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where d is the length of the magnet and �S is the planar area
of the coil. The convenient concept of a magnetic pole Q* had
been suggested about 70 years earlier by Michell, who discov-
ered that the force interaction between magnets could be ex-
plained on the basis of an inverse square law between poles,
which, in modern SI units, becomes

F = Q∗
1Q∗

2

4πµ0r2 (3)

Equation (3) is precisely analogous to Coulomb’s law between
two point electric charges Q1 and Q2 separated by distance r
and leads to the magnetic field produced by a single pole Q*1 :

H = Q∗
1

4πµ0r2 (4)

Thus we are in good company if we model magnetized materi-
als in terms of distributions of surface magnetic polarity q*
and volume polarity �* within the bulk of the sample. Just as
for dielectrics in which the dipole moment per unit volume is
defined as P, the polarization vector, so in magnetic materials
we have the magnetization vector M. In this model it can be
shown that div M � 	�* within the material and Mn � q* at
the surface, where Mn is the component of M normal to, and
just inside, the surface.

Now the divergence of the magnetic field is given by div
H � �*/�0, bearing in mind that the magnetic polarity is asso-
ciated with the magnetization of the material and that there
are no free poles. Thus, replacing �* by 	div M, we haveMAGNETIC CIRCUITS

div(µ0HHH + MMM) = divBBB = 0 (5)
MAGNETIC QUANTITIES

where
Magnetic fields are one way of describing the force exerted by
one current-carrying conductor on another. Thus one current BBB = µ0 HHH + MMM (6)
is said to produce a magnetic field that exerts a force on the
other current, and, in this way, the need to work directly in is the magnetic flux density whose divergence is always zero.
terms of action at a distance is avoided. The magnetic field In a linear isotropic material, M is both parallel to and
produced at distance r from a short current element i of proportional to H, so that
length �l is given by the Biot–Savart law (1)

MMM = µ0χmHHH (7)

where �m is a constant known as the magnetic susceptibility.HHH = iδlll × aaar

4πr2
(1)

Equation (6) thus becomes
where ar is the unit vector in the direction of r. Thus the total

BBB = µ0(1 + χm)HHH = µ0µrHHH = µHHH (8)value of the magnetic field at a given point in space can be
determined by integrating Eq. (1) over the complete current-

where the relative permeability �r � 1 � �m. The assumptioncarrying circuit. These currents do not have to be contained
that �r is a constant is a severe approximation for nearly allonly in metallic conductors but can also flow in conductive
magnetic materials, but it does facilitate mathematical analy-liquids and gases (plasmas). In addition, the so-called mag-
sis. However, approximate methods can be devised wherebynetic materials, such as mild steel, only become magnetized
�r is taken as some simple function of H.by virtue of microscopic currents in the atomic structure of

the material created by the orbital motion and spin of the
electrons. NONLINEARITY AND SATURATION

Between 1820 and 1822, Ampère, later described by Max-
well as the ‘‘Newton of electricity,’’ performed a series of ex- In a ferromagnetic material, the magnetic susceptibility not
periments that led him to propose an equivalence between the only is a large positive number but also varies strongly with
current i in a small coil and the magnetic strength of the magnetic field strength. These materials are made up of do-
poles of a short bar magnet, in the form mains that are already magnetized in the sense that each do-

main contains aligned magnetic dipoles formed by electron
µ0iδS = Q∗d (2) spin. When the sample of material is in an unmagnetized
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state, the domains are so aligned that their net magnetization area of the loop. Alternatively, rising up the initial magneti-
zation curve (also called the normal magnetization curve) tocancels. For example, in an iron crystal, there are six direc-

tions of ‘‘easy’’ magnetization: both directions along three or- the higher point P3 takes the material into magnetic satura-
tion whereby almost complete alignment of the domains inthogonal axes. If we assume, for the purpose of the argument

only, that all domains are the same size, then in each of the the field direction has taken place. For a full discussion of the
processes involved see Bozorth (2).easy directions there will be as many domains pointing in one

direction as in the other. If a small magnetic field is now ap- Symmetrical hysteresis loops, known as major loops, can
be formed from any points such as P2 or P3. The value of fluxplied to the crystal nearly parallel to one of the easy direc-

tions, the domains with polarity in the same direction (i.e., density at which H � 0 on any loop is known as the remanent
density Br and the value of H at which B � 0 is the coerciveassisting the applied field external to themselves) grow at the

expense of adjacent parallel domains with opposite polarity. force Hc. The so-called permanent magnetic materials operate
in the second quadrant of Fig. 1 and require a very high coer-The mechanism for this is a small movement of the domain

walls, and the process is virtually loss-free if it takes place cive force, or coercivity, to prevent demagnetization during
operation.slowly.

Consider next a larger sample made up of many crystals Hysteresis loops do not need to be symmetrical. An impor-
tant example occurs if we are on a major loop such as thator crystal fragments, each containing many domains, in the

form of a ring on which there is a uniformly wound toroidal represented by P3P�3 in Fig. 1 but stop at point R3 and begin
magnetizing winding producing a uniform applied field H tan- to reduce H again but only by a small amount to point S3. By
gential to the internal axis of the ring cross section. This con- causing H to oscillate by �H produces the minor hysteresis
figuration gets over the problem of possible differences be- loop shown. The mean slope of this loop (i.e., �B/�H) is
tween the applied and the local field because there is no known as the incremental permeability �i. Minor loops can
surface magnetic polarity present. Thus, with a simple search also be generated from points on the initial magnetization
coil to measure the corresponding flux density B, a curve of B curve.
against H, starting with an unmagnetized ring, can be drawn Hysteresis is often ignored, being a relatively small effect
as shown in Fig. 1. The previously described process with a in a wide range of ferromagnetic materials (the so-called soft
low value of H applied, takes us to point P1. If this field is materials) whose manufacturing process has been deliber-
removed, the operating point drops back to the origin because ately devised to minimize hysteresis loss, providing very re-
the process is reversible. To reach the higher point P2, the duced values for both remenence and coercivity. Magnetic sat-
domains already aligned with the field direction continue to uration, on the other hand, is a different matter and cannot
grow, other opposing domains completely reverse, and those usually be ignored without incurring significant error. Conse-
at other angles reverse polarity if this brings them more quently, the magnetic field in soft magnetic materials can be
nearly into line with the applied field. All this activity in- well represented by using the initial magnetization curve and
volves extensive domain wall movement and the expenditure Eq. (8) while for permanent magnetic material simulation the
of energy. As a result, when the field is reduced to zero, the general Eq. (6) must be considered.
flux density only drops to the point represented by Q2, and if There are three ways of handling the representation of the
the applied field is then cycled between equal negative and magnetization curve P1P2P3 shown in Fig. 1. If a numerical
positive maximum values, the complete loop P2P�2 is repeat- solution of the field is being performed, using the finite-differ-
edly traversed. This is known as a hysteresis loop, derived ence or finite-element method for example, the curve can be
from the Greek word meaning to lag, and it can be shown stored as a set of values of H and the corresponding values
that the expenditure of energy per cycle is proportional to the of B, so that any required value of B (or H) can be found by

some form of interpolation. Most finite-element software has
the facility for handling this process automatically, with an
option for the user to specify a particular curve that is not
already present in the software. The alternative is an alge-
braic function expressing B in terms of H. A simple equation
that is recommended for materials with a relatively smooth
knee to the curve (i.e., transition into saturation) is the modi-
fied Frolich equation:

B = µ0H + H
a + b|H| (9)

which provides a neat expression for permeability

µ = µ0 + (a + b|H|)−1 (10)

Another formulation is the rational fraction expression
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Figure 1. Hysteresis loops for a ferromagnetic material.
B = µ0H + a0 + a1|H| + a2|H|2

1 + b1|H| + b2|H|2 H (11)



MAGNETIC CIRCUITS 687

and a more complex expression which gives an excellent fit
for silicon steel laminations with a sharp knee in the B/H
curve is

B = µ0H + S1 tan−1(a1H) + S2 tan−1(a2H) (12)

where, as a guide, typical values of the constants are S1 �
0.987, S2 � 0.323, a1 � 0.0308, and a2 � 0.000110.

Finally, we have the possibility of a quasilinear approxi-
mation where a well-defined magnetic circuit is divided into

Table 1.

Electric Circuit Magnetic Circuit

emf (V) mmf (A)
current I (A) flux � (Wb)
current density (A/m2) flux density B (T)

magnetic field strength H (A/m)
electric potential difference (V) magnetic potential difference (A)
resistance R (�) reluctance R� (A/Wb)
electric conductance (S) permeance (Wb/A)
electric conductivity � (S/m) magnetic permeability �(H/m)

a number of discrete sections, in each of which � is taken as
a constant (defined as the ratio B/H at a given point on the
magnetization curve so that the technique is both algebraic

the electric circuit. Flux in the magnetic circuit is then theand graphical) but adjusted to satisfy conditions that are im-
analogue of current in the electric circuit. Ampere’s equationposed on the complete circuit. This approach also implies that
(47) (see the section entitled ‘‘Maxwell’s Equation’’) can be ap-B and H are uniform in each section of the circuit and so
plied in a much simpler form with integration replaced by aeffectively treats a magnetic circuit as a one-dimensional sys-
summation of terms with constant H in each segment of thetem entirely analogous to an electric circuit (see the section
closed magnetic pathentitled ‘‘Duality Between Magnetic and Electric Circuits’’).

This explains the initial reference to a well-defined circuit be-
cause it is not usually possible, using this method, to model

∑
i

Hlili = In (13)
leakage flux (see the section entitled ‘‘Boundary Conditions’’)
or rapidly changing cross sections of the circuit components.

which resembles going round the loop in the electric circuit
summing the contributions to the emf.

DUALITY BETWEEN MAGNETIC AND ELECTRIC CIRCUITS The analogue of resistance is called reluctance. For any
part of the magnetic circuit, the reluctance is defined in terms

Because there are no free magnetic poles, the net magnetic of the magnetic potential and flux
flux out of any close surface is always zero. In this respect,
magnetic flux resembles a steady electric current in a conduc-
tor. Indeed, there can be no net outflow of current from any Rµ = V1 − V2



= 1




∫ 2

1
Hl dl (14)

closed surface. This similarity gives rise to the idea known as
the magnetic circuit. It is based on the analogy (sometimes and for the complete circuit
called a duality) between the circulation of magnetic flux in a
closed path and the circulation of electric current in a closed
circuit. This analogy yields some very simple and reasonably reluctance = mmf

flux
= In



(15)

accurate calculations of inherently complicated magnetic field
The units of reluctance are amperes per weber. The reciprocalproblems. The procedure is illustrated in Fig. 2.
of reluctance is called permeance.A coil may be used to magnetize an iron core. The iron

By analogy with Ohm’s law in electric circuitsforms a closed path, and the flux will circulate around this
magnetic circuit as indicated. Assuming no magnetic satura-
tion, the leakage of flux into the surrounding air will be small, emf = IR (16)
and thus the total flux is practically the same over all cross

we can thus writesections of the core. This resembles an electric circuit where
current is the same over all cross sections of the wire. The

mmf = 
Rµ (17)mmf of the coil, as given by its ampere-turns I � n, where I
is the supply current and n is the number of turns of the coil,

where for simple parallel-sided segments of iron core, likecould be considered the analogue of the emf of the battery in
those in Fig. 2, we have

Rµ = l
µS

(18)

where l is the length, S is the cross section, and � the perme-
ability. Equation (18) closely resembles expression for the re-
sistance of parallel-sided conductors, if � is substituted for
� (conductivity).

Table 1 summarizes the established duality between mag-
netic and electric circuits.

The magnetic circuit analogy is often used in approximate
calculations of the magnetizing current which is required to
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set up a given magnetic flux in the iron circuit of an electrical
device. We shall explain the procedure with reference to theFigure 2. (a) Magnetic circuit, (b) electric circuit analog.
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electromagnetic phenomena. For general time-varying fields,
using today’s notation (1,4,5), Maxwell’s equations may be
written as

curl HHH = JJJ + ∂DDD
∂t

(22)

curl EEE = −∂BBB
∂t

(23)

div DDD = ρ (24)

I

n

S

i

g

div BBB = 0 (25)Figure 3. A magnetic circuit with an air gap.

where H � magnetic field intensity (amperes per meter), E �
very simple case illustrated in Fig. 3. The presence of a small electric field intensity (volts per meter), B � magnetic flux
air gap is quite common and is essential in some devices so density (webers per square meter, or tesla), D � electric
that there may be relative motion between different parts. flux density (coulombs per square meter), J � electric current

From Eq. (13) we have density (amperes per square meter), and � � electric charge
density (coulombs per cubic meter).∑

H dl = Hili + Hglg = In (19) The current density J and the charge density � are the
sources of the field and are related through the equation ofso that
continuity, which can be written as

nI = Bli

µrµ0
+ Blg

µ0
= Blg

µ0

�
1 + li

µrlg

�
(20)

div JJJ = −∂ρ

∂t
(26)

Given actual dimensions, the permeability of iron, and the
and thus specifies the conservation of charge. These equationsrequired flux density in the air gap, the ampere-turns and
are supplemented by the constitutive equations describingthus magnetizing current may be easily calculated. Suppose
macroscopic properties of the medium�r � 3000 and li � 30lg. Then

DDD = εEEE (27)nI = Blg

µ0
(1 + 0.01) (21)

BBB = µHHH (28)

which shows that only 1% of the mmf is absorbed by the iron JJJ = σEEE (29)
path, although it is so much longer; 99% of the mmf is used
to force the flux across the air gap.

where the constitutive parameters �, �, and � denote, respec-The principle of the calculation is very easy, but in practice
tively, the permittivity (farads per meter), permeability (hen-it often becomes modified and refined. First, the analogy be-
rys per meter), and conductivity (siemens per meter) of thetween magnetic and electric circuits is not complete because
medium. For isotropic media, these parameters are scalars,magnetic flux and electric current are very different entities.
but for anisotropic materials, they become tensors. Moreover,Electric current is formed by a flow of electrons, whereas
for nonhomogeneous materials, they are functions of position.nothing flows when there is a magnetic flux. Thus, energy is

For static fields, where the field quantities do not varyrequired to set up a magnetic field, but none is required to
with time, Eqs. (22), (23), and (26) reduce tomaintain it; otherwise, permanent magnets could not exist.

Another imperfection of the analogy arises from the fact that
curl HHH = JJJ (30)the ratio of the conductivities of a typical conductor and insu-

lator is immensely greater than the ratio of the permeabilities curl EEE = 0 (31)
of iron and air. Thus air or free space becomes a legitimate,

div JJJ = 0 (32)though not a very good, ‘‘conductor’’ of flux (usually in the
form of air gaps like the one in our example); at the same

which shows that there is no interaction between electric andtime, the possibility of leakage flux must be kept very much
magnetic fields, and thus we can have separately an electro-in mind. And last, but not least, Ohm’s law for electric circuits
static case or a magnetostatic case.tells us that resistance is independent of current, whereas the

An important special condition arises also when all fieldreluctance in magnetic circuits is not independent of flux be-
quantities vary sinusoidally with time as ej�t, where � is ancause the permeability varies with �. Magnetic saturation
angular frequency. Using phasor notation, the Maxwell’smay come into consideration and significantly change the pro-
equations involving time derivatives can now be written asportions suggested by Eq. (21).

curl HHH = JJJ + jωDDD (33)MAXWELL’S EQUATIONS
curl EEE = − jωBBB (34)

James Clerk Maxwell (3) was the first investigator to use the
very compact form of partial differential equations to describe div JJJ = − jωρ (35)
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The three vector operators grad, div, and curl are very which in differential form is expressed by Eq. (25). Moreover,
application of Stoke’s theorem to Eq. (30) yieldshelpful in all of these compact notations. The definitions of

these operators follow: ∮
HHH · dlll =

∫∫
S

JJJ · dsss = I (47)
grad
 = ∂


∂n
n̂nn (36)

which is known as Ampère’s equation and shows that thewhich is thus the total or maximum slope of the scalar �,
magnetic field of a current is nonconservative.where the unit vector points in the ‘‘uphill’’ direction normal

Finally, Faraday’s law, Eq. (23), can also be written asto the equipotential surface. Second, ∮
EEE · dlll = −d


dt
(48)divFFF = lim

v→0

1
v

∮
FFF · dsss (37)

where the magnetic flux is given bydescribes the net outflow of vector F per unit volume, for a
small volume, and finally


 =
∫∫

BBB · dsss (49)

curl FFF = lim
s→0

1
s

∮
FFF · dlll (38)

POTENTIALSis the circulation per unit area, for a small area. In a rectan-
gular coordinate system (x, y, z), it is convenient to introduce

One way of finding field distributions is to solve Maxwell’sa nabla (sometimes called a del) operator, defined as
equations directly as a system of first-order differential equa-
tions in terms of the appropriate field quantities. In most,
although not all, important cases, however, it will be more∇ = ı̂ıı

∂

∂x
+ ̂

∂

∂y
+ k̂kk

∂

∂z
(39)

economical to convert the first-order equations into second-
order differential equations involving scalar or vector poten-and the three operations are reduced to
tials.

In magnetostatics, we often use the vector potential A de-grad 
 = ∇
 (40)
fined in terms of the magnetic flux density B as

div FFF = ∇ · FFF (41)
BBB = ∇ × AAA (50)curl FFF = ∇ × FFF (42)

With the help of Eqs. (28) and (30), we findwhich also give alternative notation. In other coordinate sys-
tems, definitions of Eqs. (36)–(38) must be obtained directly,
but the nabla notation is still often used, although it will no ∇ ×

� 1
µ

∇ × AAA
�

= JJJ (51)
longer imply operation of Eq. (39).

Another form of the equations may be found by applying
In conductors, it is likely that � � �0, so thatsome fundamental integral relationships of vectors. The two

most important are Gauss’s or the divergence theorem ∇ × ∇ × AAA = ∇∇ · AAA − ∇2AAA = µ0JJJ (52)

For convenience we are allowed to put

∫∫∫
∇ · FFF dv =

∮
FFF · dsss (43)

∇ · AAA = 0 (53)and Stoke’s or the circulation theorem

because there is a free choice in selecting the divergence
sources of A, since only the curl sources have been defined in

∫∫
∇ × FFF · dsss =

∮
FFF · dlll (44)

Eq. (50). (According to Helmholtz theorem, a vector field is
uniquely prescribed if both its curl and divergence are speci-Hence, for example, for a steady current flow, the integral
fied.) The condition imposed on the divergence of the vectorequation equivalent to Eq. (32) will read
potential is called a gauge condition, and the particular choice
of Eq. (53) is known as the Coulomb gauge. Hence, if we
choose zero divergence,

∮
S

JJJ · dsss = 0 (45)

Equations (32) and (45) contain the same information and are ∇2AAA = −µ0 JJJ (54)
vector equivalents of the first Kirchhoff ’s current law.

On the other hand, if the magnetostatic field is not re-In magnetostatics, there is no net polarity as all magnets
quired within the regions containing conduction current, Eq.consist of dipoles so that
(30) simplifies to

∇ × HHH = 0 (55)

∮
S

BBB · dsss = 0 (46)
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and we have an alternative formulation available in terms of differential form, in order to make the field equations consis-
tent by satisfying Eq. (26). However, it can be shown thatH. Thus, we can write
displacement current is negligible in good conductors even at
very high frequencies. Writing J as �E according to Ohm’sHHH = −∇ϕm (56)

law and taking the curl of Ampère’s equation, we have
where �m is a magnetic scalar potential. This leads to the fol-
lowing equation

curl curlHHH = σ curlEEE = −σµ
∂HHH
∂t

(64)
∇ · (µ∇ϕm) = 0 (57)

Butwhich when expanded yields

curl curlHHH = grad divHHH − ∇2HHH (65)µ∇2ϕm + ∇µ · ∇ϕm = 0 (58)

The formulation in terms of the magnetic scalar potential has and so using Eqs. (25) and (28) (assuming constant �), we
some advantages as it reduces the number of unknown func- have
tions that must be solved from three to one. In two-dimen-
sional cases this does not matter because the vector potential
typically has only one component (in the direction of current ∇2HHH = σµ

∂HHH
∂t

(66)

flow), but in three-dimensional fields savings in computing ef-
fort may be considerable. Either formulation is complicated Equation (66) is known as a vector diffusion equation. If vec-
by the fact that permeability is not only a function of position tor H has only one component, Hz say in the Cartesian sys-
but depends also on field strength. Moreover, many practical tem, then we have the scalar diffusion equation
magnetic materials are anisotropic, and so the permeability
has to be treated as a tensor.

Generally, in time varying fields, the electric and magnetic ∇2Hz = σµ
∂Hz

∂t
(67)

fields are coupled, as demonstrated by Eqs. (22) and (23).
Both sources � and J are present and are linked through the where �2 now represents the scalar Laplacian operator
equation of continuity (26). Similarly the electric scalar poten- �2/�x2 � �2/�y2 � �2/�z2.
tial � and the magnetic vector potential A can be combined For sources and fields that vary sinusoidally with time, Eq.
using the Lorentz gauge (67) can be written in the complex Helmholtz form as

∇2Hz = jωσµH z (68)∇ · AAA + 1
c2

∂ϕ

∂t
= 0 (59)

wherewhere c is the velocity of light. The Lorentz gauge simplifies
the relationship between the potentials and the sources,
which may be shown to be Hz = Re{H zejωt } (69)

As a simple example of the solution of Eq. (68), consider a∇2AAA − 1
c2

∂2AAA
∂t2 = −µJJJ (60)

flat slab of conducting material with its surface on the plane
y � 0 and filling the positive half space y � 0. If a uniform

and field, Hs cos �t is applied parallel to the surface, then Hz in-
side the slab will be a function of the coordinate y only. Thus,
Eq. (68) becomes∇2ϕ − 1

c2

∂2ϕ

∂t2 = −ρ

ε
(61)

where � and � have been taken as constants. Thus A depends
on J only, whereas � depends on � only. The electric and mag-

d2Hz

dy2 = jωσµH z = α2H z (70)

netic fields are obtained from the potentials by the relation-
ships where

EEE = −∂AAA
∂t

− ∇ϕ (62)
α =

√
jωσµ = 1 + j

δ
and δ =

�
2

ωσµ
(71)

and
The general form of the solution of Eq. (70) is

HHH = 1
µ

∇ × AAA (63)
H z = K1eαy + K2e−αy (72)

but to satisfy Hz � Hs at y � 0 and Hz � 0 as y � �, K1 � 0DIFFUSION EQUATION AND EDDY CURRENTS
and K1 � Hs. Thus

The term �D/�t in Eq. (22), known as displacement current,
H z = Hse−αy = Hse−y/δe− jy/δ (73)was added by Maxwell to what is otherwise Ampere’s law in
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so that In situations where the skin effect is rather less pro-
nounced, but the penetration nevertheless is still small, the
conducting surface can be modeled as a surface impedance.Hz = Re{Hse−y/δe j(ωt−y/δ)} = Hsey/δ cos(ωt − y/δ) (74)
This is the equivalent of a local linear one-dimensional solu-
tion because the surface impedance is defined asThe magnitude of the field decays exponentially with depth,

and the instant at which the peak value occurs at depth y
lags the peak value on the surface by y/� (radians). This solu- Zs = Es

Hs
(78)

tion is identical in form to the temperature inside a large flat
where Es is the peak value of the surface electric field. Fromsheet of material subjected to uniform cyclic heating (of sinu-
Eqs. (29) and (75),soidal form) on its surface. The name diffusion equation de-

rives from this analogy with heat flow.
The attenuation of the magnetic field with depth is due to Es = Js

σ
= αHs

σ
= (1 + j)

Hs

σδ
(79)

the currents induced in the conductor by the applied field.
These currents flow in the x direction parallel to the surface Thus
with density given by

Zs = 1 + j
σδ

(80)

This situation is one in which the eddy currents are limited
J x = dH z

dy
= −αHse−αy = −Jse−αy (75)

by their own field. The currents are said to be inductance lim-
and the resulting eddy-current loss per unit surface area of ited. There is an opposite extreme when the currents are re-
the slab is sistance limited because of the lack of space. This is precisely

what is required in a transformer lamination, for example.
The full linear solution for the eddy-current loss per unit sur-
face area of a plate or lamination of thickness 2b is (6)Pe = 1

2σ

∫ ∞

0
|J x|2 dy = H2

s

σδ2

∫ ∞

0
e−2y/δ dy = H2

s

2σδ
(76)

Using Ampère’s law, Hs � I, the peak current per unit width, Pe = H2
s

σδ

sinhγ − sinγ

cosh γ + cos γ
(81)

the loss can be written in the form
where � � 2b/�. It is clear that as � tends to infinity, the loss
tends to H2

s /�� (i.e. twice the loss per unit surface area of a
massive slab) because we have two surface effects. However,Pe =

� I√
2

�2 1
σδ

= I2
rmsR

′ (77)

when � � 1, the loss tends to

where R� � (��)�1 is the resistance of unit length of a layer of
thickness � and unit width. For this reason, the parameter � P′

e = H2
s

σδ

γ 3

6
(82)

is known as the eddy-current skin depth because the correct
which is the result that would have been obtained by ignoringvalue of loss is obtained if the current is assumed to flow with
the reaction field of the eddy currents altogether. The condi-uniform density in a layer of depth �.
tion for this resistance-limited regime is that the thickness ofThe relative smallness of the actual exponential penetra-
the conductor is less than �, and it can be shown that thistion is particularly important. If we regard anything less than
condition is also necessary for the lamination to carry mag-5% of the surface density as negligible, then the effective pen-
netic flux without significant reduction. This is why the typi-etration is given by 3�. For copper at 50 Hz, � is typically
cal iron lamination thickness for 50 Hz operation is 0.5 mm.about 9 mm so that the penetration, on this criterion, is 27

mm. But � is inversely proportional to the square root of fre- Eddy Currents in a Long Rectangular Bar
quency so that, at 500 kHz, the effective penetration has re-

Consider now a long rectangular bar of cross section 2a �duced to 0.27 mm. The same sort of reduction occurs even at
2b, as shown in Fig. 4, immersed in an alternating magneticpower frequencies if the material has a high relative perme-
field Hs cos �t parallel to its axis.ability. Thus, for a typical ferromagnetic material at 50 Hz, �

is approximately 1 mm. The result is that this simple one-
dimensional approach can be used to model, at least approxi-
mately, the surface of conductors of any shape if the major
dimensions of the conductor are much greater than � because
locally the surface effect is almost one-dimensional. We only
require to know the distribution of the surface field Hs. In
numerical finite-difference or finite-element solutions, this
can be particularly important because the alternative will be
the need to discretize the grid or mesh sufficiently finely to
follow the skin phenomenon correctly.

The simpler numerical technique is to render the conduct-
ing region impermeable to flux by setting �r � 0 and therefore

Hscos t

xz a

b

−b

−a

y

ω
excluding this region from the computation by specifying
Hn � 0 on its surface. A practical example, although most Figure 4. Long rectangular bar in which eddy currents will be in-

duced by the axial applied field.often solved analytically, is the wall of a waveguide.
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The Helmholtz equation [Eq. (68)] now becomes that the series provides the end effects of the rectangular
cross section.

∂2H z

∂x2 + ∂2H z

∂y2 = α2H z (83)
BOUNDARY CONDITIONS

Using the technique of separation of variables, it can be The term boundary condition has two connotations. First, a
shown that one solution of Eq. (83) is region of space in which the magnetic field is required will be

bounded by a surface on which information must be specified
in order to convey to the interior region information about
any field sources outside. Second, when two subregions hav-

H z =
∞∑

m=0

{Km sin pmx+Lm cos pmx}{Mm sinhγmy+Nm cosh γmy}
(84) ing different magnetic properties meet (e.g., iron and air), it

is necessary to be able to join the solutions on either side of
where this interface (i.e., to specify interface conditions).

In pursuit of the latter, we first consider a Gaussian sur-
γm =

p
α2 + p2

m face in the shape of a coin that just squeezes a small piece of
the interface �s between its two circular faces. Applying

and Km, Lm, etc., are coefficients to be determined from the Gauss’ theorem to the surface of this coinlike volume we have,
boundary conditions of the particular problem. In the same in terms of the magnetic flux density B
way the separation constant pm must be determined. An alter-
native solution can be set up by switching the trigonometric
and hyperbolic functions between x and y and using a differ-

∮
BBB · dsss = BBB2 · δsss − BBB1 · δsss = 0 (88)

ent separation constant q.
The problem of Fig. 4 has even symmetry since Hz � Hs where the contribution of the ribbon edge of the coin is negli-

when x � �a or y � �b. Thus, the required solution demands gible, and the positive direction of the magnetic field is taken
even functions only in both x and y, so that we have to be from region 1 to region 2. Thus,

Bn2 = Bn1 (89)

where the suffix n denotes the component of B normal to the
interface.

The second condition is found by applying Ampère’s law

Hz =
∞∑

m=0

Lm cos pmx cosh
p

α2 + p2
my

+
∞∑

n=0

Qn cos qny cosh
p

α2 + q2
nx

(85)

to a small rectangular path that just squeezes the interface
In order to allow the first series in cos pmx to match the between its two longer sides �l so that
boundary value of Hs at y � �b, the second series in Eq. (85)
must be zero when y � b, i.e., cos qnb � 0 or HHH2 · δlll − HHH1 · δlll = 0 (90)

Even though we can state that the tangential component ofqn = nπ

2b H is usually continuous across the boundary (i.e., Ht2 � Ht1),
the tangential component is actually a two-dimensional vec-

where n � 1, 3, 5, etc. In fact, the first series can satisfy the tor. However, if there is a surface current density K (Am�1)
boundary condition using only one term (i.e., if p0 � 0) so that on the boundary, Eq. (90) can be usefully generalized as
the coefficient L0 is given by

(HHH2 − HHH1) × nnn = KKK (91)

L0 = Hs

cosh αb where, because K and the discontinuity in Ht must be orthog-
onal, the vector product with the unit vector n gives the direc-

and Lm � 0 for m � 1, 2, 3, etc. Thus Eq. (85) becomes tion of K.
Considering again the magnetic interface, if a flux line in

region 1 enters the surface at an angle �1 to the normal and
exits into region 2 at an angle �2, then Eqs. (89) and (90) can
be written

H z = Hs
cosh αy
cosh αb

+
∞∑

n=1,3,5,...

Qn cos
nπy
2b

cosh

r
α2 + n2π2

4b2
x

(86)

When x � a, Hz � Hs, and the coefficients Qn can be found B2 cos θ2 = B1 cos θ1 (92)
by Fourier analysis: H2 sin θ2 = H1 sin θ1 (93)

Dividing Eq. (93) by Eq. (92), and using Eq. (8), gives
Qn =

4α2

nπ
sin

nπ

2�
α2 + n2π2

4b2

� Hs

cosh

r
α2 + n2π2

4b2
a

(87)
tan θ2

tan θ1
= µ0µr2

µ0µr1
= µr2

µr1
(94)

Suppose now that region 2 is very highly permeable and re-Equations (86) and (87) completely define the solution. Com-
paring Eq. (86) with the result for a plate (6), it will be found gion 1 is air. The right-hand side of Eq. (94) tends to infinity,
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and it therefore appears that �1 must be very close to 0	 (i.e., of either Ht or Hn over parts or the whole of the selected
boundary surface. However specification of Hn is not sufficientthe flux enters or leaves a very highly permeable surface at

right angles). This is indeed so under most conditions, but without imposing additionally the satisfaction of Ampère’s
law for the volume concerned. The three-dimensional general-there are circumstances where �1 can be considerably greater

than zero even with very high values of �r2. For example, if a ization of Ampère’s law is (7)
cylindrical tube of constant and high permeability is placed
in a uniform field transverse to its axis, the field in the circu-
lar cavity is parallel to the applied field and so cannot leave

∫∫
S

(nnn × HHH) dS =
∫∫∫

v

curl HHH dv =
∫∫∫

v

JJJ dv (98)

and enter the interior surface everywhere at right angles. The
reason is the dominant tangential field within the tube wall,

In a two-dimensional problem with the current flow perpen-
which may cause �2 to be very close to 90	 over a large part of

dicular to the plane of the region, Eq. (98) reduces to
the surface. If �r2 � 500 and �2 � 89.7	, for example, Eq. (94)
yields �1 � 20.9	 (i.e., considerably greater than would nor-
mally be expected on the air side of a highly permeable

∮
Ht dl =

∫∫
J dS (99)

surface).
We have already seen that a magnetic polarity density q* In terms of the scalar magnetic potential 
m, Ht corresponds

can be used to represent the effect of a magnetic surface, and, to specification of 
m. This potential specified boundary condi-
by Gauss’s theorem, tion is known as a Dirichlet condition. Alternatively, Hn leads

to �
m/�n, the Neumann condition.q∗ = 2µ0H ′
n (95)

In terms of the magnetic vector potential A, n � curl A or
n � A respectively are required, which reduce, in the two-where H�n is the normal component of the magnetic field due
dimensional case where the only component of A (Ap say) isto q*. If the normal component of the applied field due to all
perpendicular to the two-dimensional plane, to the Dirichletother sources is Hn, Eqs. (8) and (89) yield
specification Ap (for Hn) and the Neumann specification
�Ap/�n (for Ht).µ0µr2(Hn − H ′

n) = µ0µr1(Hn + H ′
n)

or TUBES AND SLICES

The method of tubes and slices is based on a dual-energy for-H ′
n = µr2 − µr1

µr2 + µr1
Hn (96)

mulation. Foundations of this approach may be traced back
to Maxwell, who describes a variational method applied to the

from which q* follows in terms of Hn. Region 1 is assumed calculation of resistance of conductors of varying cross section
here to be the region of lower permeability, usually air, and in his famous treatise on electricity and magnetism (3). The
it may be more convenient to express q* in terms of the total method relies on subdivision of the conductor into slices
normal component Hn1 � Hn � H�n. Thus from Eqs. (95) and formed by equipotential surfaces and tubes separated by very
(96) thin insulating sheets. The two calculations yield lower and

upper bounds of the resistance, respectively. The approach is
applicable to other types of vector fields. For example, in mag-q∗ = (µr2 − µr1)

µ0

µr2
Hn1 (97)

netostatics, the equilibrium conditions can be described by
two variational principlesIt is important to take care with the use of Eq. (97) because it

is an alternative way of representing the magnetized surface 〈(∇ × HHH − JJJ′), δAAA〉 = 0 (100)
without the direct use of permeability to specify the magnetic
property of a region of space, and so the solution must be

andobtained in terms of H or its associated scalar magnetic po-
tential. 〈(∇ × AAA − BBB), δHHH〉 = 0 (101)

External Boundary Conditions
where J� is the assigned current density. The first variational
principle implies that B � 
 � A, so that 
 � B � 0 and thusSome problems have open boundaries that extend to infinity

in a mathematical sense. Analytically this is not usually dif- there are no divergence sources for the magnetic field. How-
ever, the expression 
 � H � J� allows a small variation inficult, but to deal with such problems numerically may re-

quire special techniques. Quite often a problem will have a 
 � H from its correct value, so that the variation allows a
small additional distribution of curl sources. The product ofnatural physical boundary on which one of the components of

the magnetic field may be zero or can be assumed to be a this small fictitious current multiplied by the small variation
of A gives an energy variation of the second order of smallwell -defined function of position. We note that, from Eq. (95),

a surface layer of magnetic polarity can cause a discontinuity quantities which can be put to zero.
The second variational principle assumes that 
 � H �in the normal component of H, and, from Eq. (91), a surface

current can set up a discontinuity in the tangential compo- J�, so that the curl sources of the magnetic field are correct.
However, the expression 
 � A � B allows a small variationnent of H.

It is thus possible to convey information about magnetic in the divergence sources. The product of this small polarity
distribution multiplied by the small variation of H gives anfield sources external to the region of interest via specification
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energy variation of the second order of small quantities which sided tube of flux, of length �l and cross section �S, may be
seen to have permeance given bycan be put to zero. The field energy can be expressed either

in terms of the field vectors H and B by

λ = µ
δS
δl

(108)
U = 1

2
〈BBB,HHH〉 (102)

If there are m such pieces along a tube, these permeances are
in series and are given byor in terms of the interaction of the current sources with the

vector potential A by 1
λ

=
m∑
1

δl
µδS

(109)

U = 1
2

〈JJJ′,AAA〉 + 1
2

[III′,AAA] (103)
If there are n tubes in parallel the total permeance is

where I� is the assigned line density of current on the surface,
and the brackets [ ] represent integration over the closed
boundary surface. I� is related to J� in order to make the total
current in the system zero. This isolates the system and gives

λ =
n∑
1

1
m∑
1

δl
µδS

(110)

it a unique energy.
The first variational principle is applied to the energy in If instead we work with the slices, we have for n slices in

terms of A and B � 
 � A by writing parallel

δU (AAA) = δ

�
〈JJJ′,AAA〉 + [III′,AAA] − 1

2

〈
BBB,

BBB
µ

〉�
= 0 (104) λ =

n∑
1

µδS
δl

(111)

and for m slices in seriesThe second variation is therefore negative

δ2U (AAA) ≤ 0 (105)

The second variational principle is applied to the energy in
terms of H by writing

λ = 1
m∑
1

1
n∑
1

µδS
δl

(112)

The subdivision into tubes produces the lower bound,
whereas slices give the upper bound of permeance. Further-

δU (HHH) = δ

�1
2

〈HHH, µHHH〉
�

= 0 (106)

more, for problems outside a current region, the calculation
of inductance is reduced to a calculation of permeance. In Eqs.Hence
(109)–(112) we may substitute L for �. The method of tubes
and slices is very simple in use and does not require the solu-

δ2U (HHH) ≥ 0 (107)
tion of large systems of equations. It can also be applied to
calculation of resistance or capacitance. More details may be

For simplicity, � has been assumed constant and this gives found in Refs. 1 and 4.
the factor ��. However, the method is applicable to permeabili-
ties that are single-valued functions of the field strength. The
second variations show the possibility of obtaining both upper FINITE DIFFERENCES
and lower bounds for the energy. The first variational princi-
ple treats the field as a collection of tubes and the second one The finite difference method (FD), although overshadowed

nowadays by the more versatile finite element method intro-as a collection of slices.
In many electrical devices, the magnetic circuit is designed duced in the next section, continues to play an important role

in numerical analysis (1,4,6). One of the significant advan-in such a way that very little mmf is absorbed in the iron core
and attention is focused on the shape and dimensions of the tages of the finite difference method is the simplicity of its

formulation, in both a mathematical and a numerical sense.air gap. The core provides a path for transporting the mag-
netic flux from the place it is produced (current in the coil) to A basic FD scheme could almost be set up intuitively and a

simple computer program for a particular solution could bethe place where it can be used (air gap), which may be well
away from the winding. An unsaturated iron surface may be written even by an inexperienced programmer in a matter

of minutes.assumed to have a constant scalar magnetic potential and
thus forms one edge of a slice. The whole air-gap region may Consider Laplace’s equation in two dimensions in some ar-

bitrarily shaped region with boundary conditions specified.be enclosed using a pair of slices (iron surfaces) and at the
same time the flux distribution may be described in terms of We will overlay the problem with a mesh of lines ‘‘parallel’’ to

the coordinate system used (a rectangular grid is convenient,tubes. Those tubes terminate on iron surfaces. For conve-
nience, we shall work in terms of permeance (which is a recip- although not essential), and we will seek an approximate so-

lution at mesh points defined by intersections of the lines.rocal of reluctance). Permeance in the magnetic circuit is the
analogue of conductance in the electric circuit. A parallel- With reference to Fig. 5, we consider the mesh point i, j and
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which is a well-known five-point scheme for Laplace’s equa-
tion. The graphical representation is shown in Fig. 6. It is
interesting to notice that in this scheme the value at any node
is taken as the average of the four values of its immediate
neighbors. In this sense the scheme could be considered intu-
itive, but we have demonstrated that the Laplace’s equation
is in fact satisfied, subject to errors introduced by neglecting
higher-order terms in the Taylor’s series. These errors are
due to the finite mesh size and are called discretization or
truncation errors.

Equation (120) suggests a possible simple scheme for ob-
taining the solution by ‘‘scanning’’ all nodes iteratively.

∆y

definedor n
∂φ
∂ φ

�
�
��
�

�
�i, j

∆x

Boundary nodes must have appropriate boundary conditions
Figure 5. A finite difference mesh. assigned, and then the information about outside sources of

the field, as provided by boundary conditions, will gradually
spread to the interior of the region through successive appli-

its immediate neighbors, and by using Taylor’s series we can cation of Eq. (120).
write The finite difference method can readily be applied to the

other differential equations met in electromagnetism. For ex-
ample, the diffusion equation, in one space dimension, is of
the form

ϕi+1, j = ϕi, j + �x
∂ϕ

∂x

∣∣∣∣
i, j

+ (�x)2

2!
∂2ϕ

∂x2

∣∣∣∣
i, j

+ (�x)3

3!
∂3ϕ

∂x3

∣∣∣∣
i, j

+ · · ·
(113)

and
∂2ϕ

∂x2 = α
∂ϕ

∂t
(121)

The time derivative can be obtained with the aid of Taylor’s
series:

ϕi−1, j = ϕi, j − �x
∂ϕ

∂x

∣∣∣∣
i, j

+ (�x)2

2!
∂2ϕ

∂x2

∣∣∣∣
i, j

− (�x)3

3!
∂3ϕ

∂x3

∣∣∣∣
i, j

+ · · ·
(114)

Adding the last two equations yields
∂ϕ

∂t
= ϕi,k+1 − ϕi,k

�t
(122)

where �t is the time interval between successive values of 
i

appearing at the space node i, and the suffix k denotes the
ϕi+1, j + ϕi−1, j = 2ϕi, j + (�x)2 ∂2ϕ

∂x2

∣∣∣∣
i, j

+ O{(�x)4} (115)

time variable. It may be helpful to think of the solution as
marching forward in time, each step progressing �t, generat-where O�(�x)4� represents terms containing fourth- and
ing the electromagnetic transient as it goes.higher-order powers of �x. Neglecting these terms, we have

Hence, it follows that
∂2ϕ

∂x2

∣∣∣∣
i, j

= ϕi+1, j − 2ϕi, j + ϕi−1, j

(�x)2 (116)
ϕi+1,k − 2ϕi,k + ϕi−1,k

(�x)2 = α
ϕi,k+1 − ϕi,k

�t
(123)

Similarly, under the same assumptions,
where i denotes a space variable and �x is the distance be-
tween adjacent nodes. Examination of Eq. (123) reveals that
we can obtain one point ahead in time from the values of the

∂2ϕ

∂y2

∣∣∣∣
i, j

= ϕi, j+1 − 2ϕi, j + ϕi, j−1

(�y)2 (117)

previous time row. Let us assume that the boundary condi-
tions are such that 
(x, t) is given for all t at x � 0 and x �If these finite difference expressions are now substituted into
L, and that the initial condition 
(x, 0) is specified for all x. ALaplace’s equation, the following local approximation is ob-
suitable computation scheme is shown in Fig. 7.tained

1
(�x)2

(ϕi+1, j − 2ϕi, j + ϕi−1, j )

+ 1
(�y)2 (ϕi, j+1 − 2ϕi, j + ϕi, j−1) = 0 (118)

If for convenience we choose a square mesh, so that �x � �y,

ϕi−1, j + ϕi+1, j + ϕi, j−1 + ϕi, j+1 − 4ϕi, j = 0 (119)

or

−4

1

1

1 1

ii − 1

j − 1

j

j + 1

i + 1

Figure 6. A five-point computation scheme.
ϕi, j = 1

4
{ϕi−1, j + ϕi+1, j + ϕi, j−1 + ϕi, j+1} (120)
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We can apply a variational principle to the defining equation
by stating that the principle of equilibrium requires that the
potential distribution must be such as to minimize the stored
field energy. In our case, this energy can be expressed as

W =
∫

�

1
2

HHH · BBB d� = 1
2

∫
�

µH2 d�

= 1
2

∫
�

µ

�[
∂V
∂x

]2

+
[

∂V
∂y

]2�
d� = 1

2

∫
�

µ|∇V |2 d�

(127)

where integration is carried out over the two-dimensional

i,k+1

i,k i+1,ki−1,k

t = 0

x = 0
x = L

x

x

∆tt

T
im

e

Space

∆

problem region and is thus taken per unit length. This mini-
mum-energy principle is mathematically equivalent to ourFigure 7. FD scheme for diffusion equation.
original differential equation in the sense that a potential dis-
tribution that satisfies Laplace’s equation will also minimize
the energy, and vice versa.The solution moves forward in time, row by row. This is

An alternative formulation that avoids using energy func-known as an explicit finite difference scheme. Other formula-
tionals is also possible. It is based on the so-called Galerkintions are also possible, where the solution at each time row is
procedure and the method of weighted residuals. The Galer-not calculated explicitly, but more than one unknown value is
kin procedure is generally easier to apply and leads to a widerrelated to several known values in one equation. A very popu-
class of applications. However, its mathematical formulationlar implicit scheme is the Crank–Nicolson method (6). Im-
is more advanced, and it will not be pursued here. For La-plicit schemes are often solved by iteration. Note also that
place’s equation, both formulations give identical results.special equations are required for nodes positioned next to the

Consider a single element, and assume that the potentialboundaries, even in the explicit scheme. Finally, any scheme
distribution within the element is adequately approximatedmust be compatible with the differential equation and must be
by the expressionstable. Compatibility ensures that the numerical solution con-

verges to the solution of the original equation. Stability may be
lost if the various errors accumulate without limit during the V = a + bx + cy + dxy + ex2 + f y2 + · · · (128)
computation. Stability conditions can be derived for some equa-

We choose as many terms in Eq. (128) as there are ‘‘nodes’’ intions. Thus for Eq. (123), stability is obtained only if
the element. Figure 8 shows some examples.

For a rectangle, we choose�t
α(�x)2

≤ 1
2

(124)

V = a + bx + cy + dxy (129)
Compatibility and stability may not always be easy to ensure,
and they are important issues. Some implicit schemes are un- For the first-order triangle, we choose
conditionally stable. A more detailed discussion of these is-
sues may be found in Refs. 4 and 6. V = a + bx + cy (130)

A major difficulty with the finite difference method is
In the last case the representation is said to be complete be-caused by the fixed topology (both order and arrangement) of
cause Eq. (130) contains all the terms necessary for a linearthe discretization scheme. It becomes very difficult to match
variation in two dimensions. We shall not pursue the higher-highly irregular boundaries with an appropriate mesh or grid.
order elements, but it is easily seen that finite elements, un-At the same time, material interfaces, symmetry conditions,
like finite differences, offer a very natural extension to higher-and nonlinear characteristics all require special treatment.
order modeling.Another difficulty arises when higher-order terms from Tay-

For the three vertices (nodes) of the triangle of Fig. 8(a)lor’s series are to be introduced to improve the accuracy. Al-
the potential assumes the following values:though several special algorithms have been developed, they

do not offer as much versatility as the finite element method.

FINITE ELEMENTS




V1

V2

V3


 =




1 x1 y1

1 x2 y2

1 x3 y3







a
b
c


 (131)

Consider Laplace’s equation in two dimensions for a magne-
tostatic system where (x1, y1), (x2, y2), and (x3, y3) are the coordinates of the

vertices and the determinant of the coefficient matrix in Eq.
(131) may be recognized as equal to twice the area of the tri-
angle (A). Rearranging Eq. (131) gives

∇2V = ∂2V
∂x2 + ∂2V

∂y2 = 0 (125)

where the magnetic field H is given by

HHH = −grad V = −∇V = −
{

∂V
∂x

î + ∂V
∂y

ĵ
}

(126)




a
b
c


 =




1 x1 y1

1 x2 y2

1 x3 y3




−1 


V1

V2

V3


 (132)
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Figure 8. Finite elements; (a) first-order
triangle, (b) second-order triangle, (c) rect-

(a) (c)

1 2

3 4

(b)

1

2

3

5

4

6

1

2

3

angle.

and substituting back to Eq. (130) yields where [V] is the vector of vertex values of potential, the super-
script T denotes transposition, and the 3 � 3 square element
matrix [N](e) is defined by

V = [1 x y]




1 x1 y1

1 x2 y2

1 x3 y3




−1 


V1

V2

V3


 (133)

N (e)

i, j =
∫

e
∇αi · ∇α j dS (143)

The last equation may be written as For any given triangle, the matrix [N] is readily evaluated
with a typical expression of the form

V =
3∑

i=1

Viαi(x, y) (134)

where

N (e)

11 = 1
4A

{(y2 − y3)2 + (x3 − x2)2}

N (e)

12 = 1
4A

{(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)}
N (e)

13 = etc.

(144)

α1 = 1
2A

{(x2 y3 − x3y2) + (y2 − y3)x + (x3 − x2)y} (135)

and other entries can be obtained by cyclic permutation of
suffices.α2 = 1

2A
{(x3 y1 − x1y3) + (y3 − y1)x + (x1 − x3)y} (136)

This completes the specification for an arbitrary element
in the finite-element mesh. The total energy associated withα3 = 1

2A
{(x1y2 − x2y1) + (y1 − y2)x + (x2 − x1)y} (137)

the entire region will be found as the sum of individual ele-
ment energiesAt the vertices,

W = ∑
W (e) (145)αi(xj, yj ) = 0 i 
= j

= 1 i = j
(138)

for all elements. When assembling such elements, we immedi-
ately notice that some nodes will be shared between morethat is, each function vanishes at all vertices but one, where
than one element, as shown in Fig. 9, and thus the topologyit assumes the value of one.
of the actual mesh will directly affect the way in which theWe can now associate energy with each element, and re-
global matrix is formulated. In other words, the global nodemembering that in the two-dimensional field this energy will
numbering must be related to the local numbering, and thebe taken per unit length, we write
global matrix must reflect the way in which individual ele-
ments are linked to global nodes.

In order to minimize the total energy expression, Eq. (145)W (e) = 1
2

∫
e
µ|∇V |2 dS (139)

must be differentiated with respect to a typical value of Vk

where integration is performed over the element area. The
potential gradient within the element is found from Eq. (134)
as

∇V =
3∑

i=1

Vi∇αi(x, y) (140)

so that the element energy becomes

W (e) = 1
2

µ

3∑
i=1

3∑
j=1

Vi

�∫
e
∇αi · ∇α j dS

�
Vj (141)

Equation (141) may be written in the following compact form

1

1

8

2

7

3

5

4
6

2

3

Figure 9. Global and local node numbering.
W (e) = 1

2
µ[V ]T [N](e)[V ] (142)
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which has a formal solution

[Vf] = −[Nff]
−1[Nfp][Vp] (150)

In practice, the number of unknown potentials may be very
large, even tens or hundreds of thousands, and special meth-
ods for solving large systems of equations are used. Sparse

w

Coil

Yoke

PolePlunger
g

r

l

matrices and compact storage schemes are usually employed
in combination with iterative or conjugate gradient tech-Figure 10. A simple linear magnetic actuator.
niques (4,5).

The finite-element method overcomes the main difficulties
of the finite-difference technique, in particular accurateand equated to zero. Thus
matching of irregular boundary shapes and higher-order ap-
proximations, and offers more flexibility.∂W

∂Vk
= 0 (146)

where the index k refers to node numbers in the global num- LINEAR MAGNETIC ACTUATOR
bering scheme. In a typical boundary-value problem, some
boundary segments will have specified potential values. Thus A simple form of linear actuator is shown in Fig. 10, where a
a subset of the node potentials contained in the vector [V] will cylindrical plunger is attracted toward the fixed circular pole
assume exactly those prescribed values. To simplify the dis- face when the coil is excited.
cussion, we will assume that we have numbered the nodes If the magnetic circuit is highly permeable and leakage
that are free to vary as first, thus leaving all nodes with pre- and fringing flux are ignored, it can be shown using Maxwell
scribed potential as last. This is not strictly necessary but stresses (4) that the axial force on the plunger is given by
makes explanation easier. It allows us to rewrite Eq. (146)
with the matrices in partitioned form

F = B2
gπr2

2µ0
(151)

∂W
∂Vk

= ∂

∂[Vf]k
[[Vf]

T [Vp]T ]

[
[Nff] [Nfp]
[Npf] [Npp]

][
[Vf]
[Vp]

]
= 0 (147)

The flux density Bg passing normally between plunger and
pole surfaces can be simply found as a function of the dis-

where the subscripts f and p refer to nodes with free and pre-
placement (air gap) g if the iron is assumed to be infinitelyscribed potentials, respectively. Note that the prescribed po-
permeable (i.e., the iron path has zero reluctance). Thus, Eq.tentials cannot vary, and thus differentiation with respect to
(13) givesthem is not possible. Hence differentiation with respect to the

free potentials results in the following matrix equation:
gBg

µ0
+ lBc

µ0
= Ni (152)

[[Nff][Nfp]]

[
[Vf]
[Vp]

]
= 0 (148)

where l is the clearance gap or thickness of the nonmagnetic
guide sleeve that surrounds the plunger (not shown in Fig.and leads to a system of algebraic equations of the form
10). Similarly, continuity of flux requiresAx � b, namely

2πrwBc = πr 2Bg[Nff][Vf] = −[Nfp][Vp] (149)

Figure 11. Flux plot in a typical linear
actuator obtained using finite element
modeling.
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or

Bc = Bg
r

2w
(153)

Solving Eqs. (152) and (153) for Bg gives

Bg = µ0Ni�
g + lr

2w

� (154)

so that the force in Eq. (151) is now fully defined. If g domi-
nates the term in parenthesis in Eq. (154), the force/displace-
ment curve is a function of 1/g2.

Magnetic saturation will affect the real situation, espe-
cially for small g, and also fringing flux, so that a full solution
must be obtained using finite elements. Also the plunger and
pole profiles are not usually flat surfaces, and an example of
a realistic solution is shown in Fig. 11.
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