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COGNITIVE SYSTEMS at the beginning of this section can be naturally formulated
by �x (human(x) � mortal(x)), human(Socrates), and mortal

Reasoning is the process of deducing (or deriving) conclusions (Socrates). Predicate and function constants can have any
from given information. This is a fairly general description, specified arity: in our example, mortal and human are unary
and we will try in this article to give the reader some more predicates, and Socrates is a nullary function symbol, that is,
concrete ideas about what particular reasoning systems look with no argument. Note that this example cannot be properly
like. reflected in propositional logic, because there we do not have

We will first describe classical reasoning systems, the most variables for individuals (like Socrates). Rather we have vari-
famous of which are propositional and first-order predicate ables representing true or false. Let human stand for humans,
logic. These systems form the basis for many others, such as socrates for Socrates, and mortal for mortals. We can repre-
temporal, modal, deontic, and intuitionistic logic. We will sent our example as human � mortal, socrates � human,
then point out weaknesses of this classical approach, namely and socrates. Then we can derive human and mortal. But the
the failure to handle commonsense knowledge adequately. We propositional statement human � mortal is quite different
claim that one of the main reasons for this failure is the from the predicate logic formula �x (human(x) � mortal(x)).
monotonicity of classical logic, which is built in: the presump- The former can be seen as an instance of the latter, corre-
tion that a conclusion, once proven true, is true forever. Con- sponding to one arbitrary but fixed value of x. Note that to
sequently we describe nonmonotonic formalisms to overcome express the predicate logic formula, we need infinitely many
these difficulties. Although the main ideas for such reasoning propositional formulae, one for each choice of x. This may be
systems were introduced in the 1980s, their investigation still illustrated with the following two formulae:
is a central field of research with close connections to AI lan-
guages, deductive databases, expert systems, theorem prov-
ing, and knowledge representation.

∃x∀y (person(x) ∧ person(y)) → loves(x, y)

∀x∃y (person(x) ∧ person(y)) → loves(x, y)

INTRODUCTION
where the ordering of the quantifiers is crucial. If we want to
express the first formula in propositional logic, then we haveThe first serious attempt to understand the general rules of
to introduce a constant, say c, for x, but the resulting formulalogic dates back to Aristotle (about 330 B.C.). His famous work
still represents infinitely many propositional formulae,Organon can be seen as the first systematic treatise of logic.
namely all possible instances. Expressing the second formulaThe classical example of a valid deduction is to derive from
is even more difficult: we cannot just introduce one new con-‘‘All humans are mortal’’ and ‘‘Socrates is a human’’ the con-
stant for y, because every y depends on the x.clusion ‘‘Socrates is mortal.’’ Almost 2000 years passed before

Semantics as well as calculi for propositional logic areG. W. Leibniz renewed the idea of creating a complete system
much simpler than those for predicate logic. Semantics wasof logic in 1670. Then G. Boole introduced his own ideas (Bool-
developed independently by E. Post and L. Wittgenstein, us-ean calculus) in the middle of the nineteenth century. Finally
ing truth tables. Suppose a statement like a ∨ (c � ¬d) ∨ ¬aG. Frege, in his famous Begriffsschrift (1879), suceeded in de-
is given. The variables a, c, d can take arbitrary truth valuesfining a system that led to first-order predicate logic and con-
(true or false). But an inspection shows that every choice oftained a complete form of Boole’s system called propositional
truth values will make the whole statement true (using thelogic. Both systems (synonymous with logic for a long time)
well-known rules of the form ¬a is true if and only if (iff) a iswere investigated extensively in the first part of the twentieth
false, a ∧ b is true iff both a, b are true, a ∨ b is true iff atcentury. Three main problems arose.
least one of a, b is true, a � b is true iff b is true or both a
and b are true). Therefore a ∨ (c � ¬d) ∨ ¬a is called a tautol-1. Syntax. To define a precise formal language in which
ogy: its truth value is always true and does not depend on thestatements can be presented
truth values of its constituents. The semantics for first-order2. Semantics. To relate these syntactic expressions to the
predicate logic are much more complex and was specified inreal world, that is, to define their truth or falsity
the 1930s by A. Tarski (see the next section for more details).3. Computability. To determine a formal calculus that

Once problems 1 and 2 above were settled, many differentallows us not only to derive valid statements, but also
complete calculi were developed. They all define what itall such true conclusions: we want a complete system.
means that a statement � can be derived from a set of state-
ments �: namely, that one can find a derivation of � from �Concerning syntax, various different systems have been
using the specified inference rules of the calculus. We writedeveloped and are currently in use. In fact, every intelligent
� � �.system must represent knowledge and data in one way or an-

Why can’t we be satisfied with classical logic? After all, itother (see AI LANGUAGES AND PROCESSING, EXPERT SYSTEMS,
has been developed over 2000 years and fits mathematics andKNOWLEDGE MANAGEMENT). We can roughly distinguish be-
science perfectly. The reason is that classical logic is oftentween propositional and first-order predicate logic. While
much too weak (it does not allow us to derive what we want),statements from propositional logic are built from Boolean
but at the same time it is sometimes too strong in that itvariables a, b, c, . . . (these variables can become either true
allows us to derive everything. Therefore classical logic is notor false) using the connectives ¬ (negation), ∨ (disjunction), ∧
adequate to formalize commonsense knowledge and to handle(conjunction) and � (implication), first-order predicate logic
inconsistencies. We will illustrate these two points in the nextalso allows predicate and function constants as well as the

quantifiers � and � to quantify over individuals. Our example two subsections.
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Classical Logic Is Too Weak �, this statement remains true even if new statements � are
added to �:What are the problems of classical logic in formalizing com-

mon sense? Let us consider a very simple everyday task: read-
� � ϕ implies (� ∪ �) � ϕing a timetable for trains or buses. Such a timetable can be

seen as a set of facts, which can be encoded very easily into
This property is a conditio sine qua non for mathematicsclassical logic. If there is information
and sciences: adding new information should only increase
the set of derivable knowledge, never decrease it. Once a
theorem is true, it should remain true forever, simply be-
cause its original derivation is not affected by new axioms.
It turns out that this is exactly the property that makes

Train f rom to at(2nd street, 4th avenue, 8am)

Train f rom to at(2nd street, 4th avenue, 9am)

Train f rom to at(2nd street, 4th avenue, 10am)

Train f rom to at(2nd street, 4th avenue, 11am) classical logic often too weak and sometimes too strong (see
the last section).humans will conclude also that there are no trains between

Let us consider our example concerning flying birds. If a8 A.M. and 9 A.M., and none between 9 A.M. and 10 A.M. But
logic is strong enough to derive flies(Tweety) from bird(x) ∧such conclusions cannot be derived using classical logic.
¬ostrich(x) ∧ ¬sick(x) � flies(x) and bird(Tweety) (whichAnother example is the formalization of rules of thumb,
would be nice from the commonsense character of this rule),that is, rules that allow for exceptions.
what will happen if we learn later that Tweety in fact is an
ostrich or is sick? Comparing with the monotonicity property,Example 1 (Flying Birds)
� consists of bird(Tweety) and bird(x) ∧ ¬ostrich(x) ∧The most famous example is ‘‘A bird usually flies, unless he
¬sick(x) � flies(x), while � � �ostrich(Tweety)� and � is fliesis an ostrich or sick.’’ We can formulate this as
(Tweety). Obviously we want to revise our previous conclu-
sion: knowing that Tweety is an ostrich should prevent usbird(x) ∧ ¬ostrich(x) ∧ ¬sick(x) → f lies(x)

from deriving that Tweety flies. But this means that the
Suppose we know that Tweety is a bird: bird(Tweety). Every- monotonicity property cannot hold.
day reasoning will allow us to derive that Tweety flies, but So the main idea is to give up monotonicity in order to
logic will not. In classical logic, you can only apply the rule if build reasoning systems that allow us to derive more formu-
you establish that Tweety is not an ostrich and is not sick. lae in the light of new information. If we learn more about
But this information is not available, nor can it be classi- the particular situation at hand, we may have to withdraw
cally derived. our previous conclusions: nothing lasts for eternity.

Classical Logic Is Too Strong
Propositional Logic

The reason why logic can be too strong is the ex falso quodlibet
The language of propositional logic contains propositionalprinciple: From inconsistent data, we can derive everything.
variables, usually denoted by p, q, r, v, . . .. These can beBertrand Russell illustrated this principle by deriving from

the (inconsistent) statement 6 � 7 that he is the Pope. It goes seen as placeholders for the truth values true and false. We
as follows: Russell and the Pope are certainly at most two also have the connectives mentioned above: ¬ (negation), ∨
different persons. But if 6 � 7 we can subtract 5 from both (disjunction), ∧ (conjunction) and � (implication). ¬ is unary,
sides and get 1 � 2, so that Russell must be identical to the while all the others are binary. One also allows the parenthe-
Pope. Although this is often treated as a joke, it clearly re- ses ‘‘(’’ and ‘‘)’’ for better readability. It is now easy to define
flects the behavior of classical logic: inconsistency implies ev- by recursion the notion of a formula of propositional logic: we
erything. The formal proof of this property is not very differ- simply declare (1) the propositional variables to be formulae,
ent from Russell’s argument. and (2) if �, � are formulae, then so are (¬�), (� ∨ �), (� ∧ �),

The ex falso quodlibet principle is quite strong and for ev- and (� � �).
eryday life is not well suited. For example it seems totally Note that up to now, we have talked only of formal expres-
ridiculous, from one local inconsistency in a large database sions. What we really want is to give these connectives a
(say there are two entries, one saying that Mr. X paid his bill meaning: we want the formal symbol ¬ to correspond to nega-
and the other that he did not), to be able to derive any state- tion, ∧ to correspond to conjunction, and so on. So the ques-
ment at all, such as ‘‘Mr. Webster does not exist’’ or ‘‘Mickey tion is: How should we define the truth of a formula? Obvi-
Mouse is president of the USA.’’ ously, the truth of a complicated formula depends in general

In conclusion, classical logic does not handle either incom- on the truth of its components. We consider the formula (p ∨
plete or contradictory information well, though those are com- q) � q. Intuitively, we would say that this is not true—at
monly occurring situations in everyday life. This is so because least, it is not true under all circumstances. Namely, if p is
classical logic was deisgned to deal with perfect, well-defined true and q is not, the implication (p ∨ q) � q is considered
mathematical objects. not to hold (true should not imply false). Defining the truth of

a compound formula can be done recursively. Suppose we
have a valuation v of all propositional variables, that is, aCLASSICAL LOGICS
mapping that associates to every variable a truth value (true
or false). We want to extend this valuation to a mapping vAs we will see in this section, classical logics are monotone:

once we have derived a statement � from a set of statements that associates a truth value to every compound formula. In
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addition, we want this valuation v to satisfy the following con- Basics of Classical Logic
ditions:

Let us collect some basic facts, which are easy to prove and
hold not only for the propositional logic just introduced, but
for all classical reasoning systems. You can see these facts as
introducing the most basic terminology in classical logic. We
will need and use these notions in the rest of this article.

The main notion in any logic is the semantic consequence
relation X:

• � X � if, by definition, all models of � are also models
of �, that is, every model that makes all formulae of �
true also makes � true.

Facts and Definitions 1 (Semantics: X)

v(¬p) =
{

true if v(p) = false

false if v(p) = true

v(ϕ ∧ γ ) =
{

true if v(ϕ) = true and v(γ ) = true

false otherwise

v(ϕ ∨ γ ) =
{

true if v(ϕ) = true or v(γ ) = true

false otherwise

v(ϕ → γ ) =
{

false if v(ϕ) = true and v(γ ) = false

true otherwise
Given a set of formulae �, which is also called a theory, we
denote bySuch a valuation v is also called a model (a model not only of

its atomic constituents, the propositional variables, but also
1. MOD(�) the set of all models of �: MOD(�) :� �v : vof all sentences that are true in it) and can be shown to be

makes all formulae from � true�.uniquely determined by v. Coming back to our example above,
2. Cn(�) the set of all consequences of �: Cn(�) :� �� : �the model that is uniquely determined by assigning p to be

is true in all models of ��. Note that Cn(�) is infinite,true and q to be false (we denote it simply by �p�) is not a
even if � is finite: �p, p ∧ p, p ∧ p ∧ p, . . .� � Cn(�p�).model of (p ∨ q) � q.

Now there are formulae that are true in all models, that
We also use v X � to express that in the model v, the formulais, their truth value does not depend on a particular valua-
� is true (or holds).tion. For example p ∨ ¬p, p � p or (p ∧ q) � (q ∧ p) are such

How can we determine if a formula � is not a consequenceformulae: they are called tautologies.
of �? We have to find a counterexample:But what we really want is to define what it means to say

that a formula follows from given ones. And, having defined
� � ϕ iff there exists a model of � ∪ {¬ϕ}that, we would like to have an algorithm that allows us to

derive, by syntactical means, formulae from others.
We have already mentioned the consistency of a set of formu-What could such a formal calculus look like? We define the
lae. More precisely, we call a theory consistent if there is afollowing inference rule, known as modus ponens:
model that makes all statements of this theory true. The fol-
lowing is easy to establish but very fundamental:

(MP)
ϕ, ϕ → ψ

ψ � is consistent iff Cn(�) �= Fml

This rule allows us to derive a new formula, namely �, from where Fml denotes the set consisting of all formulae. This set
given ones, namely � and � � �. But we also need some for- is certainly inconsistent: with every formula �, its negation is
mulae to begin with, that is, tautologies. We accept the follow- also contained in Fml. This last statement is exactly the ex
ing three formulae as axioms constituting a set Ax: falso quodlibet from the last section.

Now that we have defined the consequences of a set of for-
mulae �, how can we compute them? We have already men-
tioned the method of truth tables, which is a brute force

A1: p → (q → p)

A2: (p → (q → r)) → ((p → q) → (p → r))

A3: (¬p → ¬q) → (q → p) method: determine for every valuation of the propositional
variables the valuation of the whole set of formulae. If for all

In this calculus, ∨ and ∧ are not primitive symbols; they are models of � (i.e., those valuations that make all formulae in
defined by p ∨ q :� ¬p � q and p ∧ q :� ¬(p � ¬q). This � true) we get true as the value of the formula �, then � fol-
means that all occurrences of ‘‘∨’’ and ‘‘∧’’ are just abbrevia- lows from �. If we find one model of � in which the � is false,
tions. As a simple example, we try to derive p � p. The then � does not follow from �. This method is a semantic one,
axioms A1 to A3 are schemata, that is, p, q, r can be instanti- in that we just evaluate all possibilities. If the set � is empty,
ated by arbitrary compound formulae: they are nothing but we call the consequences tautologies, that is, tautologies are
placeholders. MP applied to A1 and A2 (where p is substituted true in all models. Such a method is severely restricted to
for r) gives �4: (p � q) � (p � p). We can now substitute p propositional logic, because we have for any formula only fi-
� p for q and obtain nitely many different models: any particular formula contains

only finitely many variables, so there are only finitely many
models.ϕ ′

4: (p → (p → p)) → (p → p)

The general notion of a calculus (which is also well suited
for nonpropositional logics) is the fundamental counterpart ofMP can now be applied to ��4 and A�1 (where p is substituted

for q) and results in p � p. the notion of a semantics.
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Facts and Definitions 2 (Derivability: �) Definition 1 (Terms)
A variable is a term. If f is an n-ary function symbol and t1,Suppose we are given a set of inference rules, which allow us

to derive from a given finite set �1, �2, . . ., �n of formulae t2, . . ., tn are terms, then f (t1, t2, . . ., tn) is also a term. In
our running example, x, s(x), s(s(x)), 0, s(0), s(x 	 0), s((x 
another formula �:
x) 	 s(0)), and so on, are terms. Of particular importance are
ground terms: terms where no variables appear. These are inϕ1, ϕ2, . . ., ϕn

ψ our example just 0, s(0), s(s(0)), 0 	 0, s(s(0 	 s(0)) 

s(s(0))), and so on.

Modus ponens (MP) is such a rule with two assumptions. Sup-
pose also that we are given a set of axioms Ax, that is, a cer-

Once we have defined terms, we can define formulae. As intain set of formulae.
propositional logic, we use the connectives ¬, ∧, ∨, �, and, as
new objects that will use the terms just defined, the quantifi-1. Both sets specify together a calculus C a �.
ers � (‘‘for every’’) and � (‘‘there exists’’). A predicate logic

2. Now, given a set of formulae �, we can define what it formula is defined recursively as follows. If P is an n-ary pred-
means to derive formulae from � using the inference icate symbol and t1, t2, . . ., tn are terms, then P(t1, t2, . . .,
rules. Namely, we start with � (these are our assump- tn) is a formula (called atomic). If �, � are formulae, then so
tions), and we try to apply our inference rules to derive are (¬�), (� ∨ �), (� ∧ �), and (� � �). Finally, if x is a variable
a new formula. Such a new formula can then also be and � a formula, then so are (�x �) and (�x �). x is called a
used, because it is contained in our new set of assump- bound or nonfree variable.
tions. Formally, this has to be done recursively using This means we can now build formulae of the form �x�y
the notion of a proof. A proof of a formula � from a set s(x) �� y, ¬�xs(x) � 0, or even
� in a certain calculus C a � is a finite sequence of for-
mulae �1, �2, . . ., �n � � where every �i is contained ¬(∃x∃y∃z (0 � x ∧ 0 � y ∧ x3 + y3 = z3))
in �, or is an axiom, or is obtained by an inference rule
of C a � applied to some formulae �j with j  i: the �j

which already represents a quite interesting property (themust be derived before �i.
last sentence, F3, is the simplest instance of Fermat’s theo-

3. We write � � � if � can be derived from � with respect rem, which has been proved in its full generality only re-
to the calculus under consideration, that is, if there is a cently). But we are faced with the same problem as in propo-
proof of � from �. sitional logic: How to define the truth of such formulae? In

propositional logic, the truth of a formula was determined by
The MP rule and the set Ax introduced in the last section going back to its lowest constituents, namely the proposi-
constitute a complete calculus for propositional logic. This tional variables. In any model, these variables got a truth
means that whenever a formula follows semantically (� X � value. But what is a first-order model? Note that we have to
as defined above), it is also derivable in the calculus: � � �. find a counterpart for the terms.
And vice versa: all derivable formulae follow semantically. When we look at our example, a nice universe for inter-
These properties are among the most interesting for any logic preting the formulae is the set of natural numbers, �. So
and appropriate calculus: let us take � as our universe, and the well-known func-

tions 	�, 
� defined on natural numbers. Let us also de-
Soundness. A calculus is sound if all derivable formulae note by 0� the zero in �, and let s� be the successor func-

are semantically valid: � � � implies � X �. tion, which associates to any numeral n its successor n 	
Completeness. A calculus is complete if all semantically 1. Finally, � stands for equality and �� for the usual less-

valid formulae are derivable: � X � implies � � �. than relation. Note that we have interpreted our formal
symbols as concrete objects in the set �. This enables us

First-Order Predicate Logic to define the truth of a sentence � in (�, 	�, 
�, �� �, 0�,
s�): we say that � is a model of �, writtenPropositional logic is completely contained in predicate logic.

The difference is that now we have variables ranging over
arbitrary individuals. In addition, we have function symbols (N, +N,×N,�N, 0N, sN) � ϕ

available.
The language of first-order predicate logic consists of a set if interpreting the quantifiers over the set � leads to a true

number-theoretic statement. The sentence �x�y s(x) �� y in-var of individual variables x, y, z, x1, x2, . . ., a set Pred of
predicate symbols, and a set Funct of function symbols. Let terpreted in � says: for all numbers n there is a number m

such that the successor of n is strictly less than m. This state-us try to illustrate predicate logic with a running example,
the natural numbers �. Variables will range over natural ment clearly does hold. But note that we can also interpret

our symbols 	, 
, �� , . . . totally different on the set �. Un-numbers. We use a nullary function symbol ‘‘0’’ and a unary
function symbol ‘‘s( � )’’ (meaning successor). Also we use two der such an interpretation, statements that were true before

do not need to hold anymore.binary functions, ‘‘	’’ and ‘‘
’’. Finally, we use two binary
predicates, ‘‘�’’ and ‘‘�� ’’. As in every logic, the most interest- The general notion of � X � in predicate logic is as defined

before: any model of � is also a model of �. So it remains toing notion is that of a formula. But in contrast to proposi-
tional logic, we have here also the notion of a term, defined define what a general model for a first-order language is: it is

exactly as described in our example above.recursively as follows.
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Definition 2 (First-Order Model) if a sentence � follows, just check both enumerations; � must
be contained in one or the other.A first-order model consists of all of a set U, called the uni-

We are faced here with a classical dilemma. While predi-verse, which is used to interpret the quantifiers and the vari-
cate logic has greater expressiveness than propositional logic,ables. They range over all elements of the universe. It also
it is far more complex (only semidecidable). It can be shownconsists of interpretations of all function and predicate sym-
(this dates back to the Principia Mathematica of Whiteheadbols. The interpretation of a function symbol is a function
and Russell) that the whole of mathematics can be formulatedover the universe. The interpretation of a predicate symbol is
as a first-order theory using appropriate axioms. Thereforea relation over the universe.
first-order predicate logic can be seen as a universal language
for mathematics.Once all the symbols in the language are interpreted (i.e.,

We end this section with the remark that second-ordertheir meaning is fixed), any sentence (statement without free
logic (as well as higher-order logics in general) is not evenvariables) can be translated into a mathematical statement
semidecidable: there is no algorithm that enumerates all true

over the universe. What happens if we interpret our sentence
formulae. Therefore, not even a correct calculus exists. The

F3 in the set of real numbers, �? The variables are now inter- reason for this phenomenon is that higher-order logic is very
preted over real numbers, and F3 is a statement about real expressive: it can describe the arithmetic of the natural num-
numbers. Obviously, � X ¬F3. bers (which is a highly undecidable theory) up to isomor-

Again, as explained in the last section, the valid sentences phism. Any correct calculus for such a logic would lead imme-
of predicate logic are those that are true in all models. As is diately to a decision algorithm for the natural numbers,
the case for propositional logic, there exist various calculi for which is impossible, as shown by Gödel.
computing such valid formulae: Gentzen, Hilbert-type, con-
nection, tableau, and resolution calculi. In particular the lat-
ter type of calculi is well suited for automated reasoning (see NONMONOTONIC FORMALISMS
THEOREM PROVING).

Why is the logical system just described first-order logic? We have already mentioned in the introduction two famous
The reason is that we can express statements �x where x examples where classical logic is much too weak to draw rea-
ranges over the universe of a model: x is a placeholder for any sonable conclusions: interpreting a train table and handling
particular element of the universe. x does not stand for an partial information. Of course, the train table can also be seen
arbitrary subset of the universe. If we allowed this, we would as an instance of the latter.
say such a quantifier was of second-order. Likewise, third- In fact, there exist two reasoning paradigms in classical
order quantifiers would allow us to quantify over sets of sets logic opposed to classical deduction: induction and abduction.
of elements. The next section will explain that for such Induction can be seen as abstracting from several particular
higher-order logics, no correct (i.e., sound and complete) cal- examples to a general case, that is, inferring general rules
culi can exist. from specific data. Having observed that the sun has risen

every day up to now, we conclude with some certainty that
the sun will rise every day in the future as well. Or, moreFeasibility and Decidability
abstractly, if we know that �(0) holds and we also know that

Let us consider the complexity of classical logic. The problem �(n) implies �(n 	 1), then induction allows us to safely con-
of deciding whether � X � holds or not (for arbitrary � and clude �(x) for all natural numbers x. Induction is an impor-
�) is known as the decision problem: is there an algorithm tant principle underlying machine learning (see MACHINE

that takes arbitrary � and � as input and outputs ‘‘yes’’ if � LEARNING).
follows from � and ‘‘no’’ otherwise? The principle of abduction can be seen as a converse of

For propositional logic we have already mentioned the modus ponens, namely,
method of truth tables, which is such an algorithm. It is one
of the most famous problems in mathematics to show that
there can be no better method than just completely enumerat-

(Abduction)
ϕ → ψ,ψ

ϕ

ing all possibilities and checking each. This is known as the
P � NP statement. If it holds, the decision problem is expo- This rule allows us to derive � as a reason or a cause of the
nential and not polynomial. observation �, if we know that � � � holds. Abduction is

For predicate logic, Alan M. Turing showed in 1936 that therefore reasoning from effects to causes or explanations.
the decision problem is only semidecidable. There are algo- Induction was already considered by Socrates, but more
rithms that produce all consequences of a given set �, but if deeply investigated in the seventeenth century by Francis
we want to check if a particular sentence � follows or not, all Bacon (Novum Organon). Abduction was introduced and ana-
we can do is wait. Two possibilities can occur. If the sentence lyzed by Charles Sanders Peirce in 1878.
follows, then we will eventually get it. But if it does not fol- It is quite interesting that classical logic has often been
low, we will never know, because the algorithm does not stop. overestimated for its deductive power. For example Conan
So we can enumerate all valid sentences of predicate logic, but Doyle’s Sherlock Holmes, Agatha Christie’s Hercule Poirot,
we cannot decide this set. Note the difference from proposi- and Edgar Allan Poe’s Auguste Dupin are famous examples
tional logic, where not only Cn(�), but also the set of classical-logic-based agents, solving almost all of their
Fml�Cn(�), can be enumerated (using, e.g., truth tables). cases by subtle applications of pure logic. But what they are

really using (without explicitly knowing it) is highly nonmono-Therefore a decision method is simple: in order to determine
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tonic reasoning: they often have to assume a lot of circum- maintenance systems and negation as failure in logic program-
ming and deductive databases. The problem of defining ap-stances, without which they cannot derive anything serious.

Such unstated assumptions are often assumed by default: propriate logics is closely related to the overall way of ex-
pressing partial information. Two main streams have beenthey are supposed to hold, even if not stated explicitly.

In the real world, in almost all cases we have only partial followed:
information about any given situation, and it helps to make
assumptions about how things normally are in order to carry • We allow for a new kind of inference rules, rather than
out further reasoning. For example, if we learn that someone formulae, in our basic language.
is a doctor, we usually assume by default that he or she is

• We try to stick to first-order language and introduce spe-
over 25 years old, makes a good salary, etc. Without such pre- cial predicates for handling partial knowledge.
sumptions, it would be almost impossible to carry out the sim-
plest commonsense reasoning tasks. Of course, defaults are

We will describe in the next two sections the two most famouspresumptive precisely because they could be wrong, and if we
nonmonotonic logics: default logic (DL), which follows the firstlearn that she (to be specific) is a precocious overachiever, we
idea and circumscription (CIRC), which follows the second.may have to withdraw the assumption that the doctor is over
Both are based on classical logic, but have greater deductive25 years old.
power.One of the first and simplest nonmonotonic reasoning sys-

Before describing particular reasoning systems, let us talktems was the closed-world assumption (CWA). It intuitively
one more time about defaults in general and distinguish be-means that any information not mentioned in a database is
tween two different ways to block them. We refer to our run-taken to be false. More precisely, if an instance P(t) of a predi-
ning Example 1, ‘‘birds usually fly’’ (unless there is reason tocate P is not contained in the database DB, its negation is
question this piece of information), or to ‘‘doctors usually haveassumed to hold. The CWA is therefore very near to classical
a high salary.’’ Such defaults are normally true but can belogic:
blocked. For example, if we know of a particular bird, Fred,
that it does not fly, our default should not be applied. In theDefinition 3 (Closed-World Assumption)
same way, we may have access to our doctor’s salary records
and discover that he earns a low salary. Then the presump-CWA(DB) = DB ∪ {¬P(t) : DB � P(t)}
tion of a high salary is contradicted and defeated. These are
called Type I defeaters: explicit facts that contradict the con-where P(t) is a ground predicate instance.
clusion will nullify the justification.

A Type II defeater, on the other hand, is more subtle. ItP can also have three arguments, like
undermines the justification for a default (which will be intro-
duced below) without contradicting its conclusion; the conclu-Train f rom to at(2nd street, 4th avenue,X am)
sion may still hold, but we cannot use the default to justify it.
For example, discovering that the doctor works in a rural areawhere X � 8, X � 9, and X � 10 are not derivable and there-
does not contradict the presumption that the doctor earns afore the CWA forces us to include their negations
high salary, but it does undermine the justification for the¬Train_from_to_at(2nd_street, 4th_avenue, X am). From this
default. In our birds example, we may know that the bird atenlarged theory, we can derive what we want.
hand is sick. Again it is still possible that it can fly, but theReasoning with defaults is inherently nonmonotonic be-
justification is undermined and therefore the default shouldcause learning more information may force us to retract a
be blocked.conclusion previously drawn. For example, in our train table

example, it might happen that we learn of additional trains
Default Logicduring the rush hour. Thus we have to revise our previous

conclusion, that trains start only on the hour. Defaults there- The basic idea behind default logic is to have a pool of default
fore represent uncertain knowledge. rules available and to add to a theory as many conclusions of

The main disadvantage of the CWA is that it is often too applicable defaults as consistently possible. Such a default
strong because it is inconsistent (recall that we had the same rule is treated as an inference rule and has the form
problem with classical logic). Suppose our database contains
the disjunction Train(2nd, 4th, 8am) ∨ Train(2nd, 4th, 9am)
and some other facts. This might occur if the printing is not (Default rule)

α : β

γ
well done and we cannot establish if there is a 8 or a 9 in the
schedule. Then neither Train(2nd, 4th, 8am) nor Train(2nd,

Its interpretation is, intuitively, ‘‘if � holds, and it is consis-4th, 9am) can be derived, and therefore both ¬Train(2nd, 4th,
tent to assume �, then derive �.’’ The prerequisite �, the justi-8am) and ¬Train(2nd, 4th, 9am) have to be included, which
fication �, and the conclusion � are first-order formulae.results in an inconsistent theory.

Whereas default rules are intended to express partial in-The attempt to formalize nonmonotonic reasoning so that
formation, ordinary first-order formulae are used to statecomputer programs could use it as part of their reasoning rep-
classical knowledge. In our bird example, we can have birdertoire was begun by John McCarthy in the 1970s, and the
(Tweety) as classical knowledge andearly 1980s saw the development of the major nonmonotonic

families: circumscription, default logic, and modal nonmono-
tonic logics. At the same time, proof methods that were clearly
nonmonotonic were also being developed: the so-called truth

bird(x) : f lies(x)

f lies(x)
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as a default, expressing ‘‘birds usually fly.’’ The problem
comes when we learn later that Tweety in fact does not fly: we
have to withdraw our previous conclusion (a Type I defeater).

A more subtle problem is with bird(Tweety) and �x
(ostrich(x) � bird(x)) as classical knowledge together with

bird(x) : ¬ostrich(x)

f lies(x)

as a default, expressing ‘‘birds usually fly, when they are not
ostriches.’’ Obviously, we want to derive flies(Tweety), but
when we learn later that Tweety is an ostrich, we have to
withdraw our previous conclusion (a Type II defeater).
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. . . . .

. . . . .
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The general problem is to define the set of valid conclu-
Figure 1. Extensions of default theory. This diagram shows that de-sions from a default theory (D , W) where D is a set of de-
fault reasoning is much stronger than classical reasoning. While clas-faults as described above and W is a set of first-order formu-
sical logic provides only one closure, namely Cn(W), for a set oflae. In classical logic, we defined the closure Cn(W) from a
axioms W, default logic selects only some of the many classical mod-theory W as the set of conclusions of W. In nonmonotonic rea-
els C1, . . ., C�, . . .. These selected models are called extensions and

soning, this set is much too weak, and it does not take the reflect the most likely states of the world, given the axioms W.
default rules into account.

The way out of this is to define the notion of an extension
of a default theory.

logic two models of a theory are always incompatible, because
any classical model makes any formula either true or false. In

Definition 4 (Extensions of Default Theories) general, extensions do not have this property. An extension
Such an extension E should represent a possible realization might not decide every formula: there can be � such that nei-
of the default theory. We describe some properties we expect ther � � E nor ¬� � E. Figure 1 shows the situation as com-
an extension E to satisfy: pared with classical logic. Only some subsets of the set of all

classical models MOD(W) correspond to extensions. But the
1. Since the facts in W represent certain knowledge, we set of formulae true in all such extensions still is larger than

want those facts to be contained in E, that is, W � E. Cn(W).
2. We want E to be deductively closed in the sense of clas- An important point for representing knowledge is that in-

sical logic, that is, Cn(E) � E. stead of modifying old statements in the light of new informa-
tion, it may be much better to just add such new information3. Whenever possible, we want to use defaults to make our
to the database. This is of great importance if our informationknowledge more complete. In other words, all defaults
is stored in large and heterogenous databases. Instead of‘‘applicable’’ to E must have been applied, that is, if A :
physically searching for contradicting statements and modi-B1, . . ., Bn/C � D, A � E, and for all i (1 � i � n) ¬Bi

fying them, just adding is a much simpler task. In our bird� E, then C � E.
example, it is much better to store once and for all the default4. E must not contain ungrounded beliefs, that is, every

formula in E must be derivable from W and the conse-
quents of applied defaults in a noncircular way. bird(x) : ¬ab(x) ∧ f lies(x)

f lies(x)

The first three properties pose no problem. They prevent
in our database. Later, if we learn about exceptions to thiscontradictions arising by virtue of defaults. It is the fourth
rule, we just add formulae of the form ostrich(x) � ab(x),property, the exclusion of unwanted elements from an exten-
sick(x) � ab(x), penguin(x) � ab(x), where ab(x) stands forsion, that makes the definition we are looking for rather
‘‘x is abnormal for the rule.’’ In this sense, default logic istricky. In fact, the exact definition is given by a complicated
modular to a certain degree. It is also possible to encode prior-fixed-point equality, which is beyond the scope of this article.
ities into defaults: a default can be used to block another one.The main departure from classical logic is the definition of
We can therefore express that some defaults are more impor-several extensions of a default theory, as opposed to the single
tant than others.set Cn(W). Any extension can be thought of as representing a

Default logic is a representative of the class of consistency-whole set of classical models. Therefore the intersection of all
based, or fixed-point, logics.extensions is in general much stronger than the intersection

of all classical models, which is exactly Cn(W).
CircumscriptionFor defaults of a special form, namely
The idea behind circumscription is to stick completely to clas-
sical logic but to restrict the set of models of a theory. Partial
information is encoded by using special predicates, the abnor-

b : f
f

mality-predicates, and models are selected by taking these
predicates into account. To be more precise, a partial orderingextensions always exist. Also, the union of different exten-

sions is inconsistent: thus extensions represent incompatible � between models is defined, and therefore such logics are
called model preference logics. Within such logics, the notionviews of the world (which is wanted). Note that in classical
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of an abnormality theory has been developed by J. McCarthy Definition 5 (Circumscription)
Circumscription of a theory T that contains abnormality pred-to represent default reasoning.

Defaults are represented with an introduced abnormality icates declares to be true all formulae that hold in all models
that are minimal with respect to the abnormality predicates.predicate: for example, to say that normally birds fly, we

would use
We are not giving a general definition of minimal models,

but rather illustrate it on the following example. Let our the-∀x (bird(x) ∧ ¬ab1(x) → f lies(x)) (1)
ory consist of

We have already used such an abnormality predicate in the
previous section. The difference now is that the whole formula
is in our object language, it is not an inference rule as in
default logic.

The meaning of ab1(x) is something like ‘‘x is abnormal

bird(x) ∧ ¬ab1(x) → f lies(x)

ostrich(x) → ab1(x)

ostrich(x) ∧ ¬ab2(x) → ¬ f lies(x)

bird(Tweety)
with respect to flying birds.’’ Note that there can be many
different kinds of abnormality, and they are indexed ac- Intuitively, birds usually fly, but ostriches do not. We have to
cording to kind. minimize ab1, ab2, and we get the following two classical mod-

Abnormality theories can represent both Type I and Type els: M 1, where ¬ab1(Tweety), bird(Tweety), and flies(Tweety)
II defeat. If it is known that Tweety does not fly (Type I de- hold; and M 2, where ab1(Tweety), bird(Tweety), and ¬flies
feat), we can add [to (1)] (Tweety) hold. Note the important fact that in order to mini-

mize ab1, other predicates have to be modified (in our case
bird(Tweety) ∧ ¬ f lies(Tweety) (2) flies), because all models still have to be models of the under-

lying theory: in our model M 2, we cannot just change
Here the conclusion ab1(Tweety) follows in all models. For ab1(Tweety) into ¬ab1(Tweety), because �¬ab1(Tweety), bird
Type II defeat, we simply assert that Tweety is abnormal, (Tweety), ¬flies(Tweety)� is not a model of the underlying the-
without asserting that he does not fly. ory (the first axiom is not satisfied).

Given an abnormality theory, classical logic still allows too Therefore, in order to minimize certain predicates, others
many models. In our birds example, the model M where bird- have to be allowed to vary during the minimization. The for-
(Tweety) and flies(Tweety) is a regular model, as is the model mal definition of minimality takes this into account.
M � where bird(Tweety) and ab1(Tweety). Intuitively, we pre-
fer M over M � because there is no evidence that Tweety is General Properties
abnormal: as few things as consistently possible should be ab-

In the previous sections, we studied two particular nonmono-normal. Therefore we are not looking at all models, but only
tonic inference operations. With this background, we can alsoat minimal models. Figure 2 shows the overall method. Re-
step back and consider the properties of such a logic morestricting to a subset of all models obviously strengthens the
abstractly, by examining the metatheoretic properties of non-deductive power: more statements are true in minimal models
monotonic inference relations. This has been done with twothan in all classical models.
points in mind:Care must be taken in expressing the predicates that need

to be minimized. If instead of ¬ab(x) we used normal(x), mini-
1. To classify nonmonotonic formalisms. There have beenmization would prefer models with less normal entities. This

hints that some logics are ‘‘stronger’’ than others inmeans circumscription is not symmetric with respect to ne-
their nonmonotonicity; the metatheory is a way of pro-gation.
viding a more precise characterization of this state-
ment.

2. To design nonmonotonic logics in a top-down fashion.
Rather than using a model-restriction operator, we can
think of specifying a nonmonotonic logic from above, by
constraining the inference operator to have certain de-
sirable properties.

As an example of point 2, there is the property of cautious
monotony:

If � |∼ β and� |∼ γ then � ∪ {β} |∼ γ

� �� � stands in default logic for ‘‘� is true in all extensions
of �,’’ and in circumscription for ‘‘� is true in all minimal mod-
els of �.’’ Of course, any other nonmonotonic logic will induce
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. . . . .

. . . . .

MIN-MOD (W)

MIN-MOD 

MOD(W) = C1

Cn(W)

W

C CC2U U

U

U. . . U U. . . . . .
α β

`̀`

such a consequence relation ��. Cautious monotony is a re-Figure 2. Minimal models in circumscription. This diagram shows
stricted version of the monotony condition of classical logic.that reasoning with minimal models is much stronger than classical
While default logic (like consistency-based logics in general)reasoning. This is because only a subset of all models of a theory W
does not satisfy it, circumscription does (like all model-prefer-are minimal. These minimal models play in circumscription the same

role as the extensions in default logic. ence logics).
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Various other abstract properties have been defined, and Spatial Reasoning. Spatial reasoning deals with the prob-
lem of representing and reasoning with spatial entitiesthe induced consequence relations have been investigated (1).
of higher dimensions, without resorting to traditional
(quantitative) techniques prevalent in computer graph-Other Approaches
ics or computer vision. It is strongly related to qualita-

There are lots of variants of default logic and circumscription tive reasoning, where one seeks to represent not only
as well as approaches more or less related to them. A com- commonsense knowledge about the world, but also the
plete or detailed overview is clearly beyond the scope of this underlying abstractions used by engineers and scien-
article. Here we list some important systems: tists. There are various applications for qualitative spa-

tial reasoning. A particular promising area is geographi-
Description Logics. These are logics where the underlying cal information systems. For a very readable overview

language is restricted in such a way that the induced article, even for the nonexpert, we refer to Cohn (4). See
consequence relation is still decidable or even has good also SPATIAL DATABASES.
computational behavior (nonexponential). Reasoning about Action. Quite early in the history of non-

Modal Nonmonotonic Systems. Such systems have an oper- monotonic reasoning, the problem of representing ac-
ator in their language with the meaning ‘‘a formula is tions and their effects on the current state of the world
believed.’’ Thus we can form statements saying that we was recognized as a serious and very difficult one. Vari-
believe some formulae and disbelieve others. The main ous systems were proposed, the most influential among
problem is to define an analog of extensions in default them being the situation calculus, which is based on
logic. In modal systems these constructs are called first-order predicate logic. The idea is to augment every
expansions and are defined by fixed-point equations. predicate, say At(Fred, School), with an additional argu-
These systems are also used to model the notion of ment, representing the current state: At(Fred, School,
knowledge as opposed to belief. See also BELIEF MAINTE- s). Actions then describe how the predicates change
NANCE. from one situation to the other. It turned out that all

these systems have serious difficulties with at least oneProbabilistic Systems. Here, probability distributions play
of the following (by now classical) knowledge represen-a major role. Statements as well as inference rules are
tation problems:true with certain probabilities. Applying inference rules
Frame Problem. Actions in general modify only a fewto such formulae means deriving new formulae with ap-

things. But a lot of axioms are needed to describepropriate probabilities. One of the problems is to assign
invariant properties. How to get rid of this huge set?the right probabilities in advance or to develop a calcu-

lus that is robust against small modifications of the as- Qualification Problem. The enumeration of all condi-
sociated probabilities. Some people have tried to show tions under which an action is successful is often in-
that nonmonotonic reasoning systems can be seen as feasible (there are too many, and often they are not
the limit of probabilistic systems where probabilities known in advance).
converge to 0 and 1. See also PROBABILISTIC LOGIC. Ramification Problem. How should implicit conse-

Fuzzy Logic. This is not a nonmonotonic reasoning system, quences of actions be handled?
and we just mention it to remove all doubts about that. Reasoning about action addresses these problems and
Fuzzy logic does not handle uncertainty, but rather is is related to causality: what actions are caused by
well suited for handling continuous-valued variables (as others, in contrast to simply being implied by them?
opposed to discrete ones). It has already found its way http://cs.utep.edu/actions/researchers.html is an ac-
to industrial applications. There is in fact a nonmono- tively maintained Web page containing more informa-
tonic version of fuzzy logic, called possibilistic logic. See tion.
also FUZZY LOGIC SYSTEMS. Case-Based Reasoning. Case-based reasoning arose at the

Logic Programming. Logic programming is nonmonotonic, end of the 1980s as a computational paradigm in which
in particular if we use the negation-as-failure mecha- an artificial problem solver finds solutions to new prob-
nism. Semantics for programs with negation are very lems by adapting solutions that were used to solve old
closely related to classical nonmonotonic reasoning sys- problems. A case-based reasoner has a case library, and
tems and therefore can be used as base calculi to imple- each case describes a problem and a solution to that
ment such systems (2,3). See also DEDUCTIVE DATABASES problem. The reasoner solves new problems by adapting
and AI LANGUAGES AND PROCESSING. relevant cases from the library. Case-based reasoning

systems are often built using methods from traditionalTemporal Logic. The logics we have discussed so far are
engineering and software technology. They are usedquite static, that is, they do not contain time. However,
for diagnosis, decision support, configurations, andin everyday life the knowledge changes with time and
planning. We refer to http://www-cia.mty.itesm.mx/has to be updated eventually. Temporal logics try to
�lgarrido/CBR/cbr.html, which is actively maintainedmodel the dependence of predicates on the time t. They
and contains various pointers to related web sites.allow one to formulate and reason with assumptions

about the future and the past. This is especially impor-
tant for program verification, where the data types de- CONCLUSIONS
pend heavily on the current program state, which is de-
termined by the actual time point. See also TEMPORAL The field of nonmonotonic reasoning started with the goal of

modeling what John McCarthy and others called jumping toLOGIC.
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2. J. Dix, U. Furbach, and I. Niemelä, Nonmonotonic reasoning: To-conclusions. The overall aim was to strengthen the deductive
wards efficient calculi and implementations, in A. Voronkov andpower of classical reasoning systems in order to handle par-
A. Robinson (eds.), Handbook of Automated Reasoning, Amster-tial and uncertain information. Today, almost 20 years after
dam: Elsevier (in press, 1998).nonmonotonic reasoning was established as an important re-

3. J. J. Alferes and L. Moniz Pereira (eds.), Reasoning with Logicsearch topic, we have made considerable progress in the theo-
Programming, LNAI 1111, Berlin: Springer, 1996.retical understanding of default reasoning. On the other

4. A. G. Cohn, Qualitative spatial representation and reasoninghand, a satisfactory account of the computational properties
techniques, in G. Brewka, C. Habel, and B. Nebel (eds.), Proc.of human commonsense reasoning still seems to be lacking.
21th German Annu. Conf. Artif. Intell. (KI ’97), Freiburg, Germany,Basically, the field has concentrated to a large extent on de- LNAI 1303, Berlin: Springer, 1997, pp. 1–30.

termining what defeasible conclusions are, but it has been
5. G. Gogic et al., The comparative linguistics of knowledge repre-less successful in answering the question what jumping to sentation, Proc. 14th Int. J. Conf. Artif. Intell., Montreal, Canada,

such conclusions means. 1995, pp. 862–869.
Any general reasoning system (as opposed to special-pur- 6. M. Cadoli et al., On compact representations of propositional cir-

pose systems) needs to know a lot about what the world looks cumscription, Theor. Comput. Sci., 182: 183–202, 1997. (Extended
like. Enormous amounts of rather trivial information have to abstract appeared in: On compact representations of proposi-
be handled, and it is to be expected the nonmonotonic systems tional circumscription, STACS ’95, 1995, pp. 205–216.)
can be of use. Doug Lenat’s CYC Project aims at putting 7. J. Dix, A. Nerode, and U. Furbach (eds.), Logic Programming and
together such commonsense knowledge in a large database Nonmonotonic Reasoning, Springer LNCS, 1265, 1997.
that can be accessed by reasoning systems. We refer to 8. D. Gabbay, C. J. Hogger, and J. A. Robinson (eds.), Handbook of
http://www.cyc.com/ for a description of this project. Logic in Artificial Intelligence and Logic Programming, Vols. 1–6,

The complexity analysis of nonmonotonic formalisms London: Oxford Univ. Press, 1993–1999.
shows that their computational behavior is much worse than 9. S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum (eds.), Hand-

book of Logic in Computer Science, Vols. 1–6, London: Oxfordthat of corresponding monotonic formalisms. This does not
Univ. Press, 1992–1999.necessarily mean that monotonic formalisms should be used

10. D. M. Gabbay and F. Guenthner (eds.), Handbook of Philosophi-wherever possible: nonmonotonic formalisms often allow us to
cal Logic, 2nd ed., Vols. 1–9, Dordrecht, The Netherlands: Rei-describe problems in much more compact ways. There are
del, 1999.even examples when nonmonotonic problem descriptions are

11. A. Robinson and J. A. Voronkov (eds.), Handbook of Automatedexponentially smaller than any monotonic formulations of the
Reasoning, Vols. 1, 2, Amsterdam: Elsevier, 1998.same problem (5,6).

12. D. Gabbay, Classical vs non-classical logics (the universality ofNevertheless, it is generally felt that future research in
classical logic), in D. Gabbay, C. J. Hogger, and J. A. Robinsonthe field should put more emphasis on computational aspects.
(eds.), Handbook of Logic in Artificial Intelligence and Logic Pro-Implementations of nonmonotonic systems are on their way.
gramming Vol. 2, Deduction Methodologies, London: Oxford Univ.Most of them are closely related with logic programming sys-
Press, 1994, Chap. 6, pp. 359–500.

tems. We refer to the conference series LP & NMR (7), which
13. M. L. Ginsberg, AI and nonmonotonic reasoning, in D. Gabbay,also contain references to particular implementations (see

C. J. Hogger, and J. A. Robinson (eds.), Handbook of Logic in
also Ref. 2). Artificial Intelligence and Logic Programming, Vol. 3, Nonmono-

In practice, compared with genuine nonmonotonic systems, tonic and Uncertain Reasoning, London: Oxford Univ. Press,
many more prototypes based on probabilistic and fuzzy logic, 1994, Chapter 2, pp. 1–34.
as well as on case-based reasoning, are in use. They all con- 14. M. Ryan and M. Sadler, Valuation systems and consequence rela-
tain nonmonotonic components. tions, in Handbook of Logic in Computer Science, London: Oxford

Univ. Press, 1992, Vol. 1, Chap. 1, pp. 1–78.
15. G. Brewka and J. Dix, Knowledge representation with extended

LITERATURE logic programs, in D. Gabbay and F. Guenthner (eds.), Handbook
of Philosophical Logic, 2nd ed., Vol. 6, Chap. 6, Dordrecht, The

For more detailed overview-articles on classical and nonclas- Netherlands: Reidel, 1998.
sical logics, we refer the interested reader to the following 16. G. Brewka, J. Dix, and K. Konolige, Nonmonotonic Reasoning: An
handbooks: Handbook of Logic in Artificial Intelligence and Overview, CSLI Lect. Notes 73, Stanford, CA: CSLI Publica-
Logic Programming (8), Handbook of Logic in Computer Sci- tions, 1997.
ence (9), Handbook of Philosophical Logic, 2nd ed. (10), and
Handbook of Automated Reasoning (11). All contain up-to-date JÜRGEN DIX

information on the subject. In particular, we suggest Refs. 1, University of Koblenz-Landau
2, 12–15. Reference 16 is a recent book on nonmonotonic rea-
soning and treats most aspects on a postgraduate or Ph.D.
level.
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