
722 MAGNETIC FLUX

MAGNETIC FLUX

The magnetic flux is related to the number of magnetic lines
of force crossing a given area. It is therefore analogous to the
flux of a flowing quantity. The magnetic flux is defined as the
integral of the product of an elemental area and the magnetic
induction perpendicular to it. If the magnetic induction is con-
stant over a given area, then the flux is the product of the
magnetic induction and the area. The magnetic induction is
referred to as the magnetic flux density, since it is the mag-
netic flux per unit area.

Since the flux represents the number of lines of force and
the lines of force are fixed in a infinitely conducting medium,
the flux is conserved in an ideal conducting medium. Finite
high-conductivity media such as copper and high-temperature
plasma conserve (enclosed) flux when an external field change
occurs or the cross section is changed over a time short com-
pared to the time scale in which the lines of force (and the
magnetic field) can diffuse across the medium.

The magnetic flux is related to the energy stored in the
magnetic field and represents the capability of a primary
magnet to induce voltage in a coupled secondary circuit over
a time duration. When a magnet current is changed the flux
(magnetic induction) changes, and by Lenz’s law (discussed
later) it induces a voltage in a secondary circuit. The magni-
tude of the voltage depends upon the rate of change of flux.
The duration over which this voltage can be maintained is
thus proportional to the flux:

� = ∫
(BBB · dSSS)

where the integral of the magnetic flux density B is over the
area of interest S. Since the surface area vector is normal to
the surface, the integral gives the flux that intersects the sur-
face. If B is constant over S,

� = BS

Since the flux density is related to the magnetic field intensity
H by the relation B � �r�0H, where �r is the relative perme-
ability of the medium and �0 is the permeability of vacuum,

� = µ0

∫
(µrHHH · dSSS)

The MKS unit for magnetic flux is Tesla � m2 or Webers or
volt-seconds.

Magnetic Flux and Vector Potential

The vector potential is a quantity closely related to flux and
is defined as

BBB = curl AAA

The flux is then given by

� = ∫
(curl AAA · dSSS)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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Applying Stoke’s theorem, so that the energy stored in a flux tube cylinder with a cross
sectional area A (perpendicular to B) and length l is

� = ∫
(AAA · dlll)

Ef = �2l/(8µrµ0A)
where the integral is over the closed loop enclosing the sur-
face area of interest. Therefore the flux is the line integral of
the vector potential around the perimeter of the area of inter- Lenz’s Law and Flux Conservation
est. For example, for a coil which has only an azimuthal com-

As stated previously, an electrical circuit such as a loop ofponent A�, the flux enclosed by a circle of radius r is 2�rA�.
wire or a metallic cylinder opposes a change in the flux en-The equation is commonly used to create flux plots (lines of
closed by itself. A voltage is induced in the circuit in a direc-force) by using constant-vector-potential lines and to calculate
tion such that the voltage can drive a current that opposesthe flux enclosed by a given area, since many electromagnetic
the change in the flux. Therefore Lenz’s law states that theand magnetostatic problems are solved by solving for the vec-
induced voltage is given by the time rate of change of the flux,tor potential.
that is,

Magnetic Flux and Inductance
V = −d�/dt (1)

The inductance L of an electrical circuit depicts the ability of
the circuit to oppose a change of current in its own circuit or

The voltage drives a current I given bya mutually (magnetically) coupled circuit. More fundamen-
tally it is the ability of a circuit to oppose the change in mag-
netic flux enclosed by the current circuit. The flux enclosed by V = L dI/dt + IR (2)
a circuit is proportional to the current in the circuit or the
circuit that is mutually coupled to it, and the proportionality where L and R are the inductance and resistance of the cir-
constant is the self-inductance L or the mutual inductance cuit. Equating Eqs. (1) and (2) and integrating over time,
M, or

LI + � = const − ∫
(IR dt)

� = LI or �′ = MI′

where I is the current in the circuit whose flux is of interest Now, the left-hand side is the total flux (sum of the initial
and I� is the current in the mutually coupled circuit. The mu- flux and the induced flux). Therefore the flux is conserved if
tual inductance of two circuits with self-inductance Li and Lj the electrical circuit has zero resistance, that is, for an ideal
is given by electrical circuit such as a loop of conductor or a cylinder with

zero resistance, the flux enclosed by it does not change when
the flux density (magnetic field) or the area enclosed by theMij = K(LiLj )

1/2

circuit is changed (Fig. 1). Analogously, the flux enclosed by
where K is the coupling coefficient. The mutual inductance a circuit is conserved if the current or the inductance of the
may be positive or negative. circuit is changed. However, in nonideal conductors with non-

For a coil with N turns, the total inductance is given by zero resistance the current induced by the changing flux
would decay with a time constant of L/R and the flux would
change with the same time constant.

In mutually coupled circuits Eq. (2) is modified to include
Ltotal =

N∑
i=1

N∑
j=1

(Li + Mij)

voltage induced by the mutually inductance. Therefore for
two circuits p and q,If the turns are identical and fully coupled (K � 1) to each

other,
Vp = Lp dIp/dt + Mpq dIq/dt + IpRp

and the same flux conservation concept would apply if the
Ltotal =

N∑
i=1

[Li + (N − 1)Li] = N2Li = N2�/I

resistance is zero, that is,
where � is the flux due to one turn when a current I passes
through it. Since the flux �N induced by N turns is N�, LpIp + MpqIq + � = const when Rp = 0

Ltotal = N�N/I
The currents induced for the conservation of flux are called
diamagnetic (1) or eddy currents and in resistive conductors,Magnetic Energy Density
such currents cause losses in the conductors when the field

The volume permeated by a magnetic field stores energy and (flux) is changed.
therefore any device which generates a magnetic field also It can be easily shown that a diamagnetic material placed
stores energy. The energy density associated with the mag- inside a coil reduces the inductance of the coil (the total mag-
netic field of a region is given by netic flux in the coil is reduced), while a paramagnetic and

ferromagnetic material placed inside a coil increases its in-
ductance.u = (BBB · HHH)/8 = B2/(8µrµ0)
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as

dEdis/dt = ∫
[JJJ · EEE] dV = − ∫

[du/dt + div(EEE×HHH)]

where now the energy density of the region,

u = (EEE · DDD +BBB · HHH)/2

In differential form this leads to the energy conservation
equation

du/dt + div(EEE ×HHH) + JJJ · EEE = 0

The first term represents the rate of change of the energy
density, the term S � (E � H) represents energy flow in or
out of the volume and the last term represents the energy
dissipation. S is called the Poynting vector and is particularly
relevant to electromagnetic fields and waves.

Flux Penetration and Diffusion

As stated in the previous sections, if a magnetic field is ap-
plied to (or changed on) the exterior of a material (the flux
enclosed by the area of the material is changed), the material
gets an induced voltage that drives diamagnetic currents op-
posing the change in flux. If the material has a finite resis-
tance, the currents will then decay and the flux will penetrate
into the material. The flux will penetrate diffusively much
like the diffusion of heat over time. The following relations
illustrate this phenomenon.

Maxwells law gives
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Figure 1. Magnetic behavior of a ‘‘perfect’’ conductor. (a) and (b)
Specimen becomes resistanceless in absence of field. (c) Magnetic field
applied to resistanceless specimen. (d) Magnetic field removed. (e)
and (f) Specimen becomes resistanceless in applied magnetic field. (g)

curl EEE = −∂BBB/∂t

curl HHH = JJJ + ∂DDD
∂t

Applied magnetic field removed (subscript ‘a’ refers to applied field)
(Ref. 4). and Ohm’s law gives

EEE = ρJJJ
Poynting Flux

where E and J are the induced electric field and (eddy) cur-
When the magnetic field is not constant in time, by Maxwells

rent density, respectively, and � is the resistivity of the ma-
Law

terial.
Therefore,curl EEE = −dBBB/dt

Therefore, an electric field E is always associated with a time curl (ρ/µ) curl BBB = −∂BBB
∂tvarying magnetic field. The medium therefore stores both

electric and magnetic energy and this energy is, in general,
Since div B � 0 and for uniform resistivity �,time dependent and in addition, as the changing fields pene-

trate the volume, there may be energy dissipation in volume
(ρ/µ)∇2BBB = ∂BBB/∂t

V due to resistive currents driven by the electric field at a
rate given by

which is the equation for the diffusion of the flux into the
material and �/�0 � Dm is the magnetic diffusion coefficient.dEdis/dt = Int[JJJ · EEE] dV
The flux and the field diffuse into the material thickness of l
in a time given by l2/Dm.where J is the current density in the volume. Maxwells Law

If the conducting material is in motion such as a movingcan be written as
plasma, an additional induced electric (convective) field v �
B is present. The net time rate of change of the magnetic fielddEdis/dt = ∫

[EEE · curl HHH − EEE · dD/dt] dV
is given by

where D is the electric displacement vector. Using vector
identity and assuming linear properties, this can be written dBBB/dt = (ρ/µ)∇2BBB + curl(vvv × BBB)
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and in analogy with viscous flow, a ‘‘magnetic’’ Reynolds num-
ber can be defined as

RM = Lv/Dm

where L is the characteristic dimension of the flow. The mag-
netic Reynold’s number can vary from a value much less than

RR0

r

z

θ

Φ
1 for laboratory devices to values on the order of 100 for

Figure 3. Toroidal geometry, R0 is the major radius, � the azimuthalfusion plasmas, while for geophysical or astronomical condi-
angle, � the minor radius, and � the poloidal angle.tions, Rm can be as high as 106 to 1010. Therefore the flux can

be diffused by the flow as it penetrates the conducting mate-
rial. This convective flow can be a mechanism for converting

where now V is the volume of the tube and � is the flux en-
one type of flux into another (see the section entitled ‘‘Flux

closed by it.
Conversion’’).

Since the flux in a tube is conserved,

FLUX LINE AND FLUX TUBE U = ∫∫
(dS dl)/(B dS)]

orThe flux lines are directed lines of force (LOF) and lie in the
direction that a north (mono-) pole would point to when
placed in the magnetic field. The LOF is defined by the equa- U = ∫

(dl/B)

tion
where dS and dl are the cross sectional area and length of a
volume element, B is the flux density, and the integral is overdx/Bx = dy/By = dz/Bz
the whole tube.

where Bx, By, and Bz are components of the flux density in the
directions x, y, and z. The equation may be integrated to give FLUX AND FIELDS IN A TOROIDAL GEOMETRY
surfaces of the type (2)

The toroidal geometry (Fig. 3) has applications especially to
plasma-confinement devices, and the topology of the field and

f (x, y, z) = a

g(x, y, z) = b the constituent magnetic flux are of specific interest in such
devices and astrophysics. In a toroidal geometry, a pure toroi-

the intersection of which gives a specific line of force. In this dal field (field lines going around the major circumference)
case, the local unit vector of the LOF is given by or a pure poloidal field (field lines going around the minor

circumference) would give closed field lines. In most plasmaskkk = grad fff gradggg/(|grad fff grad ggg|2)1/2
of interest, both fields would be present and the toroidal and
poloidal fluxes are also called longitudinal and azimuthalwhich involves components of tensorial products. A tube of
fluxes. The toroidal or azimuthal flux � is the flux enclosed byforce is a collection or a group of lines of force. Since div B �
the surface � � const, where � is the azimuthal angle around0, the flux in a tube is conserved as the lines of force diverge
the major axis of the toroid. The poloidal or the longitudinaland converge. If a tube branches into a number of tubes, then
flux � is the flux enclosed by the surface � � const (Fig. 4). Ifthe sum of fluxes remains the same.

Since the flux in a tube of force is conserved, the cross sec-
tion of the tube of force traversing through materials of differ-
ent permeability would be inversely proportional to the per-
meability (Fig. 2); however, continuity equations require this
variation in cross section to be gradual.

A useful concept is the specific volume of a magnetic tube
of force given by

U = dV/d�

r > 1µ

r = 1µ

dSp

dSt

Two neighboring
flux surfaces

Figure 4. Illustration of the poloidal and toroidal surface elementsFigure 2. Spreading of field lines (LOF) in low permeability region
for the same flux. dSp and dSr.
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both fields are present, the lines of force go around helical The magnetization in a material is given by
paths around the torus. In general, a line of force starting at
a certain poloidal angle will arrive at a different poloidal M = B − µ0H = (µr − 1)µ0H
angle after one traverse or more around the major circumfer-

Thus low-reluctance materials also have high magnetization.ence. The rotational transform is defined as the change in
For �r � 1,angle averaged over a large number of transits around the

major circumference:
M ∼ H(L/RA)

Ferromagnetic Materials and Shieldingι = lim
n∑

κ=1

ικ /n, n → ∞
Ferromagnetic materials (e.g., iron) have high permeability
and therefore low reluctance. Therefore in magnetic devices,For a toroid with a toroidal current of I� and a uniform toroi-
where the flux is to be linked effectively between two electri-dal field of B0, the rotational transform at the minor radius r
cal circuits, e.g., transformers and motors, a ferromagneticis given by
path is usually employed. Conversely, to shield regions from
magnetic fields, a low reluctance magnetic path may be pro-
vided for the field so that the field lines prefer to pass through

ι = Bθ (r)2πR/rB0

= 2πdχ/d� the ferromagnetic region rather than the region that has to
be shielded. Such a shielding iron may cover the source or

where B�(r) � �0I� /2�r is the poloidal field at minor radius r cover the region to be shielded.
and R is the major radius. The quantity q � 2�/� is known as
the factor of safety in fusion-device terminology.

DEMAGNETIZATION FACTORThe surface on which the helical lines that close on them-
selves after a number of transits is called a rational surface.

While the flux inside a perfect conductor is conserved, it must
be remembered that the magnetic field intensity H is not. In
fact, the field intensity inside the diamagnetic material canMAGNETOMOTIVE FORCE AND RELUCTANCE
be shown to increase by a factor depending upon the geometry
of the material, for the same conditions of field excitation, forThese terms are defined analogousy to electrical circuits. A
example, magnetic current. (For paramagnetic and ferromag-magnetic circuit consists of flux threading the circuit, analo-
netic materials, the field intensity decreases by some factor.)gous to current. The flux is ‘‘driven’’ by the magnetomotive
The demagnetization factor is 2 for a sphere and is 1.5 for aforce (mmf) EM, and the flux � is limited by the reluctance, so
cylindrical cross section. This fact can be explained as follows.that reluctance is analogous to resistance in an electrical cir-
(For an alternate description, see Ref. 3 on the analogouscuit. In most applications the mmf can be defined as ampere-
characteristic of depolarizing factor.)turns, that is, the product of the instantaneous current and

Consider a long solenoidal magnet (4) that produces athe number of turns. The reluctance of a circuit element is
nearly uniform external field intensity He in the direction x atgiven by
the center of the solenoid. Now if a sphere of diamagnetic
material is placed at the center and the solenoidal field is

R = EM/�
established, the diamagnetic material will exclude this flux
from inside and it can be shown (solution to the Laplace’s

The reluctance of an element is related to the characteristics equation) that the field lines will be as shown in Fig. 5. While
of the element by the field intensity H�e outside the sphere is unaffected far

away from the sphere, the field intensity Hi is zero just out-
R = L/µrµ0 A

where �r and �0 are the relative permeability of the circuit
element material and the permeability of vacuum, respec-
tively, and L and A are the length and cross-sectional area of
the circuit element. Therefore materials with high permeabil-
ity such as iron have low reluctance, and vacuum or air has
high reluctance. The concept of reluctance can be used in
magnetic circuits analogous to electric circuits. If the mmf is
analogous to the emf (applied voltage), then flux is analogous
to resistive current, and the reluctance is analogous to electri-
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������
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A B Y C
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cal resistance (with permeability being equivalent to electri-
Figure 5. A diamagnetic sphere in a solenoid. The field strength atcal conductivity). For example, the flux generated by a coil
a point close to the sphere, such as X, is less than it would be if thewith ampere turns NI and threading two adjacent (in series)
sphere were absent, while the field strength at a point far away, suchvolumes with reluctances R1 and R2 is given (in one dimen-
as Y, is essentially unchanged. The line integral of H around the bro-sional approximation) by
ken line is independent of whether the sphere is present or not, so
the field strength inside the sphere must exceed the applied field Ha

(Ref. 4).� = NI/(R1 + R2)
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side of the sphere along the diameter parallel to the field di-
rection, and near that region the external field intensity H�e
will be less than the value in the absence of the sphere.
Therefore the field intensity H�e outside the sphere will be less
than or equal to the field intensity He in the absence of the
sphere. Now, the �H � dl along the closed path ABCDEFA
gives (by Ampere’s law) the total ampere turns in the sole-
noid, which was held constant when the sphere was placed.
Therefore
∫

(HHHi · dlll)AB + ∫
(HHHe · dlll)BC + ∫

(HHHe · dlll)CDEF + ∫
(HHHe · dlll)FA

= ∫
(HHH ′

i · dlll)AB + ∫
(HHH ′

e · dlll)BC + ∫
(HHH′

e · dlll)CDEF + ∫
(HHH ′

e · dlll)FA

1

2

Figure 6. Linkage of flux tubes, tubes with cross sections 1 and 2Since, H�e is less than or equal to He along BC and FA and the
are threaded by flux �1 and �2 respectively.integral over CDEF is unaffected (too far away), �(H�i � dl)AB is

larger than �(Hi � dl)AB to preserve the sum of the integrals,
which essentially means that H�e is larger than He along CD,

The surface integral is the flux �1 enclosed by tube 1 whilethat is, inside the sphere. This effect was first noted for para-
the line integral is the flux �2 enclosed by tube 2. The linkedmagnetic and ferromagnetic materials for which the relative
system helicity is then equal to the sum of the two helicitiespermeability is greater than 1, and therefore the field inten-
equal to 2�1�2. If the tubes are linked N times the helicitysity inside the sphere would be less than the field in the ab-
will be equal to 2N�1�2. In many systems of interest, the he-sence of the sphere. Since this effect was first noted in such
licity is conserved as the magnetic configuration evolves.materials, the effect is considered to be a demagnetization

and can be stated as
Flux Conversion

If the field configuration is confined in a closed, perfectly con-Hi = Ha − nIm

ducting and nonpermeable surface (the normal component of
where Hi is the field intensity inside the object with magneti- B and velocity of any conducting medium v are zero), then
zation Im and Ha is the applied field intensity. The quantity n helicity is conserved. This means that in such a configuration,
is called the demagnetization factor and depends on the ge- although individual fluxes of different tubes (components of
ometry of the object. For spheres n � �� and for cylinders n � flux density), for example, toroidal and poloidal fluxes, are not
��. Clearly if the applied field is perpendicular to a thin cylin- conserved independently, the product is conserved. The sym-
drical wire, because of the volume average, n � 0. It must be metry then permits conversion of one type of flux into an-
remembered that for paramagnetic and ferromagnetic materi- other. Such flux conversions are observed in plasma devices
als, Im is positive and the field intensity inside the material and in geomagnetic phenomena (5–7). The presence of turbu-
decreases, while in diamagnetic materials, Im is negative and lent structures and coherent magnetic field fluctuations may
the field intensity inside the material increases. This demag- provide a mechanism for the conversion of flux and geomag-
netization factor has important consequences for nonlinear netic phenomena (8).
magnetization and critical characteristics of materials such A simple generation of flux conversion is illustrated by us-
as iron and superconductors. ing the diffusion time for flux lines in a good conductor. Con-

sider a magnetic field applied externally to a pair of conduct-
ing materials [Fig. 7(a)]. After a certain time, depending onMAGNETIC HELICITY
the conductivity of the material, the flux will diffuse in the
two conductors [Fig. 7(b)]. Now, if one of the conductors isThe topology of magnetic surfaces and the complexity of the
moved fast compared to the diffusion time, the flux lines willstructure of the magnetic field can be described by a quantity
be bent and appear as shown in Fig. 7(c) until the lines canknown as magnetic helicity, which is defined as
redistribute themselves inside the conductor. It is clear that
in this process, a portion of the magnetic field that was pre-H = ∫

(BBB · AAA dV )

where the integral is over the volume of interest. The mag-
netic helicity describes the linking of field lines and tubes of
force. Considering the two linked tubes in Fig. 6, the helicity
can be written as

H = ∫∫
[dSSS · dlll)(BBB · AAA)]

where S is the cross section of tube 1 and l is the length of
tube 1. Since B is approximately normal to S, this can be

Figure 7. Conversion of vertical field to horizontal field. (a) Field
written as before penetrating two blocks of conductor. (b) Fields after penetra-

tion. (c) Fields after the lower conductor is moved—a horizontal com-
ponent is created in the gap between the two conductors.H = ∮

(AAA · dlll)
∫

(BBB · dSSS)
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viously in the vertical direction has been converted into a ho-
rizontal field.

Dynamo Action and Geomagnetism

The fact that convective motion of conducting fluids can gen-
erate magnetic fields has been invoked in explaining sponta-
neous flux generation from seed magnetic flux and is consid-
ered to be the source of the dynamo action in the earth’s core,
which produces magnetic fields. In perfectly conducting fluids,
the lines of force are frozen (see the section on plasma equilib-
rium and Ref. 9). While the earth’s core is conducting, any
generated magnetic field must have short decay time due to
the finite resistivity of the earth’s melted core. Therefore a
continuous dynamo action is necessary to maintain this field.
Such a dynamo action is caused by the correlation between
velocity and field perturbations in the turbulent motion of the
core (10,11). Two effects, the � effect and the � effect, are
invoked to explain the dynamo action (12).

Magnetic field Velocity field

+

Poloidal

Toroidal

(a)

(b)

T 0
1

S0
1

The � effect is a direct result of the Faraday effect. Con-
Figure 9. Production of a toroidal magnetic field in the core. (a) Ansider Ohm’s law,
initial poloidal magnetic field passing through the Earth’s core is
shown on the left, and an initial cylindrical shear velocity field, T0

1, isJJJ = σEEE + σ (vvv × BBB) shown on the right. (b) The interaction between the velocity and the
magnetic field in (a) is shown at three successive times moving from

where the second term is due to the induced Faraday emf. If left to right. The velocity field is only shown on the left by dotted
a turbulent system is present, so that v � v0 � v� and B � lines. After one complete circuit two new toroidal magnetic field loops

of opposite sign (T0
2) have been produced. After Ref. 9.B0 � B�, the average induced electric field E � v0 � B0 �

v� � B�, since the averages of v� and B� are zero in turbulent
perturbations. Therefore an additional emf E� � v� � B� asso-
ciated with the correlated velocity and magnetic fields occurs. due to the correlation between the turbulent velocity field and
In specific systems, this electric field can be written as E� � the turbulent magnetic field.
�B0, where � is a tensor in general. This electric field then
has a component of current which maintains the dynamo ac-

ELECTRICAL MACHINEStion. Consider Fig. 8, where the turbulent velocity of the fluid
can be resolved into an axial component v2 and a rotational

Transformerscomponent v1. If the initial magnetic field is in the x direction,
the v1 component will produce an electric field v1B0 and a cur- Transformers essentially use Lenz’s law. In transformers a
rent J1 perpendicular to the y axis. This current will then ‘‘primary’’ coil is supplied with a time varying current and a
produce a magnetic field B� in the y direction. An electric ‘‘secondary’’ coil mutually coupled to the primary coil receives
field E� � v2B� will be produced in the x direction (parallel to an induced voltage that can then be used to drive a current
the original magnetic field), as stated previously. into another circuit (Fig. 10). This then permits isolating the

The � effect is caused by convective effects illustrated in secondary circuit electrically from the primary circuit while
the preceding section. In the illustration shown in Fig. 9, a enabling the indirect use of the source that powers the pri-
radial or poloidal field is convected by a toroidal flow. When mary circuit. In addition, the transformer permits the ‘‘step-
a toroidal flow is impressed upon a poloidal field, the velocity ping up or down’’ of the voltage, that is, the secondary voltage
field shears the magnetic field and produces a toroidal mag- can be larger or smaller than the primary voltage by the ratio
netic field such that the direction at the top and the bottom of the number of turns in the primary and secondary coils. In
are opposite, preserving helicity (13). The dynamo is again a transformer the secondary coil is made to link nearly all

the flux due to the primary coil by placing the primary and
secondary coils around iron, which provides a closed low-re-
luctance path for the magnetic flux. The changing current in
the primary coil causes a change in the flux and the second-
ary coil receives an induced voltage that opposes this chang-
ing flux.

z

x

y B′

B0

J1

v1

v2

Vp = Np d�/dt

Vs = −Ns d�/dt
Figure 8. Illustration of the � effect. Consider a right-handed helical
velocity field depicted by (v1 and v2 in the presence of a field B0 The negative sign indicates that the secondary coil opposesaligned along the x axis. This will produce current loops such as J1,

the change in flux caused by the primary coillying in the x-z plane. Associated with the current loop J1, is a field
B� aligned parallel to the y axis. This new field B� interacts with v2

to produce an electric field parallel to the x axis. Vs/Vp = −Ns/Np
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The mutual flux is subject to saturation effects in iron. The
reduced permeability of the iron at high excitation currents
(flux densities) causes a smaller increase in mutual flux for
an increase in the current, and the induced voltage exhibits
saturation. This increases the high-harmonic components in
the secondary voltage. Since the leakage flux is in the air, it
is proportional to the current.

The total primary and secondary flux can be written as

N1

N2

v2

+

–

Loadv1

i1 i2

+

–

(a)
�tp = Np�lp + Np�m

�ts = Ns�ls + Ns�m

where subscript 1 refers to the leakage flux and m refers to
the mutual flux. Similarly the total voltage is also the sum of
that induced by (or used in creating) the leakage flux and that
induced by the mutual flux. The leakage flux

Np�lp = N2
p Ip/Rp

Ns�ls = N2
s Is/Rs

where R p and R s are the reluctances of the primary and sec-
ondary leakage paths, respectively. The corresponding volt-
ages associated with the leakage paths can be defined as

Vlp = Llp dIp/dt

Vls = −Lls dIs/dt

where Llp � N2
p/R p and Lls � N2

s /R s are the leakage induc-
tances. Taking into account the resistance of the coils, rp and
rs, the total voltage is then given by

Resultant
mutual flux Φ

Primary
leakage flux

Secondary
leakage flux

11 22

= Current into the plane
of the page
Current out of the
plane of the page

(b) 
Vp = Ep + Llp dIp/dt + Iprp

Vs = Es − Lls dIs/dt − Isrs
Figure 10. (a) Ideal transformer and load. (b) Component fluxes.

where Ep is the voltage inducing the mutual flux in the pri-
mary and Es is the voltage induced by the mutual flux. In

Since the same flux is linked and the flux path is the same well-designed transformers, the leakage and resistive terms
(the reluctance and the flux are equal in the primary and sec- are usually negligible.
ondary circuits), Since

NsIs = NpIp Is/Ip = Np/Ns Vp = Npd�tp/dt

�tp = (1/Np)
∫

(Vp dt)or

For a sinusoidal voltage with a frequency f � �/2�, Vp �VsIs = VpIp
V0 sin(�t � �)

However in a nonideal transformer (14), part of the voltage
applied to the primary coil is expended in generating the flux �tp = (V0/ωNp) cos(ωt + α) + �c

in the core and part is expended for compensating for eddy
currents in the coil and iron and losses in iron due to hys- where �c is a transient flux that decays after switching on

due to eddy currents and hysteresis losses. Therefore the fluxterisis. The flux generated in the core by the primary current
links the secondary current as a mutual flux and the re- induced in the transformer is inversely proportional to the

frequency of the applied voltage and lags in phase angle bymaining current leaks out into the air (which is outside the
iron core and there is no linkage with the secondary current) �/2.

An approximate equivalent circuit of the transformer canas leakage flux. Similarly the flux due to current in the sec-
ondary coil (under load conditions) also has two parts: mutual be constructed in a single circuit taking into account the mu-

tual coupling, where the circuit consists of primary induc-and leakage flux. As is evident from the terminology, the mu-
tual flux of the primary and secondary coils are equal and the tance and resistance, the mutual coupling inductance and

magnetization, the leakage flux, and the secondary imped-leakage flux is dependent on the core size and permeability—
the larger the area and permeability, the smaller the fraction ance (inductance and resistance referred to the primary).

Other nonideal effects such as saturation of the iron core, acof leakage flux.
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losses in the core, and eddy currents can be taken into ac- If C coils are connected in series and a are connected in paral-
lel, the generated voltage iscount in such a circuit (15).

Dc Electric Generators Vg = 2CNc pn�/a = Ka�ω

In a generator (Fig. 11 from Ref. 14), a coil of conductors on
where � is the angular frequency of rotation and Ka �the armature (rotor) moves across the north and south mag-
CNc/�ap is known as the armature constant. As shown later,netic poles (stator). If the coil has Nc turns and the poles gen-
the voltage induced is alternating, and dc generators requireerate a flux �, the coil will link a flux � under the north pole,
so called commutators to change the brush polarity alter-then zero flux between poles, and a flux �� under the south
nately to generate dc voltage.pole. Therefore the voltage induced in the coil is

Generalized ac MachinesVc = ��/�t

Induced Voltage in an ac Generator. In ac motors and gener-
where �� � 2Nc� is the change in the flux seen by the coil ators, a number of multipole excitation coils are placed in a
and �t is the time over which the flux change occurs. If the stationary high permeability core and a set of secondary coils
coil is rotating at a rate of n rotations per second and there are placed in a rotary core. The secondary and the primary
are p poles in the stator, then �t � 1/np, so that excitation coils are placed around a common axis and have a

small gap. (A simple example of a two-pole ac machine is
Vc = 2Nc pn� shown in Fig. 12.) At an arbitrary angle � between the rotor

Figure 11. Schematic of a generator.
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The voltage induced due to the time variation of the flux is
given by

e = −d�′/dt = ωN� sin(ωt) − N cos(ωt) d�/dt

If the flux produced by the coils is independent of time, the
second term is zero, but it is clear that the generated voltage
is alternating.

Rotating Magnetic Field. In three-phase ac machines (where
three legs of the ac supply each have a phase difference of
120	), three sets of stator coils are connected to the three
phases (Fig. 13), so that the currents in the coils are given by

=    t

Magnetic axis
of rotor

Magnetic
axis

of rotor

N-turn coil

+

–

α

θ

ω

e

Figure 12. Elementary two-pole ac machine with stator coil of N
turns.

Ia = Imax cos(ωt)

Ib = Imax cos(ωt − π/3)

Ic = Imax cos(ωt − 2π/3)

where � � 2�f and f is the frequency of the ac supply. In such
a case, the total instantaneous force on the armature at anand the stator with N turns, the flux linked by the stator is
arbitrary angle � due to the three coils is proportional to the
flux linked, which, in turn, is proportional to the current and
is given byN� = N

∫ π/2

−π/2
[Bmax(cos θ )lr dθ] = 2NBmaxlr

where l is the length of the rotor (normal to the figure) and r
is the radius of the stator at the gap. For p poles, the flux is
(2/p)(2Nbmaxlr). If the rotor spins with an angular velocity �,

�(θ, t) = �max cos θ cos(ωt) + �max cos θ cos(ωt − π/3)

+ �max cos θ cos(ωt − 2π/3)

= 1.5�max cos(θ − ωt)
the flux links changes with time as

which represents a traveling wave of flux (also an mmf or
force in a motor, or induced emf in a generator). If at t � 0�′ = N� cos(ωt)

Figure 13. Production of a rotating magnetic field by means
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the peak of the flux was at � � �0, then in a time t0 the peak sin(p�x/L). Therefore
moves to � � �0 � �t and therefore the field appears to rotate
in time. Figure 13 shows this rotation, where F is the force Hg = (IN0/2g) sin(pπx/L)

(proportional to the flux linked) experienced by the armature.
Now the flux coupled to the coil,If the armature also rotates but with an angular velocity

�a, the linkage is given by
� = l

∫
(BBB · dxxx) = (µ0lIN0/2g)

∫
[sin(pπx/L) dx]

�(t) = 1.5�max cos(ωa − ω)t
where l is the length of the coil (or the area under consider-
ation). Over one length of the pole, p/L, the integral givesso that when �a � �, the linked flux appears to be a constant

and the motor or generator is synchronous.
�0 = (µ0lIN0L/2gpπ)IN0GgThis description can also be represented by a coupled-cir-

cuit description (14) using the stator and rotor inductance and
where Gg � (�0lL/2gp�) is the gap permeance per pole (or isflux linkages and resistance of the coils. The circuit descrip-
the inverse of the reluctance of the gap per pole).tion then leads to a set of two differential equations with time

Now, if the current is alternating and the rotor is in mo-derivatives of current. Solutions of these equations give the
tion, at any instance the flux coupled to the coil is given byinstantaneous values of current and magnetic energy in the

machine. The derivative of this energy with respect to the
mechanical angle gives the torque produced.

Sinusoidally Wound Stators. The windings are arranged in

� = I0N0Gg sin(ωt + f )

= IN0Gg sin(ωt) cos φ + IN0Gg cos(ωt) sinφ

= �x sin(ωt) + �y cos(ωt)

such a fashion that the number of turns in the excitation and
where � � p�x/L represents the angle or the spatial phase ofprimary coils is a sinusoidal function of the angle, that is
the rotor at time t.

If we use the designations j and J to distinguish betweenNi = Ni0 sin(pφ) = Ni0 sin(pπx/L)
and separately account for the rotational time dependence
and the angular positionwhere i refers to the excitation or the secondary coil, N0 is the

maximum number of turns, p is the number of pairs of poles,
x is the position along the circumference, and L is total cir-
cumferential length. [If the coils are not arranged in a sinu-

sinφ = (eJφ − e−Jφ )/2J

sin(ωt) = (e jωt − e− jωt )/2 j
soidal fashion and are as shown in Fig. 12, then the funda-
mental component is given by Ni � (2/�)Ni0 sin(p�/2).] The above expression can be rewritten as

Now if the field in the gap is Hg, the integral of the field
around a closed loop enclosing a coil (see Fig. 14) has two legs � = �td + �top = (J�y − j�x)e jωt + (J�y + j�x)e− jωt

of the loop in the iron core that contribute negligibly if the
permeability is very high and has two legs that cross the gap. which represents two counterrotating components of flux, one
Because the field direction remains along the integration di- direct and another opposite, that is, two components of flux
rection, these add and the integral with a phase difference of �. The two components are illus-

trated in Fig. 15.
The preceding description of the flux is useful in the design

∫
(HHH · dxxx) = 2Hgg

of devices such as sine-cosine transformers (SCT), remote and
point control systems, tachogenerators, and servomotors.where g is the gap. But, by Ampere’s law, the integral is also

equal to the total current (ampere turns enclosed), IN0

CHARGED-PARTICLE MOTION IN A MAGNETIC FIELD

A charged particle is deflected from its original path by a
magnetic field if it has a velocity component perpendicular to
the magnetic field (that is, charged particles with velocity in
the direction of the magnetic field do not experience a force).
The particle moves in a direction perpendicular both to the
initial velocity and the magnetic field. Since the motion is per-
pendicular to the magnetic field, no work is done by the mag-
netic field and the particle energy does not change. It can be
seen then that the particle exercises circular motion around
the field direction (flux lines), and if the particle has a parallel
velocity (which remains unaffected by the field), the particle
executes spiral motion. The radius of the circular motion is

����
����
����

������
������
������

called the Larmor or gyro radius and the rotational frequency
is called the Larmor or gyro frequency.Figure 14. Flux in the gap between the stator and the rotor. Most

It can be shown that if the field varies slowly in space andof the reflectance is in the gap since the stator and the rotor have
high permeability iron path. in time, the flux enclosed by the charged particle is constant.
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where the � or � sign corresponds to the positive or negative
charge (which may be dropped if the gyrofrequency includes
the sign of the charge) and vp � (v2

x � v2
y)1/2. Therefore rg �

vp/�g is the Larmor radius. (For a full relativistic treatment
of the charged particle motion, see Ref. 16.)

Motion in a Time-Varying Field

If a particle is performing gyro orbits in a time-varying mag-
netic field, the energy is not a constant, since there is an asso-
ciated electric field given by

curl BBB = −∂EEE/∂t

The energy gain is given by (2)

�Up = ∫
(q drrr · EEE)

where the integral is around the orbit and r is the displace-
ment along the path of the orbit. For this approximately
closed path, the Stoke’s theorem gives

�Up = ∫
(q dSSS · curl EEE)∫

(q dSSS · ∂BBB/∂t)

∼ qπr2
g dB/dt

For time scales much larger than the time period of the gyro
motion,

dUp/dt ∼ �g�Up/2π = (q�gr2
g/2) dB/dt

Φy

Φ4

Φ4

Φd

Φm

Φ°

Φy

Φ°

Vr

x

Vr

y
+ j

+ j (v)

ω t

ω t–

ω t

+4

+f (n)

(a)

(b)
which gives

Figure 15. (a) Vector diagrams to illustrate spatial flux vector and
(b) time vector diagram to illustrate geometrical meaning of the sym- (1/Up) dUp/dt = (1/B)dB/dt
metrical component decomposition.

or

This conservation of flux is true in an ‘‘adiabatic’’ sense and dµ/dt = d(Up/B)/dt = 0
leads to other adiabatic constants of motion, which enable the

where � is known as the magnetic moment of the particle,development of magnetic traps for plasmas and particle
� � q�gr2

g/2.beams as well as particle accelerators and particle detectors.
Substituting for �g, � � (q2/2�m)(�r2

gB) � (q2/2�m)��,The equation of motion of the charged particle in an elec-
where �� is the flux enclosed by the circular orbit. Sincetric and a magnetic field is given by
d�/dt � 0, d��/dt � 0, the flux enclosed by the particle orbit
is conserved if the rate of change of the magnetic field is adia-dppp/dt = q(EEE + vvv × BBB)

batic, that is, the change occurs over a period much larger
where p � �mv and m, v, �, and q are the particle momen- than the gyro time period.
tum, mass, velocity, relativistic factor and charge, respec-
tively, and E and B are the electric and magnetic fields. The Motion in an Inhomogeneous Magnetic Field
equation can be written in component form for E � 0 as (for

The flux enclosed by a particle orbit also remains constant ifsimplicity shown only for the magnetic field in the z direction,
the spatial variation of the magnetic field is adiabatic, thati.e., B � Bez).
is, the scale length of variation is much larger than the gyro
radius of the particle orbit. This can be shown simply by the
fact that the situation is essentially same as for slow time
variation of the field.

dvx/dt = (qB/γ m)vy

dvy/dt = −(qB/γ m)vx

dvz/dt = 0 The magnetic field variation experienced by the charged
particle as it moves in an inhomogeneous magnetic field withwhich are the equations for circular or spiral orbits with the
a velocity v is given bygyro frequency �g � qB/�m. Solving the equations for dis-

placements, one gets dB/dr = vrdB/dt

where vr is the component of the velocity v in the direction r.
Again, as shown before, in such a case, the magnetic moment

x = (vp/�g) sin(�gt)

y = ±(vp/�g) cos·(�gt)
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is conserved and therefore the flux enclosed by the particle in the absence of pressure, the surfaces of constant flux are
orbit is conserved. concentric, they are not so when the plasma pressure is finite.

Other adiabatic invariants such as the bounce invariant in Since the outermost flux surface is usually fixed by a flux-
trapped orbits and the line integral of the canonical angular conserving boundary or by an external vertical field, this
momentum in a periodic motion (17) are also the result of means that the center of the plasma is shifted from the minor
flux conservation. axis of the toroid by the so-called Shafranov shift. An equilib-

rium pressure limit (the so-called equilibrium � limit, where
� is the ratio of the plasma pressure to the pressure due to

PLASMA EQUILIBRIUM AND FLUX SURFACES the magnetic field) is obtained when the shift exceeds the
radius.

The most common devices for nuclear fusion and plasma For the geometry shown in Fig. 3, the primary coordinates
applications employ a toroidal geometry, where the plasma are the major radius R, the azimuthal angle � around the
carries toroidal and poloidal currents (see the section entitled

major axis, and the vertical coordinate z. Additional coordi-‘‘Flux and Fields in Toroidal Geometry’’) and are confined
nates are the minor radius r and the poloidal angle �. Weby toroidal and poloidal fields. In such cases, the equilibrium
limit ourselves to axisymmetric equilibria so that �/�� � 0.is obtained as a balance between the Lorentz body force,

Maxwell’s equations arewhich is generated by the interaction of the plasma current
with the magnetic field, and the pressure force due to gradi-
ents in pressure. Such a confinement scheme is used in the Z,
theta, and screw pinches, tokamaks, spheromaks, stellara-

div BBB = 0 (3a)

curl BBB = µ0JJJ (3b)
tors, and compact toroids. In many of these applications the
primary configuration of the plasma is axisymmetric (except and the plasma force balance equation is
for, e.g., helical devices), that is, the variation of the current,
magnetic field, pressure, and plasma properties are small JJJ × BBB = grad p (3c)
and only appear as perturbations. Plasmas in such toroidal
geometries attain equilibria (position and shape of the

where B is the magnetic field, J the current density and p theplasma, conditions of magnetic field and plasma current
pressure. Expanding the first equation,profiles, etc.) based on the solution to the Grad–Shafranov

equation. It can be shown that the poloidal flux [see Fig.
(1/R)(∂/∂R)(RBR) + (1/R)∂Bφ/∂φ + ∂BZ/∂Z = 016(b)] is constant on specific surfaces. While it is obvious that

where the second term is zero due to axisymmetry. If we de-
fine a flux function �, such that

BZ = (1/R)∂ψ/∂R

BR = −(1/R)∂ψ/∂Z

then

BBB = BBBφ + BBBp = Bφeeeφ + (1/R)gradψ × eeeφ (4)

The poloidal flux

�P = ∫
(BBBp · dSSS) =

∫ R

R0

[2πR(1/R)(∂ψ/∂R) dR] = 2πψ

Rb

R

Z

Poloidal
current Ip

Coil

   contoursψ

(a)

so that the flux function is essentially equal to the poloidal
flux except for a constant of 2�.

Now taking a scalar product of Eq. (3c) and (3b),

BBB · grad p = 0

(Bφ/R)(∂ p/∂φ) + (1/R)gradψ × eeeφ · grad p = 0

The first term is zero by axisymmetry; therefore

grad ψ × grad p · eeeφ = 0Rb

Ra

R

Z

Poloidal
flux    p

   contoursψ    =    (Rb,O)ψ

ψ

ψ

(b) which shows that the pressure is constant if � is constant or
p � p(�), that is, the flux surfaces are constant-pressure sur-Figure 16. (a) Disk-shaped surface through which the total (plasma
faces. This is an important result that says the solution ofplus coil) poloidal current Ip flows. (b) Washer-shaped surface through

which the poloidal flux �p passes. flux surfaces gives the plasma equilibrium.
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Additional discussions on the applications and solutions to
the Grad–Shafranov equation can be found in Refs. 4 and 18.

SUPERCONDUCTORS AND MAGNETIC FLUX

Superconducting Properties

Superconductors are materials that have special properties
below the so-called critical temperature, critical field, and
critical current density. When such materials are supercon-
ducting, they have zero resistivity and in addition they ex-
hibit the Meissner effect (19,20). Earlier it was shown that
Maxwell’s equations lead to the fact that perfect conductors
with zero resistivity exclude flux when the magnetic field
(flux) is increased from zero to some finite value. Such perfect
conductors maintain the initial flux, and diamagnetic cur-
rents cancel any change in the flux. However, in 1933, Meis-

BΦ

JΦ

p

sner and Ochsenfeld observed that superconductors that are
in the Meissner regime (e.g., lead) exclude all flux whether itFigure 17. Numerically computed equilibrium of the noncircular,

high-� tokamak DIII-D located at GA Technologies. Shown are flux was initially present or not (see Fig. 18). This is a significant
surface plots and midplane profiles. Courtesy J. Helton, GA Technol- characteristic of superconductors that distinguishes them
ogies. from perfect conductors. These so-called type I superconduc-

tors receive induced surface currents, called Meissner cur-
rents, in the presence of a magnetic field which cancel all theSubstituting the expression for B as in Eq. (4) in Maxwell’s

Eq. (3b) and using the axisymmetric condition,

µ0JJJ = grad(RBφ ) × eeeφ/R − (1/R)[R(∂/∂R)(1/R)(∂ψ/∂R)

+ ∂2ψ/∂Z2)eeeφ

The total current density can be divided into poloidal and to-
roidal components

µ0 JJJ = µ0 JJJp + µ0 JJJφ

µ0 JJJp = grad(RBBBφ ) × eeeφR

µ0 JJJφ = �∗ψ/R
(5)

where

�∗ψ = R(∂/∂R)(1/R)(∂ψ/∂R) + ∂2ψ/∂Z2

The quantity RB� is designated F(�), which can be shown to
be proportional to the total poloidal plasma current enclosed
by the flux surface, �(R, 0) � const,

Ip = ∫
(JJJp · dSSS) = ∫

dR
∫ {R df [grad(RBBBφ ) × eeeφ]z}

= 2π
∫

(dR∂F/∂R) = 2πF(ψ)

Now taking a scalar product of Eq. (3c) with grad �

grad ψ · (JJJ × BBB − grad p) = 0

which after using Eqs. (4) and (5) gives

�∗ψ = −µ0R2dp/dψ − F dF/dψ (6)

where the property grad p � dp/d� � grad � is used.
Equation (6) is known as the Grad–Shafranov equation.
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With appropriate boundary conditions, the equation can be
solved to obtain plasma position and equilibrium. The solu- Figure 18. Magnetic behaviour of a superconductor. (a) and (b) Spec-
tion is obtained as the solution to the shapes and locations of imen becomes resistanceless in absence of magnetic field. (c) Mag-
different flux surfaces (surfaces of constant �), and since each netic field applied to superconducting specimen. (d) Magnetic field
flux surface has an associated pressure, the flux surfaces de- removed. (e) and (f) Specimen becomes superconducting in applied
fine the plasma shape and location. Figure 17 shows an exam- magnetic field. (g) Applied magnetic field removed. Ba is the applied

magnetic flux density (Ref. 4).ple of the equilibrium for the Doublet IIID tokamak.
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flux inside the superconductor volume, independent of
whether the initial flux (flux prior to the material becoming
superconductor) was zero or finite. Another way of stating
this is that superconductors are not just diamagnetic materi-
als but have a relative permeability �r that is equal to zero,
so that the magnetization is equal and opposite to the applied
magnetic induction, that is, M � ��0H.

The superconducting property arises from the fact that be-
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�����������
�������

A′

A

N

N

N

SxS

xN
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S

S

low the critical temperature and field, the free energy for such
materials is lower in the superconducting state compared to Figure 19. Ellipsoid split into normal and superconducting laminae
the normal (nonsuperconducting) state. This is due to the for- in a magnetic field.
mation of Cooper pairs of superconducting electrons, which,
on average, do not lose any energy by collisions with the lat-
tice ions. The density of superconducting electrons and the als and is analogous to an equilibrium of solid and liquid
free-energy gap at T � 0 and H � 0 are properties of the phases of matter near transition conditions. For actual obser-
material. (See Ref. 21 for detailed references on energy-gap vations on the intermediate state see Refs. 23 and 24.
measurements.) As the temperature is raised, the free-energy
gap is reduced, and above the critical temperature the super-

Type II Superconductors
conducting state has an unfavorable free energy, and there-
fore the material would be normal. As the magnetic field is In a concept proposed by Pippard in 1953, the density of

superelectrons cannot change abruptly and changes graduallyincreased, the total energy, which includes the energy due to
magnetization, is increased until again at the critical field, only over a distance called the coherence length, that is, there

cannot be a sharp boundary between normal and supercon-the normal state with zero magnetization is favored and the
material would be normal. ducting regions. The coherence length is a property of the ma-

terial and if impurities are present, it is considerably reducedWhile the description of the field being excluded from the
volume of the superconductor is reasonable, in reality the ex- (by an order of 10 or more) to the geometric mean of the pure

coherence length and the electron mean free path.ternal field penetrates to a small depth, the so-called London
penetration length �L � (me/�0nse2)1/2, where e and me are the If the coherence length is shorter than the penetration

length (see the section entitled ‘‘Superconducting Proper-electron charge and mass and ns is the density of supercon-
ducting electrons (20,22). ties’’), the formation of coexisting normal and superconduct-

ing zones is favored, since then the total free energy of theHowever, it must be noted that there is a class of alloy
superconductors, known as type II superconductors, which material is reduced because the surface energy of the bound-

aries between the normal and superconducting zones is nega-are commonly used in electrical and magnetic applications,
the flux (field) is allowed to penetrate into the superconductor tive for short coherence length (Fig. 20). For the Ginsburg–

Landau constant � � �/� � 0.71, where � is the penetrationabove the thermodynamic critical field, while preserving the
superconducting (zero resistance) property. length and � is the coherence length, the material favors a

mixed state of normal and superconducting regions over a
Intermediate State fully normal state for applied fields greater than the thermo-

dynamic critical field. Intrinsic superconductors, such as nio-As was noted in the section entitled ‘‘Demagnetization Fac-
bium, have � � 0.71 (0.78 to 0.9) even without impurities, buttor,’’ the field intensity in a diamagnetic material is higher
alloys such as niobium–titanium have even higher values of �.than the applied field intensity. Since ideal superconductors

Therefore in type II superconductors, once the applied fieldexhibiting the Meissner effect have I � �Hi (M � �Ba) exceeds the thermodynamic (first) critical field, small zones of
normal state are formed and the excess field lines are local-Hi = Ha/(1 − n)
ized along these cores of normal zones, which have circulating
currents on their surfaces that preserve the superconductingNow, since the superconductor would become normal at Hi �
state of the regions outside the cores. Since the surface energyHc where Hc is the critical field intensity, this means that the
is negative, the formation of the smallest and maximum num-applied field is less than the critical field. This is a paradoxi-
ber of ‘‘flux’’ cores is favored to maximize the total surfacecal situation, since this means that as the material would be-
area of such cores. Since the coherence length is small in suchcome normal at Ha � Hc, which in turn would make I � 0 and
materials, there can be many fluxons that require sharp tran-we would have the material in a normal state for Ha � Hc.
sition zones. The flux core is therefore of such a size as to giveThis is resolved by the realization of the fact that normal and
the minimum flux, that is, the flux of a so called ‘‘fluxon’’ orsuperconducting regions coexist inside the material for Ha �
flux core, �0 � 2.07 � 10�15 W (25). The material acquires a(1 � n)Hc (Fig. 19). The cross-sectional area of normal mate-
lattice of fluxons as shown in Fig. 21. The number of fluxonsrial is such that the average magnetization is such as to sat-
depends on the amount of flux that needs to pass throughisfy the boundary condition Hi � Ha/(1 � n) for Hi � Hc and
the material. Because such fluxons are maintained by circularHi � Ha for Ha � Hc. This condition is obtained if
currents around the flux cores, the fluxons are also called vor-
tices).Hi = Ha/[1 + n( f − 1)]

Under such conditions, the superconductor does not be-
come normal until the fluxons with the transition regions fillwhere f is the fraction of normal cross section. This state is

known as the intermediate state in superconducting materi- up the area of cross section and the new critical field called
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Hc2 is given by

Hc2 ∼ 1.41κHc

where Hc is the thermodynamic critical field at which the
magnetic energy is equal to the difference between the free
energy in the normal state and the superconducting state.

Flux Flow in Type II Superconductors. While the foregoing is
true for a superconductor with no transport current (e.g., cur-
rent from an external circuit), the amount of current the
superconductor can carry in a magnetic field or the critical
current requires additional considerations. When a supercon-
ducting fluxon lattice is also carrying current, the fluxons
experience a Lorentz body force per unit volume of the con-
ductor equal to the vector cross product of the current density
and the magnetic field threading the fluxon (in most cases the
applied field) (26–28). These forces would move the fluxons
perpendicular to both the current density and the applied
field, for example, in a wire with a transverse magnetic field,
the fluxons would move radially perpendicular to the field.
But these vortices or fluxons are pinned by imperfections in
the lattice. Such imperfections in the lattice may be created
due to working of the metal or impurities in the metal. There-
fore, the superconducting state will be maintained as long as
the pinning force per unit volume is larger than the Lorentz
force.

As the Lorentz force approaches and exceeds the pinning
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force, the flux cores start moving and there will be some vis-
Figure 20. Negative surface energy; coherence range less than pene- cous resistance to such motion. Such a resistance would re-
tration depth. (Compare this with Fig. 6.9.) (a) Penetration depth and

quire work to be performed and energy to be supplied. Thiscoherence range. (b) Contributions to free energy. (c) Total free
power requirement would then manifest itself as an electricalenergy.
resistance and an associated voltage drop. The critical pin-
ning force is not a constant and increases from zero with field
and then reduces again to drop to zero at the upper critical
field. Figure 22 (29) shows the increase of the flux flow resis-
tivity with increasing field (30). This is called flux flow, and
in this regime the flux cores move with a velocity relative to
the electrons carrying the transport current. Since the cores
are carried forward (in the direction of the transport current)
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field is fully penetrated and then increases inside the mate-
rial as the field is raised.

Unlike in normal conducting materials, the penetration of
the field in the superconductor does not reverse when the field
change direction is reversed. If a field has penetrated well
inside the material during one direction of change (say the
field is increased) and if the field change direction is reversed
(say the field is decreased), the field inside the superconductor
initially decreases on the edge of the superconductor while
the field inside the superconductor remains unaffected. As the
field change is continued further this reduction continues into
the thickness. Figure 24 shows this phenomenon schemati-
cally. This behavior of the diamagnetism causes the supercon-
ductor magnetization to be hysteretic (31). The magnetization
hysteresis for a typical superconductor is shown in Fig. 25.

Now the critical state can be unstable because if there is
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perturbation in the form of a temperature increase, the criti-
cal current density is reduced, which then causes the fields inFigure 23. (a) Screening currents induced to flow in a slab by a mag-
the superconductor to redistribute requiring motion of flux innetic field parallel to the slab surface; (b) Magnetic field pattern
the superconductor. This flux motion generates heat, re-across the slab showing the reduction of internal field by screening

currents. sulting in the further increase of temperature. The larger the
sensitivity of the critical current density to the temperature
the larger the heat produced. The smaller the specific heat of
the material, the larger the temperature increase for a givenas well, the net motion of the cores is at an angle to the trans-
heat generated. Therefore, if conditions are unfavorable, theport current, but in most cases the angle is close to 90	. The
superconducting material will run away in temperature, re-electric field induced by the motion is given by
sulting in the material quenching and the flux jumping inside
the material. The condition beyond which such a flux jumpE = nf�0vf
would occur is given by

where nf is the number of fluxons and vf is the velocity of the
fluxons (the voltage is given by the product of the electric field µ0J2

c a2/[3ρmC(Tc − T0)] < 1

and length along the current direction).
where �m, Tc, Jc, C, and a are the density, critical temperature,Superconducting applications require zero or infinitesi-
critical current density, specific heat, and thickness of themally small resistance and therefore the regime of flux flow
superconductor, and T0 is the bath (initial) temperature (32).is required to be as close to the critical current as possible.
The result of the flux jump is that filaments of a supercon-Therefore, most applications require a high n value, which is
ductor cannot be larger than a certain size and when a super-given by
conductor is made of a large number of superconducting
filaments of wire, these must be twisted to cancel the diamag-E ∼ (I/Ic)

n

netic currents over short distances (33).

where I is the transport current and Ic is the critical current.
Superconductor Performance under ac Conditions

When superconductors are operated under ac conditions (ap-Flux Penetration and Flux Jump in a Type II Superconduc-
tor. According to the critical state model, when a field is ap- plied magnetic field and currents), the superconductor re-

sponse is significantly different from that of a good conductor.plied in the exterior of the superconductor, screening currents
would be induced to exclude the field. The cross section (pro- There are two reasons for this difference: (a) the magnetiza-

tion of the superconductor is hysteretic, (b) there are satura-portional thickness in the slab shown in Fig. 23) of the cur-
rent flow is equal to the total current divided by the critical tion effects due to the criticality with respect to magnetic field

and superconducting current capability. In addition, sincecurrent of the specimen. The current density in the material
is always equal to the critical current density. As the field is usual superconductors are composites of multiple supercon-

ducting filaments as well as normal stabilizing conductorsincreased, so is the thickness of the current sheet and after
current flows throughout the cross section of the material, the like copper, there are coupling effects due to mutual induc-

Figure 24. (a) Field pattern within a superconducting
slab subjected to large field change; (b) as the field is re-
duced; (c) when the field change penetrates to center of
slab; (d) when the field reaches a minimum value before
rising again.

Bp
Bm
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ment of flux is desired in a static field region, a good way is
to place a coil and move it transverse to the field direction so
that the coupled flux changes. The time integral of induced
voltage then gives the change in flux over the amplitude of
motion. In instances where the flux is changed over time, a
stationary coil enclosing the flux can be used. It is also appro-
priate to use flux density probes such as ‘‘Hall’’ probes over
the area of interest and integrate the flux density over the
area.
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