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KNOWLEDGE VERIFICATION

Originally, knowledge-based systems existed as small labora-
tory prototypes; they were easy to handle and the developers
had no difficulty managing their structure and behavior. Dur-
ing recent years, knowledge-based systems have grown from
laboratory prototypes to large and complex applications for
use under real-life conditions. With the increase in complexity
and problem solving capabilities (1), the systems became
harder to understand, and all the negative phenomena of the
software life-cycle were encountered. Today’s knowledge-
based systems require strategies for correctness testing just
as ‘‘conventional’’ software systems do. However, during the
verification of knowledge-based systems, difficulties beyond
the verification problems of conventional software develop-
ment arise.

• The development of knowledge-based systems often
starts with vague requirements so that it becomes diffi-
cult to determine the system’s tasks and whether it per-
forms them correctly. Requirement specifications are of-
ten nonexistent, imprecise, or rapidly changing.

• Whereas individual rules are often unstructured, the
rules of a knowledge-based system are heavily interde-
pendent. This makes it difficult to determine the execu-
tion sequence from a static examination of the knowledge
base.

• The logical relationships between data structures are
quite complex. With the added effects of rules and
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demons (control structures), it is very difficult to main- completeness and correctness of the control strategy); (3)
other system components (meta knowledge bases, interfaces,tain an understanding of the system’s functionality.
explanation module, knowledge acquisition module, and com-• Development of knowledge-based systems by teams can
munication module); and (4) interactions of system compo-easily lead to contradictions, redundancies, and missing
nents. Next, we explain the various issues involved in ainformation in the knowledge base. Similar problems
knowledge base verification.arise when attempting to enhance or modify the knowl-

The following sections cover issues related to representa-edge-based system’s performance through the addition
tion domain and the like.of rules.

Knowledge Representation Dependency. Ideally, knowledgeMany knowledge-based systems have been developed to deal
base verification techniques should be knowledge representa-with problems in industrial, scientific, and financial applica-
tion independent so that they can be applied to systems basedtions. Despite the great potential of these systems and mil-
on different knowledge representation formalisms. However,lions of dollars invested on their research and development,
most of the existing verification techniques are based on ei-the major concern faced in industry today is whether these
ther particular knowledge representation formalisms such assystems are dependable (2,3). Dependability includes such no-
production rules or quasi-first-order formulas, or specific in-tions as reliability, safety, security, maintainability, and por-
ference methods. Thus each technique has its applicabilitytability (4,5). Reliability is normally defined as the probability
limit. Though it is desirable to have verification methodsthat a system will perform correctly according to users’ speci-
which can be applied to different knowledge representationfications under certain environment conditions for a specified
formalisms and different inference methods, this is neverthe-period of time. Safety is related to the probability that haz-
less not an easy job since the notion of the correctness of aards don’t occur during the execution of a system. Security
knowledge base heavily depends on the knowledge represen-and safety are closely related, but security is more concerned
tation formalism and inference methods. One attempt towith the threats to privacy or national security (6). Maintain-
achieve this goal can be found in EVA (Expert Systems Vali-ability defines the degree of difficulty to correct errors in an
dation Associate) (7). The ultimate goal of EVA was to sup-intelligent system. Portability is concerned with the ease in
port verification for knowledge-based systems based on differ-transferring an Artificial Intelligence (AI) system to a differ-
ent knowledge representation formalisms. In Ref. 8, a genericent machine.
knowledge representation formalism is proposed so that sys-To achieve dependability of AI systems, various techniques
tems based on different knowledge representation formalismsand tools have been developed (mainly to support the develop-
can be transformed into the generic formalism. This approachment of correct AI systems). They either try to gain a system
represents an attempt to accomplish representation indepen-that can correctly replay sets of test cases, or they check an
dent verification.existing knowlege base for internal correctness. The ap-

proaches differ vastly in their underlying concepts of correct-
Domain Dependency. Knowledge base verifiers can be clas-ness (e.g., absence of certain phenomena, correctness with re-

sified into domain dependent and domain independentspect to test cases, or even logical correctness). In this article,
classes. With a domain dependent verifier, metaknowledgewe will discuss the research issues and various techniques in
about the problem domain is utilized to perform the verifica-this area.
tion. A verifier of this kind can be well fit for a particularThe article is organized as follows. The first part describes
problem domain. But for a different problem domain it maycurrent issues and approaches concerning the certification
be totally useless. On the other hand, a domain independentand evaluation of real-time safety-critical intelligent systems.
verifier can be applied to many problem domains, but due toThe next part offers a sketch of our verification technique that
its generality and lack of domain specific metaknowledge, itis based on the first order logic as its knowledge representa-
may not be able to do satisfactory work.tion formalism. The final part contains concluding remarks,

followed by the bibliography.
Flat Model Versus Hierarchical Model of Knowledge Base. A

knowledge base can be considered as a flat structure which
CURRENT ISSUES IN VERIFICATION contains domain knowledge only or it can be considered as a
OF KNOWLEDGE-BASED SYSTEMS hierarchical structure which contains both domain knowledge

and control knowledge. Most of the verifiers which have been
In order to identify and understand the problems encountered developed so far are based on the flat model assumption. But
in the verification of knowledge-based systems, we have to recently, it has been argued in the work (9) that a hierarchi-
first look at those issues involved in knowledge-base verifica- cal model is more desired for knowledge base verification than
tion that are not normally encountered in the verification of a flat model.
conventional software systems. This will also help us in eval-
uating various verification techniques and forming a basis for Certainty Factors and Temporal Operators. When confidence
comparing these techniques. factors and temporal operators are present in a knowledge

base, it gives rise to some new problems in knowledge base
Current Issues

verification. For example, when confidence factors are
attached to facts and rules, a redundant rule may cause pro-The verification of a knowledge-based system includes ensur-

ing the quality properties of (1) the knowledge base (correct- gram errors because a small confidence level may be accumu-
lated into a significant level due to multiple firings of theness, robustness, maintainability); (2) the inference engine

(soundness and completeness of the inference method, and same rule. Another case involving confidence factors is that
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conflicting rules, which are regarded as an obvious error in factors of the problematic rules. Ideally, we would like to make
the process of knowledge base verification less dependent ona knowledge base without confidence factors, are no longer

considered as an error in a knowledge base with confidence the domain expert. For example, in Ref. 13 an attempt was
made to perform an automatic correction without much of thefactors.
domain expert’s effort.

The following sections cover general issues relating toMonotonicity of Knowledge Base. Nonmonotonic logic has
been proposed as an extension of traditional monotonic logic. knowledge-based systems.
However, since most of the expert systems are based on a
monotonic knowledge base, the existing verification tech- Exhaustive Versus Heuristic Checking. The state-of-the-prac-
niques can only deal with a monotonic knowledge base. With tice in checking for anomalous rules in a knowledge base is
the advent of systems such as Operating System 5 that made through the use of an exhaustic search. However, since this
it possible to develop a nonmonotonic knowledge base, it is kind of search is time-consuming, a heuristic approach was
now necessary to come to grips with the issue of nonmono- suggested to do the search (14,15). Basically, the challenge for
tonic knowledge base verification. Some results can be found this issue is how to transform a knowledge base verification
in Refs. 8, 10, and 11. problem into a heuristic search problem.

The following sections cover the goals and criteria of
knowledge base validation. Static Versus Dynamic Checking. Generally speaking, a

knowledge base can be divided into its rule base and fact base,
Verification Criteria. One of the problems with knowledge with knowledge base verification usually performed on the rule

base verification is that there are no common verification crite- base statically. However, when knowledge base verifications
ria. Different techniques adopt different properties to identify are performed on both the rule base and the fact base, it is pos-
anomalies or errors in a knowledge base. In many cases, the sible to do dynamic or static checking depending on whether an
definitions of anomalies or errors used in those techniques are inference engine is involved in the verification process. Ideally,
not rigorous and are given through examples. An example of dynamic checking is more desirable. A verifier of this type is re-
how to discuss verification criteria formally is given in Ref. 7. ported in Ref. 16, which assumes the forward chaining strategy

for knowledge base verification. Another example is given in
Performance Measures. The issue here pertains to the qual- Ref. 8, in which dynamic verification is used to verify a require-

ity of a verification tool (17). For instance, the accuracy of a ver- ment specification language.
ifier could be evaluated with regard to the following three as-
pects: (1) mistaken cases in which correct rules are identified

Current Approaches
by the verifier as errors; (2) missing cases in which erroneous
rules are overlooked by the verifier; (3) the percentage of rules There are a number of approaches that were developed for

verification of knowledge-based systems. The extent to whichbeing checked by the verifier.
The following sections cover the role of domain expert. an approach is suited for verifying the desired properties of a

knowledge-based system depends on the formalism underly-
ing the representation of the system. Here we discuss some ofParticipation of Domain Expert in Detection. As mentioned

earlier, most of the current verifiers work in a detection-con- the widely used approaches in the verification of knowledge-
based systems.firmation style: a verifier finds potential errors in a knowledge

base and the domain expert confirms the result. Typically, the Decision Table Approach. In this approach, structural infor-
mation about a knowledge base is captured in decision tablesdomain expert is not required to be involved in the detection

stage. However, in a machine learning approach (13), a domain and algorithms are provided to determine the presence or ab-
sence of abnormal properties.expert is required to take part in the first stage in order to facili-

tate the detection process. ONCOCIN (18) is a development tool for medical therapy
selection based on the formalisms of MYCIN (rules, contexts).
After every change or insertion of a rule into the knowledgeMode of Operation. Three questions should be answered

here. First, when can a verifier be invoked in the rule-based base the system checks for conflicts, redundancies, and miss-
ing rules (a situation exists in which a particular inference issystem development cycle? Can it be invoked at every stage or

only at the end stage? Finally, who will be in charge of the veri- required but no rule succeeds). A table is constructed repre-
senting all combinations of variables in the preconditions offication process, the knowledge engineer, the domain expert or

a third party or any combination of them? the rules together with the values assigned to the variables
in actions. This table is algorithmically checked for conflicts,
redundancies, subsumptions, and missing rules. ONCOCINDetection-Only Versus Detection-and-Correction. Most of the

work which has been done so far on knowledge base verification assumes that every combination of variables and values
needs a rule. As a result, certain reported missing rules byis based on detection-only style: a verifier is used to detect po-

tential errors in a knowledge base and then the domain expert the system may correspond to meanless combinations.
CHECK (19) can be used to work with knowledge base con-must decide on what to do for the next step. Traditionally, if an

error is confirmed by a domain expert, he or she can do one of taining certainty factors. The system supports a backward
chaining interpreter that tries to prove some specified goalthe following things (12): (1) make the conditions of the prob-

lematic rules more specific or more general, (2) make the con- clauses. In a table, rules are compared with each other to de-
tect dependencies between the preconditions and conclusionsclusions of the problematic rules more specific or more general,

(3) delete the problematic rules, (4) add new rules to counteract of each rule, as well as dependencies between rules and goal
clauses. Algorithms are also included to check for cycles,the effects of the problematic rules, (5) modify the confidence
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missing rules (every attribute-value combination must be cov- Petri-Net Approach. Due to its expressiveness and analysis
power, Petri nets have been used to facilitate knowledge baseered), unreachable clauses, and dead-end clauses.

The Expert Systems Validation Associate (EVA) (7) is a verification by some researchers. The basic idea in this ap-
proach is to transform a knowledge base into a Petri-netwide-range rule base checking system containing algorithms

that can be applied to knowledge base developed with differ- model of some sort, and then analyze certain properties of the
Petri-net model to identify potential anomalies in the givenent shells such as ART, CLIPS, OPS5, or KEE. It checks rule

bases extended by metaknowledge pertaining to constraints knowledge base. For example, in INDE (21), rules in a knowl-
edge base are grouped into maximally large rule clusters orand object structures.

Apart from the standard algorithms for table comparisons, concepts such that the members in different concepts are mu-
tually exclusive, which means that they cannot be fired at theEVA relies on a wide range of metaknowledge for judging po-

tential sources of conflicts and incompleteness. By specifying same time. The concepts are transformed into Petri nets such
that variables correspond to places in the graph and rulesmetaknowledge as constraints, the user can transfer semantic

information about the application domain to the system. The correspond to transitions. In such a Petri-net model, inconsis-
tencies can be identified by the fact that there are placesuser defines relations among predicates in terms of meta-

predicates such as synonymous, incompatible, inverse, transi- which have arcs leading to them from transitions which rep-
resent rules that assign different values to the variable asso-tive, or reflexive. Similarly, relationships between objects and

classes of objects may be defined. ciated with a place.
Meseguer’s system (22) checks knowledge bases formu-COVADIS (16) is applicable to rule-based knowledge base.

Contraints are used for specifying contradictions. COVADIS lated in the language of propositional logic with conjunctive
normal form preconditions and literals as conclusions. Mono-assumes the rules of a knowledge base to be activated in for-

ward chaining fashion, starting with the initially supplied tonic forward chaining is used assuming all input facts are
initially available and are consistent. Metalanguage con-fact base. During the inference process, the following addi-

tional assignments are made: to each derived fact the system straints specify contradictory facts. The checking process be-
gins by identifying subsets of rules which lead to contradic-assigns a context (a set of input facts necessary to infer the

particular fact). These contexts are propagated through the tions (should unfavorable input conditions arise). Each such
rule set is translated into a Petri net, where facts and ruleschains of inference. The system stops if either a constraint is

fired or saturation is reached. Firing a constraint means that are mapped to places and transitions respectively. Next, the
system attempts to find a maximal consistent set of facts thata contradiction has occurred. The system then displays the

contexts of the involved facts to the user, who is required to results in a contradiction when given as input to the selected
rule set. If no such consistent input assignment is found, theidentify them as significant or not. The inference chain is

shown for debugging or for the assertion of additional con- rule base is assumed consistent.
Knowledge-Base Reduction Approach. The idea of usingstraints.

Machine Learning Approach. Recently, machine learning knowledge base reduction to build a verifier was first pro-
posed in Ref. 23. Theoretically, we assume two things: (1) awas applied to knowledge base verification. For example, in

Ref. 13 a verifier is developed based on the idea that examples knowledge base is regarded as an implicit partial function
whose domain is the set of all possible input values and whosecan be generated from the given knowledge base using ma-

chine learning methods and the confirmation of these exam- range is the set of all possible conclusions and (2) each conclu-
sion is labeled by a disjunctive normal form which representsples can be used to verify a knowledge base. Specifically, a

new knowledge base is created from the original knowledge the minimal set of all possible input values which can lead to
this conclusion. Each disjunct in this form is called an envi-base by using machine learning techniques such that the two

knowledge bases are equivalent. During this process, exam- ronment for a conclusion which consists of symbols represent-
ing possible input values. With these assumptions, inconsis-ples are generated from the given knowledge base. For each

example, it is classified by the user and its classification is tencies and redundancies in a knowledge base can be found
during the process of constructing the implicit function.checked against the truth value of corresponding facts in the

original knowledge base. If both are the same, this example Knowledge base-REDUCER2 (24) checks existing knowl-
edge bases for consistency and redundancy. It assumes all in-is a confirmation of the given knowledge base’s correctness,

and the process continues. Otherwise, the original knowledge put facts are available and rules are specified in a first-order
form. Inference is assumed to progress by forward chainingbase is considered to have errors.

Logical Approach. In this approach, formal analysis is con- under the negation as failure assumption. A graph is con-
structed with nodes representing facts and edges represent-ducted based on logic theories. First a knowledge base is

transformed into a set of logic formulas and then formal ing rules. Starting with the input facts (‘‘inference level 0’’)
the rules, whose preconditions match the input facts, formmethods can be employed to check the correctness of the

knowledge base. An example of this approach is MELODIA edges to facts of inference level 1, and so on until no rule is
applicable. During the graph formation, every fact is assigned(20) in which the consistence of a knowledge base is estab-

lished by verifying the satisfiability of a set of logic formulas an ‘‘environment,’’ that is, the set of all (minimal) input facts
entailing it. A rule is redundant if its deletion causes noderived from the given knowledge base. The satisfiability of

the logic formulas can be examined by an attempt to convert change in the set of derived facts. Inconsistencies are detected
by facts declared as contradictory (via metalanguage con-the set of logic formulas into another set through some logical

simplification operations. If the conversion results in an straints) but have unifiable clauses in their environments.
Metaknowledge Approach. As mentioned earlier, meta-empty set then the knowledge base is considered to be consis-

tent, otherwise, some potential inconsistency may be present knowledge is utilized in domain-dependent verification. There
are three steps in this approach: (1) determine the meta-in the knowledge base.
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knowledge to be used; (2) represent metaknowledge in terms statistical behavior, refinement heuristics are applied to gen-
of integrity constraints; (3) find any violation of constraints erate suggestions for rule refinements which can lead to a
which may occur in a knowledge base. Earlier work based on higher performance knowledge base.
this approach can be found in Refs. 18 and 19. In a recent In general, statistical, heuristic, or user-defined methods
work (24), the knowledge about the predicates is represented can be applied to a knowledge base to decrease the differences
in terms of semantic units which are used to describe the se- between the knowledge base evaluations and the case data
mantic nature of the predicates such as types and value provided.
ranges of terms, connections and relationships among predi- MORE/MOLE (29) uses heuristics for generating refine-
cates. Based on semantic units, a set of constraints can be ment measurements in causal networks processed in both for-
derived and then violation of constraints in the knowledge ward and backward chaining directions.
base is checked. The user can enter three kinds of assertions: symptoms,

Graph Approach. Besides Petri nets, other types of graphs prior-conditions, and qualifying conditions. A symptom is a
such as ATMS-like (Assumption-based Truth Maintenance condition that leads to a hypothesis if it is satisfied. A prior-
Systems) causal graphs, bipartite graphs, or rule dependency condition makes a hypothesis only more or less probable and
graphs are utilized in knowledge base verification. a qualifying condition influences the evidence of a symptom

KET (25) is a frame-based system. The system assigns the or a prior-condition. A knowledge base is constructed as a net-
frame slots in a backward chaining fashion. Values of slots work with weighted vertices, with the edges constituting
are either derived by rule application or are entered by the causal relationships. MORE processes the network in the di-
user (a slot assigned by a user input is called an ‘‘ask slot’’). rection of the hypotheses and compares support values with
A graph is constructed by connecting the frame slots, with the a preset threshold. Only hypotheses with values above this
leaves of the graph as ask slots. For each rule, there is a threshold are accepted; intermediate candidates that do not
‘‘path’’ in this graph traversing the set of slots necessary for contribute to the explanation of a symptom are also rejected.
firing that rule. The graph is checked for slots with missing MOLE provides added refinement heuristics. It assumes
or contradictory assignment rules. Rules are identified as in- that each symptom has an explanation and for each explana-
consistent (redundant) if they have the same preconditions tion as few hypotheses as possible should be used. MOLE re-
and assign different (same) values to a slot. A cycle is detected quires the user to input core symptoms, for which the ex-
if a rule path contains the resulting slot itself. Furthermore, plaining hypotheses are found using heuristics. Additional
KET identifies overlap (redundancies) in the frame structure. heuristics are used to detect inconsistencies (ambiguities) and
If frames are found with overlapping slots, a higher-level incompleteness in the network. By comparing the resultant
frame is created and the overlapping slots are moved there. system evaluations with test cases, missing knowledge and
The overlapping frames become descendents of the newly further ambiguities are detected: SEEK2 (29) supports the re-
formed frame. finement of rule bases processed through backward chaining.

Riedesel’s approach (26) applies to existing rule bases spec- SEEK2 understands consistency and completeness as corre-
ified in an attribute-value formalism with abstract set for-

spondence of the system-generated results with test cases.mers (quantifiers over sets). The checking algorithm works in
An initial knowledge base is run on several test cases.steps, each involving a check for a certain consistency/com-

Based on collected performance statistics, proposals forpleteness property. First, the rule base is converted into an
changes in the rules are generated. Suggestions include gen-ATMS network. Then a sequence of checking modules reason-
eralizing or specializing the preconditions of a rule. SEEK2ing over the ATMS structure are called, detecting conflicts,
also provides an Automatic Pilot, which applies the refine-cycles, noncovered inputs, and dead-ends. Furthermore, the
ment heuristics and attempts to optimize the knowledge basestructure of the knowledge base is examined to improve effi-
using hill-climbing search. SEEK2 supports a metalanguageciency by clustering. These checks assume monotonicity of
allowing the user to formalize refinement heuristics.facts, typed variables, and provide mode specifications of vari-

AQUINAS (31) supports the refinement of weighted deci-ables (as input, intermediate, or output variables).
sion tables (repertory grids) by comparing its results with testIn Ref. 27 a rule dependency graph (RDG) is constructed
cases. A repertory grid is a table in which columns hold in-from a given knowledge base. Improper knowledge in a
fluence factors (traits) and possible solutions are entered inknowledge base can be found by examining the RDG for cer-
rows. The relationships between traits and solutions and be-tain topological structures because each type of improper
tween traits are weighted. The repertory grids of a knowledgeknowledge forms a specific topological structure in a RDG.
base form hierarchical modules. AQUINAS detects analogiesRelational Approach. In this approach, we consider the
in the rows of the tables and helps in eliminating redundan-union of the domains of all attributes as an attribute space
cies. The user defines constraints to provide metalanguage in-and a rule as a function from the attribute space to a subset
formation. AQUINAS varies grid values and trait weights,of the attribute space. Based on this idea, relations between
records changes, and tries to obtain agreement with test casesrule functions which may reflect potential errors in a knowl-
by applying a hill-climbing search. Various heuristic rules areedge base can be defined. Therefore, the knowledge base veri-
provided for selecting the grid values or trait weights tofication can be carried out by detecting certain relations in a
refine.knowledge base. A work based on this approach can be found

INDE (32) is applied to existing knowledge bases repre-in Ref. 28.
sented as a domain model with shallow rules specified in aRefinement Approach. As mentioned in Ref. 29 knowledge
Prolog-like formalism where each variable holds only onebase refinement consists of three steps: (1) collecting a set of
value. Rules are assumed to be processed in a forward chain-cases with known conclusions; (2) statistically analyzing the

rule behavior with respect to the test cases; (3) based on the ing manner.
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Given the domain theory and test cases, INDE constructs reversibility, liveness, synchronic distance, bounded fairness,
and consistency.a Prolog-like proof for each test case. From the proof, shallow

rules are generated which are usually too general. Each shal- The techniques that are normally employed to analyze the
properties of knowledge-based systems include: (1) resolutionlow rule is individually checked against the test data. If the

result is incorrect, one or more theory rules applied in the refutation (for reachability, reversibility, liveness, consis-
tency, synchronic distance, and bounded fairness); (2) modelproof are responsible. The debugger must find the theory

rule(s) which have propagated the error to the shallow rules. checking in temporal logic; (3) graph-theoretical algorithms
for the determination of the consistency of timing constraints.In a metatheory, the possible errors such as clause error (rules

are too general/restrictive) and value error (a numeric value Here we discuss only the first formal method.
is outside its valid range) are defined.

Furthermore, the metatheory computes relations between Analysis through Resolution Refutation
the errors (same error, opposite error). These relations form

To analyze a knowledge-based system’s dynamic propertiesa graph; if a shallow rule generates an erroneous result, this
(i.e., functional properties that arise from the execution of theerror is propagated throughout the graph. The domain theory
system) one can rely on either a state-space strategy or arules are further evaluated by error indicators measuring
problem-reduction strategy. The state-space strategy is basedhow frequently they are causing errors.
on data-driven/bottom-up forward reasoning. This reasoningLAPS (33) allows the expert to input single case solutions
employs two sets of entities. The first set is a collection ofand supports their depth-first refinement. LAPS translates
states, where each state reflects the condition/status of theresultant decision tables to data-driven rules for expert sys-
problem at each stage on the way to its solution. The other istem shells like M.1 or CLIPS.
a collection of operators which help to transform the problemLAPS drives the development process in three sessions.
from one state to another. The problem-reduction strategy isFirst, the expert enters and solves example case data. Next,
based on a goal-directed/top-down backward reasoning, whichthese example case data are elaborated to an initial model
again involves two sets of entities: a collection of goals/sub-with heuristics, explanations, and intermediate hypotheses.
goals which describe the problem, and a collection of opera-Last, the examples are further developed and refined to deci-
tors which convert a goal/subgoal into more refined, or de-sion tables, which are then checked for consistency and com-
tailed, conjunctive subgoals. It can be shown that for apleteness using algorithmic methods.
problem-reduction solution of a problem, there exists anSyntactic Inspection Approach. Knowledge base verification
equivalent state-space solution of the same problem, andbased on syntactic inspection approach is done by analyzing
vice versa.syntactic properties of a knowledge base to determine

Our formalism adopts a problem-reduction approach whenwhether there are any potential errors in a knowledge base.
analyzing a knowledge-base that is developed using an object-A tool developed by this approach can be found in Ref. 34.
oriented top-down design methodology. In modeling a systemIncoherence Detection Approach. As mentioned in Ref. 15,
composed of a set of processes, we create a conjunctive goal (afacts in a knowledge base are usually associated with a set of
top level activity), with each goal modeling a specific processproperties such as coherence constraints, rarity of attributes,
in the system. The state of a system process is assumed to becontradictory values, etc. In order to verify that a set of facts
the sum of the values of its goal arguments.satisfies the associated properties, a predicate FC is defined

Each process is decomposed into several subprocesses, andon it. A set of facts is coherent if and only if FC is true on the
likewise, each goal is refined into many subgoals (lower-levelset. A similar notion can be defined on a set of rules with
activities). The state of a system is thought to be the union ofregard to properties such as redundancy, conflict, and circu-
the states of its components processes, which corresponds tolarity. Thus, a knowledge base is statically coherent if sets of
a conjunction of its goal arguments. The sole operator em-rules and facts in the knowledge base are coherent. A knowl-
ployed is the resolution rule.edge base is dynamically coherent if all sets of facts which

can be derived from facts and rules in the knowledge base
Definition 1. A goal G is said to be reachable from a theoryare coherent.
 if there is a sequence of clause selections � � c1c2 . . . cnTraditional Software Engineering Approach. Since the soft-
that transforms G to an empty clause via the resolution rule,ware verification and validation for traditional systems have
that is, c1 � G, and cn � �, and each cj was obtained frombeen studied by many researchers for many years, there are
earlier clauses in the sequence by the application of the reso-a lot of techniques in this area. Attempt has been made to
lution rule.apply them to knowledge base verification (35–40). For exam-

The set of all possible goals reachable from a theory  isple, in Ref. 41 knowledge base verification is based on the
denoted by ��(). Thus, a goal G is reachable if G � ��().checklist approach, and in Ref. 42 the assertional approach
We extend this concept to reachability between two goals.is used.

Definition 2. In a theory , if G is a reachable goal from ,
a subgoal G� is said to be reachable from G if there is a se-FORMAL VERIFICATION OF KNOWLEDGE-BASED SYSTEMS
quence of clause selections � � c1c2 . . . ck that transforms G
into G�(c1 � G, ck � G�).Here we discuss a logic-based formalism for analyzing the

properties of knowledge-based systems. In our formalism,
both formal static and dynamic methods are utilized to verify All the dynamic properties of a knowledge-based system

discussed in this section are verified through the constructionknowledge-based systems for properties such as reachability,
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of resolution refutations from the theory, which is derived SUMMARY
from the knowledge-base, and a chosen goal clause.

The knowledge-based verification tools presented earlier typi-
cally suffer from limitations with respect to the knowledge• Reversibility. Determines whether an initial goal of a
representation mechanisms and inference strategies.knowledge base can always be resumed. Again, we ex-

tend this concept to arbitrary goals, to confirm whether
a specific goal can be resumed. 1. They support only specialized and restrictive formal-

A goal G is said to be reversible if, for each reachable isms and interpreter strategies.
goal G� in ��(), G is reachable from G�. 2. Strict assumptions are made on the available data and

• Liveness. Ensures that every goal in a knowledge-base is the inference process. For example, it is assumed that
resumable from any other reachable goal. all possible facts are initially available or all rules are

A theory is said to be live if, independent of the goal allowed to fire only once.
reached, it is possible to reach any other goal of the the-
ory by progressing through some clause selection se-

Knowledge base verification tools are usually add-ons toquence. That is, each goal G � ��() can be reached
existing development environments for knowledge-based sys-from any other reachable goal G� � ��(). Note that if a
tems (expert system shells). Furthermore, because of the as-knowledge base is live, then all reachable goals in it are
sumptions on availability of facts and domain knowledge,also reversible.
these techniques are applicable only after the knowledge base

• Consistency. Analysis determines whether contradic- is nearly complete and not as tools supporting the develop-
tions occur between the clauses of the underlying logic ment process. In this chapter, we have sketched a framework
used to represent the knowledge base. for the certification and evaluation of real-time safety-critical

In practice, we prefer a slightly stronger notion of in- intelligent systems.
consistency: Let G and G� be two literal goals, where
G � A(t1, . . ., tn), G� � A(t�1, . . ., t�n), for some predicate

1. A high-level model allows the representation of an intel-A, such that for all i, there is a substitution � and either
ligent system independent of a particular expert systemti � t�i � or ti� � t�i . A theory  of the underlying logic is
shell.said to be inconsistent if for G and G�, either (1) there

exist resolution refutations for both G and G�; (2) there 2. A nonmonotonic/temporal logic is established to serve
as the semantic foundation for this model. The repre-exists a resolution refutation of G, but every sequence of

clause selections � � c�1c�2 . . . c�k . . . results in an infi- sentational constructs (methods, demons, frames, etc.)
of the language are translated into constructs of the un-nite recursion; (3) vice versa; or (4) every sequence of

clause selections from both G and G� enters infinite re- derlying nonmonotonic/temporal logic.
cursion. A theory  is then said to be consistent if it is 3. The model, as expressed in the underlying logic, is
not inconsistent. translated into a knowledge base of a target expert sys-

• Synchronic Distance. Measures the correlation between tem shell.
two rules, that is, their relevancy to one another. In test- 4. Criteria are developed for the certification and evalua-
ing and debugging a knowledge based system, it is help- tion of intelligent systems based on this model.
ful if we know the mutual dependence among the rules
of the knowledge base. Synchronic distance is a metric

This framework allows the evaluation of intelligent sys-closely related to a degree of mutual dependence between
tems completely independent of the proposed target run-timetwo selected clauses Ci and Cj in a theory, and is defined
shell. The nonmonotonic/temporal logic was chosen as the log-by
ical foundation of the framework because the widely used con-
structs of modern expert system shells (frames, demons,di, j = maxδ |δ(Ci ) − δ(Cj )| rules, objects) can be easily expressed in this logic. The certi-
fication of intelligent systems according to this framework dif-

where � is a clause-selection sequence starting at any fers from the process for conventional software systems in
goal G in ��() and �(Ci) is the number of times the that the mapping from the underlying logic to the target lan-
clause Ci, i � 1, 2, is selected in �. guage is more straightforward. Another difference between

• Bounded Fairness. This occurs if two clauses Ri and Rj the certification of intelligent and conventional systems is
of a knowledge base are in a bounded-fair relation, such that the semantics of our model is well-defined and better un-
that there is a bound on the number of times one is in- derstood than that of conventional programming constructs.
voked while the other is not. Therefore, more effective methods for the certification and

evaluation of intelligent systems can be developed.
Tsai et al. (43) present a framework for software develop-

ment suitable for knowledge-based systems verification and
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