
KNOWLEDGE ENGINEERING 123

to the knowledge base. Thus, in addition to modularity and
other software engineering concerns, knowledge engineers
must constantly worry whether they have asked the right
questions, whether they have asked all the questions, and
whether they have correctly encoded the answers in the form
of rules.

Knowledge engineering is also tied to data engineering (or
data management) which is concerned with methods of stor-
ing and accessing large amounts of data. As the size of the
data portion of a knowledge base increases, it becomes neces-KNOWLEDGE ENGINEERING
sary to use data engineering methods to ensure that the set
of rules in the knowledge base is consistent with the factsA computer program consists of a sequence of instructions

that access and modify a storage space. The instructions are stored in the system. Thus, when a rule or a fact is modified
or when a new rule or fact is added to the knowledge base, itusually directly executed by the hardware. However, an indi-

rect execution is also possible, in which the instructions are is necessary to ensure that the facts are still consistent with
the rules (2). To facilitate this task, several systems have in-executed by another software called an interpreter. The stor-

age space of the interpreter can be divided into two parts, a tegrated the handling of rules and data into one common
framework; examples include Postgres (2) and Starburst (3).program part that contains instructions for the interpreter

and a data part that contains the data to be manipulated by Knowledge-based systems, in the form of rule-based expert
systems, have proved to be among the most successful com-the interpreted program. The main advantage of this ap-

proach is that it provides greater flexibility in designing the mercial applications of AI research. Most AI research has at-
tempted to solve very general or ill-specified problems, suchinstruction set, which is particularly useful for exploratory

work. It has also proved to be very desirable in designing arti- as understanding natural languages, proving theorems, plan-
ning robot motions, and performing inference from first prin-ficial intelligence (AI) systems, especially knowledge-based

systems, since it provides a richer view of instructions, such ciples. While some of these techniques have shown promise
for small (toy) problems, most of these methods have provedas dynamically changing programs and very complex execu-

tion semantics. In knowledge-based systems, the interpreter to be computationally intractable for realistic problem do-
mains. Expert systems have bypassed this problem by requir-is called the inference engine while the program typically con-

sists of a collection of rules and the storage space consists of ing the identification of domain-specific rules to guide the in-
ference process. These systems attempt to emulate thea collection of facts.

The term knowledge engineering was coined by Feigen- problem solving capabilities of human experts to attain high
performance levels in a narrow problem area. Virtually allbaum in the early 1980s (1) to refer to the systematic steps

needed to implement knowledge-based systems. In particular, expert systems rely on a knowledge-based architecture. Also,
they must be able to explain and justify their solutions, deci-it refers to systems where the knowledge base is in the form

of a single do-loop containing a number of guarded statements sions, and recommendations. This narrow focus has enabled
the development of effective expert systems for a variety ofcalled rules. Conceptually, the execution of these rule-based

systems consists of a series of cycles. The first step in each practical applications, such as medical diagnosis, system con-
figuration, factory automation, seismic data analysis, etc.cycle is the evaluation of all the guards based on the current

content of the storage space. The execution terminates if all While the narrow focus of rule-based expert systems facili-
tates the solution of industrial-strength problems, it tends tothe guards are false; otherwise, a true guard is selected and

the corresponding actions are performed which results in make these systems very brittle. That is, they can fail misera-
bly for inputs that deviate even in minor respects from thechanges to the storage space. This inference procedure illus-

trates a simple forward-chaining execution semantic that is encoded rules. Alternative methods have been proposed to ad-
dress this problem. Examples include memory-based or case-similar to the traditional way of executing loops. It can be

embellished in several ways, such as constraining the set of based reasoning techniques that store a large set of sample
inputs and outputs and use statistical techniques to infer ap-true guards and using multithreaded execution, incremental

match algorithms that use results of previous iterations, propriate responses to new inputs by matching them with the
set of previous inputs. The problem with these methods is thebacktracking, and backward chaining. In the last case, the

inference engine attempts to find a sequence of rule selections difficulty of ensuring that a reasonably complete sample size
has been obtained to reliably bound the behavior of thethat is guaranteed to result in establishing a given postcondi-

tion (or goal). system.
The rest of this article is organized as follows. The nextKnowledge engineering shares many objectives with soft-

ware engineering, including the development of tools and section gives a precise definition of various components of
knowledge engineering. This is followed with discussions oftechniques for making the knowledge base modular and for

assessing its performance, reliability, and complexity. How- development and assessment procedures. The article con-
cludes with some future perspectives.ever, there are also fundamental differences. Software engi-

neering assumes that programmers can independently design
and implement a program once they are given the require-
ments specification. In knowledge engineering, on the other KNOWLEDGE-BASED SYSTEMS
hand, the programmer (or knowledge engineer) must under-
stand how human experts perform a task and then capture The main objective of knowledge engineering is the acquisi-

tion and computerization of knowledge. The end product ofand codify this knowledge in the form of rules that are added

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

124 KNOWLEDGE ENGINEERING

the knowledge engineering process is a knowledge-based sys- 1960s and 1970s demonstrated that systems that rely
strongly on general techniques are often not very suitable fortem composed of an inference engine and a knowledge base.

In most approaches, the knowledge base consists of facts and solving real-world problems. Reacting to this failure in the
1980s, the focus of AI research shifted to the computerizationrules that use the facts as inputs for making decisions. Rules

in this framework consist of an if -part and a then-part where of specialized knowledge and centered on the creation of sys-
tems with very specific problem solving skills. Consequently,the if -part represents a condition and the then-part repre-

sents an action that potentially will be taken whenever the the 1980s are frequently considered to be the decade of expert
and knowledge-based systems. The belief underlying this pe-condition in the if -part is satisfied, that is, whenever the rule

is ready to fire. Hence, rules, in contrast to facts, are active riod is that the problem solving capabilities of an intelligent
computer system are proportional to the amount of problemobjects in the sense that they can perform computations

whenever they become eligible to fire. specific knowledge in its knowledge base. Feigenbaum calls
this fact the first principle of knowledge engineering, namely,While rule-based programming is a key paradigm for de-

signing knowledge-based systems, it is not the only approach. ‘‘that the problem solving exhibited by an intelligent agent’s
performance is primarily the consequence of its knowledgeIn recent years, object-oriented knowledge bases (sometimes

also called frame-based systems) have gained some popular- base, and only secondarily a consequence of the inference
method employed The power resides in the knowledge.’’ity. This method relies on a more passive object-oriented view

of knowledge and is not considered further here. There is some evidence that human experts also rely strongly
on special knowledge while solving problems; for example,The inference engine is subdivided into an interpreter and

a scheduler. The interpreter generates new knowledge by fir- studies with chess and other experts suggest that the knowl-
edge base of human experts in a particular application areaing rules while the scheduler selects which rules to fire in a

particular context. One key idea of knowledge-based systems can be as large as 70,000 rules [for more details see (5)]. Con-
sequently, a strong belief during this period was that it isis the separation of domain specific knowledge (facts and

rules in a rule-based knowledge representation framework) best to directly elicit domain-specific knowledge from human
experts. Hence, knowledge acquisition, that is, the process offrom other parts of the system. Due to the difficulty of com-

puterizing domain specific knowledge, knowledge-based sys- eliciting information from human experts, gained significant
attention in the early 1980s.tems strongly rely on incremental system design; that is, a

knowledge base will be designed and refined several times In conventional procedural languages such as C, C��, or
Ada, computations perform data changes or execute otherduring the design process. One key claim that advocates of

knowledge-based architectures make is that it is much easier, commands, such as ‘‘print the value of x,’’ ‘‘send message m
to object o,’’ or ‘‘call procedure p with parameter 3.’’ Most im-and therefore more cost-effective, to modify and extend a

knowledge base compared to modifying a program in conven- portantly, these commands are activated imperatively in pro-
cedural languages. Rule-based programming is quite differenttional programming languages that do not clearly distinguish

between domain-specific knowledge and other parts of this in the sense that rules are never activated imperatively; that
is, a programmer never says ‘‘execute rule r.’’ Instead, rulessystem [for more details see (4)].

Another important characteristic of knowledge-based sys- are active all the time and can automatically perform compu-
tations as soon as their activation condition is satisfied. Twotems is the use of heuristic and approximate methods, and

less reliance on traditional algorithmic approaches. Heuris- different forms of rule-based programming can be distin-
guished: data-driven programming and goal-oriented pro-tics (derived from the Greek word heuriskein which means ‘‘to

find’’) are rules of thumb that encode a piece of knowledge gramming. In data-driven rule-based programming, data
changes trigger the firing of rules which then perform furtheron how to solve a particular problem in a particular context.

Heuristics are frequently used when it is not feasible to inves- data changes that trigger other rules to fire, and so on. Data-
driven programming relies on a forward chaining approachtigate all possible solutions algorithmically due to the com-

plexity of the problems. The role of heuristics is to cut down in which inference is performed from facts to conclusions. To
illustrate the previous discussions, consider the followingtime and memory requirements of search processes. In gen-

eral, heuristic methods are not fool-proof and frequently focus rule: if ‘‘the balance of an account becomes negative’’ then
‘‘inform the bank manager.’’on finding a suboptimal, satisfactory solution rather than an

optimal solution. Heuristics are usually employed to solve ill- This rule will actively check balances of bank accounts,
and perform its action if a data change occurs that makes thedefined problems for which no mathematical technique by it-

self can yield a solution in a reasonable time. Heuristics are balance of an account negative. Typical languages in this
group are CLIPS and languages of the OPS-family. Also, re-frequently vague and uncertain, and the contexts under

which they are applicable are usually difficult to describe and search in active databases seeks to integrate data-driven
rules with conventional databases, and active database sys-formalize. Heuristic knowledge is frequently derived from ex-

perience rather than from scientific analysis. tems such as Postgres (2) and Starburst (3) have emerged
from these works.Heuristics represent special knowledge that is useful in

only a small number of application domains. This is in con- In goal-oriented rule-based programming, rules are se-
lected and fired with respect to a given goal relying on goal-trast to general knowledge that is useful for solving problems

in many application domains. Examples of general knowledge subgoal mechanisms. In general, goal-oriented approaches
rely on a backward chaining approach in which inference isinclude the rules of logic, probabilistic knowledge, general

search techniques, such as backtracking, and so on. In a performed from conclusions to antecedents. To illustrate how
this approach works, assume that we have a rule for inferringknowledge-based architecture, domain-specific knowledge is

stored in the knowledge base whereas general knowledge is grandchild relationships from child relationships. This rule
will be fired in this case if the current goal is to infer allencoded within the inference engine. The history of AI in the

KNOWLEDGE ENGINEERING 125

grandchildren of a person named Fred. Languages such as It is common practice to subdivide the design of a knowl-
edge-based system into five major stages (7):Prolog, EMYCIN, and many diagnostic expert systems and

shells rely on this programming style.
In the past decade, rule-based systems have become more • Identification

object-oriented. For example, CLIPS 6.0 supports the defini- • Conceptualization
tion of modules and provides encapsulation and several con-

• Formalization
structs for organizing rule bases more transparently. Also,

• Implementationhybrid shells, such as KEE and NEXPERT, have been devel-
• Testingoped to support both goal-oriented and data-driven rule-based

programming in an object-oriented framework.
Human expertise frequently involves vague and uncertain The objective of the identification phase is the definition of

the scope of the knowledge-based system and identificationknowledge, especially in applications that are predictive or
diagnostic in nature. In such applications, rules do not lead to of the problems that the proposed system must solve. Also,

knowledge concerning the characteristics of the applicationdecisions directly, but rather provide evidence for or against a
particular decision, and the evidence collected from different area, the available resources, and the persons who will partic-

ipate in the design and use of the knowledge-based systemrules is combined, and the decision with the highest combined
evidence is selected. Various models have been proposed to has to be acquired.

The main objective of the second phase is the acquisitionsupport this form of decision making: Bayesian approaches
that rely on probability theory and Bayes’s theorem, ap- of the terminology and jargon of the application domain; that

is, the key concepts, relations, and control mechanisms thatproaches that rely on Dempster-Shafer’s theory of evidence,
certainty factors, and other pragmatic approaches. Another the expert uses in his or her problem solving have to be iden-

tified. In addition, subtasks, strategies, and constraints re-problem is that domain experts frequently use terminology
whose precise boundaries are very difficult to define. For ex- lated to the tasks to be automated by the knowledge-based

system have to be acquired from the domain expert.ample, a rule might state if ‘‘the patient is old’’ then ‘‘there
is suggestive evidence for not prescribing drug d.’’ The first two phases are independent of the actual delivery

platform of the knowledge-based system. The formalizationHowever, even two experts will frequently disagree on the
precise boundaries of the term old. Is 55 already considered phase starts with the selection of the language and environ-

ment in which the knowledge-based system will be designedto be old, or should the boundary be 60? Fuzzy sets and their
underlying possibility theory have been found to be very use- and used. (These decisions can also be made earlier in the

design cycle.) The key concepts and relations are mapped toful for approximating the vagueness inherent in terminology
and in natural languages in general. Rather than classifying a formal representation which is dependent on the languages

and tools that are used to design and implement the knowl-a patient as either old or young, in this approach a number
in the interval [0,1] is computed that measures the oldness of edge-based system.

The objective of the implementation phase is to transforma particular patient. The advantages of this approach are
smooth decision making (if a patient is only a little older, the the formalized knowledge into a working prototype system.

Representation forms within the framework of the chosen de-negative evidence produced by the rule will increase only
slightly) and a very compact and transparent form of repre- velopment platform for the knowledge formalized in phase 3

have to be developed. Also, the formalized knowledge has tosenting knowledge. For a more detailed discussion of ap-
proaches to cope with possibilistic, probabilistic, and other be made compatible so that it can be integrated into a single

system. This step usually involves combination, transforma-forms of imperfect knowledge in knowledge bases see (6).
tion, and reorganization of various pieces of knowledge to
eliminate mismatches between fact representation, rule rep-
resentation, and control information. Furthermore, the con-DESIGNING KNOWLEDGE BASES
trol strategy and control knowledge have to be mapped into
code that can be executed by the underlying deliveryThe following persons are important when designing knowl-

edge bases: The knowledge engineer who usually is an AI ex- platform.
Finally, in the testing phase, the prototype system is vali-pert and is well-versed in knowledge representation, infer-

ence techniques, in tools and methodologies that facilitate the dated and its problem solving capabilities are evaluated (a
more detailed discussion of this phase will be given in thedesign of expert systems, and in hardware and software tech-

nologies to be used for implementing expert systems. Knowl- next section).
Knowledge acquisition is currently considered one of theedge engineers usually have a strong background in computer

science but lack expertise in the application domains of most critical steps for designing knowledge-based systems.
Buchanan et al. (7) define knowledge acquisition as ‘‘theknowledge-based systems. Consequently, the participation of

a domain expert is essential for the success of developing transfer of problem solving expertise from some knowledge
source to a program.’’ In other words, knowledge acquisitionknowledge-based systems. The knowledge engineer will usu-

ally interview the domain expert to become familiar with the centers on the problem of eliciting knowledge from an expert
and coverting it into a form so that it can be stored in aapplication domain and to elicit the domain knowledge. This

process of acquiring the domain knowledge of a human expert knowledge base. The basic model of knowledge acquisition is
that the knowledge engineer mediates between the domainis called knowledge acquisition. Other persons that partici-

pate in the design of a knowledge-based system are the end- expert and the knowledge base, and acquires domain knowl-
edge manually through interviews with the domain expert.users of the system and the clerical staff whose responsibility

is to add data to the knowledge base. Key problems that have to be solved by the knowledge engi-

126 KNOWLEDGE ENGINEERING

neer when following this approach [for more detail see (8)] the expert intelligently. It is unacceptable for the tool to ask
the expert redundant or trivial questions that waste the ex-include how to:
pert’s time. However, it turns out that such intelligent ques-
tioning strategies are very difficult and expensive to develop,• Organize and structure the knowledge acquisition pro-
even for application-class specific tools. Finally, the diversitycess
of knowledge poses another challenge for knowledge acquisi-• Collaborate efficiently with the domain expert
tion tools. For example, a domain expert might use knowledge• Conduct interviews with the domain expert
that consists of simple heuristics, fuzzy sets, Bayesian rules,

• Conceptualize the application domain simple logical rules, frame-based concept hierarchies, hill-
• Trace the decision making process to acquire knowledge climbing, and so on, when solving a particular task. This fact
• Verify and validate the acquired knowledge makes it very difficult to develop a comprehensive and com-

plete knowledge acquisition tool.
One critical problem when designing knowledge-based sys-However, the approach that considers the knowledge engi-

neer as a mediator between the domain expert and the knowl- tems is to encode the beliefs and heuristics a domain expert
uses in his or her problem solving approach. The followingedge base has been recently criticized (9,10), and it has been

proposed to develop computerized, interactive tools to assist problems complicate the design of knowledge-based systems:
the domain expert in structuring domain knowledge. Many

• Heuristics are usually complex, hard to understand, and,such tools have been designed in the last decade to directly
therefore, nontrivial to computerize.communicate with the expert with a minimum of intervention

from the knowledge engineer (a good survey of these tools can • The scope of a heuristic, that is, the context in which a
be found in Ref. 11). The main idea of these approaches is to particular heuristics is applicable, is frequently hard to
systemize the knowledge-engineering process, thereby in- determine.
creasing the productivity of the involved knowledge engineers • Frequently, it is not clear what level of detail is neces-
and domain experts. However, although these tools facilitate sary when computerizing heuristics to obtain a satisfac-
the conceptualization phase, a significant amount of work still tory system performance. In some cases, very simple
has to be done manually by the knowledge engineer in collab- heuristics are quite suitable to solve the problem at
oration with the domain expert. hand.

Several more far-reaching approaches to automating
• Frequently, it is very hard to predict if a particular setknowledge acquisition have been described in the literature.

of heuristics will solve the problem at hand.One idea is to develop a meta theory of expertise in a re-
stricted class of application domains (such as equipment mal-

Since knowledge-based systems strongly rely on heuristicfunctions or for identifying biological organisms) and to pro-
information, it is very important in the early design stages tovide a knowledge representation and acquisition framework
evaluate the problem solving performance of a set of heuris-that has been tailored for such applications (12,13). Another
tics with respect to a set of example problems. This will vali-very popular approach is to use inductive generalization pro-
date the acquired heuristics, demonstrate areas in whichcesses to derive expert-level knowledge from sets of classified
knowledge is missing or not detailed enough, will reveal dis-examples (10). When using this approach, the expert only pro-
crepancies and inconsistencies between the domain expert’svides a set of examples with the class the example belongs
solution and that of the system, and will give a better feelingto, and an inductive learning algorithm is used to learn the
concerning the complexity of particular tasks to be auto-classification algorithm. Approaches that are currently used
mated. Consequently, because of the special characteristics ofto learn and represent classification strategies include deci-
the heuristics outlined in the previous paragraph, rapid pro-sion trees, neural networks, naive Bayesian classifiers, and
totyping combined with incremental development are thebelief networks (for a survey see Ref. 14).
most popular approaches for designing knowledge-based sys-Although there has been significant progress in the devel-
tems. Rapid prototyping is an approach in which first a sim-opment of computerized tools for knowledge acquisition, it
plified version, usually a demonstration version, is devised,faces several challenges for which satisfactory solutions still
implemented, tested, and evaluated. This prototype is thenhave to be found (for a more detailed discussion of these and
extended to obtain a system with complete functionalities. In-other points see Ref. 15). First, there is the problem of im-
cremental development refers to an approach in which a sys-plicit knowledge that refers to the fact that experts are fre-
tem is designed and implemented following multiple itera-quently not aware of what they know and, even worse, that
tions. Initially, a version of the system is designed andoften the most relevant knowledge for knowledge bases turns
implemented to provide only basic capabilities and opera-out to be the knowledge that the experts are least able to talk
tions. This system is then evolved from solving simple tasksabout (16).
to solving increasingly hard tasks, improving incrementallyThe second problem is that knowledge acquisition is a con-
the organization and representation of knowledge in thestructive modeling activity (17) in which the expert, jointly
knowledge base.with the knowledge engineer, describes and formalizes his

knowledge. That is, according to this view, the expert’s knowl-
edge is not something that can be directly accessed, but EVALUATION
rather needs a creative, cognitive process to be elicited. Cur-
rent knowledge acquisition tools seem to be too simplistic to As knowledge-based systems become larger and larger and as

they are used more and more for critical applications, suchsupport this activity. A third problem is that for a knowledge
acquisition tool to be successful, it has to be able to question as medical diagnostic and manufacturing systems, it becomes

KNOWLEDGE ENGINEERING 127

necessary to develop systematic and rigorous methods for en- have been developed, mostly for representations in the form
of first order predicate calculus, to perform a systematic anal-suring high quality. Standard software engineering tech-

niques are not directly applicable due to the dynamically ysis of the knowledge base (19). Quality objectives that have
been targeted include showing the absence of inconsistenciesevolving nature of knowledge-based systems and the need for

close cooperation between knowledge engineers and domain or contradictions in the knowledge base, identifying redun-
dant rules, namely those that are subsumed within otherexperts. Over the past decade, a variety of approaches have

been used to move the development of knowledge-based sys- rules or those that can never be fired, checking whether there
is a circular dependency between the rules that can result intems from an ad hoc art form to an engineering discipline

with well-defined criteria and methods. nonterminating inference procedures, and checking whether
all input conditions have been accounted for. Identification ofThere are two major dimensions to quality assurance for

knowledge-based systems. The first one mirrors software en- redundant rules and their removal results in a more concise
knowledge base which is important for simplifying subse-gineering and classifies the quality criteria into functional

and nonfunctional categories. Some functional criteria that quent maintenance activities (19).
Model checking is computationally expensive and also ofare commonly used are consistency, completeness, correct-

ness, and reliability, while some nonfunctional criteria are limited use. For example, it cannot reveal the presence of
missing conditions or incorrect actions. Inspection and reviewmodifiability, usability, performance, and cost. Consistency

means that the rules in the knowledge base do not contradict by another expert or systematic testing strategies are more
effective at revealing these types of faults. Inspection is usu-other rules or facts, completeness means that the inference

engine can find a solution for all possible inputs, correctness ally done on the basis of a checklist containing a list of items
that must be verified. This includes checking that all situa-means that the output agrees with that of a test oracle (usu-

ally a human expert in the application area), reliability is the tions have been covered, that the firing conditions are correct,
that the actions are correct, that the values of constants areprobability of error-free operation for a specified duration un-

der specified operational conditions, modifiability means that correct, that the explanation text matches the inference chain
encountered, that all the rules and facts have been read andit is easy to make changes to the knowledge base, usability

means that it has a user-friendly interface, for example, it can found to be correct, and so on. Inspection is a laborious pro-
cess, and its effort can increase nonlinearly as the size of thegenerate easily understandable explanations, performance is

a measure of the response time and resource requirements, knowledge base increases. To be fully effective, it should be
ensured that the review is done by an independent expert.and cost includes the development time and cost.

The second major dimension, which is not usually consid- Testing is based on the execution of the knowledge-based
system in a controlled environment. Three major steps areered when assessing conventional software, is the distinction

between the quality of the knowledge base and that of the involved, namely, the selection of test cases, the execution of
test cases, and determining the correctness of the result. Testinterpreter (inference engine). Functional features, such as

correctness and reliability, and nonfunctional features such cases can be selected either in a random or a nonrandom way.
Random testing according to the operational usage distribu-as usability and performance, can be affected significantly by

the quality of the inference engine used in executing the tion is necessary for reliability assessment (see the next sec-
tion). Nonrandom testing can be used for ensuring the satis-knowledge base. For the same knowledge base, it is possible

for a powerful inference engine to yield a better quality re- faction of various test coverage criteria, such as ensuring that
every rule is activated at least once or that the conditions insponse in a shorter time than a naive inference engine.

The above quality criteria can be viewed in a qualitative every rule take all possible outcomes at least once. It can also
be used to perform stress testing, such as selecting boundaryor a quantitative way. Qualitative criteria include factors

such as the thoroughness of independent reviews and check- value test cases, selecting extreme and limiting values, ensur-
ing that all critical situations are covered by at least one testlists, satisfaction of various test coverage criteria, absence of

inconsistencies, and so on. Quantitative criteria include relia- case, and so on.
Execution involves running the system in a real or simu-bility, performance, and cost assessment. The following two

subsections review methods for ensuring high quality and dis- lated environment. This is easy for applications where each
run of the expert system is independent, such as a medicalcuss some quantitative quality measures, respectively.
diagnostic program or a system for assisting with decisions,
such as a mortgage evaluation system. It is much more diffi-Assurance Methods
cult for reactive systems, such as process-control systems, pa-

Methods for assuring the quality of knowledge-based systems tient monitoring systems, and others. In these cases, it is nec-
can be classified into two groups, namely, deterministic meth- essary to use a simulator, but this itself can be a source of
ods and probabilistic methods. Deterministic methods, such additional failures.
as consistency checks, ensure that a given quality goal will be The final step is checking whether the output of the pro-
definitely achieved while probabilistic methods cannot pro- gram is correct. This task is difficult for knowledge-based sys-
vide such guarantees. tems since, unlike in most conventional software testing,

Deterministic methods consist of a variety of model check- there is no formal specification against which the result can
ing strategies for ensuring the absence of inconsistencies, in- be compared. This requires a human expert to give a solution
completeness, and livelocks in the knowledge base (18,19). against which the program’s output can be compared. The
These methods differ depending on the formalism used to rep- comparison is nontrivial since there may be acceptable varia-
resent rules and facts (some formalisms that have been con- tions in the output, so a simple bit-by-bit comparison is not
sidered are propositional logic, first order predicate calculus, correct. One approach is to use the Turing test, that is, pro-

vide the program’s answer and the expert’s answer to an inde-production rules, and frames). A variety of software tools

128 KNOWLEDGE ENGINEERING

pendent expert and see if the expert can identify which out- creased, and the possibility of learning as the system acquires
new information.come is from the program; if not, then the program is

In software reliability growth models, the software isassumed to be correct (19,20).
tested according to the operational profile and, whenever aTo facilitate extensive testing, some of the test data gener-
failure occurs, the fault is removed and the testing is thenation and output checking effort can be reduced by automati-
resumed. The reliability is estimated from the failure history,cally extending the set of test cases and using interpolation
that is, the time interval between successive failures. A ver-strategies to simulate a test oracle (20). Also, since knowl-
sion of the Musa–Okumoto logarithmic model adapted foredge-based systems are constantly evolving, regression test-
knowledge-based systems appears in Ref. 24. In the samplinging is very effective (20). That is, all the inputs and outputs
model, the input space of the software is partitioned into aare retained in a database and automatically re-executed
number of equivalence classes. Then, test cases are randomlyafter modifications to the knowledge base. This ensures that
selected from the partitions according to the operational pro-new faults will not be introduced as a result of changes to the
file. A model based on this approach appears in (25). Theseknowledge base.
methods work reasonably well for ordinary programs but are
not suitable for highly reliable programs (23).

Quality Measures
Performance measurement for knowledge-based systems is

relatively easy unless there are dependencies between rules.While inspection and testing can result in high quality sys-
The only problem is to determine the length of the longesttems, they do not provide any indication of how good the qual-
inference chain. The system performance also depends on theity is. Model checking, where applicable, can provide a rudi-
performance of the inference engine. A Markov process modelmentary (binary) measure of the quality of the knowledge
has been developed for the case where rules are grouped intobase. However, in addition to its theoretical and practical dif-
separate modules (26). The parameters to be estimated in thisficulties, model checking cannot provide answers to questions
case are the transition probabilities, that is, the probability ofsuch as, ‘‘How difficult is it to modify the knowledge base?’’ or
moving from one module to another, and the time that is‘‘How much time does a knowledge engineer need to under-
spent in a module.stand the knowledge base?’’ A number of quantitative mea-

For real-time process-control systems, the reliability andsures have been proposed to answer these questions, includ-
performance of the system are both important since the sys-ing complexity, reliability, and performance measures.
tem can fail if either the output is not correct or if it is notComplexity measures can be classified into two categories,
produced in a timely way. This is captured in the performabil-namely, bulk measures and rule measures (21). Bulk mea-
ity measure developed for real-time knowledge-based systemssures provide some estimate of the size of the knowledge base,
(24). It uses the distribution of the time to produce an outputsuch as the number of rules, the number of variables, the
and the ‘‘acceptability’’ or quality of the output as a functionnumber of occurrences of each variable, the depth and
of time.breadth of the decision tree, and so on (20,21). Rule measures

All the quantitative measures for knowledge-based sys-examine the interaction between the rules and facts in the
tems have been developed within the last few years. Whileknowledge base. Some rule measures that have been proposed
these have been applied to pilot projects, more experimentsinclude the number of variables that occur in a rule, the num-
and validation are needed before they can be routinely used.ber of input parameters of a rule, the number of output pa-

rameters of a rule, the number of rules that can potentially
affect a rule, the number of rules that can potentially be af-
fected by a rule, the length of the longest possible inference FUTURE PERSPECTIVES
chain, and so on (21). While complexity measures provide
some guidelines toward the design of more easily understand- One major challenge that many companies currently face is
able and maintainable knowledge bases, there are some prob- how to transform large collections of corporate data into
lems. For example, it is difficult to relate these measures di- knowledge that can be used to conduct their business more
rectly to the parameters of interest, such as the time that is successfully and efficiently. The traditional approach for cre-
needed to understand the knowledge base. Also, most com- ating knowledge bases in which a knowledge engineer elicits
plexity measures lack adequate scientific foundation and are knowledge from a domain expert who is familiar with a par-
not very accurate predictors, at least for conventional pro- ticular data collection seems to be less and less practical in
grams. transforming large stores of data into useful knowledge. The

In contrast to complexity measures, reliability measures recent progress in automated scanners and other automated
are formally well-defined and have been developed fairly well electronic devices, in database technology, and in the World-
for hardware and to a lesser extent for software. The first step Wide Web has resulted in a flood of data which are impossible
in estimating statistical software reliability is to determine to analyze manually even by domain experts. For example,
the operational profile (22) which is defined as the probability satellites in space transmit so many images that it is no
that a given input will be selected during operational use. longer feasible to manually inspect even a small fraction of
Then, one can use variations of either software reliability the data. Even worse, there may not be any domain expert for
growth models or the sampling model (23). These variations some data collections. However, these large data collections
must consider the way knowledge-based systems differ from frequently contain valuable information. For example, cash
conventional programs, such as the use of heuristics to obtain register records for supermarkets might provide valuable in-
suboptimal solutions, the improvement in the quality of the formation regarding customer preferences, which can be very

useful at reducing cost and improving customer service.output as the depth and breadth of the search space is in-

KNOWLEDGE ENGINEERING 129

7. B. G. Buchanan et al., Constructing expert systems, in F. Hayes-This trend is characterized by the fact that, on the one
Roth, D. A. Waterman, D. B. Lenat (eds), Building Expert Sys-hand, knowledge that was not available before is now avail-
tems, Reading, MA: Addison-Wesley, 1983, pp. 127–167.able in computerized form, whereas, on the other hand, do-

8. K. L. McGraw and K. Harbison-Briggs, Knowledge Acquisitionmain experts have less and less knowledge concerning the
Principles and Guidelines, Englewood Cliffs, NJ: Prentice-Hall,contents of their data collections. Moreover, the availability of
1989.large computerized data collections facilitates the automatic

9. B. R. Gaines and M. L. G. Shaw, Eliciting knowledge and trans-validation of hypothesis and knowledge concerning these
forming it efficiently to a knowledge-based system, IEEE Trans.data collections.
Knowl. Data Eng., 5: 4–14, 1993.This new development has created the need for new ap-

10. J. R. Quinlan, Knowledge Acquisition from Structured Data,proaches to designing knowledge bases. Consequently, in re-
IEEE Expert, 6 (6): 32–37, 1991.cent years, to face this challenge, the new field of knowledge

11. Int. J. of Man-Machine Studies, 26 (1): 1987; this issue discussesdiscovery and data mining (KDD) has emerged (for surveys
the features of the knowledge acquisition tools MOLE, KNACK,see Refs. 27 and 28). KDD centers on the development of com-
KRITON, OPAL, AQUINAS.puterized tools that facilitate the domain expert’s job of mak-

12. S. Marcus, (ed.), Automating Knowledge Acquisition for Experting sense out of large amounts of data. The various tasks ad-
Systems, Norwell, MA: Kluwer Academic, 1989.dressed by KDD research include finding interesting patterns

13. J. Diederich and J. Milton, Creating domain specific metadata forin databases, creating and testing of hypotheses, dependency
scientific data and knowledge bases, IEEE Trans. Knowl. Dataanalysis, learning class descriptions from examples, cluster
Eng., 3: 421–434, 1991.

analysis, change analysis, detection of instances that sig-
14. U. M. Fayyad et al., Advances in Knowledge Discovery and Datanificantly deviate from the standard, and creating summar-

Mining, Cambridge, MA: AAAI/MIT Press, 1996.ies. Moreover, data warehousing plays an important role in
15. S. Mussi, Causal knowledge elicitation based on elicitation fail-the KDD process. Data warehousing creates an integrated

ures, IEEE Trans. Knowl. Data Eng., 7: 725–739, 1995.view of a data collection, and cleans and standardizes its
16. D. C. Berry, The problem of implicit knowledge, Expert Syst.:content so that data mining algorithms can be applied to

The Int. J. Knowl. Eng., 4 (3): 144–151, 1987.it. Technologies that play an important role for KDD in-
17. K. M. Ford et al., Knowledge acquisition as a constructive model-clude visualization, statistics, machine learning, and data-

ing activity, Int. J. Intel. Sys., 8 (1): 9–32, 1993.bases.
18. C. F. Eick and P. Werstein, Rule-based consistency enforcementThis trend of integrating multiple AI components (pattern

for knowledge-based systems, IEEE Trans. Knowl. Data Eng., 5:recognition, natural language understanding, image pro-
52–64, 1993.cessing) to enhance knowledge-based systems is likely to con-

19. G. Guida and G. Mauri, Evaluating performance and quality oftinue in order to cope with unstructured information in vari-
knowledge-based systems: foundation and methodology, IEEEous environments. It raises the issue of designing meta-expert
Trans. Knowl. Data Eng., 5: 204–224, 1993.

systems, that is, systems that have knowledge of and can ef-
20. K. Finke et al., Testing expert systems in process control, IEEEfectively use multiple expert systems to solve difficult practi-

Trans. Knowl. Data Eng., 8: 403–415, 1996.cal problems. For example, an expert system for traffic coordi-
21. M. B. O’Neal and W. R. Edwards, Jr., Complexity measures fornation may use image processing and pattern recognition to

rule-based programs, IEEE Trans. Knowl. Data Eng., 6: 669–classify objects in the environment, a behavior expert to eval-
680, 1994.

uate likely behavior of motorists and pedestrians, a motion
22. J. D. Musa and K. Okumoto, A logarithmic Poisson executionanalysis expert to determine the likely trajectory of various

time model for software reliability measurement, Proc. 7th Int.
objects, and a traffic expert to know the best action for min- Conf. Softw. Eng., 230–237, 1984.
imizing accidents and maximizing traffic flow. All this re-

23. F. B. Bastani and C. V. Ramamoorthy, Software reliability, in
quires reusable expert systems that can easily interact with P. R. Krishnaiah and C. R. Rao (eds.), Handbook of Statistics, vol.
other AI components. It also requires rigorous quality assur- 7, Amsterdam: North-Holland, 1987, pp. 7–25.
ance since a single poor quality expert system can adversely 24. I.-R. Chen and F. B. Bastani, On the reliability of AI planning
affect a large number of applications. software in real-time applications, IEEE Trans. Knowl. Data Eng.,

7: 4–13, 1996.

BIBLIOGRAPHY 25. D. E. Brown and J. J. Pomykalsi, Reliability estimation during
prototyping of knowledge-based systems, IEEE Trans. Knowl.
Data Eng., 7: 378–390, 1995.1. E. A. Feigenbaum and P. McCorduck, The Fifth Generation: AI

and Japan’s Computer Challenge to the World, Reading, MA: Addi- 26. I.-R. Chen and B. L. Poole, Performance evaluation of rule group-
son-Wesley, 1984. ing on a real-time expert system architecture, IEEE Trans.

Knowl. Data Eng., 6: 883–891, 1994.2. M. Stonebraker, The integration of rule systems and database
systems, IEEE Trans. Knowl. Data Eng., 4: 415–423, 1992. 27. U. M. Fayyad, Data mining and knowledge discovery: making

sense out of data, IEEE Expert, 11 (5): 1996.3. J. Widom, The Starburst active database rule system, IEEE
Trans. Knowl. Data Eng., 8: 583–595, 1996. 28. E. Simoudis, J. Han, and U. Fayyad (eds.), Proc. 2nd Int. Conf.

Knowl. Discovery & Data Mining, AAAI Press, 1996.4. D. A. Waterman, A Guide to Expert Systems, Reading, MA: Addi-
son-Wesley, 1985.

FAROKH B. BASTANI5. R. Reddy, The challenge of artificial intelligence, IEEE Comput.,
University of Texas at Dallas10 (9): 86–98, 1996.

6. S. Parsons, Current approaches to handling imperfect informa-
tion in data and knowledge bases, IEEE Trans. Knowl. Data Eng., CHRISTOPH F. EICK

University of Houston8: 353–372, 1996.

