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INTRODUCTION

Integrated optics is concerned with the integration of vari-
ous kinds of miniaturized optical devices onto a single sub-
strate to form optical integrated circuits, and can be viewed
as the optical counterpart of integrated electronics. By in-
tegration, a complex optical system, which could occupy
a desk-sized optical bench if assembled with bulk optical
components, may be implemented on a small optical chip
with the size of a coin. A packaged optical chip may incor-
porate optical fiber pigtails at its input and output ports, so
that it can be readily connected to an optical fiber network.
The merits of integration are obvious; it allows the realiza-
tion of compact, robust, and stable devices, and could lead
to cost-effective products.

Since the concept of integrated optics was introduced
in 1969 (1, 2), it has evolved into a well-respected disci-
pline. Integrated optics has widened the scope of applica-
tion of optics considerably, and contributed significantly
to the advancement of several important applications, in-
cluding optical communication, optical sensing, and optical
signal processing. For the last twenty years or so, consid-
erable efforts have been devoted to the integration of both
optical components and electronic components on a sin-
gle substrate to form monolithic integrated circuits. This
technology goes beyond integrated optics and is commonly
known as integrated optoelectronics. Detailed accounts of
the developments in integrated optics at different stages
can be found, for example, in references 1–10.

Optical devices can be broadly divided into two types:
passive devices, such as directional couplers, beam split-
ters, filters, wavelength multiplexers, etc., which do not
require external electric sources; and active devices, such
as lasers, modulators, switches, etc., which require exter-
nal electric sources. In an optical integrated circuit, the
problem of connecting various components or devices is
solved by the use of optical waveguides. An optical waveg-
uide is a long thin structure which, in general, consists of a
layer of high-index dielectric medium surrounded by one or
more low-index media. Such a structure, when properly de-
signed, is capable of trapping light in the high-index layer
and guiding it along the medium. Because of this prop-
erty, light can be directed precisely from one place to the
other via an optical waveguide. A well-known example of
an optical waveguide is the optical fiber, which has a cir-
cular core surrounded by a cladding with a slightly lower
index. Waveguides used in integrated optics, however, are
exclusively of thin-film type, as they must be fabricated
on planar substrates. Figure 1 shows some common in-
tegrated optical waveguide geometries, where the shaded
areas highlight the high-index layers. Because the optical

Figure 1. Some common integrated optical waveguides.

wavelength is of the order of 1 µm, the thickness of the
high-index guiding layer in an optical waveguide is typ-
ically of the order of 1 − 10 µm. The length of a typical
waveguide varies from several hundred micro-meters to a
few centi-meters, which is long, compared with the wave-
length.

Apart from providing the necessary connections, optical
waveguides also serve as the building blocks of many op-
tical devices. To prevent light from diffracting away when
coupled into, or out of, an optical device, it should prefer-
ably be contained within a waveguide, and remain guided
everywhere in the circuit. This requirement calls for the de-
sign and fabrication of a whole range of novel waveguide-
based optical devices. Such devices differ markedly from
their counterparts based on bulk optics, not only in the
physical appearance, but also in the operational principles
and performance. Integrated optical devices have vary-
ing requirements on materials and waveguide geometries,
so that many different waveguide structures (see Fig. 1)
have been developed for various applications. Waveguide
geometry can also be dictated by the fabrication technique,
which is often developed specifically for certain materials.
For example, buried square-core waveguides with silica
glasses are particularly suitable for forming passive de-
vices that are connected directly to optical fibers, owing
to the fact that the optical properties of these waveguides
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match closely with those of optical fibers. On the other
hand, strip-loaded and rib waveguides are more compat-
ible with active semiconductor devices and lasers based on
gallium arsenide or indium phosphide. Graded-index chan-
nel waveguides are the products of the ion-diffusion pro-
cess on glasses and electro-optic crystals (such as lithium
niobate and lithium tantalate). The embedded channel ge-
ometry makes easier the deposition of electrodes close to
the waveguide and is the preferred geometry for the im-
plementation of electro-optic interactions. In general, it is
difficult to integrate different kinds of devices on the same
substrate material. Over the years, however, significant
progress has been made in achieving monolithic integra-
tion based on semiconductor materials (4,6,8,10).

To understand the operation of waveguide-based de-
vices, we must first understand how light propagates in
an optical waveguide. The most fundamental property of
an optical waveguide is the presence of guided modes (or
guided waves). A guided mode is a light wave that propa-
gates along the waveguide at a constant phase velocity and
has a well-defined optical field distribution. Provided that
the waveguide is uniform in the direction of light prop-
agation, the field distribution of a guided mode does not
change with the distance that the light travels. A waveg-
uide that allows more than one guided mode to propagate
is referred to as a multimode waveguide, in contrast with
a single-mode waveguide that supports only one guided
mode. The central problem in analyzing an optical waveg-
uide is the calculation of the phase velocities and the field
patterns for the modes of the waveguide. The importance
of knowing the modes lies in the fact that a superposition
of the mode fields can represent an arbitrarily complicated
field distribution. This has direct application in solving, for
example, waveguide excitation and jointing problems. The
principle of superposition also forms the basis of the pow-
erful coupled-mode theory, which can be applied to a wide
variety of complicated situations including non-uniform
structures, yet requires only the solutions for the modes
of uniform waveguides. We may say that the theory of opti-
cal waveguides is largely built upon the concept of modes.
Detailed treatments of various theoretical aspects of opti-
cal waveguides are given in references 11–17.

PLANAR WAVEGUIDES

We begin with the simplest waveguide, the planar waveg-
uide, which is capable of confining light in one dimension.
There are two types of planar waveguide: the step-index
slab waveguide and the graded-index waveguide, which
differ from each other in the form of the refractive-index
distribution (or profile).

Three-Layer Step-Index Slab Waveguides

Figure 2 shows the geometry and the refractive-index pro-
file of a three-layer step-index slab waveguide, which con-
sists of a thin film (guiding layer) of refractive index n1

and thickness 2t sandwiched between a substrate and
a cover material with lower refractive indices n2 and n3

(n1>n2 ≥ n3). Light is confined in the x direction and prop-
agates in the z direction. We first use a zig-zag wave model

Figure 2. (a) Geometry and (b) refractive-index profile of a step-
index slab waveguide formed by sandwiching a high-index layer
(film) between two low-index layers (cover and substrate).

(2) to develop an intuitive picture of wave propagation in
the waveguide and then outline the more rigorous treat-
ment based on the electromagnetic theory.

Zig-zag wave model. Consider a plane wave which is
incident upon an interface between two different media.
When the angle of incidence measured between the direc-
tion of incidence and the normal to the interface is larger
than the critical angle, the light wave undergoes total in-
ternal reflection. The critical angles at the cover-film and
substrate-film interfaces are given, respectively, by

θc = sin−1(n3/n1) (1)

and

θs = sin−1(n2/n1). (2)

Because n2 ≥ n3, it follows that θs ≥ θc. A guided wave can
be understood as a light wave that undergoes total inter-
nal reflections at both cover-film and substrate-film inter-
faces and propagates along the film in a zig-zag manner, as
shown in Fig. 3(a), where θ denotes the angle of incidence
at the interfaces. The condition π/2>θ>θs must therefore
be satisfied for a guided wave to exist. In the case that
θs>θ>θc, light escapes to the substrate, whereas in the
case that θc >θ, light escapes to both the cover and the
substrate. The light waves in these two cases are called
radiation modes, which are not confined in the film. The
condition θ = θs is called the cut-off condition.

Consider a monochromatic wave with complex time and
z dependences in the form ex p[ j(ωτ − βz)], where j≡ √−1,
τ is time, ω is the radian optical frequency, and β is the
propagation constant or phase constant. The phase velocity
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Figure 3. (a) A guided wave in a step-index slab waveguide can
be modeled by a zig-zag wave bouncing up and down in the film
under total internal reflections. (b) The z component of the wave
vector of the zig-zag wave gives the propagation constant β of the
guided wave, while the x component gives the phase constant α in
the x direction.

of the wave is given by vp = ω/β. As shown in Fig. 3(b),
the propagation constant is simply the z component of the
wave vector, i.e., β = n1k sin θ, where k = 2π/λ is the free-
space wavenumber (or free-space propagation constant of
the plane wave) and λ is the free-space wavelength. From
the range of θ for a guided wave, it is easy to show that

n1>
β

k
>n2. (3)

The dimensionless parameter β/k can be understood as the
effective refractive index seen by the wave, and is often
referred to as the effective index or mode index. When the
mode is at cut-off, β/k = n2.

Not every value of β/k that satisfies Eq. (3) represents a
physical guided wave. Suppose we travel in the z direction
along with the wave at its phase velocity. We should always
see the same phase of the guided wave, i.e., the same field
distribution in the transverse direction. The guided wave
must therefore have a field distribution in the x direction
that is invariant in the z direction. However, according to
the zig-zag wave model shown in Fig. 3(a), what we see also
are plane waves that bounce up and down within the film.
To obtain a z-invariant field distribution in the x direction,
such plane waves must form a standing wave in the x direc-
tion. To form a standing wave, the phase acquired by the
plane waves after traveling a round trip in the x direction
must be equal to an integral number of 2π:

4tα− 2�2 − 2�3 = 2mπ, m = 0,1,2, . . . , (4)

where 4tα represents the phase acquired in the film with
α = n1k cos θ being the phase constant in the x direction, as
shown in Fig. 3(b), and −2�2 and −2�3 represent the phase
shifts acquired by the wave under total internal reflections
at the substrate and cover interfaces, respectively. Equa-

tion (4) is known as the transverse resonance condition. It
is obvious that Eq. (4) admits only discrete incidence an-
gles.

The guided waves in a slab waveguide can have two or-
thogonal polarizations. The wave that is linearly polarized
in the y direction is called theTE (transverse electric) mode,
because it has a single electric-field component in the y
(transverse) direction. The wave that is linearly polarized
in the direction that is perpendicular to both the y direction
and the wave vector is called the TM (transverse magnetic)
mode, because it has a single magnetic-field component in
the y direction. It should be noted that the TE mode has
magnetic-field components in both the x and z directions,
while the TM mode has electric-field components in both
the x and z directions. It is known that the phase shifts
−2�2 and −2�3 depend on the polarization of the wave
(see, for example, chapter 2 of reference 4). By using the
mode index instead of the angle of incidence as the pa-
rameter, the transverse resonance condition Eq. (4) can be
written as

2tk[n2
1 − (β/k)2]1/2 = mπ +�2 +�3, m = 0,1,2, . . . , (5)

with

�i = tan−1{ri[ (β/k)2 − n2
i

n2
1 − (β/k)2

]1/2}, i = 2 or 3, (6)

where the factor ri distinguishes between the TE and TM
modes, with ri = 1 for the TE mode and ri = (n1/ni)2 for the
TM mode. For a given free-space wavenumber k (or wave-
length λ), the effective indices β/k for all the guided modes
can be found from Eq. (5) by a root-searching technique.
The integer m in Eq. (5) is called the mode order and the
modes are labeled as TEm and TMm modes.

In many practical applications, the refractive index of
the thin film is only slightly larger than that of the sub-
strate (the difference is of the order of one percent), i.e.,
n2

1 − n2
2 � n2

1 − n2
3. The phase shifts �2 and �3 (�3 ∼=π/2)

then become insensitive to the polarization of the wave and
the effective indices of the TE and TM modes of the same
order are nearly equal. In that case, the angle θ shown in
Fig. 3(a) is close to π/2 and, as a result, the TM mode is
approximately linearly polarized in the x direction with a
negligible electric-field component in the z direction.

Putting β/k = n2 into Eq. (5) results in an expression for
the cut-off wavelength λc:

λc = 4πt(n2
1 − n2

2)1/2

mπ + tan−1(r3
√
a)
, (7)

where

a = n2
2 − n2

3

n2
1 − n2

2

(8)

is a factor that measures the degree of asymmetry of the
waveguide structure (with a = 0 for the symmetric case
n2 = n3). As an example, with n1 = 1.55, n2 = 1.50, n3 = 1.0
(air), and a film thickness of 2t = 1 µm, the cutoff wave-
lengths for the TE0, TM0, TE1, TM1 modes are 1.987 µm,
1.720 µm, 0.561 µm, and 0.537 µm, respectively. If the op-
erating wavelength is longer than 1.987 µm, the waveg-
uide does not support any guided mode. If the wavelength
lies between 1.720 µm and 1.987 µm, only the TE0 mode
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is supported and a single-mode waveguide results. As the
wavelength becomes shorter and shorter, more and more
modes are allowed to propagate.

The number of guided modes supported by the waveg-
uide can be determined from mc, the value of m evaluated
at β/k = n2:

mc = 4t
λ

(n2
1 − n2

2)1/2 − 1
π

tan−1(r3
√
a). (9)

The next integer larger thanmc gives the number of modes.
With the same refractive indices used in the previous ex-
ample, at a wavelength of 1.3 µm, a film thickness of 1 µm
givesmc = 0.21 and for the TE and TM modes, respectively.
The waveguide therefore supports only the TE0 and TM0

modes. If the film thickness is increased to 10 µm, we find
mc

∼= 5.6 for both the TE and TM modes, and the waveguide
supports six TE modes and six TM modes, a total of twelve
modes. On the other hand, we can maintain single-mode
operation with a thinner film by increasing the refractive-
index difference between the thin film and the substrate.
The use of a high index contrast can therefore reduce the
size of the waveguide and hence increase the level of device
integration.

Electromagnetic theory. While the zig-zag wave model
gives the correct equation, Eq. (5), for finding the effective
indices of the guided modes, it does not lead to the field dis-
tributions. A rigorous analysis of the waveguide should be
based on the electromagnetic theory. In what follows, the
electric- and magnetic-field components in the p (p = x, y,
or z) direction are denoted by Ep and Hp , respectively.

By applying Maxwell’s source-free equations to a pla-
nar waveguide with an arbitrary refractive-index profile
n(x), the following wave equations can be derived (see, for
example, reference 14):

d2Ey

dx2
+ [n2(x)k2 − β2]Ey = 0 (10)

for the TE mode, and

d

dx
[

1
n2(x)

dHy

dx
] + [k2 − β2

n2(x)
]Hy = 0 (11)

for the TM mode. For the TE mode, Ex = Ez = Hy = 0 and
Hx and Hz are related to Ey by

Hx = − β

ωµ0
Ey (12)

and

Hz = − 1
jωµ0

dEy

dx
, (13)

where µ0 is the free-space permeability. Similarly, for the
TM mode, Ey = Hx = Hz = 0 and Ex and Ez are related to
Hy by

Ex = β

ωε0n2(x)
Hy (14)

and

Ez = 1
jωε0n2(x)

dHy

dx
, (15)

where ε0 is the free-space permittivity. The problem is to
solve for β and the field from the wave equation. There
can be many sets of solutions, each set corresponding to a
guided mode.

For a three-layer step-index slab waveguide, Eqs. (10)
and (11) can be solved analytically. With reference to the
coordinate system shown in Fig. 2, the field distribution
that satisfies Eq. (10) or (11) can be written as

ψ(x) = {
A exp(W3x/t), −∞<x<0,

A cos(Ux/t) + B sin(Ux/t), 0 ≤ x ≤ 2t,
(A cos 2U + B sin 2U)exp[−W2(x− 2t)/t], 2t < x< + ∞,

(16)

where ψ = Ey for the TE mode, or ψ = Hy for the TM mode.
In Eq. (16), the normalized parameters U, W2, and W3 are
defined by

U = kt[n2
1 − (β/k)2]1/2, (17)

W2 = kt[(β/k)2 − n2
2]1/2, (18)

and

W3 = kt[(β/k)2 − n2
3]1/2. (19)

It is clear from Eq. (16) that the spatial distribution of the
field is sinusoidal within the film, while it decays exponen-
tially in the cover and the substrate. The portions of the
field that are localized in the cover and the substrate are
referred to as the evanescent fields, which can carry a sig-
nificant amount of power, especially when the mode is close
to cut-off.

It is known from the electromagnetic theory that tan-
gential electric and magnetic fields must be continuous at
an interface between two different dielectric media. Equa-
tion (16) ensures that one of the tangential fields is con-
tinuous everywhere. For the TE mode, the continuity of
the other tangential field Hz requires dψ/dx be continuous,
while for the TM mode, the continuity of the tangential
fieldEz requires [1/n2(x)]dψ/dx be continuous. By enforcing
these boundary conditions at x = 0 and x = 2t, we obtain

B = r3
W3

U
A (20)

and

tan 2U = U(r2W2 + r3W3)
U2 − r2r3W2W3

, (21)

where r2 and r3 are the same factors that appear in Eq.
(6). With Eq. (20), the constant B can be eliminated from
Eq. (16), which is then left with an arbitrary amplitude A.
The propagation constants of the guided modes can be de-
termined from Eq. (21), which is, in fact, identical to Eq.
(5) obtained from the zig-zag wave model. With the knowl-
edge of the propagation constants, the corresponding field
distributions can be calculated from Eqs. (12)–(16). Figure
4 shows qualitatively the distributions of the electric-field
components for several low-order TE and TM modes. The
number of nulls (in the x direction) in the field distribution
is simply equal to the mode order m. It should be noted
that Ex, the dominant electric-field component for the TM
mode, is discontinuous at the interfaces; it is n2(x)Ex that
is continuous - see Eq. (14).

A guided mode carries optical power in the z direction.
The power density (i.e., power per unit length in the y di-
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Figure 4. Field distributions for several low-order TE and TM
modes of a step-index slab waveguide.

rection) can be calculated by integrating the z component
of the Poynting vector in the x direction. The results are

P = β

2ωµ0

∫ +∞

−∞
|Ey|2 dx (22)

for the TE mode, and

P = β

2ωε0

∫ +∞

−∞

|Hy|2
n2(x)

dx (23)

for the TM mode. By substituting Eq. (16) into the above
expressions, the amplitude A in Eq. (16) can be expressed
in terms of the power density P .

Dispersion curves. Equation (5) or (21), which is often
called the dispersion relation or eigenvalue equation, al-
lows us to calculate the dispersion characteristics of the
guided mode, i.e., how the effective index β/k varies with
the free-space wavenumber k. By scaling Eq. (5) with the
normalized frequency V:

V = kt(n2
1 − n2

2)1/2, (24)

and the normalized propagation constant b:

b = (β/k)2 − n2
2

n2
1 − n2

2

, (25)

we obtain

2V (1 − b)1/2

= mπ + tan−1[r2(
b

1 − b
)1/2] + tan−1[r3(

b+ a

1 − b
)1/2],

(26)

Figure 5. Universal dispersion curves for several low-order TE
modes of a three-layer step-index slab waveguide.

where a is the asymmetry factor defined by Eq. (8). It can
be seen that the normalized parameters are related by
V 2 = U2 +W2

2 and b = W2
2 /V

2 (0<b<1). By using the nor-
malized parameters, the physical parameters of the waveg-
uide no longer appear explicitly in the equation. The solu-
tions can then be expressed as b− V relations, which are
universal in the sense that they are applicable to the entire
class of waveguides. Figure 5 shows the universal disper-
sion curves for several low-orderTE modes. By substituting
b = 0 into Eq. (26), the cut-off value of V , denoted by Vc, can
be determined:

Vc = 1
2

[mπ + tan−1(r3
√
a)]. (27)

In the case of a symmetric waveguide (a = 0), the TEm and
TMm modes have the same cut-off V value m(/2, and there
is no cut-off wavelength for the fundamental mode (m = 0).

Multilayer Waveguides

The approach outlined in the previous section can be ap-
plied to a waveguide that consists of more than three lay-
ers. The fields in the individual layers are first written
down separately and the coefficients in the fields are then
determined by the successive application of the boundary
conditions at the interfaces. This procedure can in general
lead to the dispersion relation. The form and the complex-
ity of the solutions depend on how the fields are repre-
sented. A straightforward extension of the three-layer so-
lutions has led to relatively simple dispersion relations for
several four-layer and five-layer slab waveguides (4, 11).
As the number of layers in the waveguide increases, the
dispersion relation becomes more complicated. Neverthe-
less, compact dispersion relations in a recurrent form have
been derived for general multilayer structures (18) and
slab waveguide arrays (19). In the special case of a waveg-
uide array with alternating high-index and low-index lay-
ers, the guided mode can be treated as a set of coupled
zig-zag waves, which satisfy the transverse resonance con-
ditions simultaneously (19).
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Another approach to analyzing multilayer slab waveg-
uides is based on modeling a multilayer waveguide with a
stack of thin films, each of which is characterized by a two-
by-two matrix that relates the reflected and transmitted
fields (20). The characteristic matrix of the entire stack is
given by the product of the individual matrices. By enforc-
ing the condition that the fields decay exponentially in the
first and the last layer, a dispersion relation in the form of
a matrix equation results, from which the effective indices
can be found by a root-searching technique.

Anisotropic Film Waveguides

Many active waveguide devices, such as electro-optic mod-
ulators and mode converters, rely on phase modulation of
optical waves with applied electric fields. Such devices are
usually built upon crystals with large electro-optic coef-
ficients (such as lithium niobate and lithium tantalate),
which possess anisotropic dielectric properties. An opti-
cally anisotropic crystal can be characterized by three prin-
cipal refractive indices, which are associated with the prin-
cipal axes of the crystal. When the three refractive indices
have different values, it is called a biaxial crystal. When
two of them are equal, it is called a uniaxial crystal. The
actual refractive indices experienced by an optical wave
propagating in the crystal depend on the direction in which
the wave is launched into the crystal with respect to the
principal axes of the crystal. In general, different electric-
field components of the incident wave experience different
refractive indices. This can give rise to the phenomenon
of birefringence. In that case, the incident wave breaks up
into two waves, which propagate independently in the crys-
tal at different phase velocities.

When the principal axes of the materials that form the
waveguide are arbitrarily oriented, TE and TM modes do
not normally exist. The modes are, in general, hybrid in
nature and it is a tedious exercise to find them (21). For-
tunately, in most practical applications, the principal axes
of the materials are aligned with the waveguide axes. In
such special cases, the guided modes can still be classified
as TE and TM modes and the simple zig-zag wave model
described earlier can be extended to obtain the dispersion
relation (22).

We refer to Fig. 2(a) for the geometry of the waveguide
and, for generality, assume different anisotropic materials
in different regions of the waveguide. The principal refrac-
tive indices are denoted by nix, niy, and niz, where i = 1 for
the film, i = 2 for the substrate, and i = 3 for the cover.
Because the TE mode possesses only an electric-field com-
ponent in the y direction, it experiences only the refractive
indices niy. The analysis for the TE mode is therefore the
same as that in the isotropic case. The condition for the TE
mode to exist is n1y > n2y, n3y, and the dispersion relation is
given by Eqs. (5) and (6) with n1 and ni replaced by n1y and
niy, respectively.

The analysis for the TM mode is slightly more compli-
cated, owing to the fact that there exist two electric-field
components. It can be shown (22) that the condition for the
TM mode to exist is given by n1x > n2x, n3x, and the disper-
sion relation for the TM mode obtained from the zig-zag

wave model can be expressed as

2tkK1[n2
1x − (β/k)2]1/2 = mπ +�2 +�3, m = 0,1,2, . . . ,(28)

with

�i = tan−1{(n1z

niz
)2 Ki

K1
[

(β/k)2 − n2
ix

n2
1x − (β/k)2

]1/2}, i = 2 or 3, (29)

where Ki = niz/nix (i = 1,2,3) is a measure of the degree of
anisotropy. For most anisotropic materials, Ki has a value
between 0.8 and 1.2. Because of the material anisotropy,
the effective indices for the TE and TM modes can be very
different, and devices based on anisotropic waveguides can
be highly sensitive to the polarization state of light. In fact,
it is possible to design an anisotropic waveguide to support
only one class of modes, and thus function as a waveguide
polarizer or a mode filter (23).

Metal-Clad Waveguides

The three-layer structure shown in Fig. 2(a) becomes a
metal-clad waveguide, when metal is employed as the cover
material. At the optical frequency, the refractive index of
metal is a complex number with a predominant negative
imaginary part. For example, the refractive index of silver
at the wavelength 0.633 µm is 0.0646 − j4.04. Because of
the complex nature of the refractive index, optical waves
are attenuated when penetrating into the metal cover. The
propagation constant for the guided mode is therefore also
a complex number, where the real part is the phase con-
stant and the (negative) imaginary part is the attenua-
tion constant. The dispersion relation and the mode fields
can be found by applying the electromagnetic theory to the
waveguide in the same way as that described for the step-
index slab waveguide (24, 25). In fact, the dispersion re-
lation for the metal-clad waveguide is identical in form to
that for the step-index slab waveguide (24); it is also given
by Eqs. (5) and (6), provided that β and n3 in these equa-
tions assume complex values. An important feature of the
metal-clad waveguide is that it attenuates the TM0 mode
much more severely than the other modes. The attenuation
constant for the TM0 mode can be larger than that for the
TE0 mode by several orders of magnitude (25). This prop-
erty has been explored for forming polarizers and mode
filters.

Antiresonant Reflecting Optical Waveguides

In the conventional design of an optical waveguide, the re-
fractive index of the guiding layer should be larger than
that of the substrate to ensure light confinement with-
out loss. For practical reasons, the substrate material may
have a large refractive index. For example, the common
substrate material silicon (Si) has a refractive index of
3.4–3.8, which is larger than the indices of most other
waveguide materials. To form a low-loss waveguide on a
high-index substrate, we may insert a sufficiently thick
low-index buffer layer between the guiding layer and the
substrate. In the case of using a Si substrate, a layer of SiO2

(with a refractive index of (1.45) can be grown directly on Si
by thermal oxidation. It is expensive, however, to produce
a thick enough (> 4 µm) SiO2 layer on Si. To overcome
this problem, an interference cladding, which consists of
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a properly designed high-index film deposited on a SiO2

buffer layer, can be inserted between the guiding layer and
the Si substrate to provide a large reflectivity (close to 100
%) at the operating wavelength of the waveguide. In this
way, the SiO2 buffer layer required can be relatively thin
(∼2 µm). Such a multilayer waveguide is known as an an-
tiresonant reflecting optical waveguide (ARROW) (26). The
dispersion relation of an ARROW can be cast in the same
form as Eq. (5), except that the phase shift acquired at the
interface between the guiding layer and the interference
cladding, i.e.,�2 in Eq. (5), is obtained from the analysis of
a multilayer structure (27).

Graded-Index Planar Waveguides

Several fabrication techniques, such as ion-diffusion and
ion-exchange, can produce waveguides with refractive-
index profiles that vary gradually in the transverse di-
rection. Exact analytical solutions are available, however,
only for a few symmetric refractive-index profiles, such as
parabolic, sech-squared, and exponential profiles (4). More
general profiles must be analyzed with either a numer-
ical method or an approximate method. For a review of
some numerical methods, see reference 11. In most prac-
tical cases, the refractive-index variation is smooth and
slow, and the problem can be solved accurately with the
WKB method (Wentzel-Kramers-Brillouin method), which
is an approximate analytical method originally developed
in quantum mechanics (28).

The WKB method. Figure 6 shows a graded-index profile
n(x), which decreases monotonically from the surface into
the substrate with a peak index n1 at x = 0. The index at
infinity n(+∞) is equal to the substrate index n2 and the
index for 0<x is equal to the cover (usually air) index n3.
Because the effective index of a guided mode must lie be-
tween n1 and n2, there must exist a location (turning point)
in the x direction at which the effective index is equal to the
refractive index of the profile, as shown by the point x = xt

in Fig. 6. The idea of the WKB method is to assume an os-
cillatory field in the region 0<x<xt, and an exponentially
decaying field in the region xt <x< + ∞. This assumption
is accurate provided that the index variation is slow, com-
pared with the optical wavelength.

To be specific, the field for a guided mode is expressed
as

ψ(x) = {

C3 exp(|q|x), −∞<x<0,

(C1/
√
q)cos(

∫ x

0

q dx−�), 0 ≤ x<xt,

(C2/
√

|q|exp(−
∫ x

xt

|q| dx)), xt <x< + ∞,

(30)

where

q(x) = [n2(x)k2 − β2]1/2. (31)

For the TE mode, ψ and dψ/dx are continuous at x = 0,
while for theTM mode,ψ and [1/n2(x)]dψ/dx are continuous
at x = 0. By enforcing these boundary conditions, we obtain

C3 = r3 cos�√
n2

1k
2 − β2

C1 (32)

Figure 6. Refractive-index profile of a graded-index planar
waveguide.

and

� = tan−1{r3[
(β/k)2 − n2

3

n2
1 − (β/k)2

]1/2}, (33)

where r3 = 1 for the TE mode and r3 = (n1/n3)2 for the TM
mode. As q(xt) = 0, the approximation given by Eq. (30)
fails at the turning point. To find the solution at x = xt, the
function q2(x) in the neighborhood of the turning point is
approximated by a linear function:

q2(x) = a2
0(x− xt) (34)

where a2
0 can be found from the slope of n2(x) at the turning

point:

a2
0 = k2 dn

2(x)
dx

, at x = xt (35)

With Eq. (34), the wave equation Eq. (10) or (11) has an
exact solution:

ψ(x) = C0Ai(r) (36)

where Ai(r) is the Airy function (29) evaluated at r(x) with
r(x) = −a−4/3

0 q2(x). The solution given by Eq. (36) can be
connected to those given by Eq. (30) in the regions x>xt

and x<xt with the help of the asymptotic expressions for
the Airy function in the respective regions (29). We thus
find

C2 = 1
2
C1, (37)

C0 =
√
π

a
1/3
0

C1, (38)

and the dispersion relation

k

∫ xt

0

[n2(x) − (β/k)2]1/2 dx = mπ + π

4
+�, m = 0,1,2, · · · .(39)

After the effective index has been solved from Eq. (39),
the corresponding mode field can be calculated from Eqs.
(30)–(38).

Equation (39) has the same form as Eq. (5) and therefore
can be interpreted by the zig-zag wave model.The left-hand



8 Waveguides, Optical

side of Eq. (39) represents the phase acquired by the zig-
zag wave in the guiding region (0<x<xt). The right-hand
side implies that the wave acquires a (half) phase shift of
−π/4 at the turning point, where total internal reflection
takes place, and a (half) phase shift of −� at the surface.
The phase shift� in Eq. (39) is in fact identical to the phase
shift�3 given by Eq. (6). Under the condition n2

1 − n2
2 � n2

1 −
n2

3, it follows that �3 ∼=π2, regardless of the polarization
of the wave. If the profile is of the buried type, i.e., n(x)
decreases monotonically in both the x and (x directions,
the dispersion relation becomes

k

∫ x2

x1

[n2(x) − (β/k)2]1/2 dx = (m+ 1
2

)π, m = 0,1,2, · · · ,(40)

where x1 and x2 are the turning points in the regions x<0
and x>0, respectively.

The accuracy of the WKB method has been investigated
for a number of profiles (30). The method is more accurate
for multimode waveguides. Nevertheless, it gives an ade-
quate accuracy for many single-mode waveguides.

Some dispersion formulae. The refractive-index profile
n(x) shown in Fig. 6 can be written as

n2(x) = n2
2[1 + 2� f (x/d)] (41)

where d is a parameter characterizing the physical depth
of the profile,� is the relative difference between the peak
index and the substrate index, i.e., � = (n2

1 − n2
2)/2n2

2, and
f (x/d) is a normalized function 0 ≤ f ≤ 1 characterizing
the shape of the profile. The effective index can also be
written in a similar form:

(β/k)2 = n2
2(1 + 2�b) (42)

where b is the normalized propagation constant defined by
Eq. (25). The value of m at b = 0, denoted by mc, can be
calculated by substituting Eqs. (41) and (42) into Eq. (39)
(with � = π/2) and setting b = 0:

mc = kdn2(2�)1/2F

π
− 3

4
(43)

where

F =
∫ Xt

0

f (X)1/2 dX (44)

with X = x/d. The number of modes supported by the
waveguide is simply given by the next integer larger than
mc - see Eq. (9) for the case of a step-index waveguide. We
can define a normalized mode order M (0 ≤ M ≤ 1) by (31)

M = m+ 3
4

mc + 3
4

. (45)

Putting Eqs. (41) and (42) into Eq. (39) (with � = π/2) and
using Eqs. (43) and (45), we obtain the normalized WKB
equation: ∫ Xt

0

[ f (X) − b(M)]1/2 dX = FM (46)

with f (Xt) = b(M). For a given profile shape, the normal-
ized propagation constant b depends only on the normal-
ized mode orderM. The b−M relation applies to all guided

modes. Table 1 shows the explicit dispersion formulae for
some common profile shapes (31), which are obtained ei-
ther by solving Eq. (46) analytically or by least-squares
fitting numerical data with polynomials.

TWO-DIMENSIONAL WAVEGUIDES

In a planar waveguide, light is confined only in one trans-
verse dimension and can diffract away in the other trans-
verse dimension. To achieve a better control of the light
wave and form devices that are compatible with optical
fibers, light confinement in both transverse dimensions is
necessary. All the waveguides shown in Fig. 1, except for
the slab waveguide, can provide two-dimensional light con-
finement.

With the assumption that the wave propagates in the
z direction with a propagation constantβ, the transverse
electric field Et in a two-dimensional waveguide with
refractive-index distribution n(x, y) satisfies the vector
wave equation (32), which can be derived from Maxwell’s
source-free equations:

∇2
t Et + [n2(x, y)k2 − β2]Et = −[Et · ∇tn

2(x, y)
n2(x, y)

], (47)

where ∇t is the transverse part of ∇. In general, the waveg-
uide supports hybrid modes or vector modes, which contain
all six field components. Once the transverse electric-field
is found, the z component Ez and the magnetic field H can
be calculated from

Ez = 1
jβ

[∇t · Et + Et · ∇tlnn
2(x, y)], (48)

and

H = − 1
jωµ0

∇ × E. (49)

Alternatively, one can first solve the transverse magnetic
field from a wave equation similar to Eq. (47) and then find
the other field components from Maxwell’s equations.

Equation (47) actually consists of two equations cou-
pling the x and y components of the electric field. When the
index difference between the guiding region and the sub-
strate is small, as in most practical cases, one of the two
transverse field components becomes small (32) and the
coupling terms in Eq. (47) can be ignored. This results in
two independent quasi-vector wave equations (32):

∇2
t Ex + [n2(x, y)k2 − β2]Ex = − ∂

∂x
[
Ex

n2

∂n2

∂x
], (50)

∇2
t Ey + [n2(x, y)k2 − β2]Ey = − ∂

∂y
[
Ey

n2

∂n2

∂y
], (51)

which represent two different classes of modes. The modes
governed by Eqs. (50) and (51) are linearly polarized and
commonly referred to, respectively, as the Ex

mn and Ey
mn

modes, where m and n are mode orders (integers ≥ 1),
which specify the numbers of peaks in the field in the x and
y directions, respectively. If the differentiation between the
two polarizations is not important, the right-hand side of
Eq. (47) can be dropped completely. This leads to the scalar
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Table 1. Explicit dispersion formulae obtained from the WKB approximation (26) for some common profile shapes

Profile shape, f (X) Profile volume, F Dispersion formula, b(M)
Power-law:

{ 1 −Xα, 0 ≤ X ≤ 1
0, 1 ≤ X< + ∞

∫ 1
0

(1 −Xα)1/2dX 1 −Mα/(2+α)

Sech-squared:

sech2(X), 0 ≤ X< + ∞ π/2 (1 −M)2

Tan-squared:

1 − tan2(
π

4
X), 0 ≤ X< + ∞ 2(

√
2 − 1) 2 − [1 + (

√
2 − 1)M]2

Gaussian:

exp(−X2), 0 ≤ X< + ∞
√
π/2 1.0000 − 1.6227M + 0.6817M2

−0.3837M3 + 0.3247M4

Error-function:

erfc(X), 0 ≤ X< + ∞ 0.921915 1.0000 − 0.5877M1/2 − 1.0819M
+0.1446M3/2 + 0.5250M2

Exponential:

exp(−X), 0 ≤ X+ ∞ 2 1.0000 − 0.8238M1/2 − 2.0870M
+2.6716M3/2 − 0.7608M2

wave equation:

∇2
t ψ + [n2(x, y)k2 − β2]ψ = 0, (52)

whereψ can represent any transverse field component. Un-
der the scalar approximation, the Ex

mn and Ey
mn modes have

the same propagation constant and field distribution. They
are often called the scalar modes and can be denoted simply
by the Emn modes.

The problem of analyzing a two-dimensional waveguide
is to solve Eq. (47), or Eqs. (50) and (51), or Eq. (52), de-
pending on the level of accuracy required. It is in gen-
eral more difficult to solve the full vector wave equation
Eq. (47) than the other equations. Conventional numeri-
cal methods for boundary value problems, such as the fi-
nite element method and the finite difference method, can
be employed to solve these equations. These methods are
very versatile, as they can handle arbitrary geometries and
refractive-index profiles, as well as anisotropic materials.
Complications in applying these methods arise, however,
in modeling the infinite open space with a finite number of
elements or grid points, and in eliminating unphysical spu-
rious solutions that may appear in solving the vector wave
equation. There exists another class of numerical methods
which are based on series expansion of the mode field. The
point-matching method, the mode-matching method, the
spectral-index method, and the Fourier-series expansion
method are some of the popular ones. These methods are
relatively easy to implement and particularly suitable for
isotropic step-index waveguides. In addition to numerical
methods, a number of approximate semi-analytical meth-
ods, such as Marcatili’s method, the effective-index method,
the perturbation method, and the variational method, are
also available.They can give good results for certain waveg-

uide structures. A survey of various numerical and approx-
imate methods available for analyzing two-dimensional
waveguides can be found in reference 32.

Rectangular-Core Waveguides

Rectangular-core waveguides are the most commonly used
waveguide structures in integrated optics. Figure 7(a)
shows the cross-section of a rectangular-core waveguide,
where 2t and 2w are the thickness and the width of the
core, respectively, and n1, n2, n3, and n4 are the refractive
indices of the core and the surrounding claddings with
n1>n2 ≥ n3, n4. In most practical cases, the index differ-
ence between the core and the substrate is small, i.e.,
(n1 − n2)/n1 � 1. The structure shown in Fig. 7(a) repre-
sents several important classes of waveguides, including
fully buried channel waveguides (n2 = n3 = n4), embedded
channel waveguides (n2 = n4 <n3), and strip waveguides
(n2<n3 = n4). Figure 7(b) shows qualitatively the field dis-
tributions of some low-order modes in a buried channel
waveguide. Here we describe two popular approximate
methods, namely, Marcatili’s method (33) and the effective-
index method (34), for the analysis of the waveguide shown
in Fig. 7(a). Both methods solve approximately Eqs. (50)
and (51) for the vector modes, or Eq. (52) for the scalar
modes.

Marcatili’s method. In the method proposed by Marcatili
(33), the field in the rectangular-core waveguide is approx-
imated by the product of the fields in two slab waveguides,
which are obtained by extending the width and the height,
respectively, of the rectangular-core waveguide to infinity,
as shown in Fig. 8(a). To be specific, the field for the Ey

mn

(Ex
mn) mode of the rectangular-core waveguide, ψmn, is ap-
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Figure 7. (a) Cross-sectional geometry of a rectangular-core
waveguide, and (b) field patterns for several low-order modes,
where the arrows represent the directions of the electric fields.

proximated by

ψmn(x, y) ∼=ψm(x)ψn(y). (53)

where ψm is the field for the TEm−1 (TEm−1) mode of the
slab waveguide with thickness 2w, and ψn−1 is the field for
the TMn−1 (TEn−1) mode of the slab waveguide with thick-
ness 2t. Here all the fields are transverse electric fields.
In the case that the polarization effect is not taken into
account, i.e., for the scalar modes, the TM mode can be re-
placed by the TE mode of the same order. The normalized
propagation constant for the mode of the rectangular-core
waveguide is simply given by

b = bm + bn − 1 (54)

where bm = [(βm/k)2 − n2
2]/(n2

1 − n2
2) and bn = [(βn/k)2 −

n2
2]/(n2

1 − n2
2) are the normalized propagation constants for

the modes of the corresponding slab waveguides (with βm
and βn the propagation constants). With this method, we
only need to analyze two slab waveguides, or use the uni-
versal dispersion curves shown in Fig. 5 twice, to obtain an
approximate solution for the rectangular-core waveguide.

It has been found that Marcatili’s method actually
solves a separable rectangular structure, as shown in Fig.
8(b) (35). This structure differs from the original waveg-
uide shown in Fig. 7(a) in having lower refractive indices
in the corner regions. Marcatili’s method therefore always
underestimates the propagation constant, and gives a poor
accuracy in the near-to-cut-off regime, where the fields in
the corner regions are significant. A correction factor for
the propagation constant can be derived by treating the
structure shown in Fig. 8(b) as a perturbation of the origi-
nal structure shown in Fig. 7(a) (35).

The effective-index method. The idea of the effective-
index method is to replace the rectangular-core waveguide

Figure 8. (a) In Marcatili’s method, the rectangular-core waveg-
uide in Fig. 7(a) is replaced by two slab waveguides. (b) The struc-
ture that is actually analyzed by the method differs from the orig-
inal structure in having lower indices in the four corner regions.

by an equivalent slab waveguide with an effective refrac-
tive index obtained from another slab waveguide (34, 36).
The effective-index method only requires solutions for two
slab waveguides and is as efficient as Marcatili’s method.
The effective-index method is, however, more general, as it
can be applied to a wide range of geometries and composite
structures (36).

There are two ways of applying the effective-index
method, depending on how the effective refractive index
is calculated. In one method, as illustrated in Fig. 9(a), the
mode index of the TMm−1 (TMm−1) mode in the slab waveg-
uide with thickness of 2t is used as the effective refractive
index nx of a second slab waveguide with thickness 2w.
The propagation constant of the TEn−1 (TMn−1) mode of the
second slab waveguide is regarded as the propagation con-
stant of the Ey

mn (Ex
mn) mode of the rectangular-core waveg-

uide. In the other method, as illustrated in Fig. 9(b), the
mode index of the TEn−1 (TMn−1) mode in the slab waveg-
uide with thickness of 2w is used as the effective refractive
index ny of a second slab waveguide with thickness 2t. The
propagation constant of the TMm−1 (TEm−1) mode of the
second slab waveguide is the propagation constant of the
Ey
mn (Ex

mn) mode of the rectangular-core waveguide. In both
methods, the mode field in the rectangular-core waveguide
is the product of the fields in the two slab waveguides. In
the scalar analysis, the TM mode is replaced by the TE
mode of the same order. The solutions obtained from the
two methods for the same mode are in general different.
The method that starts with a thinner slab usually gives a
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Figure 9. In the effective-index method, the rectangular-core
waveguide in Fig. 7(a) is replaced by an equivalent slab waveg-
uide, which has an effective index calculated from another slab
waveguide. Two ways of applying the effective-index method are
possible, depending on whether the slab waveguide with thickness
(a) 2t or (b) 2w is used to determine the effective index.

better accuracy. By properly combining the solutions from
the two methods, however, it is possible to derive a much
more accurate solution (36).

The approximations involved in the effective-index
method have been investigated for both the scalar (37)
and vector (38) modes. Expressions for the errors in the
method have been derived (37, 38), which show explicitly
under what conditions the method is accurate. It can be
shown that the method always overestimates the propa-
gation constants for buried and embedded channel waveg-
uides, but may underestimate the propagation constants
for strip waveguides. The method shown in Fig. 9(a) is par-
ticularly accurate for strip waveguides.

Marcatili’s method and the effective-index method are,
in fact, special cases of a more general method (39). A gen-
eralization of the method shown in Fig. 9(a) is shown in Fig.
10, where a parameter γ is introduced in the claddings of
the equivalent slab waveguide to differentiate between var-
ious methods. The conventional effective-index method cor-
responds to γ = 0, whereas Marcatili’s method corresponds
to γ = 1. It can be proved that a much better accuracy for
the propagation constant can be obtained, if the following
expression for γ is employed (40):

γ = 1 − (�4/�3)W2 + (�4/�2)W3

2W2W3 +W2 +W3
(55)

where �i = (n2
1 − n2

i )/2n
2
1 (i = 2,3,4), and W2 and W3 are

the normalized parameters for the slab waveguide with
thickness 2t. The method with γ given by Eq. (55) is called
the effective-index method with built-in perturbation cor-
rection (39, 40).

Figure 10. Same as in Fig. 9(a) except that the refractive index
in the claddings of the equivalent slab waveguide is represented
in a more general way.

Dispersion curves. Dispersion curves calculated by var-
ious methods for several low-order modes of a fully buried
channel waveguide are shown in Fig. 11(a) for the case
w/t = 2, and Fig. 11(b) for the case w/t = 1, where the nor-
malized parameters are defined by b = [(β/k)2 − n2

2]/(n2
1 −

n2
2) and V = kt(n2

1 − n2
2)1/2. The results obtained from Mar-

catili’s method, the conventional effective-index method
(starting with a thinner slab), Marcatili’s method with per-
turbation correction (35), and the effective index with built-
in perturbation correction (39) are compared. All these
methods require the solutions of only two slab waveguides
and, therefore, have the same degree of efficiency. Accurate
numerical data calculated from a finite element method
(41) are used as the references. Figure 11 shows clearly
that the effective-index method with built-in perturbation
correction is significantly more accurate than Marcatili’s
method and the conventional effective-index method, and
slightly more accurate than Marcatili’s method with per-
turbation correction. More numerical data for rectangular-
core waveguides can be found in references 39 and 40.
A rectangular-core waveguide can be designed to support
only a number of Em1 modes by using a wide thin core.
The propagation constants of these modes have approxi-
mately regular spacing and their interference gives rise to
the effect of self-imaging, which forms the basis of a class of
optical couplers, known as multimode interference (MMI)
couplers (42).

Diffused Channel Waveguides

Diffused channel waveguides refer specifically to channel
waveguides that are fabricated with the ion-diffusion tech-
nique. The refractive-index profile of a diffused channel
waveguide can usually be described by a function that de-
creases monotonically in both the x and y directions in the
substrate with a peak value at the surface of the waveg-
uide. Many general numerical methods and approximate
methods are available for analyzing such waveguides (32).
Here we describe only the effective-index method (36, 43),
which is particularly simple to implement.

Figure 12 shows how the effective-index method is ap-
plied to a diffused channel waveguide. The idea is to ap-
proximate the diffused channel waveguide by an equiva-
lent planar waveguide with an effective index profile ne(x).
As shown in Fig. 12, the effective index at a particular
point x = xi, i.e., ne(xi), is given by the mode index calcu-
lated from the refractive-index profile of the diffused chan-
nel waveguide at x = xi, i.e., n(xi, y), which varies only in
the y direction. The propagation constant calculated for
the profile ne(x) is treated as the approximate solution for
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Figure 11. Universal dispersion curves for a buried channel
waveguide calculated by various methods for (a) w/t = 2 and (b) w/t
= 1: finite-element method (solid circles); conventional effective-
index method (dashed curves); Marcatili’s method (dot-dashed
curves); Marcatili’s method with perturbation correction (dotted
curves); effective-index method with built-in perturbation correc-
tion (solid curves). (After Chiang (39). Reproduced by permission
of the Institution of Electrical Engineers.)

the diffused channel waveguide. This method requires only
the solutions for graded-index planar waveguides and is
much more efficient than general two-dimensional numer-
ical methods.

Figure 12. A diffused channel waveguide is replaced by an equiv-
alent graded-index planar waveguide with refractive-index profile
n(xi, y).

Figure 13. Cross-sectional geometry of a rib waveguide.

Rib Waveguides

Rib waveguide and its variations are common waveguide
structures used in semiconductor-based optoelectronic de-
vices. Figure 13 shows the geometry of a rib waveguide
with width 2w, rib-wall height h, and outer slab depth d.
The thickness of the guiding region is 2t = h+ d. Techni-
cally, the effective-index method developed for rectangular-
core waveguides can be applied to rib waveguides. With
the effective-index method, the rib waveguide shown in
Fig. 13 can be approximated by a symmetric three-layer
slab waveguide with effective indices for the guiding layer
and the claddings determined by the slab waveguides with
thickness 2t and d, respectively. It is found, however, that
the effective-index method is accurate only when the rela-
tive outer slab depth of the waveguide, d/2t, is either large
or small (44). A preferred method for the analysis of rib
waveguides is the spectral-index method (44).

The spectral-index method involves expanding the fields
in the waveguide in terms of the local modes (modes of slab
waveguides) and matching the fields along the base of the
rib. The field matching, which is facilitated with a partial
Fourier transform, can lead to a compact implicit disper-
sion relation. The spectral-index method can give good ac-
curacy and requires much less computation time than gen-
eral numerical methods. The details of the method as well
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as its applications to more general rib structures are given
in reference 44.

In the special case of a strip waveguide, i.e., d = 0, a per-
turbation analysis leads to an accurate explicit dispersion
relation for the d = 0 mode (p = x, y) (45):

β2
p =

ª
β

2

p − m2π2

4w2
[1 − 2t

wV
(
�2

�3
)1/2(1 − 2�3Sp)], (56)

where Sx = 1, Sy = 0, �i = (n2
1 − n2

i )/2n
2
1 (i = 2,3), V is the

normalized frequency defined by Eq. (24), and ªβp is the
propagation constant of the TEn−1 (p = x) or TMn−1 (p = y)
mode of the three-layer slab waveguide shown in Fig. 2.
For the scalar (Emn) mode, Sp = 0 and ªβx should be used.
Equation (56) requires only the solution for a three-layer
slab waveguide.

It can be proved from Eq. (56) that the propagation
constants of the Ex

mn and Ey
mn modes can be made equal

at a certain value of V by controlling the aspect ra-
tio of the core, w/t (45). A single-mode waveguide with
a polarization-independent propagation constant, namely,
a zero-birefringence waveguide, is the building block of
many polarization-insensitive devices where phase match-
ing must be satisfied for both polarized modes. Zero-
birefringence single-mode rib and strip waveguides have
been demonstrated experimentally (46).

PHOTONIC BANDGAP WAVEGUIDES

Photonic bandgap (PBG) structures, also known as pho-
tonic crystals, are periodic structures that can take many
different forms, such as multilayer stacks, arrays of holes
in a single-material dielectric film or fiber, arrays of dielec-
tric pillars, etc. (47). The most important feature of a PBG
structure is the existence of forbidden frequency bands that
prohibit light waves within these bands from propagating
in the structure. Many of the applications with PBG struc-
tures are based on the destruction of their perfect periodic
configurations by introduction of defects in the structures.
The defects can be in the form of a layer of low-index film in
the middle of a periodic multilayer stack, one or more miss-
ing or additional holes in a film or fiber filled with otherwise
strictly regular holes, etc. While light within the forbidden
bands cannot propagate in the perfect PBG structure, it
can propagate through the defects with a low loss. Defect
control in a PBG structure thus provides a highly effective
means for the manipulation of light. A number of minia-
turized optical components, wavelength filters, and lasers
have been demonstrated with various kinds of PBG struc-
tures fabricated in different materials. The physical prin-
ciples of different kinds of PBG structures are detailed in
reference 47, while a comprehensive review of the technolo-
gies for the fabrication of PBG devices is given in reference
48. As PBG waveguides are the most basic structures used
in PBG devices, we discuss a simple one-dimensional PBG
waveguide as an example to illustrate the general disper-
sion properties of this class of waveguides.

Zig-Zag Wave Model

Figure 14 shows a one-dimensional PBG waveguide, where
the guiding layer has refractive index ng and thickness

2t, and the claddings on both sides of the guiding layer
are semi-infinite PBG structures made up of multilayer
stacks of alternating refractive indices n1 and n2 with cor-
responding thicknesses t1 and t2. The structure is invariant
in the y direction and light propagates in the z direction.
The main feature of the PBG waveguide is that the guid-
ing layer assumes a lower refractive index than its sur-
rounding cladding (i.e., ng ≤ n2 < n1). While the principle
of total internal reflection does not apply to the PBG waveg-
uide, light guidance in such a waveguide can be understood
from the fact that, within the forbidden bands of the PBG
structures, light undergoes complete reflection and can be
trapped in the guiding layer, regardless of its low index.
The guiding layer acts as a defect in the infinite periodic
structure. Therefore, light propagation in the PBG waveg-
uide can be described as plane waves bouncing back and
forth along the waveguide as in the case of a conventional
slab waveguide.

With the zig-zag wave model, the dispersion relation of
the PBG waveguide can be expressed in the form of the
transverse resonance condition as

2tk[n2
g − (β/k)2]1/2 = mπ + 2�, m = 0,1,2, . . . , (57)

where k is the free-space wavenumber,β is the propagation
constant, and −2� is the phase shift acquired when the
wave is incident upon the boundary between the guiding
layer and the infinite PBG structure. Equation (57) has the
same form as Eq. (5). For a conventional three-layer slab
waveguide, the phase shift at the boundary is derived from
the condition of total internal reflection, as given by Eq.
(6), and the range of the effective index β/k (and hence the
range of the incidence angle θ) is small. For the PBG waveg-
uide, however, the phase shift −2� is a characteristic of the
PBG structure, which is derivable from a transfer-matrix
method (49). The range of the effective index is given by 0
≤ β/k ≤ ng, which is large. The upper bound (β/k = ng) corre-
sponds to grazing incidence (θ = π/2), while the lower bound
(β/k = 0) corresponds to normal incidence (θ = 0), which sug-
gests that the effective index can be much smaller than the
refractive index of the material.

Dispersion Curves

To facilitate discussion,we define the normalized frequency
V as

V = k�(n2
1 − n2

2)1/2, (58)

and the normalized propagation constant b as

b = (β/k)2 − n2
2

n2
1 − n2

2

, (59)

where � = t1 + t2 is the pitch of the periodic structure. The
dispersion characteristics of the waveguide are expressed
as the relationship between b and V (the b − V curves).
Here, V is defined in terms of the parameters of only the
PBG structure, so that the dispersion curves for all the
waveguides, regardless of their thicknesses and refractive
indices, can be compared with reference to the same band
diagrams of the PBG structure. For the sake of simplicity,
we assume ng = n2. For a guided mode, the condition 0 ≤
β/k ≤ n2 is translated into 1/(1 − r12) ≤ b ≤ 0, where r12 =
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Figure 14. A one-dimensional photonic
bandgap (PBG) waveguide formed by sand-
wiching a low-index layer (film) between two
identical semi-infinite periodic slab structures.

(n1/n2)2. The dispersion curves of the TE modes are actually
independent of r12, so there is no need to specify the value
of r12 for the calculation of their dispersion curves. The
dispersion curves of the TM modes, however, depend on
the value of r12.

As an example, we set t1 = t2, t = �, and r12 = 2.25. The
dispersion curves for the TE and TM modes are shown in
Fig. 15(a) and Fig. 15(b), respectively, where the shaded
areas are the forbidden bands of the PBG structure. Each
forbidden band is labeled by a band order n (= 1, 2, 3,. . . ).
Within each band, the mode is labeled by a mode order
m, the integer that appears in Eq. (57). A comparison of
Fig. 15 and Fig. 5 shows that the dispersion character-
istics of the PBG waveguide are distinctly different from
those of a conventional slab waveguide. Apart from the dif-
ference in the range of the effective index, the dispersion
curves of the PBG waveguide are fragmentary. As shown
in Fig. 15, many dispersion curves have the same mode or-
der m, but they are not connected because of the presence
of band gaps. These curves terminate at the band edges at
which the modes are at cut-off. It is therefore possible to
operate the waveguide at a suitable value of V, so that the
higher-order modes instead of the lower-order modes are
supported.

The dispersion curves of the TM modes show some ad-
ditional features. As shown in Fig. 15(b), there exist two
special lines, the B-line and the L-line. The B-line specifies
Brewster incidence at which the effective index is given
by β/k = n1n2/(n2

1 + n2
2)1/2 or b = 1/(1 − r2

12) = −0.246. Un-
der this condition, light can pass through the PBG struc-
ture without decaying (49). The forbidden bands shrink
to points along the B-line. The L-line specifies the mini-
mum value of b that is allowed, i.e., b = 1/(1 − r12) = −0.8,
which corresponds to β/k = 0. A comparison of Fig. 15(a) and
Fig. 15(b) shows that the TM bands fall completely within
the TE bands. In the analysis of omnidirectional reflection
of the PBG structure, only the TM forbidden bands need
to be considered (50). A careful inspection of the labels of
the curves in Fig. 15 shows some missing mode orders (for

Figure 15. Universal dispersion curves for a one-dimensional
PBG waveguide with ng = n2, t1 = t2, t = �, and r12 = 2.25 for
(a) the TE modes and (b) the TM modes.
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example, m = 3 and 7 for the TE modes). These missing
modes do not exist because their dispersion curves shrink
into points together with the forbidden bands (not due to
Brewster incidence).

As discussed earlier, each of the guided modes can be
labeled uniquely with the mode order m and the band order
n. In fact, these mode orders allow the field patterns of the
guided modes to be visualized intuitively. The electric field
of the TE mode, i.e., Ey (x), contains m + 1 peaks in the
guiding layer and n zero crossings in each period of the
PBG structure. The magnetic field of the TM mode, i.e.,
Hy (x), contains m + 1 peaks in the guiding layer above the
B-line while m zero crossings in the guiding layer below
the B-line, and n zero crossings in each period of the PBG
structure.

It should be mentioned that the guiding layer of the
PBG waveguide can have a refractive index larger than
that of the surrounding PBG structure. In that case, for-
bidden bands still exist but the band gaps can become much
narrower.

Two-dimensional PBG waveguides such as one that
has a low-index rectangular core surrounded by periodic
cladding structures can be converted approximately into
one-dimensional PBG waveguides by the effective-index
method in the same way as depicted in Fig. 8 and Fig. 9.
Analysis of more general PBG structures that involve in-
dex variations along the z direction (e.g., structures that
contain arrays of air holes in the wave propagation direc-
tion) usually requires a purely numerical approach based
on a propagation method, such as the finite-difference time-
domain method (51).

DIRECTIONAL COUPLERS

When two parallel waveguides are placed in close proxim-
ity to each other, a directional coupler is formed. Under ap-
propriate conditions, light launched into one of the waveg-
uides can couple completely into the neighbor waveguide.
Directional couplers are used widely in optical communi-
cation systems and integrated optical circuits as power
dividers, wavelength multiplexers/demultiplexers, and po-
larization splitters. In this section, we describe two com-
monly used methods for analyzing directional couplers,
with a coupler consisting of two parallel identical step-
index slab waveguides as an example. A more rigorous
treatment of directional couplers can be found in reference
12.

Normal-Mode Analysis

Figure 16(a) shows two parallel identical three-layer step-
index slab waveguides, where 2t and n1 are the thickness
and the index of the guiding slabs, respectively, n2 is the
index of the surrounding medium, and 2d is the separation
between the two waveguides. In the normal-mode analysis,
the directional coupler is treated as a composite waveguide,
i.e., a five-layer step-index slab waveguide in the present
example. The composite waveguide supports two classes of
modes: the even modes, which have symmetric field dis-
tributions, and the odd modes, which have antisymmetric
field distributions. The field distributions for the lowest-

order even and odd TE modes are also shown in Fig. 16(a).
For the sake of simplicity, we assume that the compos-

ite waveguide supports only the lowest-order even and odd
modes. When light is launched into only one of the guid-
ing slabs, these two modes are simultaneously excited and
each carries approximately half of the input power. This
can be seen by superposition of the two mode fields shown
in Fig. 16(a), which results in a total field localized in
only one guiding slab. Because the two modes propagate
at different phase velocities, they acquire a phase differ-
ence as they propagate along the coupler. The phase differ-
ence acquired increases with the distance and is given by
(β+ − β−)z, where β+ and β− are the propagation constants
for the even and odd modes, respectively. We can assume
that the two modes are in phase when they are excited at
z = 0. After propagating a distance z = Lc given by

Lc = π

β+ − β−
, (60)

the two modes become 180 degree out of phase. A super-
position of the two mode fields then produces a total field
localized in the opposite guiding slab, i.e., the optical power
is transferred to the opposite guiding slab. In fact, the op-
tical power is transferred back and forth between the two
guiding slabs at everyLc. The behavior of a directional cou-
pler is therefore characterized byLcor β+ − β− ≡ 2C.Lc and
C are commonly referred to as the coupling length and the
coupling coefficient, respectively.

To calculate Lc or C, we must find β+ and β−. Using
the method outlined in the previous section for analyzing
a three-layer slab waveguide, we obtain the following dis-
persion relations for the five-layer slab waveguide:

tan 2U = r2UW2[1 + tanh(W2d/t)]
U2 − r2

2W
2
2 tanh(W2d/t)

(61)

for the even modes, and

tan 2U = r2UW2[1 + coth(W2d/t)]
U2 − r2

2W
2
2 coth(W2d/t)

(62)

for the odd modes, where r2 = 1 for the TE mode and
r2 = (n1/n2)2 for the TM mode, and U and W2 are given by
Eqs. (17) and (18), respectively. The propagation constants
β+ and β− can be solved exactly from Eqs. (61) and (62),
respectively, by a root-searching technique.

Coupled-Mode Analysis

The normal-mode analysis just described relies on the
knowledge of the modes of the composite waveguide. Ex-
cept for very simple structures, exact solutions for such
modes are difficult to find. A more practical approach to
analyzing directional couplers, especially when compli-
cated waveguide geometries are involved, is based on the
coupled-mode theory (14), which requires only the solu-
tions of the modes of the individual waveguides that form
the coupler.

In the coupled-mode theory, the modes of the compos-
ite waveguide are approximated by the modes of the in-
dividual waveguides in isolation. For the coupler shown
in Fig. 16(a), the fields of the lowest-order even and odd
modes, ψ+(x) and ψ−(x), can be expressed, respectively, as
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Figure 16. (a) Geometry of a directional coupler con-
sisting of two parallel identical three-layer slab waveg-
uides together with the field distributions for the two
lowest-orderTE modes of the composite five-layer waveg-
uide structure. (b) The normalized coupling coefficient
of a directional coupler decreases rapidly with increas-
ing the normalized frequency and the relative waveguide
separation. Numerical results are obtained for the cou-
pler in (a) from the normal-mode theory (solid curves)
and the coupled-mode theory (dotted curves).

the sum and the difference of the fields in the three-layer
slab waveguides that form the coupler:

ψ±(x) ∼=ψ(x− d − t) ± ψ(x+ d + t), (63)

where ψ(x) is the field of the fundamental mode of the
three-layer slab waveguide. For the sake of simplicity, we
consider only the TE mode. By substituting Eq. (63) into
the TE wave equation, Eq. (10), and integrating the resul-
tant equation over the entire x domain, we find

β2
± ∼=β2 ± k2(n2

1 − n2
2)

∫ d+2t
d+t ψ(x− d − t)ψ(x+ d + t)dx∫ +∞

−∞ ψ(x)2dx
, (64)

where β is the propagation constant for the TE0 mode of
the three-layer slab waveguide. The overlap integral in Eq.
(64) measures the degree of overlapping between the mode

fields in the two waveguides over the guiding region of one
of the waveguides. Equation (64) involves only the solu-
tions for the fundamental mode of a single waveguide. Us-
ing the solutions for the three-layer slab waveguide, we
obtain:

β2
+ − β2

− ∼= 2V 2

t2

B

N
(65)

with

B = 2W2

V 2
exp(−W2

2d
t

) (66)

and

N = V 2

U2
+ W2

U2
+ 1
W2

, (67)



Waveguides, Optical 17

where the normalized parameters are defined for the three-
layer slab waveguide – Eqs. (17), (18) and (24). It should
be noted that the accuracy of the assumption Eq. (63), and
hence, the coupled-mode solution Eq. (64), increases with
the normalized waveguide separation d/t and the normal-
ized frequency V .

Figure 16(b) shows the normalized coupling coefficient
C as a function of V for several values of relative waveguide
separation d/t, where C≡ 0.25V [(β+/k)2 − (β−/k)2]/(n2

1 −
n2

2). Results obtained from the normal-mode analysis and
the coupled-mode analysis are hardly distinguishable, ex-
cept when both d/t and V are small. As shown in Fig. 16(b),
the normalized coupling coefficient decreases rapidly as
the normalized frequency and the relative waveguide sep-
aration increase. As an example, with 2t = 2 µm, n1 = 2.20,
n2

1 − n2
2 = 0.02n2

1, we have V = 1.5 at the wavelength 1.3
µm. When the waveguide separation is equal to the thick-
ness of the guiding slabs (2d = 2 µm), the coupling length
is approximately 0.7 mm. If we double the waveguide sep-
aration (2d = 4 µm), the coupling length will increase by
roughly ten times, to approximately 8 mm.

The coupled-mode theory also leads to simple expres-
sions to describe power evolution in the individual waveg-
uides. When the two waveguides are identical and lossless
and optical power is launched into only one of the waveg-
uides at z = 0, the powers in the two waveguides, denoted
by P1(z) and P2(z), respectively, are given by

P1(z) = Pi cos2(Cz) (68)

and

P2(z) = Pi sin2(Cz), (69)

where Pi is the input power. These expressions are con-
sistent with our earlier discussion with the normal-mode
analysis that a complete transfer of optical power from one
waveguide to the other takes place over a coupling length,
i.e., at z = Lc = π/2C. When the length of the coupler is cho-
sen to be equal to an odd multiple ofLc/2. The coupler func-
tions as a power divider with a 50/50 splitting ratio (i.e., a
3-dB coupler), which distributes optical power equally be-
tween the two waveguides. In principle, any splitting ratio
can be achieved by choosing a suitable length. It is also
possible to design a coupler that functions as a wavelength
multiplexer or demultiplexer, by making use of the fact
that the coupling coefficient C depends on the wavelength.
When the length of the coupler is equal to an even number
of coupling lengths at one wavelength, and an odd number
of coupling lengths at the other wavelength, the two wave-
lengths of light, both launched into one of the waveguides,
can evolve separately from the two waveguides. Similarly,
a polarization splitter can also be realized with a direc-
tional coupler, if the coupling coefficient is sensitive to the
polarization state of light.

A directional coupler can also be formed with two dis-
similar waveguides. In general, a complete transfer of op-
tical power cannot take place in such an asymmetric cou-
pler at all wavelengths. However, it is possible to design an
asymmetric coupler that allows a complete power transfer
at a specific wavelength, and hence, serves as a wavelength
filter.

Although we detail only the analysis of two parallel
slab waveguides, the underlined principles apply to gen-
eral waveguide geometries. In fact, the results obtained
for parallel slab waveguides can be readily extended to di-
rectional couplers consisting of parallel rectangular-core
waveguides by means of the effective-index method (52).
Directional couplers with polarization-insensitive splitting
ratios,which are formed with rectangular-core waveguides,
have been demonstrated experimentally (53).

As shown by the results in Fig. 16(b), evanescent-field
coupling between two waveguide cores is effective only
when the two cores are sufficiently close to each other. For
widely separated cores where evanescent-field coupling is
negligible, we can still achieve strong light coupling be-
tween the cores by introduction of properly designed peri-
odic structures (i.e., gratings) along the cores (54).

FABRICATION TECHNIQUES

Techniques commonly used in fabricating optical waveg-
uides can be divided into three categories, according to how
the guiding layer of the waveguide is formed. The three cat-
egories are (i) deposition, in which material is deposited in
the form of thin film on a lower-index substrate; (ii) ion-
migration, in which ions are introduced into a substrate to
raise the refractive index of the substrate near the surface;
and (iii) epitaxial growth, in which a layer of crystallized
material is grown epitaxially on a similar substrate mate-
rial. In general, deposition and epitaxial techniques lead
to step-index waveguides, while ion-migration techniques
give rise to graded-index waveguides. A fabrication tech-
nique could be applied to many different material systems,
while waveguides based on the same material system could
be fabricated with more than one technique. Table 2 shows
some typical waveguide materials together with the more
commonly used fabrication techniques. More detailed dis-
cussions on waveguide fabrication can be found in the rel-
evant chapters in the reference books (3,7,9,10,13,55).

Deposition Techniques

Sputtering is the most versatile deposition method and al-
lows deposition of glass or crystalline films on glass sub-
strates as well as on crystalline substrates. In the sputter-
ing process, atoms from a solid target material are made to
eject in a vacuum by the bombardment with atoms or ions,
and the ejected particles are collected on a nearby sub-
strate to form a thin film. In the glow-discharge sputtering
method, the ions used for bombardment are generated from
a plasma, which is formed by ionizing an inert gas (e.g. ar-
gon) with a high voltage (several kilovolts) applied to the
target (which serves as the cathode). For a metal target, a
dc voltage is applied (dc sputtering), while for a dielectric
target, a radio-frequency (RF) voltage is used (RF sputter-
ing) to prevent accumulation of positive ions at the target,
which could counteract the applied voltage and stop the
process. Alternatively, high-speed ions can be generated
with an ion gun instead of a glow-discharge plasma (ion-
beam sputtering). Ion-beam sputtering can allow a better
control of the substrate temperature and the physical pa-
rameters in the deposition process. It is also possible to al-
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Table 2. Some common waveguide materials and fabrication techniques

Material Refractive index Type of waveguide Fabrication technique
Glasses 1.45 − 1.55 Step-index RF sputtering

Graded-index Ion-exchange
Polymers 1.45 − 1.65 Step-index Spin-coating

Polymerization
LiNbO3 no = 2.29, ne = 2.20 Graded-index Metal in-diffusion

(at λ = 0.633 µm) Proton-exchange
ZnO 2.0 (at λ = 0.633 µm) Step-index RF sputtering
Silicon on insulator (SOI) 3.47/1.46 (at λ = 1.55 µm) Step-index PECVD
SiOx Ny on silica 1.46 − 2.0 Step-Index Graded-index PECVD
Chalcogenide 2 – 3 Step-index Thermal vapor deposition
Ga1−xAlxAs 3.4 – 3.6 Step-index Epitaxial growth
Ga1−xInxAs1−yPy 3.2 – 3.6 Step-index Epitaxial growth

low oxygen to react with a metal target during deposition
to form a metal oxide film at the substrate surface (reactive
sputtering). In general, sputtering provides pure, durable,
and low-loss films, but the deposition rate is usually low
(of the order of 0.01 – 0.1 µm per minute).

For the deposition of polymers, the spin-coating and dip-
coating methods can be used. A substrate is first covered
with, or dipped into, a liquid of polymer solution. The thick-
ness of the liquid layer is then controlled by either spin-
ning the substrate at an appropriate rate (spin-coating)
or by lifting it up vertically to allow excess liquid to run
off (dip-coating). The film is subsequently dried in air and
baked in an oven. This method is simple and capable of
producing low-loss waveguides, but it is difficult to control
the film thickness and uniformity to a high accuracy. A
more elaborate method for producing polymer thin films is
called plasma polymerization, which involves the use of an
electrical discharge to convert a monomer (low molecular
weight organic compound) chemically into a smooth poly-
mer film. This method provides a much better control of
the film thickness.

Other deposition techniques include thermal vapor de-
position and chemical vapor deposition. In the former, a
thin film is formed by depositing a material vaporized in a
vacuum chamber on a substrate, while in the latter, thin-
film deposition is the result of chemical reactions of gases.
Chemical vapor deposition is a common method for mak-
ing silica-based waveguides. In fact, it is a standard method
for making optical fiber preforms. The thin-film deposition
process can be enhanced at lower temperatures by using a
vapor that contains electrically charged particles (plasma).
This technique is known as plasma enhanced chemical va-
por deposition (PECVD). It is widely employed for the fabri-
cation of high-index-contrast waveguides based on silicon-
on-insulator (SOI) or silicon oxynitride (SiOxNy ) on silica
(56).

Ion-Migration Techniques

In the thermal diffusion method, a metal film is deposited
on a substrate and heated at a high temperature (around
1000 ◦C) for a period of several hours. The metal is then dif-
fused into the substrate and a smooth graded-index profile
near the surface of the substrate is formed. An electric field
may be applied during the diffusion process to accelerate
the process and reduce the temperature required (electric-

field assisted diffusion). The electric field can also drive the
diffused ions well below the surface of the substrate to pro-
duce a buried waveguide and eliminate surface scattering.
Titanium-diffused lithium niobate (Ti:LiNbO) waveguides
and copper-diffused lithium tantalate (Cu:LiTaO3) waveg-
uides are well-known examples of waveguides fabricated
with thermal diffusion.

In the ion-exchange method, a substrate is immersed
in a molten salt at a suitable temperature (200 – 350 ◦C)
for a period of time. The ions in the substrate are then ex-
changed with the ions in the molten salt. This process in
general results in a gradual change in the refractive index
near the surface of the substrate. In some cases, the ion-
exchange process can be accelerated by applying an elec-
tric field (electric-field assisted ion-exchange). For exam-
ple, glass waveguides can be made by exchanging sodium
ions in glass with silver, potassium, or thallium ions. A de-
tailed description of the ion-exchange method for a wide
range of glass waveguides can be found in reference 55.
In the special case that metal ions in a crystalline sub-
strate are exchanged with hydrogen ions (protons) from
an acid, the method is called the proton-exchange method.
The proton-exchange method can usually lead to a rela-
tively large refractive-index change and a step-like profile.
For example, a lithium niobate waveguide can be made by
exchanging lithium ions with protons in a solution of ben-
zoic acid at around 250 ◦C. The process may take a few
minutes for a single-mode waveguide to many hours for a
heavily moded waveguide.

Graded-index waveguides can also be fabricated with
the ion-implantation technique, in which a stream of ac-
celerated ions are made to penetrate into a substrate ma-
terial and, consequently, cause lattice disorder, and hence,
index change in the material. This technique is expensive
to implement, but it can be applied to a wide range of ma-
terials and provide an accurate control of the waveguide
parameters.

Epitaxial Techniques

Epitaxial techniques are widely used for the fabrication
of semiconductor waveguides. The principle of epitaxial
growth is that a material in its molten state (liquid-phase
epitaxy) or gaseous state (vapor-phase epitaxy) can be crys-
tallized into thin films on the surface of a substrate mate-
rial, when the two materials have similar crystal struc-
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tures and lattice constants. In vapor-phase epitaxy, chem-
ical reactions of gases take place at a high temperature.
In general, epitaxial techniques can produce high-quality
crystalline films with well-controlled thicknesses. It is also
possible to grow crystalline thin films by allowing beams
of atoms or molecules from different sources to react with
a crystalline substrate under ultrahigh vacuum conditions
(molecular-beam epitaxy). Molecular-beam epitaxy offers
good flexibility and an extremely precise control of film
thickness (layers as thin as 1 nm can be grown).

Patterning

The fabrication techniques described above only lead to
planar waveguides. To make a two-dimensional waveguide,
it is necessary to carry out patterning, either on a planar
waveguides or on a substrate.

Figure 17(a) shows the main steps involved in fabricat-
ing a two-dimensional waveguide on a planar waveguide.
The planar waveguide is first coated with a layer of (nega-
tive) photoresist followed by a metal mask with a window
with the desired dimension. The strip of photoresist in the
window, after exposure to ultraviolet light, is developed
chemically, and remains to serve as a protective shadow
on the planar waveguide. The guiding layers of the waveg-
uide that are not covered by the photoresist mask are then
removed with an etching technique. If the etching is com-
plete (down to the substrate), a strip waveguide results. If
the etching is incomplete, a rib waveguide results.

It is also possible to make a two-dimensional waveguide
from a substrate material, as shown in Fig. 17(b). The sub-
strate material is coated directly with a layer of positive
photoresist and a metal mask. After exposure and devel-
opment, in contrast with the previous case, the photore-
sist that has been exposed to ultraviolet light is removed
chemically. This leaves a window of photoresist on the sub-
strate.A layer of higher-index material is then sputtered on
the patterned structure. In this way, only a strip of higher-
index material is in touch of the substrate. With the rest
of the photoresist removed, a strip waveguide results. A
diffused channel waveguide is formed instead, if a layer of
metal for thermal diffusion is deposited on the patterned
structure, so that diffusion takes place only in the win-
dow area. When a lower-index layer is further deposited
on a strip or embedded waveguide, a fully buried channel
waveguide results.

Two patterning techniques are available: photolithogra-
phy, in which photoresists are used, as described in the ex-
amples, and electron-beam lithography, in which electron-
beam resists are used. With the electron beam technique,
patterns are written directly on the resists by the electron
beam and no mask is required. A typical resolution of 0.1
µm can be achieved. There are also two kinds of etching
techniques: “wet” etching techniques, which rely on liquid
chemicals as etching agents, and “dry” etching techniques,
which rely on gaseous chemicals. Dry etching usually re-
sults in better etched surfaces. Reactive ion etching (RIE) is
a particularly versatile dry-etching technqiue, where high-
energy ions generated under low pressure or in vacuum by
an electromagnetic field are made to attack the substrate
and react with it to remove the material.

There are two other general techniques that are par-
ticularly suitable for the fabrication of polymer waveguide
devices: laser direct writing and imprinting/molding (57).

Laser writing is based on changing the refractive index
of photosensitive polymer by exposing it to a laser beam of a
suitable wavelength. Waveguide patterns can be produced
directly on a polymer substrate with a computer-controlled
moving laser beam or an expanded stationery laser beam
through a mask. When a polymer that is insensitive to the
writing wavelength is used as the cladding material, it is
possible to form buried waveguides directly (58). The laser
writing technique can also be applied to the fabrication of
embedded waveguides in photosensitive glass (59).

The imprinting/molding technique is most suitable for
mass production of polymer waveguides. This technique
requires the preparation of a mold or stamp that contains
the device pattern. There are several versions of the tech-
nique. In the case of imprinting, the mold or stamp is made
in conformal contact with the polymer film coated on a sub-
strate to transfer the pattern. In the case of hot embossing,
the mold is pressed against a polymer film at an elevated
temperature and peeled off from the film by cooling. It is
also common to fill the mold with the desired polymer in
the liquid form followed by ultra-violet curing. The advan-
tage of the imprinting/molding technique is that the mold
can be used repeatedly to produce the same device with a
simple process and thus lower the manufacturing cost. The
mold can be produced directly by photolithography on sili-
con or glass. More often the mold is made of a mechanically
flexible elastomer poly(dimethysiloxane) (PDMS) (see, for
example, reference 60), which is produced by casting from
a master. The master to be replicated can be made of com-
monly used resist, glass, or semiconductor.

CHARACTERIZATION AND MEASUREMENTS

After a waveguide has been fabricated, the next step is
to measure its properties. The results from the measure-
ments can provide valuable information about how good
the fabrication technique is, and how well the fabricated
waveguide meets the design specifications. It is through a
number of iterations of fabrication and measurement that
a reproducible fabrication method can be established for
a specific type of waveguide. The properties of a waveg-
uide that are of particular interest are optical attenuation,
refractive-index profile, and, in the case of a single-mode
waveguide, mode-field distribution. More detailed discus-
sions of various measurement methods can be found in the
relevant chapters of the reference books (3,7,10,13,55).

Prism-Coupling Technique

Essentially all optical measurements involve launching
light into a waveguide. Here the prism-coupling technique
(61) is described briefly, which is widely used in waveguide
characterization.

Figure 18 shows a prism with base angle αp and refrac-
tive index np, placed against the surface of a planar waveg-
uide with a small air gap. A collimated light beam is inci-
dent upon the prism at an angle θ and deflected onto the
base of the prism at an angle θ′ to the normal of the base.
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Figure 17. Procedures in the fabrication of a
strip waveguide starting with (a) a step-index slab
waveguide or (b) a substrate.

It can be shown that, only when the phase velocity of the
incident beam along the base of the prism is equal to the
phase velocity of the guided mode of the waveguide, light
can be coupled into that mode with a high efficiency (61).
This condition leads to

β

k
= np sin θ′ = np sin[sin−1(sin

θ

np
) + αp] (70)

where β/k is the effective index of the mode. For the method
to work properly, the refractive index of the prism must
be sufficiently larger than that of the guiding layer of the
waveguide. It is clear from Eq. (70) that, by varying the
incident angle θ, any guided mode can be selectively ex-
cited. This method is capable of providing a high coupling
efficiency (better than 80 %). To obtain a stable and effi-
cient coupling condition, however, the adjustment of the
gap separation and beam position is critical. Exactly the
same method can be used to couple light out of the waveg-
uide.

The other commonly used method for launching light
into a waveguide is the end-coupling (end-fire) method, in
which light is launched into the waveguide through the end
face of the waveguide. This method requires the end face of
the waveguide be flat and perpendicular to the input light
beam.

Loss Measurements

A high-quality waveguide should have a low optical loss
(typically less than 1 dB/cm). There are two kinds of losses:
absorption loss caused by light absorption in the waveguide
materials, and scattering loss caused by the imperfections
in the waveguide structure. Absorption loss is an important
concern in semiconductor waveguides, as there are many
mechanisms in semiconductors that can cause absorption
(interband absorption, impurity absorption, and carrier ab-
sorption). On the other hand, scattering loss is the major

Figure 18. Illustration of the prism-coupling technique. A high-
index prism is placed against the surface of a planar waveguide
and light is launched into the waveguide through the prism. Only
when the phase velocity of the incident light along the base of the
prism is equal to that of a guided mode of the waveguide, the mode
can be excited with a high efficiency.

loss in many dielectric waveguides. In general, waveguides
fabricated from diffusion techniques have a lower scatter-
ing loss. For curved waveguides, there also exists bend-
induced radiation loss.

In general, the optical loss in a waveguide, denoted by α
(in dB/cm), can be calculated from optical power levels P1

and P2 measured respectively at two different positions z1

and z2 in the waveguide:

α = 10 log(P1/P2)
z1 − z2

. (71)

To measure power levels at two different positions, the cut-
back method can be used. Light is launched into the waveg-
uide by the end-coupling technique and the output power at
the other end of the waveguide is measured. The waveguide
is then cut by a known length and the same measurement
is repeated to obtain another power reading. This method
is accurate, but destructive. An alternative method is based
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on the use of two prisms, one for launching light into the
waveguide and the other for coupling light out of the waveg-
uide. The output prism is allowed to slide along the waveg-
uide and couple light out of the waveguide at different lo-
cations. In this way, output power levels at different po-
sitions can be measured. The prism-sliding technique is
non-destructive and capable of measuring loss for individ-
ual mode. However, care must be taken to ensure that the
coupling efficiency is optimized, and hence, remains con-
stant during the measurement. This can be facilitated by
filling the air gap between the prism and the waveguide
with an index-matching liquid. The use of index-matching
liquid can improve the coupling efficiency and reduce the
friction. Measurements of losses down to ∼0.1 dB/cm with
errors of ±0.01 dB/cm are possible with this method. The
scattering loss in a waveguide can also be measured by
detecting light scattered from the waveguide with an opti-
cal fiber probe or a camera placed near the surface of the
waveguide.

Refractive-Index Profile Measurements

In the case of using prisms to couple light into and out of a
waveguide, if the light incident upon the input prism spans
a range of angles, all the guided modes of the waveguide
can be excited and leave from the output prism at different
angles. The output pattern displayed on a screen shows a
number of parallel bright lines (“m-lines”), each of which
represents a guided mode (2, 61). By measuring the exit
angles of the modes, the effective indices can be calculated
from Eq. (70). The prism-coupling method thus provides
a convenient way for measuring mode indices. With the
knowledge of the effective indices, the thickness and the
refractive index of the thin film in a step-index waveguide
can be determined from Eq. (5).As there are two unknowns,
at least two effective indices are required.

In the case of a graded-index waveguide, the refractive-
index profile can be determined from the inverse WKB
method. A common way of applying the inverse WKB
method is to treat the effective index in the WKB equation,
Eq. (39), as a continuous function of m (the effective-index
function) (62), i.e., N(m) ≡β/k, where m is a real number
instead of an integer. According to Eq. (39), there exists
a one-to-one correspondence between the refractive-index
profile n(x) and the effective-index function N(m). The idea
is therefore to find approximately the function N(m) from
a set of discrete effective indices (m = 0,1,2, . . .) measured
by the prism-coupling method. This can be done by plot-
ting the measured effective indices against the mode orders
and then least-squares fitting the data to generate a con-
tinuous function of m (with a low-order polynomial). From
Eq. (39), by extrapolating N(m) to m = −0.75, the peak in-
dex at the waveguide surface can be obtained, i.e., n1 =
N(−0.75). To facilitate the calculation, the function N(m) is
replaced by a large number of samples Ni (i = 0,1,2, . . .)
with N0>N1>N2> . . . and N0 = N(−0.75) = n1, each of
which corresponds to a turning point xi at which n(xi) = Ni.
The turning points can then be calculated from the follow-
ing algorithm (62):

xi =
(m+ 0.25)π +�(Ni) − k

∑i−1
j=1{xj[(N

2
j −N2

i )1/2 − (N
2
j+1 −N2

i )1/2]}
k(N

i

2 −N2
i )1/2

(72)

for i = 2,3, · · · with x0 = 0 and x1 = [(m1 + 0.25)π +
�(N1)]/[k(N

2
1 −N2

1 )1/2], and Ni = (Ni +Ni−1)/2. Once the
turning points are found, the refractive-index profile n(x)
can be constructed. In general, the accuracy of the method
increases with the number of effective indices available for
forming the effective-index function. In the original version
of the method (62), at least three effective indices from the
same mode type (TE or TM) are required, which means
that the waveguide must support at least three modes of
the same type. By combining the measurements for both
the TE and TM modes and/or at different wavelengths,
the method can be applied to single-mode and two-mode
waveguides (63). However, the technique of combining the
measurements for both mode types cannot be applied to
waveguides that do not support both mode types or contain
unknown material birefringence, while the technique of
combining the measurements at different wavelengths re-
quires several laser sources and an accurate knowledge of
the dispersion properties of the waveguide material. These
problems can be overcome with the technique that com-
bines the effective indices of the same mode measured with
different index-matching liquids applied to the surface of
the waveguide (64).

Mode-Field Distribution

To optimize the coupling efficiency between a single-mode
fiber and a single-mode waveguide, the mode-field distri-
butions in the fiber and the waveguide must match. The
mode-field distribution in a waveguide, or the near-field in-
tensity pattern, can be measured conveniently with a video
camera system. In fact, the measured near-field intensity
pattern can be used to determine the refractive-index pro-
file of the waveguide. From Eq. (52), the refractive-index
profile n(x, y) can be calculated from (65)

n2(x, y) = (
β

k
)2 − 1

2k2I
[∇2

t I − 1
2I

(∇tI)2] (73)

where I(x, y) ∝ψ2(x, y) is the near-field intensity pattern.
Because numerical calculation of first and second deriva-
tives on the measured data is involved, very accurate ex-
perimental data are required and data smoothing is nec-
essary. This method is capable of determining refractive-
index profiles in two-dimensional waveguides.

CONCLUDING REMARKS

With continuous research endeavors for almost four
decades, numerous integrated optical devices have been
demonstrated, varying from simple ones, which may func-
tion merely as passive signal distributors, to complicated
ones, which may involve a complicated matrix of waveg-
uides and a large number of thermal controls. Indeed, the
advancement in waveguide fabrication over the years has
greatly improved the control of waveguide dimensions and
made possible the launch of a range of products at rea-
sonable prices. For example, silica-waveguide star couplers
and high-speed LiNbO3 modulators are among the most
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common integrated optic waveguide devices in the mar-
ket. Commercial software packages are also available for
the design of a wide range of waveguide devices.

The continuing pursue for higher transmission capac-
ity with optical fiber has brought about the concept of
dense wavelength-division multiplexing (DWDM), which
demands the transmission of a large number of closely
packed wavelength channels along a single-mode fiber. The
most important enabler of the DWDM technology is the
integrated optic device known as the arrayed-waveguide
grating (AWG). An AWG consists of a large array of waveg-
uides with a fixed length difference between two neigh-
boring waveguides, where the light outputs from all the
waveguides are made to interfere to provide spatial sepa-
rations for a large number of DWDM channels. An AWG
thus fulfils the key function in the DWDM technology as
a wavelength multiplexer/demultiplexer. A comprehensive
review of the AWG technology can be found in chapter 9 of
reference 17. At the same time, the rapid advances in the
waveguide fabrication techniques allow further miniatur-
ization of optical waveguides by using high-index-contrast
structures, in particular, silicon-based structures (56). The
recent developments in photonic crystals, which are also
high-index-contrast structures, have opened up many new
opportunities in the realization of compact devices (48) and
the application of nonlinear optical phenomenon (66). On
the other hand, polymer waveguides hold promise for mass
production of low-cost and high-performance devices for
the next generation of optical communication systems (57–
68). More exciting developments along these fronts are ex-
pected to come with time.
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