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this approach, a heuristic method is represented as a collec-
tion of production rules, and learning modifies these rules
based on positive and negative examples and on decisions
made in these rules. The process of apportioning a feedback
signal to individual decisions carried out in the past, as well
as to decision elements applied in each decision, in order to
refine the heuristic method is called credit assignment. The
former credit assignment is called temporal, and the latter,
structural. Credit assignment is usually difficult when learn-
ing incrementally single concepts from examples, especially
when learning multiple disjunctive concepts and when the
learning data is noisy. In this case, a teacher may be needed
to tell the learner the proper amount of credit to assign to
a decision.

A second class of data-intensive learning methods are deci-ARTIFICIAL INTELLIGENCE, GENERALIZATION
sion-theoretic methods that use statistical decision theory to
discriminate probabilistic patterns exhibited in learning ex-Generalization in psychology is the tendency to respond in the
amples (5). The major component in a decision-theoretic ap-same way to different but similar stimuli (1). Such transfer of
proach is the loss function that measures the loss when thetendency may be based on temporal stimuli, spatial cues, or
learner categorizes a learning example incorrectly. It repre-other physical characteristics. Learning, on the other hand,
sents a statistical approach to credit assignment. By minimiz-may be considered as a balance between generalization and
ing the total loss using statistical methods, it is sometimesdiscrimination (the ability to respond to differences among
possible to show asymptotic convergence of the concept to bestimuli). An imbalance between them may lead to negative
learned. Examples of decision-theoretic methods include evo-results. A system that discriminates but does not generalize
lutionary programming (6), genetic algorithms (7), classifierdoes not learn. Because it is unable to learn, it may not be
systems (8), and artificial neural networks (ANNs) (9).able to respond similarly to stimuli with small differences.

In contrast to using extensive training examples in data-Likewise, a system that generalizes but does not discriminate
intensive methods, knowledge-intensive methods rely onmay respond similarly all the time.
domain-specific knowledge to learn and to generalize. In ex-Machine learning is an area in artificial intelligence that
planation-based learning, the learner analyzes a single train-extends knowledge, concepts, and understanding through one
ing example using domain knowledge and the concept underor more observations of instances of the concept (2). The num-
study to produce a generalization of the example and a deduc-ber of instances involved and the amount of information they
tive justification of the generalization (10,11). Knowledge-carry will determine the learning method to be used.
intensive methods work well when the concept to be general-Learning methods can be classified as data-intensive and
ized can be deduced from the domain knowledge.knowledge-intensive (see Fig. 1). In data-intensive methods,

To evaluate the quality of a learning and generalizationsymbolic concepts are learned using data-intensive similarity-
method and to measure the degree to which learning and gen-based methods. The learner is shown a large number of re-
eralization has been achieved, generalizability measures havelated examples and is required to identify their similarities
been developed. In the simplest case, they measure the num-and generalize the concept embedded. Using this approach,
ber of positive and negative examples in learning. In moreMitchell (3) defines generalization as a process that takes into
general cases, the degree to which an example satisfies aaccount a large number of specific observations (inductive
learned concept must be considered, and statistical tech-bias), and that extracts and retains the important features
niques are employed to determine whether a learned conceptthat characterize classes of these observations. He then casts
can be generalized.generalization as a search problem, and alternative general-

For example, in learning in feedforward ANNs, the ef-ization methods as different search strategies.
fectiveness of an ANN that computes discrete �0,1�-valuedAn example of a data-intensive learning method is the
mappings can be evaluated by the network’s ability to solvelearning of heuristics represented as production rules (4). In
dichotomization problems using measures such as discrimina-
tion capacity, VC-dimension (named after Vapnik and Cher-
vonenkis), and efficiency of decision functions (12). For an
ANN that performs function approximation computing either
discrete multiple-valued or continuous mappings, we can
measure its quality using concepts such as combinatorial di-
mension, approximation error, and estimation error. Finally,
the concept of PAC (probably approximately correct) learning
(13) is useful for characterizing the time complexity of algo-
rithms for learning both discrete and continuous mappings.

A related problem in generalizability is the normalization
of learned results relative to a baseline. When the quality of

Data-intensive
methods

Knowledge-
intensive methods

Performance
normalization

Statistical methods
to evaluate

generalizability

Concept learning
and

generalization

a learned concept is measured numerically and depends on
some attributes of the example, it may be necessary to nor-Figure 1. The relationship between concept learning, generalization,

and generalizability. malize the measure with respect to that of a baseline before
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a set of positive and negative examples, predicates are
matched from generalizations to instances. Hence, generaliza-

Instance
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Rule
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Experiment planning instance

Selection result generalization tions are defined within the provided language that are con-
sistent with the presented training examples.Figure 2. The process of inductive learning and generalization.

In general, generalization also requires a function to evalu-
ate the positive and negative examples obtained in order to
provide feedback (credit assignment). In the simplest case,any statistical evaluations can be made. For instance, the

quality measure of a learned concept may depend on the size the function counts the number of positive and negative ex-
amples. In decision-theoretic approaches, a loss function isof the learning example and needs to be normalized before

results from multiple learning examples can be aggregated used to measure the loss when the learner categorizes a
learning example incorrectly. This is the approach taken instatistically. In this case, the generalizability of the learned

concept may depend on the baseline and the statistical classifier-system and genetics-based learning that uses a fit-
ness function. In reinforcement learning, the evaluation func-method used to aggregate performance measures. Anomalies

in the ordering of hypotheses may happen when different nor- tion may have to be learned independently in order to provide
proper temporal credit assignment. This is the approachmalization and aggregation methods are used. This is dis-

cussed in detail in a later section. taken in learning an ANN for pole balancing (15) truck backer
(16), and neural-network design (17). The reinforcement func-In the next section we summarize previous approaches in

generalization and credit assignment. We then present the tion is particularly difficult to design when examples drawn
from the problem space are not statistically related. This hap-general concept of generalizability, generalizability measures,

and anomalies in generalization when performance measures pens when the evaluation data depends on the size of the ex-
amples, or when the examples drawn belong to different prob-are normalized and aggregated.
lem subdomains. Some possible solutions to these issues are
discussed in a later section.

CONCEPT GENERALIZATION USING INDUCTION

Generalization StrategiesIn this section we summarize various strategies for general-
ization. Early work on inductive learning and generalization As defined by Mitchell (3,11), generalization strategies can
was done by Simon and Lea (14) who used training instances broadly be classified as data driven and knowledge-driven.
selected from some space of possible instances to guide the (See Fig. 3.) Both paradigms use generate-and-test that gen-
search for general rules. The process of inductive learning en- erates alternative concepts, tests them on test cases, and con-
tails a mapping from the instance space to the rule space and structs feedbacks (credit assignment) to aid the refinement of
involves experiment planning, instance selection, and result the concepts generated. The difference lies in the amount of
interpretation (or generalization). (See Fig. 2.) Here, a set of tests performed: data-driven methods do not rely on domain
problem instances are used to guide the selection of a set of knowledge and often require extensive tests on the concepts
rules in the rule space that generalize the instances. The re- under consideration before reliable feedbacks can be gener-
sulting set of rules may be organized as distinct rules or as ated. In contrast, knowledge-driven methods rely on domain
decision trees. knowledge and one or a few tests to deduce new concepts.

Data-driven generalization strategies can be classified into
The Generalization Problem depth-first search, breadth-first search, version-space, and de-

cision-theoretic techniques (3).Generalization involves the extraction of information useful
A depth-first strategy starts from a single generalizationto guide the search of a rule space (2). To simplify the search

as the current best hypothesis, tests it against each trainingprocess, a good representation of the rule space must be cho-
example, and modifies the hypothesis in order to make it con-sen so that generalization can be carried out by inexpensive
sistent with the training example. Its advantage is that itsyntactic operations, such as turning constants to variables,
keeps a global picture in mind when modifying the hypothe-dropping conditions, adding options, curve fitting, and zeroing
sis. However, it is usually expensive to backtrack when a neg-a coefficient.
ative training example is found. In this case, the new hypoth-The specific operators used may depend on the representa-
esis generated must be tested against all previous trainingtion of the rule space. For instance, a production rule Z � Z�
examples to make sure that they are consistent. Any inconsis-can be used to represent either the backward form (Z is the
tencies will incur further backtracking.input condition, and Z� is the value of a state vector plus asso-

ciated predicate) or the forward form (Z� is a computational
rule). The evaluation of the execution of a rule constitutes
credit assignment, whereas the creation of new rules involves
generalization. The latter entails the identification of a sub-
vector of variables relevant to the creation, the proper deci-
sion for the situation, and the reason for making the decision.
Waterman (4) proposed a set of generalization operators that
modify the defined symbolic values in a rule, eliminate one or
more variables in a rule, and change action rules and error-
causing rules.
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Mitchell (3) defines generalization in the context of a lan-
guage that describes instances and generalizations. Based on Figure 3. A classification of generalization strategies.
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A breadth-first strategy, on the other hand, generalizes composing terms from different parts of the explanation to
form a valid generalization.from more specific hypotheses to more general ones. Initially,

One of the problems in explanation-based learning is thatit starts from a set of the most specific hypotheses. Positive
learning through multiple examples may result in multipletraining examples allow the search to progress down the
rules that cannot be combined into a single rule. This leadsbreadth-first tree, generating more general hypotheses,
to gradual degradation in efficiency in the generalized rules.whereas negative training examples will prune the corre-
Another problem is that explanation-based generalizationsponding hypothesis from the search tree. The boundary of
does not create new parameters; hence, parameters not ex-the search tree, therefore, represents the most general
plicitly expressed in the proof cannot be generalized. In thishypotheses generated so far that are consistent with the (pos-
context, studies have been made to generalize the structureitive) training examples. As a result, when a new (more gen-
of an example proof such that a fixed number of rule applica-eral) hypothesis is generated, it only needs to be tested
tions in the proof is generalized into an unbounded numberagainst all positive training examples to make sure that they
of applications (18).are consistent with the current hypothesis. This is the main

advantage of a breadth-first search over a depth-first search.
A hybrid of depth-first and breadth-first strategies is a ver- Credit Assignment

sion-space strategy. The version space represents the set of
Credit assignment entails the apportioning of feedback sig-hypothesis that are consistent with all the training examples.
nals to individual decisions made in the past as well as rules/It defines two boundaries. The first boundary is obtained by
entities leading to a decision. The application of credit assign-depth-first search and bounds the acceptable level of special-
ment requires a world model that captures the relationshipization of hypotheses (those that are consistent with all the
among states, decisions, and feedback signals generated bypositive examples). The second boundary is obtained by
the learning system or measured in the environment. Thisbreadth-first search and bounds the acceptable level of gener-
world model is explicitly defined in knowledge-rich applica-ality of hypotheses (those that are inconsistent with all the
tions, but may have to be inferred during learning and gener-negative examples).
alization when domain knowledge is not available. Credit as-A third class of data-driven generalization strategies are
signment is further complicated when there may be delays inthe decision-theoretic techniques. These do not always use a
getting the feedback signals due to a decision. In this case,single type of search method but may use a hybrid of search
multiple subsequent decisions may have been made between

methods, such as depth-first and breadth-first searches, de-
the times a decision was made and its feedback signal re-

pending on the evaluation results. They rely of a loss function ceived.
that measures the expected loss when the learner categorizes There are two types of credit assignment: structural and
a learning example incorrectly. Although the loss function temporal (15). Structural credit assignment entails ways of
may be designed either based on formal statistical methods using feedback signals to refine the individual components or
or heuristically, the generalization strategy can generally be rules of a hypothesis. This process is systematic in explana-
shown to converge asymptotically to the desired concept. For tion-based learning as it involves rewriting one rule into an-
instance, in genetic algorithms, Holland’s Schema Theorem other in the proof structure. In other learning approaches,
(7) shows that the number of structures in a knowledge base credit assignment may not be possible when domain knowl-
that share a given subset of components can be expected to edge is missing. In this case, one may employ population-
increase or decrease over time at a rate proportional to the based learning (19) that maintains a population of competing
observed performance of the subset, eventually converging as- hypotheses and delays choosing the best hypothesis to evalu-
ymptotically to the optimal configuration. ate or new ones to create until more tests are performed on

In contrast to data-driven techniques, an explanation- each of the alternatives.
based generalization strategy uses domain knowledge to gen- Temporal credit assignment, on the other hand, entails the
eralize from an example, defining a concept that contains the apportioning of temporal global feedback signals by the learn-
example (11). It analyzes a single example in terms of the ing system to the past decisions that affect these signals.
domain knowledge and the goal concept and produces a proof When a decision is applied, its temporal scope is the interval
(or explanation) that shows that the example is an instance of time during which its direct effect can be observed in the
of the goal concept. Here, the goal concept found satisfies the application environment. If the temporal scope is infinite and
operationality criteria, which is a predicate over concept state changes are Markovian, then the effects due to a feed-
definitions that specifies the form in which the concept must back signal will be attributed only to the most recent decision
be learned. The proof tree in the process of generalization is made in the past, and the effects of other decisions will be felt
constructed by replacing each instantiated rule by the associ- indirectly through intervening decisions and states. When the
ated general rule. temporal scope is finite and state changes are dependent and

An explanation-based strategy can start from general con- non-Markovian, then an approximate temporal model is
cepts to derive specific ones, or vice versa. It consists of two needed for temporal credit assignment. Temporal credit as-
phases: explanation and generalization. In the explanation signment is used extensively in reinforcement learning (15).
phase, the relevant features of the training example are iso- Credit assignment can be either implicit or explicit. An ex-
lated in order to create an explanation structure that termi- ample of implicit credit assignment is done in LS-1 (20) in
nates in an expression satisfying the operationality criterion. which rules that are physically close together on the list rep-
In the generalization phase, a set of sufficient conditions are resenting the knowledge structure stand a good chance of be-
found to satisfy the explanation. This is done by regressing ing inherited as a group. On the other hand, in explicit credit

assignment, explicit rules are defined for credit assignment.the goal concept through the explanation structure and by
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Examples of explicit temporal credit-assignment mechanisms mains. For instance, one would be interested to know whether
a computer has high speedups across both CPU-bound andare the profit sharing plan and the bucket brigade algorithm

in classifier systems (21). A hybrid of implicit and explicit I/O-bound applications. This comparison may be difficult be-
cause test cases in different subdomains of a subspace maycredit assignment can also be defined (22).
have different performance distributions and cannot be com-
pared statistically. We address this issue in a later section.
In the next subsection, we examine some formal results inGENERALIZABILITY MEASURES
generalizability for classification problems in one subdomain.

To evaluate whether the goal of learning and generalization
is achieved, generalizability measures are used to evaluate Formal Results on Generalizability
the quality of generalization. These measures are not limited

Formal methods to deal with generalizability in learning withto the field of machine learning but are used in performance
one performance measure have been studied extensively inevaluation of many other areas. For instance, in evaluating
computational learning theory. They center on the notion ofthe speed of a computer, one generally defines a reference
PAC-learnability (23) of a concept class C by a learning algo-computer, such as the VAX 11/780, and computes the
rithm L, where a concept is defined as a subset of some in-speedup of the computer with respect to the reference for a
stance space X. A learner tries to learn target concept C, find-collection of benchmarks. Based on the evaluation results, one
ing out points of X (drawn randomly) whether they belong togeneralizes the speedup to benchmarks not tested in the eval-
the target concept. The goal of the learner is to produce withuation.
high probability (�1 � �) a hypothesis that is close (within �)Since different regions of the problem space of an applica-
to the target concept, assuming that the learner does nottion domain may have different characteristics, it may not be
know the underlying distribution of the sample points. (Thepossible to evaluate generalization across all examples of a
following definitions are from a survey paper by Kearns et al.problem space. To this end, the problem space is decomposed
(24).) A concept C produced by a learning algorithm L on in-into smaller partitions before generalization is evaluated. For
put vector T is approximately correct if the error rate P(C �instance, in evaluating a computer, one defines its speedups
T) is at most �. If, for any concept class C, with probabilityfor different collections of benchmarks in order to reflect its
distribution P, accuracy parameter �, and confidence parame-performance under different applications.
ter �, the probability that the output C is approximately cor-In the partitioning of a problem space, we define a problem
rect is at least (1 � �), then the learning algorithm is probablysubspace as a user-defined partition of a problem space so
approximately correct; and, L is said to PAC-learn C. A learn-that hypotheses for one subspace are evaluated independent
ing algorithm L is a polynomial PAC-learning algorithm forof hypotheses in other subspaces. Such partitioning is gener-
class C, if L PAC-learns C with both time complexity andally guided by common-sense knowledge or by user experience
sample complexity polynomial in 1/� and 1/�.in solving similar application problems. To identify a problem

To understand bounds on estimation by a learning algo-subspace, we need to know one or more attributes to classify
rithm, we need to estimate the largest number of input-spacetest cases and a set of decision rules to identify the subspace
points for which almost every possible dichotomy is achievedto which a test case belongs. For instance, in evaluating the
by some concept from a class C. VC-dimension (named afterspeedup of a computer, the partitioning of the class of all ap-
Vapnik and Chervonenkis (25)) addresses this issue. VC-di-plications is guided by user experience into the class of scien-
mension, V, of a concept class C is the size of the largest settific applications and the class of business applications.
S of input-space points such that for every subset U � S,Given a subspace of test cases, we define a problem subdo-
there exists some concept C � C where U � S � C. C is somemain as a partitioning of the subspace into smaller partitions
function realized by the concept; and C, the set of all suchso that the evaluation of a hypothesis can be done quantita-
functions realizable by that concept.tively for all the test cases in a subdomain. Such partitioning

Sauer (26) notes that whenever the VC-dimension of ais necessary because the statistical performance metrics com-
function class is finite, the number of dichotomies grows sub-puted (such as average or maximum) is not meaningful when
exponentially (actually, polynomially) in the number ofthe performance values are of different ranges and distribu-
points. The probability of a concept learned with a large esti-tions. To continue from the previous example, the class of sci-
mation error producing correct outputs for a given set ofentific benchmarks are further partitioned into subdomains
points goes rapidly to zero as the size of the set increases. Aaccording to their computational behavior, such as whether a
learning algorithm whose outputs are always consistent withprogram is CPU-bound (central processing unit-bound) or I/
the examples seen so far is called a consistent PAC-learningO-bound (input/output-bound).
algorithm. If the VC-dimension of a concept class is finite,In the same way that test cases are partitioned into sub-
then a consistent learning algorithm trained on a sufficientlyspaces, we need to know the attributes to classify test cases
large set of examples is likely to learn the correct concept.and a set of decision rules to identify the subdomain to which

Blumer et al. (27) have derived bounds on the numbera test case belongs. This may be difficult in some applications
m(�, �) of examples needed by a consistent algorithm to PAC-because the available attributes may not be well defined or
learn a concept class C having VC-dimension d. This was im-may be too large to be useful. For instance, the attribute to
proved by Ehrenfeucht et al. (28) to (1/� ln 1/� � d/�).classify whether a benchmark program is CPU-bound or

Baum and Haussler (29) have used these results to relateI/O-bound is imprecise and may depend on many underlying
the size of a neural network, the accuracy of the learned con-characteristics of the program.
cept, and the number of examples needed in order to guaran-After evaluating the performance of a hypothesis in each

subdomain, we need to compare its performance across subdo- tee a particular degree of accuracy. Their analysis suggests
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Average Improvement Ratio. Using the performance values
of one hypothesis as the baseline, we normalize each perfor-
mance value of another hypothesis by computing its ratio
with respect to that of the baseline when tested on the same
example. The average of the improvement ratios is then used
as the aggregate performance measure. The drawback of this
approach is that different ordering of the hypotheses can be
obtained, depending on the baseline hypothesis used. To illus-

Table 1. Summary of Raw CPU Times of Four
Computers in Evaluating Three Benchmarks

Computer

Benchmark C75 C76 C86 C99

t1 30.19 30.31 26.21 40.61
t2 43.12 43.34 34.09 24.65
t3 71.93 72.49 104.51 98.41

trate this point, consider the performance data presented in
Table 1. The second column of Table 2 shows the three anom-
alous orderings of the four computers based on their average

that generalization can be improved by pruning unnecessary normalized speedups using each computer as the baseline for
hidden units during learning. The reduced architecture has normalization. This shows that generalization based on the
VC-dimension not significantly larger than the VC-dimension average improvement ratios does not always lead to consis-
for an optimal number of hidden units. Baum and Haussler tent conclusions.
establish the following necessary and sufficient conditions for Average Symmetric Improvement Ratio. This is a normaliza-
valid generalization for learning in neural networks of thresh- tion method we have developed before to avoid anomalies in
olded binary units. inconsistent orderings of two hypotheses due to the choice of

the baseline hypothesis (32). The idea is to avoid emphasizing
• A network of N nodes and W weights, which after being

differently in different ranges of the normalized performancetrained on at least O(W/� log N/�) examples, classifies at
values. The symmetric improvement ratio is defined as fol-least (1 � �/2) of them correctly, will almost certainly
lows:classify a fraction (1 � �) of future examples correctly.

• A fully connected feedforward network with one hidden
layer, trained on fewer than (W/�) examples will, for a
dichotomy realizable by the network, fail to find the req-

Ssym+,i =



S+,i − 1 if S+,i ≥ 1

1 − 1
S+,i

if 0 ≤ S+,i < 1 (1)

uisite set of weights for more than a fraction (1 � �) of
future examples. Ssym+ = 1

m

m∑
i=1

Ssym+,i (2)

Haussler (30) shows that, for it to be likely that feedfor-
ward networks with sigmoidal units obtain a low estimation where S�,i is the original improvement ratio on the ith test
error, the number of examples must grow linearly with both case. The symmetric improvement ratio has the property that
the number of modifiable weights and the number of hidden improvements are in the range between 0 and infinity, and
layers. That is, either of the following desiderata demands a degradations are in the range between 0 and negative infin-
larger training sample: (1) lowering the estimation error; (2) ity. For two hypotheses, when we reverse the role of the base-
increasing the confidence; and, (3) learning with sigmoids line hypotheses, their symmetric improvement ratios only
having a higher slope. change in sign. Hence, symmetric improvement ratios avoid

Barron (31) shows that, for a feedforward network having anomalies in performance orderings with two hypotheses.
n sigmoidal units and d input units and trained on N exam- However, anomalies in performance ordering are still pres-
ples, the total mean squared error (approximation plus esti- ent when more than two hypotheses are concerned. This is
mation) between the true function and the estimated function illustrated in Table 2 that shows three different orderings
is bounded from above by O(1/n) � O(nd/N) log N. when different computers are used as the baseline. Hence,

In summary, the theory in learnability provides conditions generalization based on the average symmetric improvement
and bounds on generalization that are useful when certain ratios may not lead to consistent conclusions.
restricted assumptions are met. Such assumptions may be Harmonic Mean Performance. This is defined as follows:
difficult to ascertain in practice because it is difficult to char-
acterize the set of test cases and hypotheses precisely. Under
such conditions, heuristic methods to measure generalizabil-

Sh = m∑m
i=1 1/S+

(3)

ity need to be developed. In the next two subsection, we pre-
Again, as illustrated in Table 2, anomalies in orderings aresent some results in this area.
still present.

Anomalies in Performance Normalization

In general learning problems, the raw performance results ob-
tained in evaluating hypotheses on examples may depend on
the size and characteristics of the examples and may not be
directly comparable. For instance, Table 1 shows the CPU
times of four computers in evaluating three benchmarks. Ob-
viously, these performance values cannot be aggregated di-
rectly because they belong to different ranges and are of dif-
ferent distributions. To aggregate them statistically, we must
normalize them first. In the following, we show five different
normalization methods.

Table 2. Anomalous Orderings of Computers
in Decreasing Average Normalized Speedups
Using Three Different Normalization Methods

Average Average Symmetric Harmonic
Baseline Improvement Ratio Improvement Ratio Mean

C75 C99C86C75C76 C99C75C76C86 C75C76C86C99

C76 C99C86C75C76 C99C75C76C86 C75C76C86C99

C86 C75C76C99C86 C75C76C85C99 C86C75C76C99

C99 C75C76C86C99 C86C99C75C76 C99C86C75C76
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Geometric Mean Performance. This is defined as follows: As a result, these performance values cannot be aggregated
statistically, and the hypotheses cannot be compared directly
and generalized across subdomains. In this section, we pres-
ent a heuristic method to evaluate performance across subdo-Sg = m

√
m∏

i=1

S+,i (4)

mains in a range-independent way. We assume that the per-
formance values of testing a hypothesis in a subdomain areTaking the logarithm of both sides, we have:
independent and identically distributed. This assumption
allows the values in a subdomain to be aggregated by statisti-
cal methods, such as averaging.log Sg = 1

m

m∑
i=1

log S+,i = 1
m

m∑
k=1

log tb,k − 1
m

m∑
k=1

log th,k (5)
In the following, we present a method that uses the sample

mean as a statistical estimate of the population mean. To ad-
where tb,k and th,k are, respectively, the kth performance values dress uncertainties in using sample means, we have studied
of the baseline and the hypothesis being normalized. Based a concept called probability of win (32), Pwin, that compares
on Eq. (5), an alternative way to view a geometric mean is two sample means and computes the probability that one
that it is an arithmetic mean of the logarithms of raw perfor- sample mean is larger than another. This is similar to hy-
mance values. The effect of the baseline hypothesis on the pothesis testing in which we take random samples to test
average normalized performance is reflected in the first con- whether a property of a population is likely to be true or false
stant term in Eq. (5). Hence, when the baseline is changed, (33). Obviously, it may be difficult to test a hypothesis fully
only a constant term will be changed, and performance order- by testing the entire population of test cases or by testing
ing is not affected. This is illustrated in the example in Table only a single random sample.
1 in which the ordering C86C75C76C99 is unchanged when the There are four steps in general hypothesis testing. (1)
baseline is changed. Specify a significance level �. (2) Specify the testing hypothe-

Average Normalized Performance With Respect to the Median ses that include both null hypothesis H0 and alternative hy-
Performance. This belongs to a general class of methods that pothesis H1. (3) Find the corresponding acceptance region us-
normalizes the performance values of hypotheses on each test ing lookup tables. (4) Make a decision on the sample value. If
case with respect to a test case-specific constant that is invari- the sample falls in the acceptance region, then accept H0 and
ant as more hypotheses are evaluated. The specific method reject H1; otherwise, reject H0 and accept H1.here uses the median performance value of all the hypotheses The probability of win measures statistically how much
on each test case as the baseline for normalization. Unlike better (or worse) the sample mean of one hypothesis is as
using a baseline hypothesis that may induce a different order- compared to that of another. It resembles the significance
ing when the baseline is changed, the median performance is level in general hypothesis testing, but there are two major
invariant with respect to the hypotheses and test cases in a differences. First, only one hypothesis �H: �1 � �2� is speci-
subdomain. Using this normalization method, the perfor- fied, without the alternative hypothesis. Further, in contrast
mance distributions of all the test cases will center around to hypothesis testing, acceptance confidence is not given in
zero. This method is illustrated in the example in Table 1 in advance but is evaluated based on sample values.
which the ordering is C76C75C99C86. In computing this ordering, One advantage of Pwin is that it is between zero and one
we made a simplifying assumption that the median perfor- and is independent of the actual performance difference
mance of each computer on the three benchmarks is the same across subdomains. Hence, it can be used to compare hypothe-
as the median performance of the computer across all possi- ses in a uniform way across subdomains.
ble benchmarks. Consider the performance of Hi in subdomain j. (For conve-

A potential problem with this approach is the unavailabil- nience of formulation, subscript j is ignored in the following
ity of the true median performance value of hypotheses for discussion.) Let �i and �i be the true mean and true standard
each test case. Hence, the sample median may have to be deviation of the mean normalized performance with respect
used instead. Unfortunately, estimated sample medians are to the baseline hypothesis H0 (any one of the normalization
inaccurate during learning because hypotheses may not be methods presented in the previous section can be used).
tested adequately, and sample medians are sensitive to the When ni samples are taken, we can calculate the sample
hypotheses tested. Solutions to this issue are still open at mean �i and sample standard deviation � i. By Central Limit
this time. Theorem,

In summary, anomalies in performance normalization do
not exist when either the baseline is fixed (as in the case of
the median performance) or the effect of changing the base-
line only results in changing a constant term in the (trans-

Pr(µ̄i | µi, σi, ni) ≈ N

(
µi,

σ 2
i

ni

)

formed) normalized performance (as in the case of the geomet-
where N is the normal distribution function with mean �iric mean performance). In other cases, it is possible for the
and standard deviation ��2

i /ni. Let t beorder of the hypotheses to change when the baseline is
changed. The necessary and sufficient conditions for anoma-
lies to happen are still open at this time. t = µ̄i − µi

σ̄i/ni

Generalizability Measures Across Subdomains
where t has Student’s t-distribution with ni � 1 degrees of
freedom when the number of samples is less than 30 and theWhen hypotheses are tested across different subdomains of

an application, their performance values, even after normal- variance is unknown. The probability that this hypothesis is
better than H0 with mean value zero (if the average normal-ization, may have different ranges and different distributions.
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It is important to point out that probabilities of mean are
used to evaluate whether a hypothesis is better than the base-
line and is not meant to rank order all the hypotheses. Hence,
when hypotheses are ordered using their probabilities of win
and performance is normalized by any method in which the
baseline can be changed, anomalies in performance ordering
may happen. As illustrated in the Ref. 35, this phenomenon
happens because not only the mean but the variance of the
baseline are important in determining the ordering of the
hypotheses. The variance of the performance values places

Table 3. Examples Illustrating How Pwin

Changes With Increasing Number of Samples
(Performance is Normalized With Respect to H0)

No. of Samples to
Compute Pwin

Hi �i �i 5 10 30

H1 0.336 1.231 0.652 0.725 0.849
H2 �0.129 0.222 0.202 0.097 0.012
H3 0.514 0.456 0.940 0.991 1.000

another degree of freedom in the performance ordering, which
can change the ordering when the variance changes. Conse-
quently, the ordering may change when a baseline with a
small variance is changed to one with a large variance (or viceized performance of H0 is not zero, then appropriate shifting
versa). This happens even for normalization methods that doin the mean value to zero can be performed) is
not have anomalies when hypotheses are ordered by their
mean values, such as the geometric mean. In short, anomalies
in performance ordering will not happen when hypotheses are
ranked by their probabilities of mean and when the baseline
hypothesis is fixed, such as the case when the median perfor-
mance of the hypotheses is used as the baseline.

Pr(H is true) = Pr
(

t ∈
(

−∞,
µ̄i

σ̄i/
√

n

))
(6)

=
∫ µ̄i/(σ̄i /

√
n

−∞
p(t is t−distributed) dt (7)

We are now ready to define a generalizability measure
across multiple subdomains. Because different subdomainswhere the acceptance region of this hypothesis is (��,
have different statistical behavior, performance from different�i/(� i/�n). Note that the right bound of the acceptance region
subdomains must be treated independently and cannot beis a random variable that depends on both the sample mean
combined.and the sample variance.

There are two assumptions on the strategies presented
here.

Example 1. Table 3 illustrates the Pwin for three hypotheses.
We see that Pwin of H1 increases toward one when the number

• We assume that the set of subdomains used in the designof samples increases. (H1 is better than H0.) In contrast, Pwin
process are representatives of all the subdomains in theof H2 reduces to zero when the number of samples is in-
application. These subdomains behave in a statisticallycreased. (H2 is worse than H0.) Last, Pwin of H3 reaches the
similar fashion to subdomains used in learning and inmaximum value 1.0, which means H3 is definitely better
generalization.than H0.

• We assume that the relative importance of one subdo-
main as compared to another is unknown, and that theNote that Pwin considers both the mean and variance.
performance of hypotheses in subdomains may be depen-Hence, when Pwin of a hypothesis is close to 0.5, it is not clear
dent. Under these assumptions, we cannot aggregatewhether the hypothesis is better than or worse than the
performance values of hypotheses across subdomains.baseline.
Our strategy is to select hypotheses so that their worst-Given baseline hypothesis H0, we now show Pwin of Hi in
case performance across all subdomains is better than asubdomain j with respect to the average performance of H0. minimum level.Assuming sample mean �̂i, j, sample variance �̂2

i, j, and ni, j test
cases, Pwin is defined as follows:

The objective of generalization here is to select a hypothe-
sis that is better than the incumbent hypothesis over a prob-
lem domain. When there are multiple such hypotheses, our
procedure should attempt to maximize the likelihood of select-

Pwin(i, j) = Ft


ni, j − 1,

µ̂i, j√
σ̂ 2

i, j/ni, j


 (8)

ing the best hypothesis among the given set. Define:

where Ft(�, x) is the cumulative distribution function of Stu- PWIN(i) = minjPwin(i, j) (10)
dent’s t-distribution with � degrees of freedom, and Pwin(i, j) is
the probability that the true performance (population mean)

When there is a baseline hypothesis H0, we apply one ofof Hi in subdomain j is better than that of H0. When ni, j � �,
the strategies in a previous section to normalize the perfor-we have
mance of a hypothesis in a subdomain with respect to the
baseline hypothesis. We consider Hi to be better than H0 in
subdomain j when PWIN(i) � 0.5 � �. Note that PWIN(i) is inde-
pendent of subdomain j and can be used in generalization if
it were true across all subdomains, even those subdomains

Pwin(i, j) ≈ �


 µ̂i, j√

σ̂ 2
0, j/ni, j


 (9)

that were not tested in learning.
The following are three possible outcomes when compar-where 
 is the standard cumulative normal distribution func-

tion (34). ing PWIN(i) of Hi to H0.
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1. Hi is the only hypothesis that is better than H0 in all multiple metrics, and test cases may be grouped into subsets
(or subdomains) such that each subset has a different perfor-subdomains. Hi can then be chosen as the hypothesis

for generalization. mance distribution. Consequently, existing methods cannot
be used to measure generalizability across subdomains of2. Multiple hypotheses are better than H0 in all subdo-
test cases.mains. Here, we should select one hypothesis that maxi-

We have presented some systematic methods to evaluatemizes the likelihood of being better than H0 over the
generalizability within a subdomain. To eliminate depen-entire domain. This likelihood (or degree of confidence)
dence on the size of a test case in a subdomain, we havecan be adjusted by increasing �, which is equivalent to
shown various normalization methods to normalize perfor-placing a tighter constraint in each subdomain, hence
mance with respect to a baseline hypothesis. Some of theseeliminating some potential hypotheses that are found to
methods can lead to anomalies in orderings when hypothesesbe better than H0 under a looser constraint.
are rank-ordered by the average normalized measure and the3. No hypothesis is better than H0 in all subdomains.
baseline is changed. Only when the baseline hypothesis isSince no hypothesis is superior to H0, H0 is the most
fixed (like using the median performance as the baseline) orgeneralizable.
when the effect of the baseline only exists as a constant in
the average normalized measure (like using the geometricAlternatively, it is possible to find hypotheses such that
mean) can anomalies be eliminated.PWIN � 0.5 � � where � � 0. Such hypotheses have less cer-

Finally, we have presented some methods to evaluate gen-tainty in performing better than H0 across all the subdo-
eralizability across subdomains. We have introduced a con-mains. However, since PWIN is based on the worst-case Pwin cept called probability of mean that measures the probabilityacross all the subdomains, hypotheses selected this way may
that the sample mean of a hypothesis is better than the popu-still perform better than the baseline in some subdomains.
lation mean of the baseline, given the number of samplesSuch hypotheses should be considered as alternatives to H0. tested and the variance of the samples. As probabilities of winWe have considered so far generalization based on one per-
are in the range between zero and one, they can be used toformance measure. In general, there may be multiple perfor-
evaluate generalizability across subdomains. Unfortunately,mance measures in an application, and generalization deter-
probabilities of win cannot be used to rank-ordered hypothe-mines whether a hypothesis behaves consistently across all
ses, even when performance is normalized and averaged us-subdomains with respect to all the performance measures.
ing methods like the geometric mean. This happens becauseThe problem belongs to a general class of multi-objective opti-
probabilities of mean are used to evaluate whether a hypothe-mization problems that can be solved in some special forms.
sis is better than the baseline and is not meant to rank orderIn our approach, we propose to constrain all but one measures
all the hypotheses. The variance of the performance valuesand to optimize the unconstrained measure subject to the con-
places another degree of freedom in the ordering, leading to astraints (32). The constraints in this approach are defined
different ordering when a baseline with a different variancewith respect to the performance of an existing baseline hy-
is used.pothesis. This is similar to first normalizing the performance

with respect to that of the baseline and formulating a con-
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