly using
the metaobject protocol (33) to support most of the frame-allows layers of abstraction.

Lisp’s lists can be of any size and contain objects of any based system features, including different inheritance
schemes, multiple-valued slots, facets (ability to represent in-data types (including other lists), so that programmers can

create very complex data structures for representing abstract formation about the value in the slot), demons (functions that
run whenever a slot is accessed), etc. The basis of the metaob-concepts such as object hierarchies, natural language parse

trees, expert-system rules, etc. A collection of facts about an ject protocol is an object-oriented implementation of CLOS it-
self that makes CLOS adjustable using object-oriented pro-individual object can easily be represented in the property list

that is associated with the symbol representing the concept. gramming. CLOS classes are themselves implemented as
CLOS objects, and hence each CLOS class is an instance of aThe property list is simply a list of attribute–value pairs. The

fact that both data and procedures are represented as lists class. Each such object is called a class metaobject, to distin-
guish it from other CLOS objects. These objects have one ormakes it possible to integrate declarative and procedural

knowledge into a single data structure such as a property list. more classes, which are called class metaobject classes. Each
of these can be thought of as the class of a set of objects, eachAlthough symbols and lists are central to many AI pro-

grams, other data structures such as arrays and strings are of which describes a class. Because CLOS itself is an object-
oriented program, a class hierarchy and a set of methods arealso often necessary.
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applicable to class metaobject classes. This class hierarchy, convert to other language. Some cross-compilers will even au-
tomatically convert Lisp into C or a similar language.the names of the methods, and what the methods do provide

a framework for the behavior of CLOS and constitute the met- Lisp has strengths and weaknesses. It has had some real
successes but also some real problems that still have to beaobject protocol, which amounts to a customization protocol

for users. The metaobject protocol makes it possible to cus- solved (31). Nevertheless, it should be part of the toolkit of
any professional AI programmer, particularly of those whotomize inheritance (both for slots and methods), initialize

classes and instances, allocate new instances, and add new routinely construct very large and complex expert systems.
classes dynamically. These tasks are achieved by specializing
members of the set of generic functions defined by the met-
aobject protocol and by subclassing from the set of classes de- HYBRID LANGUAGES
fined by the protocol.

To summarize, the metaobject protocol allows its users to Various knowledge representation paradigms have cross-fer-
tilized each other. Currently popular are commercial anddevelop their own object-oriented paradigms. A lot of AI de-

velopers already use the metaobject protocol. Artificial Intelli- other products known as AI toolkits [Loops, ART (Inference
Corporation), KEE (IntelliCorp Inc.), BEST, OPS5 (Produc-gence Technologies Corporation sells a product based on

CLOS extensions called Mercury KBE. Other companies such tion Systems Technology), Nexpert Object, EXSYS, etc.]. Typ-
ically, this type of product can be considered as a semanticas Systems, which developed a frame-based knowledge repre-

sentation system called CLOS-XT, have developed in-house net with one kind of link, representing something like ‘‘sub-
class IS-A class’’ or ‘‘subclass IS-A-KIND-OF class,’’ with the con-expert systems using the metaobject protocol.

It is important to remember that Lisp can be an explor- cepts at the nodes having features of frames (see Fig. 2) and
some system for production rules or logical representation ofatory language as well as a product-producing one. Lisp is

a marvelous research language that gives a programmer the rules added on top to enable a wider variety of inferences to
be performed. The Loops (34) knowledge programming envi-ability to create and experiment without paying attention to

the data types of variables or the way memory is allocated. ronment integrates function-oriented, object-oriented, rule-
oriented, and access-oriented programming. Another richUnfortunately, this latitude incurs a penalty. Because Lisp is

an extremely high-level language, it is fairly well insulated amalgamation of multiple programming paradigms is KEE
(35), which integrates object-oriented and rule-oriented pro-from the machine it runs on and thus tends to run rather

slowly. In addition, the ability to create recursive lists of het- gramming with a database management system. ART (36)
successfully combines rules and frames (schemata) and pro-erogeneous objects dramatically increases pointer overhead.

However, the user can try new AI ideas in Lisp and then to vides the means for hypothetical and time-state reasoning.

Figure 2. Hybrid knowledge represen-
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Within the basic, knowledge-based programming paradigm, multiple reasoners in a single layer of the CAKE architecture
(40); or it can have different representations for differentBEST (37) offers a multiparadigm language for representing

complex knowledge, including incomplete and uncertain kinds of knowledge, as in KRYPTON (41) and many-sorted
logic (42–44).knowledge. Its problem-solving facilities include truth main-

tenance, inheritance over arbitrary relations, temporal and An interesting example of a language with multiple para-
digms in the object framework is Orient/84 (45), which hashypothetical reasoning, opportunistic control, automatic par-

titioning and scheduling, and both blackboard and distributed been designed to describe both knowledge systems and sys-
tems of more general application. It has the metaclass–class–problem-solving paradigms.

All the above-mentioned toolkits have been fairly success- instance hierarchy and multiple inheritance from multiple su-
perclasses. A knowledge object consists of a behavior part, aful in building a variety of applications. However, although

they are commonly used AI tools and allow many program- knowledge base part, and a monitor part.
The behavior part is a collection of procedures (or methods)ming-like constructs, strictly speaking, they probably should

not count as AI programming languages. We will discuss here that describe actions and attributes of the object in Smalltalk-
like syntax and semantics. The knowledge base part is theonly true hybrid programming languages, particularly those

that resulted from the cross-fertilization between the two pro- local knowledge base of the object, containing rules and
facts. The Prolog-like predicate logic is employed to describegramming paradigms presented here (logic programming and

functional programming) and the languages built on top of the knowledge base. The monitor part is the guardian and
demon for the object and is described in a declarativethe two most popular AI languages discussed in this entry

(Prolog and Lisp). manner.
Along the reasoning dimension, a system can have differ-A programming paradigm can be thought of as a basis for

a class of programming languages, as an underlying computa- ent reasoners for the same representations, as in KRYPTON,
KL-TWO (46), theory resolution (47) and many-sorted logic; ortional model, as a primitive set of execution facilities, or as a

powerful way of thinking about a computer system. The pur- the same reasoner for different kinds of knowledge, as in the
Patel-Schneider’s hybrid logic (48). RAL (rule-extended algo-pose of multiparadigm programming is to let us build a sys-

tem using as many paradigms as we need, each paradigm rithmic language) from Production Systems Technology (de-
veloper of OPS5 and OPS83) adds rule-based and object-ori-handling those aspects of the system for which it is best

suited. Researchers in the AI field have recently been taking ented capabilities to C programs.
The Loom knowledge representation language, developedan increased interest in multiparadigm representation and

reasoning systems. The first-generation AI systems were by Robert McGregor and John Jen at the University of South-
ern California’s Information Sciences Institute, combines ob-mostly monolithic, isolated, and standalone, which prevented

them from adequately addressing the complexity, diversity, ject-oriented programming, rules, and logic programming in a
set of tools for constructing and debugging declarative modelsand performance challenges of complex, heterogeneous, large-

scale applications. However, most real-world problems and (49). Loom uses a description classifier to enhance knowledge
representation and to extend the class of useful inference be-situations are sufficiently complex to demand more than one

reasoning technique for solution, each technique attacking yond simple inheritance (found in most frame systems). It
supports the description language (the frame component) andone characteristic of the problem domain. There is also a need

to integrate AI solution techniques with conventional tech- a rule language, and uses its classifier to bridge the gap be-
tween the two. The classifier gives Loom the additional deduc-niques. AI researchers have for most of these early years been

guilty of ignoring a significant amount of research done in tive power to provide inference capabilities not often found in
current knowledge-representation tools.traditional fields such as decision sciences and operations re-

search. Two modern paradigms—logical programming and func-
tional programming—are also an active area of research inFurthermore, just as there is no one omnipotent general

reasoning technique, there is little consensus on a general ar- multiparadigm languages and environments. Their great sim-
ilarities include applicative nature, reliance on recursion forchitecture for integrating diverse reasoning techniques, so

that should be among the main research topics within the AI program modularity, and providing execution parallelism in a
natural manner. Their differences include radically differentcommunity in the future. A special part of the Fifth Interna-

tional Symposium on AI held in Cancun, Mexico, was Marvin variable concepts, availability of higher-order program enti-
ties, and fundamental support for nondeterministic execution.Minsky’s keynote address on ‘‘The Near Future of AI,’’ which

set the tone of the conference in encouraging AI researchers A successful combination would be the notational leverage
and execution directness of functional programming withto use multiparadigm approaches to solving problems. Minsky

stressed that during the next decade, AI researchers need to search guided through constraint accumulation. Many pro-
posals have been offered on how to combine these two para-move toward a hybrid approach to handling knowledge repre-

sentation and solving problems. digms. One of the most interesting proposals has come from
the University of Utah (50,51).Though a number of multiparadigm AI systems have been

designed and studied, little effort has been devoted to com- Tablog [IBM Research, Stanford University, Weizmann In-
stitute (Israel), and SRI International] is a logic programmingparing the systems or searching for common principles un-

derlying them. A characterization of the multiparadigm AI language that combines functional and relational program-
ming into a unified framework. It incorporates advantages ofsystems along two dimensions has been suggested (38)—

systems that employ multiple representations and those two of the leading programming languages for symbolic ma-
nipulation—Prolog and Lisp—by including both relations andwith multiple reasoning paradigms. The same knowledge

can be represented in different media, as in the VIVID reason- functions and adding the power of unification and binding
mechanisms.ing systems, presented by Etherington et al. (39), and the
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RELFUN (University of Aachen, Germany) is a relational– provides the deep and soft integration of different knowledge
functional programming language with call-by-value expres- representation and processing paradigms, not only a collec-
sions for nondeterministic, nonground functions. Its clauses tion of single paradigm subsystems. Rules use frames exten-
define operations (relations and functions) permitting (apply- sively as a working memory, whereas frames can contain be-
reducible) higher-order syntax with arbitrary terms (con- havioral information in the form of rules as well as
stants, structures, and variables) as operators. The language procedures. In addition to this, forward and backward infer-
explicitly distinguishes structures (passive) and expressions ence paradigms can be used alternately during the same rea-
(active). All structures and expressions, not only lists and soning cycle. This conceptual integration of the different para-
tuples, can have varying arities. Mercury is another new digms lets the user bypass the major gaps in pure rule-based
logic–functional programming language, which combines the representation languages—their inadequate description of
clarity and expressiveness of declarative programming with entities and the static relationships among them. KORE’s sub-
advanced static analysis and error detection features. ALF is system KORE/IE (59) fails to provide any kind of frame lan-
yet another logic–functional language, and there are a lot guage, uncertainty management, hypothetical time-state rea-
more of them in development. LIFE (logic, inheritance, func- soning, or even backward-chaining reasoning.
tions, and equations) is an experimental programming lan- In the FROG system (60), which is similar to Prolog/Rex, a
guage that integrates three orthogonal programming para- hybrid knowledge representation formalism and a modest
digms: logic programming, functional programming, and amount of control flexibility (in the frame system only) are
object-oriented programming. provided. The different representation paradigms (frames,

The programming language Nial (52) supports several rules, procedures) are not fully integrated (rules and proce-
styles of programming including imperative, procedural, ap- dures can be called from the frames only). While FROG’s frame
plicative, and �-free. Nial tools can be built to illustrate rela- system implements only standard inheritance relations,
tional and object-oriented styles of programming. Prolog/Rex offers the facility to create any kind of relations

among domain entities. All FROG’s flexibility is due to its Pro-
Prolog-Based Hybrid Languages log-based design. In particular, different control strategies

can be obtained by simply combining the basic components ofAlthough the logic programming language Prolog, with its co-
the knowledge base (expressed as Prolog predicates) in thoseherent declarative and procedural semantics, seems to be a
Prolog clauses that constitute a high-level description.very good candidate for AI applications (23,53), predicate cal-

Among the five main knowledge representation approachesculus has been widely criticized for its lack of certain facilities
(semantic networks, O–A–V triplets, rules, frames, predicatethat are important in knowledge representation and pro-
calculus), Prolog/Rex attempts to combine the last three ap-cessing, such as:
proaches, through the common basis of Prolog. A great deal
of success has been achieved by integrating frames (Prolog/• the expressive power needed to represent complex knowl-
Rex concepts) and production rules to form hybrid representa-edge
tion facilities that combine the advantages of both component• the facility to modularize a knowledge base effectively
representation techniques, as the major inadequacies of pro-

• the facility to construct a hierarchy of concepts duction rules are in areas that are effectively handled by
• the facility to control inheritance of properties through a frames and vice versa (61). Moreover, since Prolog/Rex allows

concept hierarchy the user to define arbitrary relations among concepts (not
• the facility to pursue alternative pathways to a goal (hy- only standard inheritance relations) so that they can be con-

pothetical reasoning) nected into the semantic network, while the concept confined
to one slot represents nothing but an O–A–V triplet, we can• a time-state reasoning facility
also claim the incorporation of the former two paradigms.• the facility to deal with incomplete knowledge
This multiple representation language helps its user to ad-• the facility to customize the inference control strategy
dress a range of required applications, since no single formal-

• the possibility to express the external control ism is sufficient for effectively representing the diversity of
knowledge required in real-life applications. This also helps

Over the past fifteen years, great efforts have been invested with the efficiency goal, since an application can be con-
in the study of techniques in overcoming the mentioned repre-

structed using an appropriate combination of representations,
sentational (54) and inferential (55–57) inadequacies and

and it does not have to be distorted to fit a single representa-drawbacks of standard Prolog as a tool for knowledge-based
tion approach.system development. Prolog/Rex (58) integrates these efforts

and experience into a single uniform and flexible hybrid envi-
Lisp-Based Hybrid Languagesronment for knowledge-based system development, which fur-

ther provides the user with hypothetical and time-state rea-
KRL (62) is a hybrid language, built on top of Interlisp, that

soning, truth maintenance, and uncertainty management
facilitates the representation of knowledge in frame struc-facilities. Prolog/Rex aims at realizing both hybrid knowledge
tures (slot-and-filler structures). Its design was motivated byrepresentation and hybrid control of knowledge, whereas
the following assumptions about knowledge representation (p.other similar systems realize either hybrid knowledge repre-
5 of Ref. 62):sentation or hybrid control mechanisms. In KORE (54), for in-

stance, different knowledge control paradigms are distributed
• Knowledge should be organized around conceptual enti-to subsystems, each of which provides a unique paradigm for

controlling knowledge. Prolog/Rex (58), on the other hand, ties with associated description and procedures.
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• A description must be able to represent partial knowl- One of the main difficulties that arose with PLANNER is its
rigid backtracking strategy, which was automatic, ratheredge about an entity and accommodate multiple descrip-
than being under the control of the programmer. In reactiontors that can describe the associated entity from different
to this rigidity, a new language, CONNIVER, was developedviewpoints.
(66). It retained many of the ideas of PLANNER, but at a lower• An important method of description is comparison with a
level, so that fewer of the mechanisms were imposed on theknown entity, with further specification of the described
user. However, the user could explicitly direct the control flowinstance with respect to the prototype.
of a CONNIVER program.

• Reasoning is dominated by a process of recognition in
which new objects and events are compared with stored
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