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MAGNETIC FLUX

The magnetic flux is related to the number of magnetic lines
of force crossing a given area. It is therefore analogous to the
flux of a flowing quantity. The magnetic flux is defined as the
integral of the product of an elemental area and the magnetic
induction perpendicular to it. If the magnetic induction is con-
stant over a given area, then the flux is the product of the
magnetic induction and the area. The magnetic induction is
referred to as the magnetic flux density, since it is the mag-
netic flux per unit area.

Since the flux represents the number of lines of force and
the lines of force are fixed in a infinitely conducting medium,
the flux is conserved in an ideal conducting medium. Finite
high-conductivity media such as copper and high-temperature
plasma conserve (enclosed) flux when an external field change
occurs or the cross section is changed over a time short com-
pared to the time scale in which the lines of force (and the
magnetic field) can diffuse across the medium.

The magnetic flux is related to the energy stored in the
magnetic field and represents the capability of a primary
magnet to induce voltage in a coupled secondary circuit over
a time duration. When a magnet current is changed the flux
(magnetic induction) changes, and by Lenz’s law (discussed
later) it induces a voltage in a secondary circuit. The magni-
tude of the voltage depends upon the rate of change of flux.
The duration over which this voltage can be maintained is
thus proportional to the flux:

®=[(B-dS)

where the integral of the magnetic flux density B is over the
area of interest S. Since the surface area vector is normal to
the surface, the integral gives the flux that intersects the sur-
face. If B is constant over S,

® =BS

Since the flux density is related to the magnetic field intensity
H by the relation B = w,ucH, where u, is the relative perme-
ability of the medium and p, is the permeability of vacuum,

S = g [(uH - dS)

The MKS unit for magnetic flux is Tesla = m? or Webers or
volt-seconds.

Magnetic Flux and Vector Potential

The vector potential is a quantity closely related to flux and
is defined as

B =curlA
The flux is then given by
® = [(curlA-dS)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 1999 John Wiley & Sons, Inc.



Applying Stoke’s theorem,
o=/[A-dD)

where the integral is over the closed loop enclosing the sur-
face area of interest. Therefore the flux is the line integral of
the vector potential around the perimeter of the area of inter-
est. For example, for a coil which has only an azimuthal com-
ponent A,, the flux enclosed by a circle of radius r is 27rA,.
The equation is commonly used to create flux plots (lines of
force) by using constant-vector-potential lines and to calculate
the flux enclosed by a given area, since many electromagnetic
and magnetostatic problems are solved by solving for the vec-
tor potential.

Magnetic Flux and Inductance

The inductance L of an electrical circuit depicts the ability of
the circuit to oppose a change of current in its own circuit or
a mutually (magnetically) coupled circuit. More fundamen-
tally it is the ability of a circuit to oppose the change in mag-
netic flux enclosed by the current circuit. The flux enclosed by
a circuit is proportional to the current in the circuit or the
circuit that is mutually coupled to it, and the proportionality
constant is the self-inductance L or the mutual inductance
M, or
®=LI or ' =MI

where I is the current in the circuit whose flux is of interest
and I’ is the current in the mutually coupled circuit. The mu-
tual inductance of two circuits with self-inductance L; and L;
is given by

_ 1/2
M;=KL,L)"
where K is the coupling coefficient. The mutual inductance

may be positive or negative.
For a coil with N turns, the total inductance is given by

N N
Ly = Z Z(Li + M)

i=1 j=1

If the turns are identical and fully coupled (K = 1) to each
other,

N

Ly = Y _IL;+ N = DL,1=N’L; = N*®/I

i=1
where @ is the flux due to one turn when a current I passes
through it. Since the flux ®y induced by N turns is N¢,

Ltotal = N(DN/I

Magnetic Energy Density

The volume permeated by a magnetic field stores energy and
therefore any device which generates a magnetic field also
stores energy. The energy density associated with the mag-
netic field of a region is given by

u=(B-H)/8 =B?/(8rp)
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so that the energy stored in a flux tube cylinder with a cross
sectional area A (perpendicular to B) and length [ is

E; = ®%1/(8iritoA)

Lenz’s Law and Flux Conservation

As stated previously, an electrical circuit such as a loop of
wire or a metallic cylinder opposes a change in the flux en-
closed by itself. A voltage is induced in the circuit in a direc-
tion such that the voltage can drive a current that opposes
the change in the flux. Therefore Lenz’s law states that the
induced voltage is given by the time rate of change of the flux,
that is,

V = —dd/dt (1)

The voltage drives a current I given by

V =LdI/dt + IR (2

where L and R are the inductance and resistance of the cir-
cuit. Equating Egs. (1) and (2) and integrating over time,

LI + ® = const — [(IRd¢)

Now, the left-hand side is the total flux (sum of the initial
flux and the induced flux). Therefore the flux is conserved if
the electrical circuit has zero resistance, that is, for an ideal
electrical circuit such as a loop of conductor or a cylinder with
zero resistance, the flux enclosed by it does not change when
the flux density (magnetic field) or the area enclosed by the
circuit is changed (Fig. 1). Analogously, the flux enclosed by
a circuit is conserved if the current or the inductance of the
circuit is changed. However, in nonideal conductors with non-
zero resistance the current induced by the changing flux
would decay with a time constant of L/R and the flux would
change with the same time constant.

In mutually coupled circuits Eq. (2) is modified to include
voltage induced by the mutually inductance. Therefore for
two circuits p and g,

V, = Lpdl,/dt + M,y dl,/dt + I,R,

and the same flux conservation concept would apply if the
resistance is zero, that is,

L,I, +Mp,.l; + ® = constwhen R, =0

The currents induced for the conservation of flux are called
diamagnetic (1) or eddy currents and in resistive conductors,
such currents cause losses in the conductors when the field
(flux) is changed.

It can be easily shown that a diamagnetic material placed
inside a coil reduces the inductance of the coil (the total mag-
netic flux in the coil is reduced), while a paramagnetic and
ferromagnetic material placed inside a coil increases its in-
ductance.
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Figure 1. Magnetic behavior of a “perfect” conductor. (a) and (b)
Specimen becomes resistanceless in absence of field. (¢) Magnetic field
applied to resistanceless specimen. (d) Magnetic field removed. (e)
and (f) Specimen becomes resistanceless in applied magnetic field. (g)
Applied magnetic field removed (subscript ‘a’ refers to applied field)
(Ref. 4).

Poynting Flux

When the magnetic field is not constant in time, by Maxwells
Law

curl E = —dB/dt

Therefore, an electric field E is always associated with a time
varying magnetic field. The medium therefore stores both
electric and magnetic energy and this energy is, in general,
time dependent and in addition, as the changing fields pene-
trate the volume, there may be energy dissipation in volume
V due to resistive currents driven by the electric field at a
rate given by

dE, /dt = ntlJ - E1dV

where o is the current density in the volume. Maxwells Law
can be written as

dEy./dt = [IE -curl H — E -dD/dt] dV

where D is the electric displacement vector. Using vector
identity and assuming linear properties, this can be written

as

dEg/dt = [[J -E1dV = — [[du/dt + div(Ex H)]

where now the energy density of the region,
u=E D+B-H)/2

In differential form this leads to the energy conservation
equation

du/dt + div(E xH) +J -E =0

The first term represents the rate of change of the energy
density, the term S = (E x H) represents energy flow in or
out of the volume and the last term represents the energy
dissipation. S is called the Poynting vector and is particularly
relevant to electromagnetic fields and waves.

Flux Penetration and Diffusion

As stated in the previous sections, if a magnetic field is ap-
plied to (or changed on) the exterior of a material (the flux
enclosed by the area of the material is changed), the material
gets an induced voltage that drives diamagnetic currents op-
posing the change in flux. If the material has a finite resis-
tance, the currents will then decay and the flux will penetrate
into the material. The flux will penetrate diffusively much
like the diffusion of heat over time. The following relations
illustrate this phenomenon.
Maxwells law gives

curl E = —9B/ot

curl H =dJ + Q
ot

and Ohm’s law gives
E =pJ

where E and J are the induced electric field and (eddy) cur-
rent density, respectively, and p is the resistivity of the ma-
terial.

Therefore,

oB
curl (p/p) curl B = —

Since div B = 0 and for uniform resistivity p,
(0/m)V*B = 8B/t

which is the equation for the diffusion of the flux into the
material and p/w, = D,, is the magnetic diffusion coefficient.
The flux and the field diffuse into the material thickness of [
in a time given by [?/D,,.

If the conducting material is in motion such as a moving
plasma, an additional induced electric (convective) field v X
B is present. The net time rate of change of the magnetic field
is given by

dB/dt = (p/u)V?B + curl(w x B)



and in analogy with viscous flow, a “magnetic” Reynolds num-
ber can be defined as

Ry = Lv/Dn,

where L is the characteristic dimension of the flow. The mag-
netic Reynold’s number can vary from a value much less than
1 for laboratory devices to values on the order of 100 for
fusion plasmas, while for geophysical or astronomical condi-
tions, R, can be as high as 10% to 10%°. Therefore the flux can
be diffused by the flow as it penetrates the conducting mate-
rial. This convective flow can be a mechanism for converting
one type of flux into another (see the section entitled “Flux
Conversion”).

FLUX LINE AND FLUX TUBE

The flux lines are directed lines of force (LOF) and lie in the
direction that a north (mono-) pole would point to when
placed in the magnetic field. The LOF is defined by the equa-
tion

dx/B, =dy/By, =dz/B,

where B,, B,, and B, are components of the flux density in the
directions x, y, and z. The equation may be integrated to give
surfaces of the type (2)

f(x7y5z) :a
gx,y,2) =0

the intersection of which gives a specific line of force. In this
case, the local unit vector of the LOF is given by

k = grad f gradg/(grad f grad g|*)'/*

which involves components of tensorial products. A tube of
force is a collection or a group of lines of force. Since div B =
0, the flux in a tube is conserved as the lines of force diverge
and converge. If a tube branches into a number of tubes, then
the sum of fluxes remains the same.

Since the flux in a tube of force is conserved, the cross sec-
tion of the tube of force traversing through materials of differ-
ent permeability would be inversely proportional to the per-
meability (Fig. 2); however, continuity equations require this
variation in cross section to be gradual.

A useful concept is the specific volume of a magnetic tube
of force given by

U=dV/do

B>

::ZZ::::::5

He=

—i
Figure 2. Spreading of field lines (LOF) in low permeability region
for the same flux.
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Figure 3. Toroidal geometry, R, is the major radius, ® the azimuthal
angle, y the minor radius, and 6 the poloidal angle.

where now V is the volume of the tube and ® is the flux en-
closed by it.
Since the flux in a tube is conserved,

U = [[dSdl)/(BdS)]

or

U= [(dl/B)

where dS and dl are the cross sectional area and length of a
volume element, B is the flux density, and the integral is over
the whole tube.

FLUX AND FIELDS IN A TOROIDAL GEOMETRY

The toroidal geometry (Fig. 3) has applications especially to
plasma-confinement devices, and the topology of the field and
the constituent magnetic flux are of specific interest in such
devices and astrophysics. In a toroidal geometry, a pure toroi-
dal field (field lines going around the major circumference)
or a pure poloidal field (field lines going around the minor
circumference) would give closed field lines. In most plasmas
of interest, both fields would be present and the toroidal and
poloidal fluxes are also called longitudinal and azimuthal
fluxes. The toroidal or azimuthal flux y is the flux enclosed by
the surface ¢ = const, where ¢ is the azimuthal angle around
the major axis of the toroid. The poloidal or the longitudinal
flux @ is the flux enclosed by the surface 6 = const (Fig. 4). If

Two neighboring
flux surfaces

Figure 4. Illustration of the poloidal and toroidal surface elements
dSp and dS..
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both fields are present, the lines of force go around helical
paths around the torus. In general, a line of force starting at
a certain poloidal angle will arrive at a different poloidal
angle after one traverse or more around the major circumfer-
ence. The rotational transform is defined as the change in
angle averaged over a large number of transits around the
major circumference:

n
L=limE L /n, n— oo
=1

For a toroid with a toroidal current of I, and a uniform toroi-
dal field of B, the rotational transform at the minor radius r
is given by

t=By(r)2rR/rB,
=2ndx/d®

where By(r) = uol,/2nr is the poloidal field at minor radius r
and R is the major radius. The quantity ¢ = 27/. is known as
the factor of safety in fusion-device terminology.

The surface on which the helical lines that close on them-
selves after a number of transits is called a rational surface.

MAGNETOMOTIVE FORCE AND RELUCTANCE

These terms are defined analogousy to electrical circuits. A
magnetic circuit consists of flux threading the circuit, analo-
gous to current. The flux is “driven” by the magnetomotive
force (mmf) Ey;, and the flux ® is limited by the reluctance, so
that reluctance is analogous to resistance in an electrical cir-
cuit. In most applications the mmf can be defined as ampere-
turns, that is, the product of the instantaneous current and
the number of turns. The reluctance of a circuit element is
given by

R =Ey/®

The reluctance of an element is related to the characteristics
of the element by

R= L/ﬂrMoA

where u, and u, are the relative permeability of the circuit
element material and the permeability of vacuum, respec-
tively, and L and A are the length and cross-sectional area of
the circuit element. Therefore materials with high permeabil-
ity such as iron have low reluctance, and vacuum or air has
high reluctance. The concept of reluctance can be used in
magnetic circuits analogous to electric circuits. If the mmf is
analogous to the emf (applied voltage), then flux is analogous
to resistive current, and the reluctance is analogous to electri-
cal resistance (with permeability being equivalent to electri-
cal conductivity). For example, the flux generated by a coil
with ampere turns NI and threading two adjacent (in series)
volumes with reluctances R, and R, is given (in one dimen-
sional approximation) by

® = NI/(R, +R,)

The magnetization in a material is given by
M =B — poH = (ur — l)MoH

Thus low-reluctance materials also have high magnetization.
For pu, > 1,

M ~ H(L/ZA)

Ferromagnetic Materials and Shielding

Ferromagnetic materials (e.g., iron) have high permeability
and therefore low reluctance. Therefore in magnetic devices,
where the flux is to be linked effectively between two electri-
cal circuits, e.g., transformers and motors, a ferromagnetic
path is usually employed. Conversely, to shield regions from
magnetic fields, a low reluctance magnetic path may be pro-
vided for the field so that the field lines prefer to pass through
the ferromagnetic region rather than the region that has to
be shielded. Such a shielding iron may cover the source or
cover the region to be shielded.

DEMAGNETIZATION FACTOR

While the flux inside a perfect conductor is conserved, it must
be remembered that the magnetic field intensity H is not. In
fact, the field intensity inside the diamagnetic material can
be shown to increase by a factor depending upon the geometry
of the material, for the same conditions of field excitation, for
example, magnetic current. (For paramagnetic and ferromag-
netic materials, the field intensity decreases by some factor.)
The demagnetization factor is 2 for a sphere and is 1.5 for a
cylindrical cross section. This fact can be explained as follows.
(For an alternate description, see Ref. 3 on the analogous
characteristic of depolarizing factor.)

Consider a long solenoidal magnet (4) that produces a
nearly uniform external field intensity H, in the direction x at
the center of the solenoid. Now if a sphere of diamagnetic
material is placed at the center and the solenoidal field is
established, the diamagnetic material will exclude this flux
from inside and it can be shown (solution to the Laplace’s
equation) that the field lines will be as shown in Fig. 5. While
the field intensity H. outside the sphere is unaffected far
away from the sphere, the field intensity H, is zero just out-

Solenoid

Figure 5. A diamagnetic sphere in a solenoid. The field strength at
a point close to the sphere, such as X, is less than it would be if the
sphere were absent, while the field strength at a point far away, such
as Y, is essentially unchanged. The line integral of H around the bro-
ken line is independent of whether the sphere is present or not, so
the field strength inside the sphere must exceed the applied field H,
(Ref. 4).



side of the sphere along the diameter parallel to the field di-
rection, and near that region the external field intensity H.
will be less than the value in the absence of the sphere.
Therefore the field intensity H; outside the sphere will be less
than or equal to the field intensity H, in the absence of the
sphere. Now, the [H-dl along the closed path ABCDEFA
gives (by Ampere’s law) the total ampere turns in the sole-
noid, which was held constant when the sphere was placed.
Therefore

JH; - dD)ysp+ [He-dDpe+ [He - dDeppp + [He - dl)py
= [H-d)yp+ [H, -dDpe+ [H, - dD)cppp + [H, -dl) g,

Since, H! is less than or equal to H, along BC and FA and the
integral over CDEF is unaffected (too far away), [(H} - dl),z is
larger than [(H,-dl),; to preserve the sum of the integrals,
which essentially means that H; is larger than H, along CD,
that is, inside the sphere. This effect was first noted for para-
magnetic and ferromagnetic materials for which the relative
permeability is greater than 1, and therefore the field inten-
sity inside the sphere would be less than the field in the ab-
sence of the sphere. Since this effect was first noted in such
materials, the effect is considered to be a demagnetization
and can be stated as

H, =H, — nl,

where H; is the field intensity inside the object with magneti-
zation I, and H, is the applied field intensity. The quantity n
is called the demagnetization factor and depends on the ge-
ometry of the object. For spheres n = % and for cylinders n =
3. Clearly if the applied field is perpendicular to a thin cylin-
drical wire, because of the volume average, n = 0. It must be
remembered that for paramagnetic and ferromagnetic materi-
als, I, is positive and the field intensity inside the material
decreases, while in diamagnetic materials, I, is negative and
the field intensity inside the material increases. This demag-
netization factor has important consequences for nonlinear
magnetization and critical characteristics of materials such
as iron and superconductors.

MAGNETIC HELICITY

The topology of magnetic surfaces and the complexity of the
structure of the magnetic field can be described by a quantity
known as magnetic helicity, which is defined as

H=[B-AdV)

where the integral is over the volume of interest. The mag-
netic helicity describes the linking of field lines and tubes of
force. Considering the two linked tubes in Fig. 6, the helicity
can be written as

H = [[ldS-dl)B-A)]

where S is the cross section of tube 1 and [ is the length of
tube 1. Since B is approximately normal to S, this can be
written as

H=§@A-dl)[B-dS)
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Figure 6. Linkage of flux tubes, tubes with cross sections 1 and 2
are threaded by flux @, and &, respectively.

The surface integral is the flux ®; enclosed by tube 1 while
the line integral is the flux ®, enclosed by tube 2. The linked
system helicity is then equal to the sum of the two helicities
equal to 20,®,. If the tubes are linked N times the helicity
will be equal to 2N®,®,. In many systems of interest, the he-
licity is conserved as the magnetic configuration evolves.

Flux Conversion

If the field configuration is confined in a closed, perfectly con-
ducting and nonpermeable surface (the normal component of
B and velocity of any conducting medium v are zero), then
helicity is conserved. This means that in such a configuration,
although individual fluxes of different tubes (components of
flux density), for example, toroidal and poloidal fluxes, are not
conserved independently, the product is conserved. The sym-
metry then permits conversion of one type of flux into an-
other. Such flux conversions are observed in plasma devices
and in geomagnetic phenomena (5—7). The presence of turbu-
lent structures and coherent magnetic field fluctuations may
provide a mechanism for the conversion of flux and geomag-
netic phenomena (8).

A simple generation of flux conversion is illustrated by us-
ing the diffusion time for flux lines in a good conductor. Con-
sider a magnetic field applied externally to a pair of conduct-
ing materials [Fig. 7(a)]. After a certain time, depending on
the conductivity of the material, the flux will diffuse in the
two conductors [Fig. 7(b)]. Now, if one of the conductors is
moved fast compared to the diffusion time, the flux lines will
be bent and appear as shown in Fig. 7(c) until the lines can
redistribute themselves inside the conductor. It is clear that
in this process, a portion of the magnetic field that was pre-

Figure 7. Conversion of vertical field to horizontal field. (a) Field
before penetrating two blocks of conductor. (b) Fields after penetra-
tion. (c) Fields after the lower conductor is moved—a horizontal com-
ponent is created in the gap between the two conductors.
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viously in the vertical direction has been converted into a ho-
rizontal field.

Dynamo Action and Geomagnetism

The fact that convective motion of conducting fluids can gen-
erate magnetic fields has been invoked in explaining sponta-
neous flux generation from seed magnetic flux and is consid-
ered to be the source of the dynamo action in the earth’s core,
which produces magnetic fields. In perfectly conducting fluids,
the lines of force are frozen (see the section on plasma equilib-
rium and Ref. 9). While the earth’s core is conducting, any
generated magnetic field must have short decay time due to
the finite resistivity of the earth’s melted core. Therefore a
continuous dynamo action is necessary to maintain this field.
Such a dynamo action is caused by the correlation between
velocity and field perturbations in the turbulent motion of the
core (10,11). Two effects, the o effect and the w effect, are
invoked to explain the dynamo action (12).

The « effect is a direct result of the Faraday effect. Con-
sider Ohm’s law,

J =0FE +o( xB)

where the second term is due to the induced Faraday emf. If
a turbulent system is present, so that v = v, + v’ and B =
B, + B’, the average induced electric field E = v, X B, +
v’ X B', since the averages of v’ and B’ are zero in turbulent
perturbations. Therefore an additional emf E’ = v’ X B’ asso-
ciated with the correlated velocity and magnetic fields occurs.
In specific systems, this electric field can be written as E' =
aB,, where « is a tensor in general. This electric field then
has a component of current which maintains the dynamo ac-
tion. Consider Fig. 8, where the turbulent velocity of the fluid
can be resolved into an axial component v, and a rotational
component v;. If the initial magnetic field is in the x direction,
the v; component will produce an electric field v,B, and a cur-
rent J, perpendicular to the y axis. This current will then
produce a magnetic field B’ in the y direction. An electric
field E' = v,B’ will be produced in the x direction (parallel to
the original magnetic field), as stated previously.

The w effect is caused by convective effects illustrated in
the preceding section. In the illustration shown in Fig. 9, a
radial or poloidal field is convected by a toroidal flow. When
a toroidal flow is impressed upon a poloidal field, the velocity
field shears the magnetic field and produces a toroidal mag-
netic field such that the direction at the top and the bottom
are opposite, preserving helicity (13). The dynamo is again

Uo z

y B
BO

Figure 8. Illustration of the « effect. Consider a right-handed helical
velocity field depicted by (v; and v, in the presence of a field B,
aligned along the x axis. This will produce current loops such as o,
lying in the x-z plane. Associated with the current loop o, is a field
B’ aligned parallel to the y axis. This new field B’ interacts with v,
to produce an electric field parallel to the x axis.

S9

Magnetic field Velocity field
(a)

Poloidal

(b)

Figure 9. Production of a toroidal magnetic field in the core. (a) An
initial poloidal magnetic field passing through the Earth’s core is
shown on the left, and an initial cylindrical shear velocity field, 7%, is
shown on the right. (b) The interaction between the velocity and the
magnetic field in (a) is shown at three successive times moving from
left to right. The velocity field is only shown on the left by dotted
lines. After one complete circuit two new toroidal magnetic field loops
of opposite sign (T9) have been produced. After Ref. 9.

due to the correlation between the turbulent velocity field and
the turbulent magnetic field.

ELECTRICAL MACHINES

Transformers

Transformers essentially use Lenz’s law. In transformers a
“primary” coil is supplied with a time varying current and a
“secondary” coil mutually coupled to the primary coil receives
an induced voltage that can then be used to drive a current
into another circuit (Fig. 10). This then permits isolating the
secondary circuit electrically from the primary circuit while
enabling the indirect use of the source that powers the pri-
mary circuit. In addition, the transformer permits the “step-
ping up or down” of the voltage, that is, the secondary voltage
can be larger or smaller than the primary voltage by the ratio
of the number of turns in the primary and secondary coils. In
a transformer the secondary coil is made to link nearly all
the flux due to the primary coil by placing the primary and
secondary coils around iron, which provides a closed low-re-
luctance path for the magnetic flux. The changing current in
the primary coil causes a change in the flux and the second-
ary coil receives an induced voltage that opposes this chang-
ing flux.

V, = N, d®/dt
V, = —N,d®/dt

The negative sign indicates that the secondary coil opposes
the change in flux caused by the primary coil

Vs/Vpy = —=Ng /N,
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Figure 10. (a) Ideal transformer and load. (b) Component fluxes.

Since the same flux is linked and the flux path is the same
(the reluctance and the flux are equal in the primary and sec-
ondary circuits),

N, = N,I, I,/I, = N, /N,
or
VI, = VI,

However in a nonideal transformer (14), part of the voltage
applied to the primary coil is expended in generating the flux
in the core and part is expended for compensating for eddy
currents in the coil and iron and losses in iron due to hys-
terisis. The flux generated in the core by the primary current
links the secondary current as a mutual flux and the re-
maining current leaks out into the air (which is outside the
iron core and there is no linkage with the secondary current)
as leakage flux. Similarly the flux due to current in the sec-
ondary coil (under load conditions) also has two parts: mutual
and leakage flux. As is evident from the terminology, the mu-
tual flux of the primary and secondary coils are equal and the
leakage flux is dependent on the core size and permeability—
the larger the area and permeability, the smaller the fraction
of leakage flux.
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The mutual flux is subject to saturation effects in iron. The
reduced permeability of the iron at high excitation currents
(flux densities) causes a smaller increase in mutual flux for
an increase in the current, and the induced voltage exhibits
saturation. This increases the high-harmonic components in
the secondary voltage. Since the leakage flux is in the air, it
is proportional to the current.

The total primary and secondary flux can be written as

q)tp = Npq)lp +Npq)m
&y = Ny®), + Ny@p,

where subscript 1 refers to the leakage flux and m refers to
the mutual flux. Similarly the total voltage is also the sum of
that induced by (or used in creating) the leakage flux and that
induced by the mutual flux. The leakage flux

Ny @y, = N2y /7,
N®,, = N2/ %5

where Z , and % ; are the reluctances of the primary and sec-
ondary leakage paths, respectively. The corresponding volt-
ages associated with the leakage paths can be defined as

Vi, =Ly, dL,/dt
Vi, = Ly, dI,/dt

where L, = NY# , and L, = N2/R , are the leakage induc-
tances. Taking into account the resistance of the coils, r, and
rs, the total voltage is then given by

Vp = Ey + Ly dl,/dt +Iry
V. = E, — L, dI./dt — Lr

where E, is the voltage inducing the mutual flux in the pri-
mary and E; is the voltage induced by the mutual flux. In
well-designed transformers, the leakage and resistive terms
are usually negligible.

Since

Vo = Npd ®,/dt
@, = (1/Ny) [ (Vpdt)

For a sinusoidal voltage with a frequency f = w/2m, V, =
Vo sin(wt + «)

&y, = (Vy/wNy) cos(wt +a) + @

where @, is a transient flux that decays after switching on
due to eddy currents and hysteresis losses. Therefore the flux
induced in the transformer is inversely proportional to the
frequency of the applied voltage and lags in phase angle by
/2.

An approximate equivalent circuit of the transformer can
be constructed in a single circuit taking into account the mu-
tual coupling, where the circuit consists of primary induc-
tance and resistance, the mutual coupling inductance and
magnetization, the leakage flux, and the secondary imped-
ance (inductance and resistance referred to the primary).
Other nonideal effects such as saturation of the iron core, ac
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losses in the core, and eddy currents can be taken into ac-
count in such a circuit (15).

Dc Electric Generators

In a generator (Fig. 11 from Ref. 14), a coil of conductors on
the armature (rotor) moves across the north and south mag-
netic poles (stator). If the coil has N, turns and the poles gen-
erate a flux @, the coil will link a flux ® under the north pole,
then zero flux between poles, and a flux —® under the south
pole. Therefore the voltage induced in the coil is

V.= Ad/At

where A® = 2N @ is the change in the flux seen by the coil
and At is the time over which the flux change occurs. If the
coil is rotating at a rate of n rotations per second and there
are p poles in the stator, then At = 1/np, so that

V. =2N.pnd

Figure 11. Schematic of a generator.

If C coils are connected in series and a are connected in paral-
lel, the generated voltage is

Vg =2CN.pn®/a = K, dw

where w is the angular frequency of rotation and K, =
CN//map is known as the armature constant. As shown later,
the voltage induced is alternating, and dc generators require
so called commutators to change the brush polarity alter-
nately to generate dc voltage.

Generalized ac Machines

Induced Voltage in an ac Generator. In ac motors and gener-
ators, a number of multipole excitation coils are placed in a
stationary high permeability core and a set of secondary coils
are placed in a rotary core. The secondary and the primary
excitation coils are placed around a common axis and have a
small gap. (A simple example of a two-pole ac machine is
shown in Fig. 12.) At an arbitrary angle 0 between the rotor

Pole pitch = p,

s Typical coil

el ' Armature core
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(a)
)'C
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Figure 12. Elementary two-pole ac machine with stator coil of N
turns.

and the stator with N turns, the flux linked by the stator is

/2
N =N [Bmax(cos0)Irdf] = 2NBnaxlr
—/2

where [ is the length of the rotor (normal to the figure) and r
is the radius of the stator at the gap. For p poles, the flux is
(2/p)2Nb . Ir). If the rotor spins with an angular velocity o,
the flux links changes with time as

@' = N cos(wt)
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The voltage induced due to the time variation of the flux is
given by

e=—dd'/dt = oN® sin(wt) — N cos(wt) dd/dt

If the flux produced by the coils is independent of time, the
second term is zero, but it is clear that the generated voltage
is alternating.

Rotating Magnetic Field. In three-phase ac machines (where
three legs of the ac supply each have a phase difference of
120°), three sets of stator coils are connected to the three
phases (Fig. 13), so that the currents in the coils are given by

I, = Iyax cos(wt)
I, = Izax cos(wt — 1/3)
I. = Iyax cos(wt — 21 /3)

where w = 27f and f is the frequency of the ac supply. In such
a case, the total instantaneous force on the armature at an
arbitrary angle 6 due to the three coils is proportional to the
flux linked, which, in turn, is proportional to the current and
is given by

D(6,t) = Ppax cos b cos(wt) + Prax cos O cos(wt — 1 /3)

+ ®pax cos O cos(wt — 21 /3)
= 1.5® 5 cos(0 — wt)

which represents a traveling wave of flux (also an mmf or
force in a motor, or induced emf in a generator). If at ¢t = 0

Figure 13. Production of a rotating magnetic field by means
of three currents.
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the peak of the flux was at 6 = 6, then in a time #, the peak

moves to 0 = 6, — ot and therefore the field appears to rotate

in time. Figure 13 shows this rotation, where F is the force

(proportional to the flux linked) experienced by the armature.
If the armature also rotates but with an angular velocity

w,, the linkage is given by

Q) = 1.5Ppaxco8(wy — w)E

so that when w, = w, the linked flux appears to be a constant
and the motor or generator is synchronous.

This description can also be represented by a coupled-cir-
cuit description (14) using the stator and rotor inductance and
flux linkages and resistance of the coils. The circuit descrip-
tion then leads to a set of two differential equations with time
derivatives of current. Solutions of these equations give the
instantaneous values of current and magnetic energy in the
machine. The derivative of this energy with respect to the
mechanical angle gives the torque produced.

Sinusoidally Wound Stators. The windings are arranged in
such a fashion that the number of turns in the excitation and
primary coils is a sinusoidal function of the angle, that is

N; = Ny, sin(p¢) = N, sin(prx/L)

where i refers to the excitation or the secondary coil, N, is the
maximum number of turns, p is the number of pairs of poles,
x is the position along the circumference, and L is total cir-
cumferential length. [If the coils are not arranged in a sinu-
soidal fashion and are as shown in Fig. 12, then the funda-
mental component is given by N; = (2/m)N,, sin(p¢/2).]

Now if the field in the gap is H,, the integral of the field
around a closed loop enclosing a coil (see Fig. 14) has two legs
of the loop in the iron core that contribute negligibly if the
permeability is very high and has two legs that cross the gap.
Because the field direction remains along the integration di-
rection, these add and the integral

JH - dx) = 2H,g

where g is the gap. But, by Ampere’s law, the integral is also
equal to the total current (ampere turns enclosed), IN,

—
.

A

e

Figure 14. Flux in the gap between the stator and the rotor. Most
of the reflectance is in the gap since the stator and the rotor have
high permeability iron path.

sin(pmx/L). Therefore
H, = (IN,/2g) sin(prx/L)
Now the flux coupled to the coil,
©=1[[B-dx) = (nylIN,/2g) [[sin(prx/L) dx]

where [ is the length of the coil (or the area under consider-
ation). Over one length of the pole, p/L, the integral gives

@, = (1olIN,L/2gp7)IN,Gy

where G, = (uolL/2gpm) is the gap permeance per pole (or is
the inverse of the reluctance of the gap per pole).

Now, if the current is alternating and the rotor is in mo-
tion, at any instance the flux coupled to the coil is given by

® =I)NyGg sin(wt + [)
= INGg sin(wt) cos ¢ + IN,G cos(wt) sin ¢
= @, sin(wt) + P, cos(wt)

where ¢ = pmx/L represents the angle or the spatial phase of
the rotor at time ¢.

If we use the designations j and JJ to distinguish between
and separately account for the rotational time dependence
and the angular position

sing = (¢7% — e’Jd’)/ZJ

sin(wt) = (e — e 7/*t)/2j
The above expression can be rewritten as
Q=D+ cptop = (Jo, - jq)x)ejwt +J oy + .jq)x)e_jwt

which represents two counterrotating components of flux, one
direct and another opposite, that is, two components of flux
with a phase difference of 7. The two components are illus-
trated in Fig. 15.

The preceding description of the flux is useful in the design
of devices such as sine-cosine transformers (SCT), remote and
point control systems, tachogenerators, and servomotors.

CHARGED-PARTICLE MOTION IN A MAGNETIC FIELD

A charged particle is deflected from its original path by a
magnetic field if it has a velocity component perpendicular to
the magnetic field (that is, charged particles with velocity in
the direction of the magnetic field do not experience a force).
The particle moves in a direction perpendicular both to the
initial velocity and the magnetic field. Since the motion is per-
pendicular to the magnetic field, no work is done by the mag-
netic field and the particle energy does not change. It can be
seen then that the particle exercises circular motion around
the field direction (flux lines), and if the particle has a parallel
velocity (which remains unaffected by the field), the particle
executes spiral motion. The radius of the circular motion is
called the Larmor or gyro radius and the rotational frequency
is called the Larmor or gyro frequency.

It can be shown that if the field varies slowly in space and
in time, the flux enclosed by the charged particle is constant.
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Figure 15. (a) Vector diagrams to illustrate spatial flux vector and
(b) time vector diagram to illustrate geometrical meaning of the sym-
metrical component decomposition.

This conservation of flux is true in an “adiabatic” sense and
leads to other adiabatic constants of motion, which enable the
development of magnetic traps for plasmas and particle
beams as well as particle accelerators and particle detectors.

The equation of motion of the charged particle in an elec-
tric and a magnetic field is given by

dp/dt =q@E +v xB)

where p = ymv and m, v, y, and g are the particle momen-
tum, mass, velocity, relativistic factor and charge, respec-
tively, and E and B are the electric and magnetic fields. The
equation can be written in component form for E = 0 as (for
simplicity shown only for the magnetic field in the z direction,
i.e., B = Be,).

dv,/dt = (gB/ym)v,
dvy/dt = —(gB/ym)v,
dv,/dt =0
which are the equations for circular or spiral orbits with the

gyro frequency (), = gB/ym. Solving the equations for dis-
placements, one gets

x = (Vp/RQg) SIN(Qgt)
y = £(Vp/Rg) cos(R2t)
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where the + or — sign corresponds to the positive or negative
charge (which may be dropped if the gyrofrequency includes
the sign of the charge) and v, = (v? + v2)"% Therefore r, =
v,/Q, is the Larmor radius. (For a full relativistic treatment
of the charged particle motion, see Ref. 16.)

Motion in a Time-Varying Field

If a particle is performing gyro orbits in a time-varying mag-
netic field, the energy is not a constant, since there is an asso-
ciated electric field given by

curl B= —3E/dt

The energy gain is given by (2)
AU, = [(qgdr-E)

where the integral is around the orbit and r is the displace-
ment along the path of the orbit. For this approximately
closed path, the Stoke’s theorem gives

AU, = [(qdS - curl E)
[(qdS - 0B/at)
~ qm"§ dB/dt

For time scales much larger than the time period of the gyro
motion,

dU,/dt ~ QAU /271 = (qQre/2) dB/dt
which gives
(1/U,) dU,/dt = (1/B)dB/dt
or
du/dt = d(U,/B)/dt =0

where w is known as the magnetic moment of the particle,
w = qQri/2.

Substituting for Q. wu = (@*2mam)ariB) = (¢*/2rm)®P,,
where @, is the flux enclosed by the circular orbit. Since
du/dt = 0, d®,/dt = 0, the flux enclosed by the particle orbit
is conserved if the rate of change of the magnetic field is adia-
batic, that is, the change occurs over a period much larger
than the gyro time period.

Motion in an Inhomogeneous Magnetic Field

The flux enclosed by a particle orbit also remains constant if
the spatial variation of the magnetic field is adiabatic, that
is, the scale length of variation is much larger than the gyro
radius of the particle orbit. This can be shown simply by the
fact that the situation is essentially same as for slow time
variation of the field.

The magnetic field variation experienced by the charged
particle as it moves in an inhomogeneous magnetic field with
a velocity v is given by

dB/dr = v,.dB/dt

where v, is the component of the velocity v in the direction r.
Again, as shown before, in such a case, the magnetic moment



734 MAGNETIC FLUX
is conserved and therefore the flux enclosed by the particle
orbit is conserved.

Other adiabatic invariants such as the bounce invariant in
trapped orbits and the line integral of the canonical angular
momentum in a periodic motion (17) are also the result of
flux conservation.

PLASMA EQUILIBRIUM AND FLUX SURFACES

The most common devices for nuclear fusion and plasma
applications employ a toroidal geometry, where the plasma
carries toroidal and poloidal currents (see the section entitled
“Flux and Fields in Toroidal Geometry”) and are confined
by toroidal and poloidal fields. In such cases, the equilibrium
is obtained as a balance between the Lorentz body force,
which is generated by the interaction of the plasma current
with the magnetic field, and the pressure force due to gradi-
ents in pressure. Such a confinement scheme is used in the Z,
theta, and screw pinches, tokamaks, spheromaks, stellara-
tors, and compact toroids. In many of these applications the
primary configuration of the plasma is axisymmetric (except
for, e.g., helical devices), that is, the variation of the current,
magnetic field, pressure, and plasma properties are small
and only appear as perturbations. Plasmas in such toroidal
geometries attain equilibria (position and shape of the
plasma, conditions of magnetic field and plasma current
profiles, etc.) based on the solution to the Grad—Shafranov
equation. It can be shown that the poloidal flux [see Fig.
16(b)] is constant on specific surfaces. While it is obvious that

ZA
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Figure 16. (a) Disk-shaped surface through which the total (plasma
plus coil) poloidal current I, flows. (b) Washer-shaped surface through
which the poloidal flux ¢, passes.

in the absence of pressure, the surfaces of constant flux are
concentric, they are not so when the plasma pressure is finite.
Since the outermost flux surface is usually fixed by a flux-
conserving boundary or by an external vertical field, this
means that the center of the plasma is shifted from the minor
axis of the toroid by the so-called Shafranov shift. An equilib-
rium pressure limit (the so-called equilibrium B limit, where
B is the ratio of the plasma pressure to the pressure due to
the magnetic field) is obtained when the shift exceeds the
radius.

For the geometry shown in Fig. 3, the primary coordinates
are the major radius R, the azimuthal angle ¢ around the
major axis, and the vertical coordinate z. Additional coordi-
nates are the minor radius r and the poloidal angle 6. We
limit ourselves to axisymmetric equilibria so that d/d¢ = 0.

Maxwell’s equations are

divB =0 (3a)
curl B = pod (3b)

and the plasma force balance equation is
J x B =gradp (3¢)

where B is the magnetic field, J the current density and p the
pressure. Expanding the first equation,

(1/R)(3/9R)(RBg) + (1/R)3B /3¢ + 0B /3Z = 0

where the second term is zero due to axisymmetry. If we de-
fine a flux function ¢, such that

B, = (1/R)3y/oR
By = —(1/R)dy /Z

then

B=B,+B,=Bye, + (1/R)grady xe, (4)

The poloidal flux

R
®p = [(B, - dS) =/ [27R(1/R) (3% /dR) dR] = 27
Ry

so that the flux function is essentially equal to the poloidal
flux except for a constant of 27.
Now taking a scalar product of Eq. (3¢c) and (3b),

B .gradp=0
(B4/R)(9p/d¢) + (1/R)grad ¢ x e, - gradp =0

The first term is zero by axisymmetry; therefore

grady x gradp -e, =0

which shows that the pressure is constant if ¢ is constant or
p = p(y), that is, the flux surfaces are constant-pressure sur-
faces. This is an important result that says the solution of
flux surfaces gives the plasma equilibrium.
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Figure 17. Numerically computed equilibrium of the noncircular,
high-B tokamak DIII-D located at GA Technologies. Shown are flux
surface plots and midplane profiles. Courtesy J. Helton, GA Technol-
ogies.

Substituting the expression for B as in Eq. (4) in Maxwell’s
Eq. (3b) and using the axisymmetric condition,

1od = grad(RB,) x e, /R — (1/R)[R(3/3R)(1/R)(3y /3R)
+ 82y /0Z%e,

The total current density can be divided into poloidal and to-
roidal components

wod = wodp + 1od,
nodp = grad(RB,) x e,R (5)
M0J¢ = A"Y/R

where
A*y = R(3/0R)(1/R) (3% /dR) + 32y /02>

The quantity RB, is designated F(i), which can be shown to
be proportional to the total poloidal plasma current enclosed
by the flux surface, (R, 0) = const,

I, = [, -dS) = [ dR [{RdfIgrad(RB,) x e,lz}
=27 [(dROF/0R) = 27F (y)

Now taking a scalar product of Eq. (3¢c) with grad ¢
grady - (J x B—gradp) =0
which after using Egs. (4) and (5) gives
A"y = —poR*dp/dy — F dF /dy (6)

where the property grad p = dp/di- grad ¢ is used.

Equation (6) is known as the Grad—Shafranov equation.
With appropriate boundary conditions, the equation can be
solved to obtain plasma position and equilibrium. The solu-
tion is obtained as the solution to the shapes and locations of
different flux surfaces (surfaces of constant ), and since each
flux surface has an associated pressure, the flux surfaces de-
fine the plasma shape and location. Figure 17 shows an exam-
ple of the equilibrium for the Doublet ITID tokamak.
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Additional discussions on the applications and solutions to
the Grad—Shafranov equation can be found in Refs. 4 and 18.

SUPERCONDUCTORS AND MAGNETIC FLUX

Superconducting Properties

Superconductors are materials that have special properties
below the so-called critical temperature, critical field, and
critical current density. When such materials are supercon-
ducting, they have zero resistivity and in addition they ex-
hibit the Meissner effect (19,20). Earlier it was shown that
Maxwell’s equations lead to the fact that perfect conductors
with zero resistivity exclude flux when the magnetic field
(flux) is increased from zero to some finite value. Such perfect
conductors maintain the initial flux, and diamagnetic cur-
rents cancel any change in the flux. However, in 1933, Meis-
sner and Ochsenfeld observed that superconductors that are
in the Meissner regime (e.g., lead) exclude all flux whether it
was initially present or not (see Fig. 18). This is a significant
characteristic of superconductors that distinguishes them
from perfect conductors. These so-called type I superconduc-
tors receive induced surface currents, called Meissner cur-
rents, in the presence of a magnetic field which cancel all the

B,=0 % Room B,
temperature
(a)
Cooled
A
% Cooled
(b)
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(c) ()
B,—~0 B~ 0
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Figure 18. Magnetic behaviour of a superconductor. (a) and (b) Spec-
imen becomes resistanceless in absence of magnetic field. (c) Mag-
netic field applied to superconducting specimen. (d) Magnetic field
removed. (e) and (f) Specimen becomes superconducting in applied
magnetic field. (g) Applied magnetic field removed. B, is the applied
magnetic flux density (Ref. 4).
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flux inside the superconductor volume, independent of
whether the initial flux (flux prior to the material becoming
superconductor) was zero or finite. Another way of stating
this is that superconductors are not just diamagnetic materi-
als but have a relative permeability u, that is equal to zero,
so that the magnetization is equal and opposite to the applied
magnetic induction, that is, M = —u.H.

The superconducting property arises from the fact that be-
low the critical temperature and field, the free energy for such
materials is lower in the superconducting state compared to
the normal (nonsuperconducting) state. This is due to the for-
mation of Cooper pairs of superconducting electrons, which,
on average, do not lose any energy by collisions with the lat-
tice ions. The density of superconducting electrons and the
free-energy gap at 7 = 0 and H = 0 are properties of the
material. (See Ref. 21 for detailed references on energy-gap
measurements.) As the temperature is raised, the free-energy
gap is reduced, and above the critical temperature the super-
conducting state has an unfavorable free energy, and there-
fore the material would be normal. As the magnetic field is
increased, the total energy, which includes the energy due to
magnetization, is increased until again at the critical field,
the normal state with zero magnetization is favored and the
material would be normal.

While the description of the field being excluded from the
volume of the superconductor is reasonable, in reality the ex-
ternal field penetrates to a small depth, the so-called London
penetration length A, = (m./uone?)'?, where e and m, are the
electron charge and mass and n, is the density of supercon-
ducting electrons (20,22).

However, it must be noted that there is a class of alloy
superconductors, known as type II superconductors, which
are commonly used in electrical and magnetic applications,
the flux (field) is allowed to penetrate into the superconductor
above the thermodynamic critical field, while preserving the
superconducting (zero resistance) property.

Intermediate State

As was noted in the section entitled “Demagnetization Fac-
tor,” the field intensity in a diamagnetic material is higher
than the applied field intensity. Since ideal superconductors
exhibiting the Meissner effect have I = —H; (M = —B,)

H, =H./(1-n)

Now, since the superconductor would become normal at H; =
H, where H, is the critical field intensity, this means that the
applied field is less than the critical field. This is a paradoxi-
cal situation, since this means that as the material would be-
come normal at H, < H,, which in turn would make I = 0 and
we would have the material in a normal state for H, < H..
This is resolved by the realization of the fact that normal and
superconducting regions coexist inside the material for H, >
(1 — n)H. (Fig. 19). The cross-sectional area of normal mate-
rial is such that the average magnetization is such as to sat-
isfy the boundary condition H; = H,/(1 — n) for H; < H, and
H; = H, for H, = H,. This condition is obtained if

Hy=H,/[1+n(f-1]

where f is the fraction of normal cross section. This state is
known as the intermediate state in superconducting materi-
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Figure 19. Ellipsoid split into normal and superconducting laminae
in a magnetic field.

als and is analogous to an equilibrium of solid and liquid
phases of matter near transition conditions. For actual obser-
vations on the intermediate state see Refs. 23 and 24.

Type 1l Superconductors

In a concept proposed by Pippard in 1953, the density of
superelectrons cannot change abruptly and changes gradually
only over a distance called the coherence length, that is, there
cannot be a sharp boundary between normal and supercon-
ducting regions. The coherence length is a property of the ma-
terial and if impurities are present, it is considerably reduced
(by an order of 10 or more) to the geometric mean of the pure
coherence length and the electron mean free path.

If the coherence length is shorter than the penetration
length (see the section entitled “Superconducting Proper-
ties”), the formation of coexisting normal and superconduct-
ing zones is favored, since then the total free energy of the
material is reduced because the surface energy of the bound-
aries between the normal and superconducting zones is nega-
tive for short coherence length (Fig. 20). For the Ginsburg-—
Landau constant k = A/¢ > 0.71, where A is the penetration
length and ¢ is the coherence length, the material favors a
mixed state of normal and superconducting regions over a
fully normal state for applied fields greater than the thermo-
dynamic critical field. Intrinsic superconductors, such as nio-
bium, have « > 0.71 (0.78 to 0.9) even without impurities, but
alloys such as niobium—titanium have even higher values of «.

Therefore in type II superconductors, once the applied field
exceeds the thermodynamic (first) critical field, small zones of
normal state are formed and the excess field lines are local-
ized along these cores of normal zones, which have circulating
currents on their surfaces that preserve the superconducting
state of the regions outside the cores. Since the surface energy
is negative, the formation of the smallest and maximum num-
ber of “flux” cores is favored to maximize the total surface
area of such cores. Since the coherence length is small in such
materials, there can be many fluxons that require sharp tran-
sition zones. The flux core is therefore of such a size as to give
the minimum flux, that is, the flux of a so called “fluxon” or
flux core, ®, = 2.07 X 10" W (25). The material acquires a
lattice of fluxons as shown in Fig. 21. The number of fluxons
depends on the amount of flux that needs to pass through
the material. Because such fluxons are maintained by circular
currents around the flux cores, the fluxons are also called vor-
tices).

Under such conditions, the superconductor does not be-
come normal until the fluxons with the transition regions fill
up the area of cross section and the new critical field called
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Figure 20. Negative surface energy; coherence range less than pene-
tration depth. (Compare this with Fig. 6.9.) (a) Penetration depth and
coherence range. (b) Contributions to free energy. (c) Total free
energy.
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Figure 21. Mixed state in applied magnetic field of strength just
greater than H,;. (a) Lattice of cores and associated vortices. (b) Vari-

ation with position of concentration of superelectrons. (c) Variation of

flux density.
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H,, is given by
H,, ~ 1.41«H,

where H, is the thermodynamic critical field at which the
magnetic energy is equal to the difference between the free
energy in the normal state and the superconducting state.

Flux Flow in Type Il Superconductors. While the foregoing is
true for a superconductor with no transport current (e.g., cur-
rent from an external circuit), the amount of current the
superconductor can carry in a magnetic field or the critical
current requires additional considerations. When a supercon-
ducting fluxon lattice is also carrying current, the fluxons
experience a Lorentz body force per unit volume of the con-
ductor equal to the vector cross product of the current density
and the magnetic field threading the fluxon (in most cases the
applied field) (26—28). These forces would move the fluxons
perpendicular to both the current density and the applied
field, for example, in a wire with a transverse magnetic field,
the fluxons would move radially perpendicular to the field.
But these vortices or fluxons are pinned by imperfections in
the lattice. Such imperfections in the lattice may be created
due to working of the metal or impurities in the metal. There-
fore, the superconducting state will be maintained as long as
the pinning force per unit volume is larger than the Lorentz
force.

As the Lorentz force approaches and exceeds the pinning
force, the flux cores start moving and there will be some vis-
cous resistance to such motion. Such a resistance would re-
quire work to be performed and energy to be supplied. This
power requirement would then manifest itself as an electrical
resistance and an associated voltage drop. The critical pin-
ning force is not a constant and increases from zero with field
and then reduces again to drop to zero at the upper critical
field. Figure 22 (29) shows the increase of the flux flow resis-
tivity with increasing field (30). This is called flux flow, and
in this regime the flux cores move with a velocity relative to
the electrons carrying the transport current. Since the cores
are carried forward (in the direction of the transport current)
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Figure 22. Variation of the flux-flow resistivity of a NbTa specimen
with field at various constant reduced temperatures. (right to left—o0,
30%, 50%, 60%, and 70% of the critical temperatures)
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Figure 23. (a) Screening currents induced to flow in a slab by a mag-
netic field parallel to the slab surface; (b) Magnetic field pattern
across the slab showing the reduction of internal field by screening
currents.

as well, the net motion of the cores is at an angle to the trans-
port current, but in most cases the angle is close to 90°. The
electric field induced by the motion is given by

E =nQqv;

where n; is the number of fluxons and v is the velocity of the
fluxons (the voltage is given by the product of the electric field
and length along the current direction).

Superconducting applications require zero or infinitesi-
mally small resistance and therefore the regime of flux flow
is required to be as close to the critical current as possible.
Therefore, most applications require a high n value, which is
given by

E~ /)"
where I is the transport current and I, is the critical current.

Flux Penetration and Flux Jump in a Type Il Superconduc-
tor. According to the critical state model, when a field is ap-
plied in the exterior of the superconductor, screening currents
would be induced to exclude the field. The cross section (pro-
portional thickness in the slab shown in Fig. 23) of the cur-
rent flow is equal to the total current divided by the critical
current of the specimen. The current density in the material
is always equal to the critical current density. As the field is
increased, so is the thickness of the current sheet and after
current flows throughout the cross section of the material, the

Figure 24. (a) Field pattern within a superconducting
slab subjected to large field change; (b) as the field is re-
duced; (c) when the field change penetrates to center of
slab; (d) when the field reaches a minimum value before
rising again.
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field is fully penetrated and then increases inside the mate-
rial as the field is raised.

Unlike in normal conducting materials, the penetration of
the field in the superconductor does not reverse when the field
change direction is reversed. If a field has penetrated well
inside the material during one direction of change (say the
field is increased) and if the field change direction is reversed
(say the field is decreased), the field inside the superconductor
initially decreases on the edge of the superconductor while
the field inside the superconductor remains unaffected. As the
field change is continued further this reduction continues into
the thickness. Figure 24 shows this phenomenon schemati-
cally. This behavior of the diamagnetism causes the supercon-
ductor magnetization to be hysteretic (31). The magnetization
hysteresis for a typical superconductor is shown in Fig. 25.

Now the critical state can be unstable because if there is
perturbation in the form of a temperature increase, the criti-
cal current density is reduced, which then causes the fields in
the superconductor to redistribute requiring motion of flux in
the superconductor. This flux motion generates heat, re-
sulting in the further increase of temperature. The larger the
sensitivity of the critical current density to the temperature
the larger the heat produced. The smaller the specific heat of
the material, the larger the temperature increase for a given
heat generated. Therefore, if conditions are unfavorable, the
superconducting material will run away in temperature, re-
sulting in the material quenching and the flux jumping inside
the material. The condition beyond which such a flux jump
would occur is given by

HOJCZaZ/[Sme(Tc - To)] <1

where py, T, J., C, and a are the density, critical temperature,
critical current density, specific heat, and thickness of the
superconductor, and T is the bath (initial) temperature (32).
The result of the flux jump is that filaments of a supercon-
ductor cannot be larger than a certain size and when a super-
conductor is made of a large number of superconducting
filaments of wire, these must be twisted to cancel the diamag-
netic currents over short distances (33).

Superconductor Performance under ac Conditions

When superconductors are operated under ac conditions (ap-
plied magnetic field and currents), the superconductor re-
sponse is significantly different from that of a good conductor.
There are two reasons for this difference: (a) the magnetiza-
tion of the superconductor is hysteretic, (b) there are satura-
tion effects due to the criticality with respect to magnetic field
and superconducting current capability. In addition, since
usual superconductors are composites of multiple supercon-
ducting filaments as well as normal stabilizing conductors
like copper, there are coupling effects due to mutual induc-
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Figure 25. Magnetization of a 361-filament NbTi/copper composite
with a twist pitch of 25.4 mm, measured at (a) 0.0075 T-s7!, (b)
0.0375 T-s7, (¢) 0.075 T-s7%, and (d) 0.15 T-s™L.

tance and cross conductance. The subject is wide, and details
are strongly dependent upon the details of the superconduc-
tors and applications (34,35).

Under alternating magnetic field conditions, diamagnetic
currents induce reverse magnetization, and since this magne-
tization is hysteritic, in a full cycle, an energy loss per unit
volume of [ [M-B] dB is incurred. This loss is similar to the
hysteresis loss in ferromagnetic materials.

With an alternating magnetic field transverse to the super-
conductors, diamagnetic saddle currents flow similar to the
normal conductors, but these currents are not limited by con-
ductivity but rather by the critical current. If the supercon-
ductor is a monofilament, large currents would mostly flow in
the skin of the superconductor, and the superconductor would
be unstable. In order to limit the current, the superconductor
is made of several filaments, twisted together and separated
by a conducting matrix, for example, of copper. The induced
voltage is then limited by the twist length, and the currents
are distributed over all the filaments. However, for cryogenic
stability and stability against flux jump, the matrix has to be
made of high conductivity material, and this leads to the fact
that the filaments couple somewhat through the matrix. Thus
currents flowing along the filaments cross over through the
matrix, and such currents induce ac losses in the supercon-
ductors. Such ac losses have to be limited to prevent heating
of the conductor and subsequent quenching (transition to nor-
mal state).

Another issue under alternating field and current condi-
tions is that the filaments or a cable of superconductors are
not exactly identical due to differences in superconducting
characteristics, twist pitches and end effects, and therefore
currents may not be shared equally. A strong nonuniform cur-
rent distribution can result from very small differences. The
superconductor performance under those conditions would be
significantly poorer than the sum of the individual filaments
or superconductors.

MEASUREMENT OF FLUX

It is usually only necessary to measure magnetic fields, mag-
netization, etc. However, in special cases where the measure-
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ment of flux is desired in a static field region, a good way is
to place a coil and move it transverse to the field direction so
that the coupled flux changes. The time integral of induced
voltage then gives the change in flux over the amplitude of
motion. In instances where the flux is changed over time, a
stationary coil enclosing the flux can be used. It is also appro-
priate to use flux density probes such as “Hall” probes over
the area of interest and integrate the flux density over the
area.
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MAGNETIC HYSTERESIS. See MAGNETIC NOISE, BARK-

HAUSEN EFFECT.



