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Classical planning is sometimes identified with certain plan-
ning systems, such as STRIPS, with algorithms, or representa-
tions that are used or avoided within a planner. From today’s
perspective, however, it is best described in terms of the cen-
tral simplifying assumptions that it makes about its domains:

1. The relevant features of the world can be described in
terms of static ‘‘snapshots’’ or states.

2. All relevant world features are known; all that is known
about the world is accurate.PLANNING

3. Only actions of the agent change world states; no two
actions are executed in parallel.In artificial intelligence (AI), planning is the activity of find-

ing in advance some course of action that promises to make 4. Time only occurs as the transition from state to state
true or keep true some desirable features in the world, if and by acting; there is no notion of duration.
when executed by an agent. An agent here may be a human, 5. An action is adequately described by its preconditions
a robot, a group of these, a technical process—any system and postconditions, i.e., by the features that must be
that can change its environment in a well-defined way. The true about the world prior to action execution and by
agent executing the plan may differ from the one generating the features whose truth changes by executing the ac-
the plan. tion.

A planning algorithm or planning system, then, has to 6. The effect of an action is deterministic; it is context-free
work on a problem of the following structure: in the sense that it is not affected by what is true or

false in the world other than the action preconditions.
given a description of a world state in which some agent

7. On successful termination of planning, all actions in thefinds itself, descriptions of actions that the agent can
plan have to be executable at their respective time slotsexecute in the world, and goals that should become true
within the plan; the plan has to fulfill all given goals.or remain true in the world,

8. Plan execution succeeds planning.find a plan, i.e., a specification of how to act in the world,
9. The time for computing a plan has no effect on planthat, when executed successfully, will fulfill the goals.

quality.
Depending on the precise syntax, semantics, and pragmatics

While it is obvious that a description of the world that makesof world states, actions, goals, and plans, there are a large
these assumptions may be somewhat simplistic, it does leadvariety of instances of planning. For example, the goals may
to a way of planning that is sometimes useful as a first, non-be described by a set of ground facts or by a formula of propo-
trivial approximation. Besides, classical planning is a goodsitional logic (syntactic difference), the available description
start to understand basic problems and techniques of plan-of the current world state may be assumed to be accurate or
ning in general. A number of advanced planning techniquesnot (semantic difference), and the quality of a plan may or
are described further below, in which some of the classicalmay not depend on the time when it is found, that is, a medio-
assumptions are relaxed.cre plan in time may be better than a perfect one too late

More comprehensive descriptions of classical planning in-(pragmatic difference). All these differences—and their com-
clude Refs. 2 and 3; it is also typically contained in AI text-binations, as far as they make sense—must be mirrored by
books, such as Ref. 4.differences in the respective algorithms and representation

languages.
Basic ConceptsPlanning algorithms and techniques are being used for a

great variety of applications. Typical application areas are We start the description of classical planning by introducing
scheduling and logistics. some basic definitions and notation.

The following sketch of the field starts with a fairly com- A state in the world is represented by a set of ground prop-
prehensive description of basic planning methods that make ositions of some given domain description language L , each
some strong assumptions about its application domains, proposition representing a feature of the state. We call such
thereby gaining simplicity of the representation formalisms a representation of a world state a situation. All propositions
and algorithms involved; then some more advanced planning contained in a situation are assumed to be true in the corre-
methods are described; after that, we address some typical sponding world state; everything not contained in a situation
planning applications; we conclude with a summary of the is assumed to be false in the corresponding state (closed-
history of AI planning and literature for further study. world assumption).

Actions of the agent are represented by operators. An oper-
ator is a triple of the form o � �P, D, A�, where P, D, A areBASIC PLANNING
sets of ground propositions from the language L . P denotes
o’s preconditions, i.e., the state features that must be true inThe best-studied planning method—or set of methods, in

fact—is so-called classical planning. As the name suggests, it order to apply o. D and A describe the postconditions, D (the
delete conditions) specifying what ceases to be true after o isis also a method that has been in use for quite some time,

with the planning system STRIPS (Stanford Research Institute applied, and A (the add conditions) specifying what executing
o makes true. Operators of this �P, D, A� format are oftenProblem Solver) (1) as a cornerstone laid in the late sixties.
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called STRIPS operators after the planner that first introduced features that would come along with relaxing the classical
planning assumptions above.them (1). The original STRIPS, like many other planners, does

In harmony with the strictness of these assumptions, anot make the restriction that all propositions involved in op-
blocks world version for classical planning can only be simpleerators must be ground, but variables are allowed, which get
in structure. Figure 1 gives a small example. Objects involvedbound to object constants whenever required; this may hap-
are the blocks A, B, C; the constant NIL denotes ‘‘nothing.’’ Inpen during planning or else immediately before execution.
any state, some block x can be gripped [Hand(x)], be sitting onThe version of classical planning described here is in fact
the table [Ontbl(x)], be stacked on another block y [On(x, y)],propositional classical planning, and object variables are not
and/or be clear of other blocks [Clear(x)]. The gripper can holdhandled here.
only one block at a time, and only one block can sit on top ofIt may happen that instances of an operator occur more
another block; all blocks can be sitting on the table at thethan once in a plan; for example, a plan for cleaning the house
same time; in any state, a block is either on the table, or onmay contain the operator for getting fresh water several
another block, or gripped.times. To denote uniquely different occurrences of an operator

The latter constraints are reflected in the preconditionsin a plan, every such operator occurrence is labeled uniquely.
and postconditions of the operators in Fig. 1(a). PICK and(In the rest of this article, these labels are skipped for
PUT represent the actions of moving a block x from or on thebrevity.)
table, respectively. STACK and REMOVE represent stack-A plan, then, is a pair � � �O, ��, where O is a set of
ing x on block y and taking it off, respectively. All these opera-operator occurrences, which we will briefly call the operator
tors happen to delete all of their preconditions; this is notset. � is an ordering on O, i.e., an irreflexive and transitive
generally the case.relation on O, which is to be interpreted as the operator exe-

Figure 1(b) gives an example problem in this domain. Thecution order. If the order � is total, then � is called linear or
initial situation is given as a set of propositions (with a draw-total-order; otherwise it is called nonlinear or partial-order.
ing of the corresponding world state); the set of goal proposi-If, in the nonlinear case, o1, o2 � O are not ordered by �, this
tions is given below. In the blocks world sketched here, intu-is to be interpreted as saying that the respective actions may
ition tells that there is exactly one world state in which thesebe executed in either order. (Note that it was assumed above
goal conditions are true, i.e., the goal state is uniquely charac-that actions can only be executed one at a time.)
terized by the goal condition set. This is not generally true,The effect of executing an action in the world is calculated
i.e., there may be many different goal states for a planningfor the corresponding operators and situations in the follow-
problem.

ing way. If S is a situation, then the successor situation S� Figure 2 shows a solution to the problem. The plan is lin-
that results from applying o in S is defined by ear; in fact, there is no nonlinear plan for solving this problem

as defined in Fig. 1. It is also the shortest solution plan. There
are infinitely many solutions, as it is possible to insert infi-
nitely long detours, such as putting down and immediately

S′ =
{

S if P � S

(S \ D) ∪ A else
(1)

picking up one block arbitrarily often.

A classical planning problem, which can be given for a plan-
ner to solve, consists of a domain description language speci-
fying all propositions, objects, and operators that exist in the
domain, of an initial situation that describes the state of the
world as is, and of a set of goal propositions. A solution of
such a planning problem is a plan that, given the initial situa-
tion, yields a situation that includes all goal propositions. As
there may be many solutions, usually a plan with a minimal
operator set is preferred.

To exemplify all this, let us turn to an example domain
that is classical in AI research: the blocks world. Note that
this domain is chosen here for the didactic purpose of being
easy to understand and to present and for its property of
allowing a spectrum of difficulty grades from easy to very
rich. Planning domains that are of practical relevance will be
addressed below.

The blocks world consists of a flat surface, such as a table
top; toy blocks; and agents that are able to manipulate the
blocks, such as a robot arm that can grip and move blocks. A
typical planning problem would specify a block building to be
constructed. Instances of the blocks world may differ in the

On(A, B) On(B, C)

PICK(x)

Pre:  {Ontbl(x), Clear(x), Hand(NIL)}
Del:  {Ontbl(x), Clear(x), Hand(NIL)}
Add: {Hand(x)}

PUT(x)

Pre: {Hand(x)}
Del: {Hand(x)}
Add: {Ontbl(x), Clear(x), Hand(NIL)}

STACK(x, y)

Pre: {Hand(x), Clear(y)}
Del: {Hand(x), Clear(y)}
Add: {Hand(NIL), Clear(x), On(x, y)}

REMOVE(x, y)

Pre: {Hand(NIL), Clear(x), On(x, y)}
Del: {Hand(NIL), Clear(x), On(x, y)}
Add:{Hand(x), Clear(y)}

Ontbl(C), Ontbl(B),
Clear(B), Clear(A),

On(A, C), Hand(NIL)

C

(b)(a)

B

A

number of blocks, in block features such as size, shape or Figure 1. Planning problem example for classical planning in the
color, in the granularity of actions, in the number of agents blocks world. Operator schemata are given in (a), where the variables
guided by the plan, in the presence of malevolent other x, y have to be replaced by block names A, B, C in all possible ways to
agents, in differences of cost and benefit of operators, in the form operators from the schemata. Part (b) shows the start situation

and the goal propositions.possibility of malfunction of action execution, and many other
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REMOVE (A, C) PUT (A) PICK (B) STACK (B, C) PICK (A) STACK (A, B)

Figure 2. A plan to solve the problem defined in Fig. 1. Operators are drawn as boxes; the plan
ordering is represented by the arrows.

Before turning to algorithms for plan generation, a state- However, this specification is not yet complete for specifying
ment can be made about the computational complexity of the operator, as this representation suffers from the infamous
planning, independent of which algorithm is used. Simple as frame problem. Its essence is that each and every operator
it may seem, the problem of determining the existence of a formulated in the straightforward logical notation of Eq. (2)
solution of propositional classical planning as defined above needs to represent in its postcondition not only what it
is PSPACE-complete (5). That means that, in general, the run changes (i.e., adds or deletes), but also what it leaves un-
time of a planning algorithm is likely to grow exponentially touched. Specifying this is prohibitively cumbersome for all
with the size of its input, which is determined by the number practical purposes; for example, to complete the description of
of operator types and objects. Plan existence in a slightly the PUT operator in Eq. (2), one has to specify additionally
more general, nonpropositional classical planning variant is that all blocks different from x that were Ontbl in s are still
even undecidable (6). So there are hard fundamental effi- Ontbl in the situation PUT(x, s), that all clear blocks remain
ciency limits for planners in general. That does not mean, of clear, that all blocks on other blocks remain on them, and
course, that no practical planners exist that are efficient for so on.
their application domains. Moreover, certain planning algo- Some have taken the frame problem as an argument
rithms may still be better than most others in most cases, so against deductive planning in general, but this is not war-
empirical complexity analyses certainly play a role. ranted. Other logics (typically, leading to planning variants

that are more powerful than classical planning) and other,
The Algorithmics of Classical Planning more effective ways of deductive planning exist in which the

frame problem does not arise. Reference 8 presents argu-A variety of algorithms exist for classical planning. This sub-
ments for the deduction view of planning as well as furthersection presents the basic concepts and ideas for many of
references.them and explains a simple one in some detail; the following

Search Spaces. If planning is seen in the abstract as search,two subsections deal with how to enhance efficiency and ex-
then the search space needs to be made explicit. Again, twopressivity in this framework.
views have been prominent: situation-space planning and

General Views of Planning. Let us start with some general plan-space planning.
considerations concerning the abstract view of planning. In Situation-space planning sees the problem space of plan-
AI, there has been the debate whether problem solving should ning like this: Its nodes correspond to the situations, and its
best be seen as search or as deduction, and this debate is also transitions correspond to the operators applied in the respec-
alive for planning. Good arguments exist for both views, a tive situations. Planning, then, means to find a path through
strong one for planning-as-deduction being that it allows an this search space, typically by forward search, from the start
agent to generate plans and do general reasoning about the situation to a goal situation; this path represents a sequence
domain within the same representation. Mainstream plan- of operators, i.e., a plan. Figure 3 shows a part of the corre-
ning research has followed the planning-as-search view, sponding problem space that contains the start situation of
around which most of this article is centered. Before continu- the planning problem in Fig. 1.
ing with this view, let us sketch deductive planning. Situation-space planning is intuitive, but it poses some

Deductive Planning. The planning-as-deduction view sees practical difficulties. For example, as there may be many dif-
planning as the problem of finding a formal, deductive proof ferent goal states, it is harder than in plan-space planning to
that a sequence of operators exists that would transform the search goal-directedly without explicitly dealing with the
present state into a goal state. This proof has to be construc- many different paths in the space that might eventually lead
tive, so that having found it implies having found a plan. The to different goal states. Without postprocessing, situation-
influential paper by Green (7) proposed to represent the prob- space planning returns only linear plans, which may overcon-
lem in first-order predicate calculus in a straightforward way: strain the operator sequence. Elements of situation-space
All world features are represented as predicates, which get planning have recently reappeared, though, as a fast prepro-
an additional situation argument; operators would be repre-

cessing method for classical planning, which is followed by asented as implications from preconditions to postconditions;
plan-space planning pass. The idea, which was first used inoperator application is represented by a situation term made
GRAPHPLAN (9), will be sketched in the subsection on enhanc-of a logical function that corresponds to the operator. A stan-
ing efficiency.dard theorem prover can then be used for finding the proof/

The majority of classical planners search the plan-space.plan. Along these lines, an analog of the PUT operator of Fig.
Nodes in this search space are plans, i.e., �O, �� pairs. A goal1 would be
node in this search space is a plan that is ‘‘O.K.’’ in the sense
of being executable and leading to a goal situation when exe-
cuted; most nodes in the search space correspond to plans
that are ‘‘not O.K.’’ A transition in the search space from a
node n is effected by a change to the plan that n represents:
for example, an operator can be added, or two operators in

∀x, s. [Hand(x, s) →
¬Hand(x, PUT(x, s)) ∧
Ontbl(x, PUT(x, s)) ∧ Clear(x, PUT(x, s)) ∧
Hand(NIL, PUT(x, s))] (2)
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empty. I precedes all other operators in the plan; all other
operators precede G .

The dependency structure of a plan describes which opera-
tor produces which condition for which other operator. Intu-
itively, a plan contains a dependency from an operator p (the
‘‘producer’’) to an operator o (the ‘‘beneficiary’’) with respect
to (wrt) a condition c if p adds c, c is a precondition of o, and
no other operator q adds it in between:

Definition 1 (Dependency). Let � � �O, �� be a plan and
o, p � O. Then �� � �p, c, o� is a dependency between p and o
wrt c in � if and only if p adds c, c is a precondition of o, p
� o, and no other q � O adds c such that p � q � o.

A finished plan must have all preconditions of all its opera-
tors resolved in the sense that it contains a dependency wrt
each and every precondition. That is not sufficient for a plan
to be ‘‘OK,’’ though: Once added, a condition might be deleted
by another operator (the destroyer) between the producer and

C B

A

C B

A

C B AC B

... ......

A

C
B

A

...

the beneficiary of a dependency, if the operator order allowsFigure 3. Part of the situation space for the blocks world of Fig. 1.
for executing the destroyer in between. In this case, the planThe arrows are labeled by the operators that they represent (unique
contains a conflict:labeling in this blocks world version; omitted in the drawing to en-

hance clearness). Planning in situation space means finding a path
in the graph from the node representing the start state to a note Definition 2 (Conflict). Let � � �O, �� contain a depen-
representing a goal state. dency �� � �p, c, o�; let d � O be an operator that deletes c.

Then � contains a conflict between �� and d if and only if
there is an ordering relation �� on O that extends �, that is,
� � �� such that p �� d �� o, and c does not get reestablishedthe plan can be ordered. The solution to the planning problem

is the plan with which the goal node is labeled that is eventu- between d and o, that is, there is no p� � O adding c such
that d �� p� �� o.ally found.

The basic planning algorithm that is developed in the fol-
lowing section is an example for plan-space planning. A precondition of some operator in a plan is called unre-

solved if either there is no dependency with respect to it or
the plan contains a conflict with respect to its dependency.Generating Nonlinear Plans

Basic Concepts and Definitions. Although it is part of the A Basic Planning Algorithm. Building on the concepts of de-
pendency and conflict, a basic planning algorithm can workassumptions for classical planning that only one operator can

be executed at a given time, a least-commitment strategy like this. As an input, it gets a plan, which is initially the
plan consisting of just the operators I and G . Whenever thewith respect to the operator order is often desirable: the plan

should contain only the ordering restrictions that are abso- recent plan contains no unresolved preconditions, then this
plan is the result. Else the algorithm nondeterministicallylutely necessary, leaving it for decision at plan execution time

which one of possibly several executable operators is actually chooses among a small number of options for resolving a pre-
condition, which will be discussed next, and continues withexecuted next. Moreover, a plan with a nonlinear order repre-

sents a family of linear plans, namely, all those whose linear the modified plan. It is obvious that this algorithm works in
the plan space; given that there are several choice points, itorder is compatible with the given nonlinear one; in conse-

quence, the planning effort for a nonlinear plan is in fact per- is also obvious that it has to perform search. The CPP algo-
rithm in Fig. 4 formulates this explicitly. The choice pointsformed on the whole family of linear plans that it represents.

In the abstract, that sounds computationally efficient. may simply be implemented by backtracking; sophisticated
search strategies are possible, but they are of no interest forOn the other hand, working with nonlinear plans requires

some conceptual and computational overhead for determining the moment.
In its steps 3 and 4, CPP uses four different ways of resolv-whether a given plan is ‘‘O.K.’’ Before describing a simple al-

gorithm for generating nonlinear plans, we have to introduce ing open preconditions. In the case that the condition c is un-
resolved for lack of an appropriate producer (step 4), one maysome basic concepts: dependencies and conflicts in a plan.

As a necessary criterion for applicability of an operator, either insert a new operator at the right place, or employ one
that is already in the plan by ordering it before the benefi-all of its preconditions must have been established before its

position in the plan according to the operator order. That is, ciary. As formulated in Fig. 4, this ordering restriction is exe-
cuted without further check of whether it is allowable. In gen-a precondition fact must have been contained in the initial

situation, or been added by an earlier operator. As a represen- eral, that may result in an inconsistent ordering �, that is,
an ordering that contains a cycle of the sort q � q for sometation convention, we represent the initial situation by a spe-

cial operator I � O that has no preconditions, deletes noth- operator q. Such an ordering leads to failure (and hence back-
tracking) in step 0.ing, and adds all features of the initial state. The goal

features are represented by a special operator G � O whose Inserting a fresh operator and employing an existing one
are also ways to resolve a conflict as in step 3. Alternatively,preconditions are the goals and whose postconditions are
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the destroyer may be promoted (put before the producer) or Effort pays back that is invested in choosing deliberately
among the ways to resolve an unresolved condition and indemoted (put after the beneficiary); this resolves the conflict,
choosing one among the possibly many operators in the recentbut may lead to an inconsistent ordering and also to back-
plan to work on that have some of their preconditions unre-tracking in step 0.
solved. Many algorithmic or heuristic variants of CPP-styleIn principle, there is another way to resolve a conflict,
planning have been described. Many of these ideas are ad-namely, withdraw the destroyer from the plan. This is usually
dressed by Yang (3, Part I).not done in algorithms for classical planning: they rely on

More recently, planning algorithms have been describedmonotonic growth of the operator set and on an appropriate
that move away from plan-space planning towards the situa-search strategy for finding a plan. It has even been shown
tion space and that have been shown to outperform by orders(10) that monotonicity of the dependency set in a plan can,
of magnitude standard plan-space planners such as UCPOPunder certain additional conditions, lead to systematicity of a
(11) on many examples. Two archetypes of these algorithms,planning algorithm, that is, the property that during its
GRAPHPLAN (9) and SATPLAN (12), will be sketched here.search in the plan space the planning algorithm will generate

The naive version of situation-space planning as depictedthe same plan at most once. This requires a different plan
in Fig. 3 would traverse this space starting from the initialdefinition that mentions explicitly and keeps under control
situation by applying operators to situations that have al-the set of dependencies. In these algorithms, conflict (or
ready been generated, until a goal situation is found. The newthreat, as it is commonly called in the literature) arises not
algorithms are different in that they allow one to make leapsonly if the condition of a dependency may be deleted, but also
in the state space that correspond to applying sets of compati-if it may be produced by a different operator than originally ble operators, that is, operators that can be executed in either

intended. order without affecting the overall result. Note that this leads
Note that the way in which new operators are inserted in to nonlinear plans of the structure O1, O2, . . ., On where ev-

step 3 or 4 leads to a backward-planning behavior of the algo- ery time step Oi is a set of operators that can be executed in
rithm: operators are chosen that produce unresolved precon- any order, and all operators of Oi must have been executed
ditions, and their preconditions, in turn, may lead to new un- before execution of Oi�1 starts. In consequence, the situation
resolved preconditions, or subgoals. This contrasts with the immediately after a time step is defined and unique, whereas
forward-planning strategy that is natural for situation-space the situations that occur within a time step depend on the
planning. concrete execution order—just as in any nonlinear plan.

Note further that the algorithm, by definition, supports a GRAPHPLAN and SATPLAN differ in the way that the time
simple form of incremental planning, that is, the strategy of steps are generated, and SATPLAN is more general in that it
starting planning from an existing plan that is deficient in can mimic GRAPHPLAN’s procedure. SATPLAN’s basic idea is to
some respect. In the case of the CPP algorithm, the only defi- describe in terms of logical formulas constraints that are true
cits possible are unresolved preconditions; other variants of about individual states of the domain as well as constraints
planning and other planning algorithms generalize incremen- that must be true about transitions between states. The latter
tality. This feature is often useful for a planner in applica- point is similar to formulating operators in logic as in Eq. (2)
tions if the real-world problem to be solved changes fre- above; however, as the point is describing state transitions
quently, but not so much that a fresh planning pass is rather than operators, it turns out that straightforward for-

malizations can be found that need no frame axioms. If x, inecessary.
are variables standing for a block and a time step, respec-
tively, then an example for a state constraint axiom is the oneEnhancing Efficiency
expressing that at most one block may be held at a time:

Making CPP or similar basic planning algorithms efficient for ∀x, i.[Hand(x, i) → ¬∃y �= x.Hand(y, i)]a given problem means constraining its search appropriately.

Figure 4. CPP, a nondeterministic algorithm for clas-

Input: � � �O, ��: plan
Output: plan

do forever
0. if � is inconsistent then return fail;
1. if � contains an operator o with an unresolved precondition c
2. then if c unresolved by conflict between d � O and dependency �p, c, o�
3. then choose one of

Promote: � :� (O, � ��(d, p)�)
Demote: � :� (O, � ��(o, d )�)
Employ: Choose a c-producer p� � O that is unordered wrt. d and p � p�;

� :� (O, � ��(d, p�), (p�, o)�)
Insert: Choose a c-producer p� � O;

� :� (O � �p��, � ��(d, p�), (p�, o)�)
4. else choose a c-producer p� by one of

Employ: p� � O, p� �/ o;
� :� (O, � ��(p�, o)�)

Insert: p� � O;
� :� (O � �p��, � ��(p�, o), (I, p�)�)

5. else return � sical propositional planning.
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Here is an example axiom for a state transition, stating that than sketches of them; for details, see the original papers.
More ways to enhance expressivity are summarized, for ex-a block x that is on y in i can only be still on y or held in the

next time step i � 1: ample, in Refs. 2 and 3.

∀x, y, i.[On(x, y, i) → [On(x, y, i + 1) ∨ Hand(x, i + 1)]] Enriching the Operator Language: ADL. ADL (Action Descrip-
tion Language) (13) is a formalism that has been used in sev-

Using appropriate normalizations of these formulas and very eral planners, most prominently the planner UCPOP (11). ADL
efficient—for some documented problems, stochastic— allows operators to be formulated using the following con-
algorithms for constructing ground models for first-order logi- structs:
cal formulas, SATPLAN ‘‘guesses’’ a consistent sequence of situ-
ations from the start to a goal situation, and then constructs

Preconditions are—with slight restrictions—sets of first-locally the time steps between the successive situations.
order formulas. For example, a new blocks world opera-GRAPHPLAN does not use a logical domain axiomatization,
tor MOVE(x, y) for moving block x from somewhere tobut develops and exploits a special data structure, the plan-
location y, which may be either a different block or thening graph. This is a leveled, directed, acyclic graph with two
table, might specify as preconditionstypes of nodes: proposition nodes and operator nodes. At the

front of the graph is a level of proposition nodes with one node
per proposition in the start situation. Then comes a level of

x �= y, x �= TABLE, ∀z.¬On(z,x),

[y = TABLE ∨ ∀z.¬On(z,y)]operator nodes with one node per operator that is applicable
in the proposition level before. Then comes the next proposi-

Add sets: Let P be a predicate symbol, t a fitting list oftion node level with one node per proposition that was added
arguments, z1, . . ., zk variables appearing in t, and � aby an operator in the previous level, and so on. Three types
first-order formula. An add set consists of elements ofof arcs connect appropriately preconditions to operators and
the following forms:operators to add/delete conditions. (For technical reasons,
• P(t)there is a special type of no-op operators that just copy single
• P(t) if �propositions from one proposition level to the next.)
• P(t) for all z1, . . ., zkOnce a proposition level has been generated that includes
• P(t) for all z1, . . ., zk such that �the goal predicates, GRAPHPLAN tries to extract a sequence of
Here, as an example, is the add set of MOVE(x, y),compatible time steps from the planning graph. The exact
where the predicate Above(x, y) means x is on y or ondefinition of compatibility is purely technical; for example, it
another block above y:needs to be checked that the preconditions and delete condi-

tions of operators within one time step are disjoint. If no such
On(x, y), Above(x, y), Above(x, z) for all z such that Above(y, z)sequence can be found, the planning graph gets extended. The

process is finite, as the set of propositions is finite and propo-
Delete sets are of the same form like add sets. For example,sition levels grow strongly monotonically. In consequence,

the delete set of MOVE(x, y) isGRAPHPLAN—as well as SATPLAN—is guaranteed to terminate.
On(x, z) for all z such that z � yContrast this with CPP, which would run forever for unsolv-

able planning problems. Above(x, z) for all z such that [z � y ∧ ¬Above(y, z)]
GRAPHPLAN and SATPLAN exploit better than CPP-style

plan-space planners the structural constraints of proposi- Obviously, the simple situation update scheme using set
tional classical planning—hence their considerable, some- difference and union [Eq. (1)] no longer works with ADL add
times dramatic, saving in run time in many problems. Time sets and delete sets. Instead, the individual components of
steps are just a slight restriction of partial orders of operators the add and delete sets are schematically transformed into
in general, yet they make it possible to find very compact rep- special logical formulas, which are then used in reasoning
resentations in propositional classical planning. On the other about what is true or false in individual situations and what
hand, it may be hard or even impossible to modify these algo- changes or remains inert between situations. Details are be-
rithms appropriately in the process of moving the interpreta- yond the scope of this article, as is the handling of changes of
tion of planning to variants that relax the tight classical plan- continuous values by operators that ADL allows (13).
ning assumptions.

Introducing Layers of Description: Hierarchical Task Network
Enhancing Expressivity

Planning. As described until here, an operator has served as
an atomic element of the domain representation under twoWhen formulating domains for a planner, it is often inconve-

nient to use a purely propositional representation language. aspects. First, it must be an action unit to give the plan exe-
cution agent, i.e., a ‘‘command’’ that the agent can interpretFor example, one may wish to use variable objects in opera-

tors. In addition, more structured representations may help a and execute without further advice: an operator is an atom
for execution. Second, an operator is an atom for description:planner plan faster. Finally, more expressive languages will

become necessary as we turn to advanced planning tech- The domain modeler has to specify in terms of operators the
change that can be effected by the agent.niques. All this motivates a tendency to enhance the expres-

sivity of domain description languages and plan formats. This It is unnecessary that these two aspects coincide, and it is
often undesirable: First, domain models with ‘‘flat’’ operatorsubsection sketches two orthogonal ways for doing this. Obvi-

ously, the planning algorithms have to be changed in reaction inventories tend to be hard to understand; second, through
domain knowledge, the domain modeler often knows stan-to these enhancements. Space does not permit us to give more
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dard nonatomic procedures to apply in certain situations that First, as an empirical observation, practically all successful
can be used as subplans and that the planner need not gener- application planners (see the appropriate section below) are
ate from scratch again and again. In consequence, the idea of using them in one way or the other; the reason is that they
using virtual, not directly executable operators in planning may help enhance both planning performance and ease of do-
has appeared in several variants; depending on whether the main description, as stated above. Second, virtual operators
modeling aspect or a possible speedup for planners is focused, can make matters worse, as they are yet more operators,
similar ideas have been given different names such as ab- which blow up the search space.
straction, hierarchical decomposition, and macro operators. To describe this more precisely, note that the following two
The recent literature most often uses the term hierarchical properties are intuitively expected of an HTN plan:
task network (HTN) for a plan containing or made up from
the respective operators. Yang (3) gives a more comprehen- Downward Solvability. If � is a plan with all precondi-
sive description. tions resolved and containing a virtual operator v, then

To give a simple blocks world example, consider Fig. 5.
expanding v eventually leads to a finished plan ��.STACK3 is a virtual operator for stacking the three blocks

Upward Solvability. If a planning problem has a solutionx, y, z. The only new ingredient of the description is the plot:
� consisting of elementary operators, then there is anIt specifies a plan consisting of a mixture of virtual and ele-
abstract plan �� with all preconditions resolved thatmentary operators that must be used to refine the operator.
contains a virtual operator v, and expanding v eventu-As can be seen in the example, the plot in itself need not be
ally leads to �.finished; obviously, the precondition Hand(x) of STACK(x, y)

is not true in the plot.
Virtual operators are to be used in planning in the follow- The theoretical problem with HTN planning is that neither of

ing way: Whenever an open precondition is to be resolved, these properties holds in general. In consequence, effort may
virtual operators can be inserted or employed just like ele- in theory be expended in vain on expanding an abstract solu-
mentary ones. Planning must continue, however, as long as tion that actually has no elementary refinement (no down-
the recent plan contains virtual operators. Such an operator ward solution) or on trying to construct first a nonexistent
must eventually get replaced by its plot; after that, planning abstract solution for a problem that has an elementary one
proceeds by checking flaws that this replacement may have (no upward solution). Practical application domains often
introduced. allow sharp criteria to be formulated that lead to a highly

A simple fix of the CPP algorithm (Fig. 4) is to replace its selective operator choice. In consequence, the general lack of
step 5 by upward and downward solvability need not be practically rel-

evant.
5. else if � contains a virtual operator v
6. then replace v by its plot
7. else return � ADVANCED PLANNING

The resulting algorithm would expand virtual operators only When designing algorithms, generality is both a virtue and a
after resolving all preconditions. This is an arguable strategy; burden. It is a virtue in that a more general algorithm allows
other strategies may be useful, but would require a more com- more problems to be tackled. It is a burden in that a more
plicated formulation of the algorithm. The same is true for general algorithm has less structural clues to exploit and is
operator selection: As virtual operators eventually lead to a therefore likely to be less efficient. That is true in particular
larger expansion of the plan, it makes sense to insert them for planning algorithms. Whenever it makes sense or is toler-
with special care—only if some other operator requires all or able as an approximation for a planning domain to make the
many of their postconditions. We do not go into these heuris- simplifying assumptions described for classical planning, they
tic issues here, but keep in mind the general point: Making should be made and a corresponding algorithm chosen.
use of a more expressive domain language requires algo- Sometimes, though, it is not tolerable. Since its early days,
rithms that make real use of the enhanced expressivity. AI planning has included work on nonclassical planning, as

This leads to the question of how much is or may be gained it is often called now, that is, on planning that allows some of
by using virtual operators. The answer to this is twofold. the classical assumptions to be relaxed. This section gives a

brief introduction into a few different conceptions of planning,
centering on three topics: richer models of time, handling un-
certainty, and reactivity.

Variants of nonclassical planning differ in that they cope
with different basic assumptions. In consequence, the respec-
tive techniques are mostly different and orthogonal. There-
fore, comprehensive survey texts can hardly be expected to
describe nonclassical planning as a whole; they normally fo-

STACK3(x, y, z)

Pre: {Clear(z)}
Del: {Clear(y), {Clear(z)}
Add: {Clear(y), On(x, y), On(y, z)}
Plot:

STACK (y, z) STACK (x, y)
cus on coherent parts of it. Stressing the connections between
planning and control theory, Dean and Wellman (14) dealFigure 5. Schema of a virtual operator for stacking three blocks. A
with the topics of time and uncertainty; centering on planningmore detailed version of the plot could also specify which of the opera-
for autonomous mobile robots, McDermott (15) touches upontors require or generate which of STACK3’s preconditions or postcon-

ditions, respectively. uncertainty and reactivity.



500 PLANNING

Time Reasoning about Time Intervals. A different type of temporal
reasoning comes into play if time intervals are considered—be

The strobelike time model of classical planning abstracts it that they are assumed to be the ontological ‘‘time primi-
away from two main aspects of time that may be important tives’’ or that they are defined by their border time points.
for the question of how to act in the world: quantization (for The new feature is that concurrency or overlap of operators
how long is a fact valid?) and intervals (which actions, exter- may have special effects.
nal events, or facts overlap?). Planning methods exist for han- In the previous discrete numerical time model, operators
dling time in both aspects individually and in combination. may in fact be scheduled for execution in parallel by setting

their execution times appropriately; roughly speaking, that
may be done for operators and plans whose dependency struc-Adding Duration to Classical Plans. A basic—but sometimes
ture is such that the operators are unordered in a classicalsufficient—way to inject numerical time information is to con-
plan. When considering time intervals, it can be expressedsider a basic time unit, associate situations with discrete
(and indeed, must be handled) that executing two operators‘‘clock ticks’’ in terms of this time unit, and specify durations
yields different effects depending on whether they are exe-of operators and facts in terms of the resulting system time.
cuted sequentially or concurrently. For example, the effect ofAs this time model still has discrete situations as its ontologi-
pressing the �SHIFT� key and the �A� key on a computer key-cal time primitive, it can (at least conceptually) be merged
board depends on whether and how these two actions overlapinto classical planning in a straightforward way by appropri-
in time.ately splitting up the original situations into intermediate

A variety of approaches exists for reasoning about this typeones.
of temporal information; many of them are variants or spe-The basic idea is that a duration is specified for an opera-
cializations of modal temporal logic. Sandewall (18) gives ator in terms of time units, that a time must be specified for
comprehensive overview. Only few of them have been used ineach and every precondition until which it must be true,
planning until now. The pragmatic reason is that the reason-counted from the operator start, and a time must be specified
ing about time that is possible with these powerful formal-for each and every add/delete condition when it begins/ceases
isms is likely to take too much time itself. Moreover, itto be true. For example, let the STACK(x, y) operator have a
requires considerable effort to design the appropriate descrip-duration of 4 units; then its precondition may specify that
tions for domains of more than toy size.Hand(x) is required to be true at least until and including 2

An example for an interval-based planner is Allen’s (19)units after the operator starts; we use Hand(x)@2 as the nota-
ILP, which is formally based on his work on reasoning abouttion in preconditions. In the add list, assume the hand gets
time intervals using a relational algebra (20). Figure 6 givesfree at time 3, that is, Hand(NIL)@3; at the same time, x is no
an example of how to represent the MOVE operator. Thelonger being held, i.e., Hand(x)@3 is in the delete set. (Note
predicates Finishes, Meets, Overlaps, and SameEnd are ge-the interpretation difference of the @ sign in preconditions
neric predicates for time intervals the reasoning with whichand postconditions.) Assuming STACK(A, B) gets scheduled
is described in Ref. 20; the Clear, Hand, and On predicates arefor absolute system time 4711, that means Hand(A) must be
parts of the blocks world domain language as before, whosetrue (and will be true, once the plan is finished) until 4713
last arguments specify time intervals over which the respec-and ceases to be true from 4714, at which time Hand(NIL) be-
tive facts are valid; Move(x, y, o, t) represents the fact that acomes true.
MOVE operator instance o with arguments x, y is executedAs a practical variation of this scheme, imprecision of
over the time interval t. The syntactic function move(x, y) isknowledge about exact execution times and holding periods
the representation of the actual operator as it appears in anmay be handled by providing lower and upper bounds of the
ILP plan, and the Try predicate represents its application overrespective values. For example, it may be specified for the
the respective time interval.STACK(x, y) operator that Hand(x) starts to be true no earlier

More axioms are necessary for formalizing the domain, thethan 3 and no later than 4 units after the operator start—or
temporal predicates, and their interplay. Details are out ofHand(x)@[3, 4] to use a standard notation. Vere’s (16) planner
the scope of this text; to give an idea of the information re-DEVISER has used this type of information. Moreover, it can
quired, here is an example axiomatizing the structure of in-handle scheduled events, that is, events that are known to
tervals that meet each other:

happen and change certain facts without further action at ab-
solute time points, such as sunrise or shop closing hours.
IXTET by Ghallab and coworkers (17) is a temporal planner
that integrates the planning process into a more general view

∀r, s, t, u.[Meets(r, s) ∧ Meets(s, t) ∧ Meets(t, u)

→ ∃t ′.[Meets(r, t ′) ∧ Meets(t ′, u)]]
of temporal reasoning.

Handling numerical time information in the way just Planning now means to find a consistent structure of oper-
sketched allows a planner to generate plans that not only ator and predicate intervals such that the conjunction of goal
specify a feasible order of actions, but also make a schedule conditions is entailed for some interval ‘‘at the end.’’ Much of
that specifies exactly when to execute some action. Moreover, Allen’s ILP algorithm can be described in analogy to CPP-like
goals can be given deadlines or durations, and both the se- classical planning: The analog of dependency is the matching
quential plan and the schedule can be generated to meet of two postcondition and precondition intervals of different
them. This planning-plus-scheduling functionality is attrac- operators, where the intervals are labeled with identical—or
tive for a large number of applications in manufacturing or rather, unifiable—propositions; the analog of conflict is the
logistics. Some examples will be given in the section below on overlap of two intervals that are labeled with propositions

that are inconsistent under the domain theory; the analog ofplanning applications.
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Figure 6. Axiomatization of the MOVE operator as for the
ILP planner. A graphical representation of the interval struc-
ture for the operator O � MOVE(A, B) as executed in time
interval T1 is given on top. (Adapted from Ref. 19, p. 25,

Clear(A, prel1(O))

Interval structure:
∀ o ∃x, y, t.
[  Move(x, y, o, t ) Æ
   Overlaps(pre1(o), t )   Finishes(con1(o), t )   Meets(pre1(o), con1(o))^
   Meets(t, eff1(o))   SameEnd(t, pre2(o))   Meets(t, eff2(o))]

Necessary facts:
∀ x, y, t.
[  Move(x, y, o, t ) Æ
   Clear(pre1(o))   Clear(y, pre2(o))   Hand(x, con1(o))
   Clear(x, eff1(o))   On(x, y,, eff2(o))]

Effects on previous x locations:
∀ x, y, z, o, t, t′.
[ Move(x, y, o, t )   On(x, z, t′)   Overlaps(t′, t ) Æ
    Clear(z,eff3(o))   Meets(t′, eff3(o))   Meets(t′, con1(o))]

Sufficient execution conditions:
∀ x, y, z, o, t∃t′, t′′.
[ Try(move(x, y), o, t )   Clear(y, t′)   Overlaps(t′, t) 
    Clear(y, t′′)   SameEnd(t, t′′) Æ
    Move(x, y, o, t)]

Hand(A, con1(O))

Clear(B, prel2(O))

Clear(A, eff1(O))

On(A, B, eff2(O))

Clear(z, eff3(O))On(A, z, t′)

Move(A, B, O, T1)

V
V

V
V

V

V
V

VV

V
V V

V

V
V

Fig. 13.)

operator insertion is the addition of a set of axiom instances • A generalized operator schema that allows one to specify
different effects for different execution contexts and dif-describing an operator (like the ones in Fig. 6).

Coming back to the motivation of interval-based temporal ferent possible effects within one execution context; so
the operator format [Pre�Post] of classical planning stat-planning, it is possible to make operator effects conditional on

facts that hold or cease to hold during its execution. For ex- ing preconditions Pre and postconditions Post (e.g., in
terms of added and deleted facts) changes toample, it can easily be expressed that pressing the �A� key on

a computer keyboard yields a capital A if it is done During the
execution of the operator of pressing �SHIFT�, and yields a
lowercase A else. However, the technical apparatus needed to
achieve this expressivity is considerable.

[Pre1 | Post1,1, . . ., Post1,l(1)

...

Prem | Postm,1, . . ., Postm,l(m)]
Uncertainty

where the Prei denote different execution contexts, andMost real-world application domains involve some degree and
the Posti, j are different, exclusive sets of effect descrip-some form of uncertainty: Knowledge about the initial condi-
tions, typically labeled with probability information stat-tions may be incomplete and possibly inaccurate; actions may
ing how likely the respective outcome is. In consequence,be known to fail sometimes; actions may work differently un-
an operator maps a probability distribution over situa-der different conditions. Pragmatically, there are three ways
tions into another such probability distribution.to approach this. If the uncertainty is too large, then there is

• Information about the utility of states, features of states,no point in planning; more information is needed first, or, if
and/or action applications. As usual, negative utility cantolerable, one may act according to some given scheme. If the
be interpreted as cost.uncertainty is sufficiently small or irrelevant, it is acceptable

to ignore it and use the planning techniques described pre-
It is natural, then, to think of planning as a Markovian deci-viously. In all other cases, the uncertainty needs to be repre-
sion process (MDP) or a partially observable MDP (21) assented and addressed in planning. As there are many differ-
originally introduced in operations research. A plan in thisent aspects of uncertainty for planning and different ways to
view is a structure that maps a probability distribution overrepresent and process it, there is a large variety of approaches
situations to an action, where it is desirable that this actionto planning under uncertainty. Reference 4, Part V gives a
maximize the expected utility; plans of this sort are commonlycomprehensive introduction.
called policies. Different maximization strategies are possible,Compared to the classical planning framework, planning
depending on whether immediate or long-term expected bene-under uncertainty typically uses the following additional in-
fit is to be favored. Long-term expected benefit is a naturalgredients:
quality criterion for planning, but within tolerable computa-
tion times and for realistic state spaces, it can at best be ap-• A probability distribution over situations, representing

uncertainty about the initial state. proximated.
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As the information about the respective recent world state Always Behave. ‘‘The plan runs even while the planner
thinks. If parts of the plan fail, the rest can usually con-is incomplete, it makes sense to consider sensor actions in
tinue while the planner fixes it.’’ 3T (25) is an exampleplans/policies or in their execution for disambiguating situa-
for such a robot control architecture integrating deliber-tions. They are not intended to bring about changes in the
ative planning, plan execution, and a reactive layer; itworld, but to change the plan-executing agent’s knowledge
has been demonstrated to work for a number of differ-about the current state by reducing entropy in the recent
ent application areas.probability distribution. Sensor actions play an important

practical role in control of autonomous robots; they cannot be Plan at Any Time. ‘‘Make use of fast interruptible algo-
modeled adequately in classical planning (see, for example, rithms. . . . When the planner finds a better plan, swap
Ref. 42). it in.’’ A class of algorithms allowing for this type of be-

havior are anytime algorithms, or, more generally, algo-
rithms that allow for deliberation scheduling (26), thatReactive Planning and Situatedness
is, for explicit control of their computation under time

Designing methods for helping autonomous agents—such as constraints.
mobile robots or software agents—act purposefully has al-
ways been one of the goals of AI planning research. A line of A different line of work argues for generating (or even
work in this very area has led to fundamental criticism of hand-coding) plans for the most likely problems off line before
the use of representations in mainstream AI in general and and applying them in reaction to the situational patterns that
towards ‘‘deliberative’’ planning in particular: behavior-based the agent encounters. The Procedural Reasoning System
agent architectures (22) and situated action (23). (PRS) (27) has been influential in this direction; policies in

The heart of the criticism is this: In designing autonomous planning under uncertainty as sketched above can also be un-
agents a number of serious technical and fundamental prob- derstood in that way.
lems arise if action is based on generating and executing
plans in one of the senses described above; moreover, and

APPLICATIONSluckily, it is not necessary to do so, but there is an alternative:
situated action. One of the technical problems is that plan-

Applications of AI planning are as diverse as suggested by itsning with either of the methods described takes time, which
definition ‘‘finding in advance some course of action’’ in theis often nonnegligible, but an agent in a dynamic environ-
introduction of this article. A recent collection (28) featuresment must be prepared to act—or react, for that matter—
five application systems that are in use or on the way towardpurposefully at any time without calling its planner module
commercial products and employ planning techniques in theand waiting for the output first. One of the fundamental prob-
sense described above for the following problems: declarerlems is that representation-based planning presumes it is
play in contract bridge; reaction to marine oil spills; projectpossible and practical to ‘‘ground’’ the symbols in perceptions
management in spacecraft assembly, integration, and verifi-in the sense that an effective translation exists between the
cation; operating communication antennas; and military air

sensor input stream of the agent and a symbolic (e.g., first-
campaign planning. In addition to such systems that explic-

order logic) domain representation. itly build upon the generic planning methods as described
To understand this criticism well, let us briefly state some here, there have always been systems specially designed for

cases of deliberative planning to which it obviously does not special applications; an early example for such a system,
apply. First, not every car manufacturer wishes to generate which has influenced the development of generic planning
or change its job shop schedules in milliseconds, so there are methods, was Stefik’s MOLGEN (29), a knowledge-based sys-
planning applications without close reactivity deadlines. Sec- tem for designing experiments in molecular genetics.
ond, the symbol-grounding problem as such need not be A push for transferring planning methods and software
solved to design autonomous mobile robots for particular ap- prototype systems into real-world applications has resulted
plications in which it is possible to monitor directly the truth from the DARPA Planning and Scheduling Research Initia-
or falsity of the crucial state features. Third, in all cases tive, which has been in effect since 1991; Ref. 30 is a collection
where plans are generated for humans to interpret and exe- of papers from this context. Economically, the initiative was
cute, we can rely upon their symbol-handling capabilities. a definite success, judging from a report by the US Depart-

The argument applies in one part to cognitive AI research, ment of Commerce, saying that (quoted from Ref. 30, p. vii)
that is, to that line of AI work which is concerned with model-
ing and understanding intelligent behavior in general, or with the deployment of a single logistics support aid called DART
‘‘achieving artificial intelligence through building robots,’’ in during the Desert Shield/Desert Storm Campaign paid back
Brooks’s terms. Among the various AI researchers, it is far all US government investments on AI/KBS research over a 30
from generally accepted, by the way; see, for example, the de- year period.
bate in Ref. 24.

For some application fields, such as control of autonomous Much of the application success of the ARPI initiative is owed
mobile robots, reactivity and sensor interpretation are obvi- to two powerful generic planning systems that are based upon
ous issues, and work along the lines of behavior-based control the methods described earlier: SIPE-2, on which the DART sys-
and situated action has helped shape the understanding of tem was built, and O-Plan (see Refs. 31 and 32, respectively,
planning and of the uses of plans. Summing up constraints for comprehensive descriptions of their basics).
for a general robot control architecture, McDermott (15, p. 76) Among current industrial applications of AI planning tech-

nology, logistics planning and integrated planning and sched-states two points as mandatory, among others:
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uling stand out as application classes; see Ref. 33 for a collec- (31) and O-Plan (32); both systems still exist in enhanced ver-
sions.tion of papers. If recent market estimations turn out to be

correct and service robots have the market potential that is Reference 39 is a collection of classical papers. Weld (2)
and Yang (3) give comprehensive introductions into planning,currently suspected, then another broad field for industrial

application of planning technology lies ahead, as planning is both with an emphasis on classical planning. Introductions
are also contained in typical AI textbooks: Russell and Norvigunavoidable for high-level task and mission control of autono-

mous mobile robots; McDermott (15) gives an overview of the (4) present planning comprehensively. Reference 30 is a col-
lection of recent application-oriented papers.planning issues that are involved. Latombe (43) reviews com-

prehensively the fields of path planning and motion planning, Recent planning research is regularly presented in two bi-
annual conferences, namely the International Conference onwhich are essential ingredients for mobile robot control, but

are normally based on special-purpose algorithms. Finally, as AI Planning Systems (AIPS) and the European Conference on
Planning (ECP). The most recent proceedings volumes at thesoftware agents (‘‘softbots’’) in the World Wide Web become

practical, so does the planning capability that they require; time of writing are Refs. 40 and 41.
see, for example, Ref. 44.
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