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MAGNETIC MODELING

THE CLASSICAL PREISACH FRAMEWORK

The first hysteresis model that recognized that in order to
describe minor loop behavior, the model must have memory,
was described by the Hungarian born physicist, Franz (Fer-
enc) Preisach, in his landmark paper almost 60 years ago (1).
However, the novelty of Preisach’s approach was not recog-
nized and applied to describe magnetic hysteresis until the
late 1950s (2). It is noted that an approach identical to Prei-
sach’s was independently discovered and developed for many
years to describe adsorption hysteresis (3), without recogniz-
ing the similarities with Preisach’s original approach. The
unified formal mathematical treatment of hysteresis in gen-
eral has been defined recently (4).

In the Preisach method, each elementary particle has a
rectangular hysteresis loop and, as an isolated particle has
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Figure 1. Classical Preisach representation of an isolated particle.

‘‘up’’ and ‘‘down’’ switching fields, H
 and H� are equal in
magnitude, as illustrated in Fig. 1. Since energy is dissipated
during hysteresis, the hysteresis loop is always traversed in
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Figure 3. Representative elementary-particle hysteresis loop in eachparticles in the medium. From a physical point of view the
octant of the physically realizable region of the classical Preisach‘‘up’’ and ‘‘down’’ saturated states are identical; therefore, the plane.

magnitude of the magnetization, m, in these two states is
the same.

The Preisach method is a hysteresis model to describe the in it are shown in Fig. 3. We will call regions I, VI, VII, and
behavior of a collection of interacting particles with different VIII the first, second, third, and fourth quadrants of the Prei-
up and down switching fields. In an assembly of particles, the sach plane, respectively.
field that an individual particle ‘‘sees’’ is not the external field The normalized Preisach density function, or Preisach func-
but the sum of the external field and the interaction Hi due tion for short, p(H
, H�) is a three-dimensional density func-
to other particles in the medium. In the classical Preisach tion defined over the Preisach plane, as illustrated in Fig. 4.
representation, the effect of the interaction field Hi is to shift The value of p(H
, H�) is the fraction of the magnetization
the hysteresis of the particle by Hi, as illustrated in Fig. 2. contribution by the point (H
, H�) to the total normalized

The classical Preisach technique uses a statistical ap- magnetization m. The density function is zero outside the
proach to describe the hysteretic many-body problem. The Preisach plane and, from magnetic symmetry, p(H
, H�) �
method assumes that the magnetic medium is composed of a p(�H�, �H
). Thus,
continuum of ‘‘elementary particles,’’ each of which character-
izes the average behavior of an ensemble of particles. The
Preisach calculation plane (also called the Preisach plane)
takes the up and down switching fields as the coordinate

∫ ∫
H+≥H−

p(H+, H−) dH+dH− = 1 (1)

axes. A point on the Preisach plane with coordinates (H
,
In most cases one simply illustrates the Preisach function byH�) corresponds to the particle whose elementary hysteresis
its contour plot or by a representative curve of the contourloop switches up and down at H
 and H�, respectively. Mag-
plot.netic materials exhibit saturation-type hysteresis; therefore,

The normalized Preisach function can also be defined asit is reasonable to assume that all elementary particles switch
p(Hi, Hc), where Hi is the interaction field and Hc is the criticalto their up state above a positive saturating field HS and

switch down below a negative saturating field, �HS. The
choice of the value of HS depends on the material that is being
characterized. With these considerations, the physical region
of the Preisach plane and representative elementary particles
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Figure 4. Illustration of the normalized Preisach function in theFigure 2. Classical Preisach representation of a particle in the pres-
ence of an interaction field Hi. (H
, H�) coordinate system.
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field, and normalization requires that up state, indicated by the 
 sign, since they all have up
switching fields less than the applied field H*. Elementary
particles to the right of the vertical line have up switching
fields greater than the applied field; therefore, they will re-

∫
Hc>0

∫ ∞

−∞
p(Hi, Hc) dHidHc = 1 (2)

main in their previous magnetization state. In this example,
since the initial state was negative saturation, particles inIn magnetic media, the critical field distribution and the
this region will remain in their negative state, as indicatedinteraction field distribution are independent of each other,
by the � sign.that is,

The case when the field reaches H � H1 is illustrated in
Fig. 6(c). The calculation is similar to that described pre-p(Hi, Hc) = pi(Hi)pc(Hc) (3)
viously, but since the applied field is larger, the positively

The (Hi, Hc) and (H
, H�) coordinate systems are related magnetized region, indicated by the 
 sign, has grown fur-
by ther at the expense of the negatively magnetized region, indi-

cated by the � sign.
As the field is reduced from H1, let us consider the caseHi = H+ + H−

2
, Hc = H+ − H−

2
(4)

when H � 0, illustrated in Fig. 6(d). At this field, all elemen-
tary particles above the horizontal line corresponding to the

and applied field H � 0, which in this case coincides with the H


axis, will switch to their down state, since their switchingH+ = Hi + Hc, H− = Hi − Hc (5)
field is greater than the applied field. All particles below the
line will remain in their previous magnetization state. Now,It is often convenient to use one or the other of these two
since the ‘‘medium’’ has been exposed to a magnetization his-classical Preisach coordinate systems.
tory, the positively and negatively magnetized regions areFrom a control point of view, the classical Preisach model
separated by a staircase line.can also be viewed as a parallel connection of rectangular

The case when the field reaches H � H2 is illustrated intwo-state hysterons (4) with a distribution of up and down
Fig. 6(e). The calculation is similar to that described pre-switching fields, as illustrated in Fig. 5.
viously, but since the applied field was further reduced, the
negatively magnetized region, has grown at the expense of

CALCULATION OF THE MAGNETIZATION the positively magnetized region.
USING THE CLASSICAL PREISACH MODEL The classical Preisach plane corresponding to the final

state of the magnetizing process at H � H3 is illustrated in
We will now show how the classical Preisach model is used to Fig. 6(f). It is seen that the positively and negatively magne-
compute the magnetization due to the applied field sequence tized regions are separated by a staircase line. The coordi-
illustrated in Fig. 6(a). The magnetization state of a hyster- nates of the two vertices of the staircase line are (H1, H2) and
etic system depends on the magnetization history; therefore, (H3, H2).
the initial magnetization state of the system has to be known. Thus, the normalized magnetization m, through use of the
For this example, we will assume that the initial state is neg- classical Preisach model, is computed by
ative saturation; other types of initial states will be discussed
later. Using the classical Preisach representation, negative
saturation means that every elementary particle on the Prei-
sach plane is in its down state.

nm =
∫ ∫
R+

p(H+, H−) dH+dH− −
∫ ∫
R−

p(H+, H−) dH+dH−

(6)Let us first compute the magnetization at H � H*, illus-
trated in Fig. 6(b). As discussed previously, the location of

where R
 and R� denote the positively and negatively magne-
each elementary particle on the classical Preisach plane is

tized regions of the Preisach plane, respectively.
determined by its up switching field H
 and its down switch-

One may also write the preceding Preisach integral as
ing field H�. Thus, elementary particles to the left of the verti-
cal line that intersects the H
 axis at H* will switch to their

nm =
∫ ∫

H+≥H−

Q(H+, H−)p(H+, H−) dH+dH− (7)

where the state variable, Q(H
, H�), takes on the value 
1
and �1 in the positively and negatively magnetized regions,
respectively.

As shown in Fig. 1, the magnetization of an elementary
Preisach particle switches discontinuously at the particle’s up
and down switching field. However, since the Preisach plane
is comprised of a distribution of such elementary particles,
the magnetization computed by the classical Preisach model

……

H(t) mi(t)

is in general a smooth function of the applied field. The
smoothness of the computed hysteresis curve depends on theFigure 5. Classical Preisach model as a collection of parallely con-
number of field points at which the magnetization is com-nected rectangular hysterons with a distribution of up and down

switching fields. puted and the resolution with which the Preisach density



48 MAGNETIC MODELING

H1

H3

H2

H*
t

H

(a)

��
��
yy
yyH*H–

HS

–HS

(b)

�
�

+ –

��
��
yy
yyHS

H+

–HS

(c)

�
�

+ –

��
��
yy
yyH– HS

H+

–HS

(d)

��
��

+

–

��
��
yy
yy

H2

H– HS

H+

–HS

(e)

��
��

+

–

��
��
yy
yyH3H–

HS

H+

–HS

(f)

�
�

+

–

Figure 6. Applied-field sequence to illustrate magnetization calculation with the classical Prei-
sach model, starting from (a) an initial magnetization state of negative saturation. Division of
Preisach plane at (b) H � H*, (c) H � H1, (d) H � 0, (e) H � H2, and (f) H � H3.

function is discretized. Computational issues of the model, square hysteresis loops. This means that the magnetization
which are beyond the scope of this article, are discussed in of each particle is always in its saturated state at 
mS and
Ref. 5. jumps discontinuously from one state to the other at the par-

The hysteresis loop computed by the classical Preisach cor- ticle’s switching fields. In other words, since the magnetiza-
responding to the applied field sequence of Fig. 6 is illustrated tion of each elementary particle is constant until its switching
in Fig. 7. field is reached, the magnetization is purely irreversible.

The locally reversible magnetization, which is defined us-
ing the stored energy in the system, is discussed in detail inPROPERTIES OF THE CLASSICAL PREISACH MODEL
Ref. 6. However, at this point it needs to be pointed out that
during a locally reversible process, no energy is dissipated,Irreversible, Locally Reversible, and
that is, the locally reversible magnetization component storesApparent Reversible Magnetization
the energy supplied to it by the field and returns it when the

With use of Fig. 3, it is seen that the model assumes that the field is reversed. Furthermore, due to energy considerations,
elementary particles comprising the medium have perfectly the reversible magnetization has to be zero when the applied

field is zero. Since the magnetization of the elementary parti-
cles of the classical Preisach model is either constant or
switches hysteretically, it does not describe locally reversible
magnetizing processes.

Let us again consider the magnetizing process illustrated
in Fig. 6(a), the corresponding intermediate Preisach states
shown in Fig. 6(b)–(f) and hysteresis curve given by Fig. 7.
We will first focus on the portion of the process where 0 � H
� H1. A representative Preisach state of this process is illus-
trated in Fig. 8. It is seen that, as the applied field is reduced
from H1 towards zero, only the cross-hatched region in the
first quadrant is switched, since this is the only region of the
Preisach plane with elementary particles whose down switch-
ing field is positive. Thus, although each elementary Preisach
particle has a rectangular hysteresis curve, the appropriate

m

H
H1H3

H2 H*
–HS

portion of the computed hysteresis curve of the collection
of such particles will be descending, as illustrated in Fig. 7.Figure 7. Illustration of the hysteresis curve corresponding to the

magnetizing process of Fig. 6 using the classical Preisach model. Similarly, for the portion of the magnetizing process where
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erty of the classical Preisach model, which will be referred to
as the deletion property, means that a larger applied field
completely erases the effect of previous smaller fields. In
other words, this property means that a recording system
modeled by the classical Preisach model has perfect over-
write.

In general, it is now seen that at any field value H, the
classical Preisach plane consists of a negatively and a posi-
tively magnetized region that are separated by a staircase
line, as illustrated in Fig. 11. The vertices of this staircase
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line have H
 coordinates that correspond to previously unde-
leted local maxima and H� coordinates that correspond to pre-Figure 8. Preisach state of the magnetizing process in Fig. 6(a) for
viously undeleted local minima. The region below the stair-the case 0 � H � H1.
case line is magnetized positively; the region above the
staircase line is magnetized negatively. The magnetization of
the region indicated by ‘‘u’’ will be unaffected by the mag-H2 � H � 0, the computed hysteresis curve will be ascending
netizing process; therefore, the magnetization of this regiondue to the contribution of elementary Preisach particles in
is determined by the initial magnetization state of the system.the third quadrant, as illustrated in Fig. 7.
In other words, the classical Preisach model stores the mag-Let us consider the two magnetizing processes illustrated
netization history in the staircase line whose shape dependsby the dashed line and the solid line in Fig. 9. The final mag-
on the applied field history. Thus, we will call the staircasenetization state corresponding to the solid lines was given in
line corresponding to a particular value of the applied fieldFig. 6(f). Using the method presented previously to calculate
and a given initial state the classical Preisach state of thethe magnetization, it is easy to show that the final magnetiza-
system. In some cases it may be convenient to represent thetion corresponding to dashed lines is identical to that of the
classical Preisach state of the system in terms of the statesolid lines. However, it is noted that at any intermediate field
variable Q(H
, H�); however, there is obviously a one-to-onevalue, such as H � H*, the magnetization corresponding to
correspondence between this and the staircase line.the two processes will be different. Furthermore, it also di-

Let us consider the magnetizing process illustrated by therectly follows from the Preisach method of calculating the
solid lines in Fig. 12(a). Starting at negative saturation, themagnetization that the magnetization computed by the two
field is increased to H1, where it is reversed. The field is thenprocesses will be identical at the local extrema H1, H2, and
reduced to HA, where it is again reversed. Finally, after reach-H3. This property, referred to as rate independence, means
ing HB, the field is cycled between HA and HB, traversing athat the calculated magnetization depends only on the local
minor loop. The Preisach plane corresponding to this processextrema of the applied field sequence.
is illustrated in Fig. 12(b). It is seen that, when traversingLet us now consider the applied field sequence illustrated
this minor loop, only the double shaded triangular region en-in Fig. 10(a). The positively and negatively magnetized re-
closed by HA, HB, and the Hi axis of the Preisach plane isgions of the Preisach plane corresponding to the local maxi-
switched. It is seen that in the classical Preisach model, amum H1 is shown in Fig. 10(b). The Preisach plane corre-
minor loop becomes stable after the first reversal at HB. Uponsponding to the local minimum H2 is shown in Fig. 10(c). The
subsequent cycling between HA and HB, the same minor loopPreisach plane corresponding to the local maximum H3,
is traversed. It is also seen thatwhose magnitude is greater than H1, is shown in Fig. 10(d).

It is seen that this field has deleted the effect of the previous
smaller local maximum. In general, it directly follows that
each local maximum in the applied field deletes the vertices

mB − mA = 2
∫ ∫

R

p(H+, H−) dH+dH− (8)

of the staircase line separating the positively and negatively
magnetized regions of the Preisach plane, whose correspond-

where mA and mB denote the magnetization at HA and HB,ing H
 coordinates are below this local maximum. Similarly,
respectively, and the region of integration, R, is the triangu-each local minimum in the applied field deletes the vertices
lar region enclosed by HA, HB, and the Hi axis.of the staircase line separating the positively and negatively

Let us now consider the magnetizing process illustrated bymagnetized regions of the Preisach plane, whose correspond-
the dashed lines in Fig. 12(a). Starting at negative saturation,ing H� coordinates are above this local minimum. This prop-
the field is increased to H2, where it is reversed and is cycled
between HA and HB, traversing a minor loop, as discussed pre-
viously. The Preisach plane corresponding to this process is
illustrated in Fig. 12(c). Similarly to the previous case, only
the triangular region enclosed by HA, HB, and the Hi axis of
the Preisach plane is switched during the traversal of this
minor loop. In fact, this region is identical to the correspond-
ing region in Fig. 12(b). Furthermore, by comparing the corre-
sponding regions of Fig. 12(b) and (c), it is seen that the iden-
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t

H

tically shaded negatively magnetized regions are also
identical. The positively magnetized region of Fig. 12(c) isFigure 9. Illustration of rate independence of magnetization calcu-

lated by the classical Preisach model. greater than that of Fig. 12(b) and the negatively magnetized
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Figure 10. Applied-field sequence illustrating (a) the dele-
tion property of the classical Preisach model. (b) Preisach
plane at the local maximum H1. (c) Preisach plane at the
local minimum H2. (d) Preisach plane at the local maximum
H3, which has deleted the effect of H1.
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region is less than that of Fig. 12(b). Thus, it is seen that the netizing process illustrated by the dashed lines. This constant
magnetization at any field H after the initial reversal point difference in magnetization is given by
H1, corresponding to the process illustrated by the solid lines
will have a magnetization that is a constant less than the 
M = M(H2) − M(H1) (9)
magnetization at the same field H, corresponding to the mag-

where M(H2) and M(H1) denote that magnetization at the re-
versal points H2 and H1, respectively.

In general, it is now seen that minor loops computed by
the classical Preisach model close after the first traversal of
the minor loop. In other words, minor loops computed by the
classical Preisach model do not accommodate. We can also see
that minor loops obtained by cycling between the same of pair
of field extrema but originating at different initial reversal
points, such as those illustrated in Fig. 12(a), will have identi-
cal shapes, in other words, minor loops computed by the clas-
sical Preisach model are congruent to each other.

In the previous paragraphs, we have shown that the classi-
cal Preisach model possesses the deletion property of applied-
field extrema and that minor loops are congruent. It has been
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mathematically proven that these two properties form the nec-Figure 11. Illustration of positively and negatively magnetized re-
essary and the sufficient conditions for a process to be repre-gions and the staircase line separating these regions. The region

whose magnetization is unaffected is indicated by ‘‘u.’’ sentable by the classical Preisach model (3).
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Figure 12. (a) Magnetizing process illustrating congruent
minor loops computed by the classical Preisach model. (b)
Preisach plane corresponding to reversal at H1 and cycling
between HA and HB. (c) Preisach plane corresponding to
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reversal at H2 and cycling between HA and HB.

IMPROVED PREISACH-BASED MODELS Another fundamental limitation of the Preisach model is
that since the elementary hysterons that make up the model
are rectangular, the model only computes the irreversibleSince most magnetic materials do not exhibit some of the
component of the magnetization. For a detailed description ofproperties of the classical Preisach model, in order to develop
the irreversible, reversible, and locally reversible magnetiza-a physically derivable model is necessary to extend it. We will
tion, and the energy relations in Preisach-based hysteresisonly discuss physically derived extensions of the model com-
models, which are beyond the scope of this article, see Ref. 6.puting static magnetic hysteresis. Physically derived dynamic
In the complete moving hysteresis (CMH) model (9), eachextensions of the model have been developed by G. Bertotti et
point on the Preisach plane is represented by a more realistic,al. A detailed description of mathematically motivated exten-
nonrectangular hysteresis loop, as illustrated in Fig. 14. Thissions to the model are discussed in detail in Ref. 7.
realistic hysteron can be broken up into a rectangular classi-A fundamental assumption of the classical Preisach model
cal Preisach-like hysteron computing the irreversible magne-is that a constant Preisach function exists for the material
tization and to a single-valued nonlinear function computingto be modeled. However, since this function is a statistical
the locally reversible component of the magnetization. In or-description of the interaction field distribution and the critical
der to give the model a physical foundation, the CMH modelfield distribution, and the interaction field is a function of the
includes the material-dependent moving parameter, as dis-magnetization state of the particles, the question arises
cussed previously.whether a ‘‘stable’’ Preisach function exists. An analytical

study of interacting Stoner–Wohlfarth particles showed that,
SUMMARYif in addition to the up and down switching fields, the Prei-

sach function is also a function of the magnetization, then the
Hysteresis models based on the classical Preisach model havephysically derived Preisach function is always statistically
recently evolved to the point where they can be utilized tostable. Furthermore, it was shown that the standard devia-

tion of this Preisach function is constant and its expected
value is linearly proportional to the magnetization. This
model, called the moving model (8) is a physically derived
Preisach-based hysteresis model. As shown in Fig. 13, the
moving model is a magnetization-dependent Preisach model

Preisach
transducer

MH

α

with positive feedback. The feedback constant is the material-
dependent moving constant whose value depends on the Figure 13. Functional block diagram of the moving Preisach model.
shape, orientation, and reversal mode of the particles that The feedback is the moving parameter�, and the box denoted Prei-

sach transducer is shown in detail in Fig. 5.make up the medium.
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Figure 14. Elementary Preisach particle in the CMH model. Decom-
position of an interacting hysteron into the sum of a purely irrevers-
ible and a purely locally reversible component.

model, predict, and explain experimental phenomena that
cannot be described using any other modeling technique. This
article was limited to describing the fundamentals of the
model. For a detailed description of hysteresis models, includ-
ing vector hysteresis modeling, modeling of accommodation
and aftereffect and robust identification methods to measure
the model parameters, see Ref. 10.
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