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Figure 1. Lumped element (a) parallel and (b) series resonant cir-
cuits.

RLC series or parallel network. Consider, for instance, an
RLC parallel network as shown in Fig. 1(a). The input imped-
ance of such a network as a function of frequency has both
real and imaginary parts. At resonance, the input impedance
is real and is equal to the resistance of the circuit. The electric

CAVITY RESONATORS and magnetic stored energies are also equal, leading to the
expression for the resonant frequency as

RESONANT STRUCTURES

Resonant structures are network elements that are used ex- ω0 = 1√
LC

(1)

tensively in the development of various microwave compo-
nents (1). At low frequencies, resonant structures are invari-

Quality Factorably composed of lumped elements. As frequencies increase,
lumped-element resonant circuits are attained by using The performance of a resonant circuit is described in terms of
transmission lines. Microwave resonant structures are almost the quality factor Q, and such features as frequency selectiv-
invariably understood as cavity resonators. Conventional res- ity, bandwidth, and damping factors can be deduced from
onators consist of a bounded electromagnetic field in a volume this. The quality factor is defined as
enclosed by metallic walls. The electric and magnetic energies
are stored in the electric and magnetic fields, respectively, of
the electromagnetic fields inside the cavity and the equivalent Q = ω

time-averaged stored energy
energy lost per second

(2)

lumped inductance and capacitance of the structure can be
determined from the respective stored energy. It is important for the lumped resonant circuits,
to note that cavity resonators, in contrast to lumped resona-
tors, have an infinite number of resonant frequencies (or
modes). In the vacinity of each resonant frequency, the cavity Q = ωRC = R

ωL
(3)

can be approximated by an associated lumped equivalent
circuit. for the parallel network Fig. 1(a), and

Some energy is dissipated as finite conductivity of the me-
tallic walls and the equivalent resistance can therefore be de-
termined from the currents flowing on the walls of the cavity

Q = 1
ωCR

= ωL
R

(4)

resonator (2,3). In this chapter, a brief description of the cav-
for the series network Fig. 1(b).ity resonators most commonly employed in various microwave

components is presented. As far as possible, simple expres-
sions have been provided for design applications. Basic pa- Fractional Bandwidth
rameters of microwave resonators are first presented because

The input impedance of the parallel resonant circuit of Fig. 1they describe a cavity. Then, various coaxial and waveguide
is given byresonators are described. Fabrication, coupling, measure-

ments, and applications of cavity resonators are also included.
Zin =

[
1
R

+ 1
jωL

+ jωC
]−1

(5)

RESONATOR PARAMETERS

At a frequency �0 � �� in the vicinity of the resonant fre-
Resonant Frequency quency, Eq. (5) reduces to

The parameters of a resonator at microwave frequencies are
essentially similar to those of a lumped-element resonator cir-
cuit at low frequencies. They can easily be described using an

Zin = R
1 ± j2Q(
ω/ω0)

(6)
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From Eq. (6), it is clear that at � � �0 the input impedance product. In terms of the lumped elements of the resonant cir-
cuit,is only resistive. However, when


ω = ω0

2Q
(7) R

Q
=
r

L
C

(14)

the magnitude of the input impedance decreases to R�2 of
COAXIAL CAVITY RESONATORSits maximum value R, and the phase angle is �/4 for � � �0

and ��/4 for � � �0. From Eq. (7), the fractional bandwidth
At microwave frequencies, the dimensions of lumped resona-BW is defined as
tor circuits become comparable to the wavelength, and this
may cause energy loss by radiation. Therefore, resonant cir-
cuits at these frequencies are shielded to prevent radiation.

BW = 2
ω

ω0
= 1

Q
(8)

Perfectly conducting enclosures, or cavities, provide a means
of confining energy. Usually, cavities with the largest possible

Loaded Quality Factor surface area for the current path are preferred for low-loss
operation, and the energy is coupled to them by the variousIn practical situations, the resonant circuit is coupled to an
means described later in this chapter.external load RL that also dissipates power, and the loaded

quality factor QL is given by
Coaxial Resonators

A coaxial cavity resonator (Fig. 2) supporting TEM (Trans-
1

QL
= 1

Q
+ 1

Qe
(9)

verse Electromagnetic) waves can easily be formed by a
shorted section of coaxial line. Resonances appear whenever

where Qe is the external quality factor for a lossless resonator the length d of the cavity is an integral number of half-wave-
in the presence of the load. lengths. The resonance modes occur at

Damping Factor f = nc
2d

, n = 1,2, . . . (15)

Another important parameter associated with a resonant cir-
cuit is the damping factor �d. It is a measure of the rate of where c is the speed of light. The lowest resonant frequency
decay of the oscillations in the absence of an exciting source. corresponds to n � 1, and the Q of the cavity for this mode is
For high Q resonant circuits, the rate at which the stored given by (4)
energy decays is proportional to the average energy stored.
Consequently, the stored energy as a function of time is given
by

Q
δ

λ0
= 1

4 + 2(d/b)(1 + b/a)/ ln(b/a)
(16)

where � is the skin depth and a and b are inner and outerW = W0e−2δdt = W0e−ω0t/Q (10)
radii, respectively. It is also possible to have higher-order res-
onance modes, depending on the structural parameters of thewhich implies that
coaxial line. The first higher-order mode appears when the
average circumference is equal to the wavelength in the di-
electric medium of the line. The cutoff frequency of this modeδd = ω0

2Q
(11)

is
Thus, we see that the damping factor is inversely proportional
to the Q of the resonant circuit. In the presence of an external fc = c

π
√

εr(a + b)
(17)

load, the Q should be replaced by QL.
Alternately, the input impedance in the vicinity of reso-

where 
r is the dielectric constant of the medium. Othernance Zin given by Eq. (6) can be rewritten to take into ac-
higher-order modes correspond to TE (Transverse Electric)count the effect of losses in terms of the complex resonant
and TM (Transverse Magnetic) waves that exist in a circularfrequency

ωc = ω0 + jδd = ω0

�
1 + j

1
2Q

�
(12)

so that

Zin = ω0R/(2Q)

j(ω − ωc)
(13)

2a2b

d

In Eq. (13) the parameter R/Q is called the figure of merit
and describes the effect of the cavity on the gain bandwidth Figure 2. Coaxial cavity resonator and its cross section.
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nant frequency can be evaluated by calculating the induc-
tance and capacitance of the structure. The expression for the
resonant frequency is

f = c
2π

√
εr

[
al
� a

2d
− 2

l
ln

0.765√
l2 + (b − a)2

�
ln

b
a

]−1/2

(22)

An approximate expression for the Q of the cavity is

Q
δ

λ0
= 2l

λ

ln(b/a)

2 ln(b/a) + l[(1/a) + (1/b)]
(23)

for a tunable reentrant cavity, d is large, and (l � d) is also
large compared with b. The resonances occur whenever the
length of the center conductor is approximately a quarter
wavelength.

Annular Coaxial Resonator

l l

2b

(a)

(b)

d2a
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l

An annular coaxial resonator is formed by a figure of revolu-Figure 3. Re-entrant coaxial cavity resonators. (a) Capacitively
tion of a coaxial radial-cavity resonator (refer to Fig. 3) aboutloaded coaxial cavity resonator. (b) Radial-cavity resonators.
an axis that is offset from and parallel to the center conductor
(5). As shown in Fig. 4, the electric field in the plane con-
taining the axis is similar to that of the radial-cavity resona-waveguide with the radius of the center conductor ap-
tor. The electric field in the plane normal to the axis is radialproaching zero. The resonance condition is
and is same along the circumference. In effect, the annular
resonator is equivalent to a half wavelength coaxial resonator
with a small shunt capacitance in the middle. One of the im-
portant application of this type of resonator is that it can be

knml =
[

p2
nm +

� lπ
2d

�2
]1/2

(18)

coupled simultaneously with several sources. The electric
field at the gap is quite high and results in good coupling towhere knml � 2�fnml/c and pnm is the cutoff wavenumber that

is obtained as the mth root of the transcendental equations, external sources.

J′
n(ka)N ′

n(kb) − J′
n(kb)N ′

n(ka) = 0 (19)

for TE modes, and

Jn(ka)Nn(kb) − Jn(kb)Nn(ka) = 0 (20)

for TM modes. Here Jn and Nn are the nth-order Bessel func-
tions of the first and second kind, respectively, and the prime
denotes their derivatives with respect to their arguments.

Reentrant Coaxial Resonators

Another coaxial cavity configuration consists of a short sec-
tion of coaxial line with a gap in the center conductor. Figure
3(a) shows a capacitively loaded coaxial cavity. Radial cavity
as shown in Fig. 3(b) is another possible variation. They are
also referred to as reentrant coaxial cavities because the me-
tallic boundaries extend into the interior of the cavity. They
are widely used in microwave tubes. The resonant frequency
of such a structure can be evaluated from the solution of the
transcendental equation (21),

tanβl = dc
ωa2 ln(b/a)

(21)

where d is the gap in center conductor, and 2l � d is the
length of the cavity. From Eq. (21), it is obvious that the ca-
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pacitively loaded coaxial cavity can have an infinite number
of modes. For the radial reentrant cavity of Fig. 3(b), the reso- Figure 4. Two views of annular coaxial resonator structure.
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WAVEGUIDE CAVITIES

Rectangular Waveguide Resonators

Rectangular resonant cavities are formed by a section of rec-
tangular waveguide of length d. This cavity can also support
an infinite number of modes. The field configuration of the
standing wave pattern for the incident and reflected wave is
not unique, that is, it depends on the assumed direction of
propagation of the wave. In order to be consistent, we shall
assume that wave propagation is in the positive z direction.
The standing wave pattern is then formed by the incident and
reflected waves traveling in �z and �z directions, respec-
tively. The cutoff wavenumber kcmn is given by

k2
cmn =

�mπ

a

�2
+
�nπ

b

�2
, m = 0, 1, 2, . . ., n = 0, 1, 2, . . .

(24)

where a and b are waveguide dimensions. The resonant wave-
number is then expressed as

kmnp =
[�mπ

a

�2
+
�nπ

b

�2
+
� pπ

d

�2]1/2

, p = 1,2, . . . (25)

and the resonant frequency is defined as

fmnp = kmnpc
2π

(26)

From the preceding discussion, we see that the resonant
frequency is the same for TE and TM modes. Therefore, they
are referred to as degenerate modes. The field configuration
of the dominant TE101 mode is shown in Fig. 5(b). The quality
factor Q of the dominant TE101 mode in the rectangular reso-
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Figure 6. (a) Circular cylindrical waveguide cavity resonator. (b)
Field configurations for TE111, TM011, and TE011 modes in cylindrical
cavities.

nant cavity having surface resistance Rs can be evaluated us-
ing the expression

Q = 120π2

4Rs

[
2b(a2 + d2)3/2

ad(a2 + d2) + 2b(a3 + b3)

]
(27)

In rectangular cavities, the resonant frequency increases
for higher-order modes, as does the Q at a given frequency.
Higher-order mode cavity or ‘‘echo boxes’’ are useful in appli-
cations where a slow rate of decay of the energy stored in the
cavity after it has been excited is required.

Circular Waveguide Resonators

Circular waveguide cavities are most useful in various micro-
wave applications. Most commonly, they are used in waveme-

a

y

x
z

b

d

Side

Top

(b)(a) ters to measure frequency, have a high Q factor, and provide
greater resolution. These consist of a section of circular wave-Figure 5. (a) Rectangular waveguide cavity resonator. (b) Field con-

figuration of the dominant TE101 mode. guides of radius a and length d as shown in Fig. 6.
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radius a. This feature may be useful in the dielectric material
characterization that uses perturbation techniques (6).

The elliptic waveguide supports four different types of
modes, namely, even TE and TM modes and odd TE and TM
modes. The TE modes have Ez � 0 and the TM modes have
Hz � 0. From the solution of wave equation, there exist four
different modes. The modes having cosine type variation are
called even modes and the modes having sine type variation
are called odd modes. The subscript c and s are added to the
mode designation to describe this variation.

Table 1. Roots of the Transcendental Equation J�n(ka) � 0

Modes

n m p�nm

0 1 0.0
1 1 1.841
2 1 3.054
0 2 3.832
3 1 4.201
4 1 5.318

The elliptic waveguide in Fig. 8(a) is shown along with the
orthogonal elliptic coordinate system. As can be seen, the con-
focal elliptic cylinders are formed with constant �, and confo-

The resonance wavenumber of the circular waveguide cav- cal hyperbolic cylinders are formed with constant �. The dis-
ity is given by tance between the two foci, F and F� is 2h. The outer wall of

the elliptic waveguide is formed with � � �0. The semimajor
axis is then

knml =
[�xnm

a

�2
+
� lπ

d

�2
]1/2

, l = 0,1, 2, . . . (28)
2a = 2h cosh ξ0 (33)

where and, the semiminor axis is

2b = 2h sinh ξ0 (34)

Alternatively, the eccentricity e is
xnm =

{
p′

nm for TE modes

pnm for TM modes
(29)

Values for p�nm for various modes are given in Table 1. Field e = 1/ cosh ξ0 =
p

1 − (b/a)2 (35)
lines for TE111, TM011, TE011 modes are shown in Fig. 6. Simpli-

The resonance wavenumber for elliptic cavity is given byfying Eq. (28) yields

(2a fnml)
2 =

�cxnm

π

�2
+
� cl

2

�2 �2a
d

�2

(30) krmnl =
[�

2
√

xrmn

ae

�2

+
� lπ

d

�2
]1/2

, l = 0, 1, 2, . . . (36)

The Q of the circular cavity for TEnml modes can be evaluated
from

Q
δ

λ0
= [1 − (n/p′

nm)2][(p′
nm)2 + (lπa/d)2]3/2

2π[(p′2
nm + 2a/d(lπa/d)2 + (1 − 2a/d)(nlπa/p′

nmd)2]
(31)

and for the dominant TE111 mode, Q can be obtained by substi-
tuting n � m � l � 1 in the preceding equation. Using Eq.
(30), plots of (2af )2 versus (2a/d)2 can be used to construct
mode charts, as shown in Fig. 7. From this it can be seen
that, for the TE011 mode operation, the safe value of (2a/d)2 is
between 2 and 3. For TM model operation, the Q is given by

Q
δ

λ0
=




[p2
nm + (lπa/d)2]1/2

2π(1 + 2a/d)
for l > 0

pnm

2π(1 + a/d)
for l = 0

(32)

As with rectangular cavity resonators, the Q is higher for
higher-order modes.

Elliptic Waveguide Resonators

Elliptic resonant cavities that are formed using a section of
an elliptic waveguide offer several advantages. There is no
mode splitting caused by slight deformations in the cavity
surface, and the electric field configuration in the transverse
plane is fixed with respect to its axes. Also, the longitudinal
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major axis a is always greater than the circular cavity with Figure 7. Mode chart of a circular cylindrical cavity resonator.
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m with argument �0 and is used to calculate TEcmn(TEsmn)
modes. The equations used to find the parametric zeros are
given next (7).

TM modes: Cem(ξ0, q) = 0 even
Sem(ξ0, q) = 0 odd

TE modes: Ce′
m(ξ0, q) = 0 even

Se′
m(ξ0, q) = 0 odd

(38)

Field lines for some modes are shown in Fig. 8(b).

Annular Elliptic Resonator

The annular elliptic waveguide in Fig. 9(a) is shown along
with the orthogonal elliptic coordinate system. The outer el-
lipse with eccentricity e0 and the inner ellipse with eccentric-
ity e1 form a confocal annular elliptic waveguide. The distance
between the two foci F and F� is 2h and is related to the other
structural parameters via the relation

2h = 2a0e0 = 2a1e1 (39)

where a0 and a1 are the semimajor axes of the outer and inner
ellipse, respectively. Alternatively, the eccentricities e0 and e1

are also expressed as

e0 = 1/ cosh ξ0 =
p

1 − (b0/a0)2 (40)

and

e1 = 1/ cosh ξ1 =
p

1 − (b1/a1)2 (41)

where b0 and b1 are the semiminor axes of the outer and inner
ellipses, respectively. The axial coordinates of the outer and
inner ellipses are �0 and �1.

In a manner similar to the elliptic waveguide, the eigen-
value equation for annular elliptic waveguide was solved by
Bräckelmann (8). The relevant equations for TM and TE
modes follow.

Even modes, TEcmn:

Ce′
m(ξ0,qcmn)Fey′

m(ξ1,qcmn) − Ce′
m(ξ1,qcmn)Fey′

m(ξ0,qcmn)= 0
(42)
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TES111

(b)

(a)
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0

= 90°η

= 0η= 180°η

= 270°η

ηη =   0

=   0ξξ

F
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y

F′

Odd modes, TEsmn:
Figure 8. (a) Elliptic waveguide cavity resonator. (b) Field configu-
ration for some modes in elliptical cavities. Se′

m(ξ0,qsmn)Gey′
m(ξ1,qsmn) − Se′

m(ξ1,qsmn)Fey′
m(ξ0,qsmn)= 0

(43)

Even modes, TMcmn:
where

Cem(ξ0,qcmn)Feym(ξ1,qcmn) − Cem(ξ1,qcmn)Feym(ξ0,qcmn)= 0
(44)

xrmn =
{

q′
rmn for TErmn modes

qrmn for TMrmn modes
(37)

Odd modes, TMsmn:

In Eq. (37), r can be substituted with c and s to obtain even
and odd modes, respectively. The parameter qcmn(qsmn) is the

Sem(ξ0,qsmn)Geym(ξ1,qsmn) − Sem(ξ1,qsmn)Feym(ξ0,qsmn)= 0
(45)

nth parametic zero of the even (odd) modified Mathieu func-
tion of order m with argument �0 and is used to calculate In Eqs. (42)–(45), Cem(�, q) and Sem(�, q) are the even and

odd modified Mathieu functions of the first kind and orderTMcmn(TMsmn) modes. Similarly, for a TEcmn(TEsmn) mode, the
parameter q�cmn(q�smn) is the nth parametic zero of the first de- m. Feym(�, q) and Geym(�, q) are the even and odd modified

Mathieu functions of the second kind and order m (9). Therivative of the even (odd) modified Mathieu function of order
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Figure 9. (a) Annular elliptic cavity reso-
nator. (b) Field configuration for some

TMC011 TMC101 TMS111

TEC101 TEC011 TES111

(a)

(b)

=   1ξ ξ

=   0ξ ξ

F
x

y

F ′

modes in annular elliptic cavities.

primes in Eqs. (42)–(45) denote the derivative with respect to coordinate system, the axial symmetry results in TM modes
containing Er, E�, H�, and TE modes containing Hr, H�, E�.the argument �. The parameter q�cmn is the nth parametic zero

of Eq. (42), and qcmn is the nth parametric zero of Eq. (44). Because the origin is included inside the hollow spherical cav-
ity, the resonance condition is easily obtained by setting E� �Similar explanation applies for (Eqs. 43) and (45) for the odd

TE and TM modes. 0 at r � a, where a is the radius of the sphere.
Solution of transcedental equationThe resonance wavenumber for annular elliptic cavity is

given by

tan ka = ka
1 − (ka)2

(48)

krmnl =
[�

2
√

xrmn

ae

�2

+
� lπ

d

�2
]1/2

, l = 0, 1, 2, . . . (46)

results in dominant TM101 resonance at

where
λ0 = 2.29a (49)

and the second TM102 resonance at a wavelength ofxrmn =
{

q′
rmn for TErmn modes

qrmn for TMrmn modes
(47)

λ0 = 1.4a (50)
The annular elliptic resonators also supports four different
types of modes, namely, even TE and TM modes and odd TE The modes in a spherical cavity are shown graphically in
and TM modes. Field lines for some modes are shown in Fig. Fig. 10.
9(b). The Q of a spherical cavity operating in the dominant

mode is
Spherical Resonators

Another cavity resonator shape is the spherical resonator.
Based on the solution of Maxwell’s equations in the spherical

Q
δ

λ0
= 0.318 (51)
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Figure 12. Q(�/0) for a spherical resonator with re-entrant cones.

It consists of a hollow conducting sphere of radius a and
two cones whose apex is at the center of the sphere and sub-
tends an angle of 2�0. Its structure and fundamental mode
fields are shown in Fig. 11.

The resonant wavelength is not a function of �, as is the
case in spherical resonators. The resonant wavelength is

λ0 = 4a (53)

However Q and R of the resonator are functions of the angle
�. The plots of Q(�/0) and R(�/0) are given in Ref. 4 and are
given in Figs. 12 and 13, respectively.

As can be seen, the maximum Q is obtained at � � 34� and
is given by

Q
δ

λ0
= 0.1095 (54)

and the maximum R occurs at � � 9� and is given by

I I

Section through axis
TM101 mode
  0 = 1.4 a

(a)

Section through equator

Axial section
TE101 mode
  0 = 2.29 a

(b)

Equatorial section

Electric field
Magnetic field

a

λ

λ

Figure 10. Fields in a spherical cavity resonator at the first and R
δ

λ0
= 32.04 (55)

second resonant frequency.

Ellipsoid-Hyperbolic Waveguide Resonators

Another cavity resonator suitable for klystrons is of ellipsoid–and the equivalent shunt resistance is simply
hyperboloid shape. This shape is a figure of revolution about
the axis passing through its foci, as shown in Fig. 14. The

R
δ

λ0
= 104.4 (52)

Spherical Resonators with Reentrant Cones

Spherical resonators with reentrant cones were found to be
suitable for realizing oscillators for klystrons (10).

E
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0θ R

9080706050403020100
0

10

20

30

δ λ

0θ
Figure 11. Spherical resonator with re-entrant cones and fields in
the fundamental modes. Figure 13. R(�/0) of a spherical resonator with re-entrant cones.
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Figure 16. R(�/0) of an ellipsoid–hyperboloid resonator as a func-
tion of shape factor �0 � 2b/a.

attempts were to solve them for TE and TM modes, either
exactly or approximately. Ng (11) compiled the methods used
to calculate the cutoff wavenumbers of hollow waveguides. As
pointed out there, three basic cross-sectional shapes can be
distinguished:

90°
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1. Convex shape
Figure 14. Ellipsoid–hyperboloid resonator and normalized reso- 2. Nonconvex with smooth reentrant portion
nant wavelength 0/b as a function of shape factor �0 � 2b/a.

3. Nonconvex with sharp reentrant portion

distance between foci a as well as the hyperboloid that deter- A resonant structure can be formed using any one of them
mines part of the resonator is held constant. The normalized by closing the hollow waveguide with end walls. The cutoff
resonant wavelength 0/b, where b is the equitorial radius, is wavenumbers can be found using references given in Table II
plotted as a function of the shape factor �0 � 2b/a. Interest- of Ref. 11. The resonant frequency can be easily calculated.
ingly, the shape of the resonators vary widely as the shape The basic equation to use is
factor is increased. Both the Q as well as R are function of
the shape factor. The Q(�/0) and R(�/0) (given in Ref. 4) are
plotted as a function of shape factor in Figs. 15 and 16, re-
spectively.

k = 2π f0

c
=

[
(kc)

2 +
� lπ

d

�2
]1/2

, l = 0, 1,2, . . . (56)

Arbitrary Shaped Resonators
FABRICATION

The early work in microwaves focused on analytical and nu-
merical solutions of hollow waveguide problems. Most of the Materials

Microwave and millimeter-wave cavities are usually made
from the same material used for the waveguide such as cop-
per, brass, or aluminum. In order to provide low-loss charac-
teristics, the interior (and exterior) is plated with low-loss
materials such as silver and gold.

There exists a wide range of waveguide sizes to cover fre-
quencies from as low as 400 MHz to 200 GHz. The operating
bandwidth of the waveguide increases as the frequency in-
creases. Therefore, the method of fabrication is very impor-
tant in realizing low loss or high Q cavities.

Cavities are formed using short sections of waveguides.
There are various approaches used in their fabrication. The
waveguide tubing formed using extrusion process generally

Q
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δ λ

σ0 provides various dimensional tolerances varying from 0.008
in. (0.2 mm) to 0.001 in. (0.025 mm). In order to realize accu-Figure 15. Q(�/0) of an ellipsoid-hyperboloid resonator as a function

of shape factor �0 � 2b/a. rate waveguide dimensions, particularly at millimeter wave-
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lengths, the process of electroforming is generally used. A
conducting or nonconducting mandrel is used as a starting
material in the electroforming process. The mandrel is later
removed to leave the electroformed waveguide. Special grade
stainless steel mandrels with high surface finish can be used
to electroform the waveguide. They are removed by heating
and applying uniform force. Nonconducting mandrels formed
using plastics or highly compressed wax can be used to form
complicated cross sections. Such mandrels can be chemically
dissolved to retain the final form of the electroformed wave-
guide.

In most applications, the waveguide must interact with
cavities to realize the prescribed description of the compo-
nent. Fabrication from a solid metal block using a milling pro-
cess is preferred because it provides an integrated component
for some complicated waveguide assemblies. This approach

(a)

(b)
reduces reflections and spurious transmission by minimizing
interfaces or flanges. Figure 17. Contacting plunger.

Cavity Perturbation

At resonance the cavity contains equal amounts of average Contacting resonators have several disadvantages, such as
electric and magnetic energy. Any perturbation in the struc-
tural dimensions or imperfections in the cavity wall will re-

• They provide erratic contact due to small metal particles
quire readjustment in resonant frequency such that the elec-

and nonsmooth cavity interior walls.
tric and magnetic energies are equal. It is possible to measure

• They are not repeatable because of the backlash in theaccurately the frequency shift ��/�, which can be used to de-
mechanical driving mechanism as well as the friction be-termine other parameters of the cavity (2).
tween the contacting surfaces.

Effect of Temperature and Humidity • The contact causes wear and produces an insulating film,
which results in increased contact resistance. The in-The resonant frequencies of a cavity resonator depends on the
creases losses will result in lower Q of the cavity.dimensional variations of the material used in the construc-

tion as well as on the variations in the dielectric constant.
Noncontacting Plunger. The disadvantages of the con-As temperature changes, the dimensions of the cavity

tacting plungers can be eliminated by using noncontactingchange in accordance with the thermal expansion coefficient
plungers. These plungers provide a near short circuit over aof the material used in its construction. The change in the
wider frequency range. The impedance at the face of theresonant frequency can be easily determined using the equa-
plunger is a complex impedance with a low value of resis-tion for the resonant frequency for a given cavity structure.
tance. The capacitive, choke, or bucket-type plungers, asThis change can be minimized by bimetals with a lower coef-
shown in Fig. 18, provide reasonable performance (5). Multi-ficient of thermal expansion.
section plungers are formed by quarter-wavelength low–Furthermore, the dielectric constant of the air within an
high–low impedance sections. The leakage through these sec-unsealed cavity also varies depending on the temperature, at-
tions may cause parasitic resonance; therefore, the back ofmospheric pressure, and humidity level.
the plunger section must be terminated in the characteristic
impedance of the transmission line used to realize the cavity.Tunable Cavities

Various microwave and millimeter-wave applications require
resonators that can be tuned frequently and at high speeds.
Both contacting as well as noncontacting plungers are used
to tune cavity resonators.

Contacting Plunger. A movable short circuit is provided by
the direct contact between the plunger and the cavity walls.
The plunger is typically a quarter wavelength long at the cen-
ter frequency. In order to provide good electrical contact, the
contacting plungers, as shown in Fig. 17, have axial serra-
tions. These serrated fingers maintain sufficient pressure to
scratch off any insulating film formed inside the cavity walls.
Because the contact is made at or near a current node, the
losses are minimized. In some cases, particularly for millime-
ter-wave applications, a metal shoulder is also added to move
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the short circuit reference plane forward. In this case, the ac-
tual contact is not at or near a current node. Figure 18. Noncontacting plunger.
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COUPLING INTO AND OUT OF CAVITIES magnetic field in the waveguide is parallel to the mag-
netic field in the cavity. Round holes in the wall sepa-

As we have seen, the cavities are essentially enclosed struc- rating the waveguide and cavity provide magnetic cou-
pling.tures. In order to use them, we must couple them to transmis-

sion lines. We can use the coaxial line or any form of wave- 2. Electric Coupling Apertures. The aperture is located be-
guide to couple power into and out of the cavities. In this tween the cavity and input waveguide such that the
sense, the input and output coupling structures act as a load electric field in the waveguide is normal to the electric
on the cavity. The cavity parameters, such as resonant fre- field in the cavity. A narrow slot in the wall separating
quency and Q, are invariably affected by the presence of these the waveguide and cavity can provide electric coupling.
structures. The resonant behavior of the cavities is exploited
extensively in the realization of filters with prescribed func-

Coupling Through Probestional forms.
One popular approach used to transfer energy from a coaxial

Coupling line to a waveguide is by electric probes. In a typical configu-
ration, the axis of the coaxial line is perpendicular to theCoupling structures provide a means of coupling energy into
broadside of the rectangular waveguide. The center conductorand/or out of the cavity. The excitation of the cavity can be
of the coaxial line protrudes through the waveguide wall andaccomplished by electric or magnetic coupling. In case of elec-
extends into the waveguide. The outer conductor of the coax-tric coupling, the electric field of the coupling structure is par-
ial line is terminated at the waveguide wall. The electricallel to the electric field of the cavity. The magnetic coupling
fields from the end of the center conductor terminate on theis provided when the magnetic field of the coupling structure
other broadside wall parallel to the dominant E field of theis parallel to the magnetic field of the cavity.
waveguide. They are, therefore, called electric probes. IfThe coaxial line can be used to provide either electric or
the probe is shaped to form a circular loop and the end of themagnetic coupling.
probe is terminated on the broad wall of the waveguide, the
current flow through this loop will induce a magnetic field1. Electric Probes. The center conductor of the coaxial line
parallel to the dominant H field of the waveguide. In thisacts as a probe. Its direction is parallel to the direction
case, the probe is a magnetic current loop.of the electric field in the cavity.

In an electric probe, the center conductor of the coaxial line2. Current Loops. The center conductor of the coaxial line
forms a radiating antenna. Depending on the length or depthis terminated in a short-circuit to form a loop. The loop
of this section, the input impedance at the interface can beproduces a magnetic field perpendicular to the plane of
inductive or capacitive. For optimum performance, the an-the probe and in the same direction as the magnetic
tenna should present a matched load at the interface. Thefield in the cavity.
probe excites waveguide modes that propagate in both direc-
tions; therefore, the energy is divided equally in bothCavities are also excited by waveguides though apertures
directions. In order to redirect the energy in the preferredformed by holes and slits (Fig. 19). The coupling mechanism

can be of electric or magnetic type. direction, the other side is terminated in a short circuit. In
the case of rectangular waveguide cavities, the placement of

1. Magnetic Coupling Apertures. The aperture is located the probe is determined from one of the shorted ends. Invari-
between the cavity and input waveguide such that the ably, a tunable short will be required for optimum transfer of

power. The probe can be constructed with various lengths and
diameters. The distance between the probe and the short cir-
cuit is determined experimentally.

The bandwidth of the probe can be improved by providing
a broadband match at the interface. This can be achieved by
changing the length and diameter of the probe. Other ap-
proaches include making the end round, attaching a metal
sphere at the end, or flaring the center conductor. If direct
current (dc) return is desired, the probe can be terminated on
the other broadwall, or it can rest on a cross-bar across the
waveguide broad dimension. Sometimes the probe is extended
through the opposite side of the waveguide to form another
section of shorted coaxial line. The position of the short in
this case provides an additional variable.

The input impedance of a short diameter coaxial antenna
is given by

Zin
∼= l2 cos2 πx0

a
sin2 2πx1

λg
− jX (57)

Coaxial
line

Coaxial
line

Cavity

(a) (b)

(c)

Waveguide Aperture

where l is length of the probe, x0 is the distance from theFigure 19. Cavity excitation using (a) loop coupling, (b) electric
probe coupling, and (c) aperture coupling. center of the waveguide, and x1 is the distance from the probe
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to the short. The value of the reactance is large implying that quality factors. The unloaded quality factor Qu, loaded quality
factor QL, and external quality factor Qe are useful in variousthe input impedance has a large capacitive component.
circuit analyses containing microwave cavities.

Experimental determination of the parameters is straight-Coupling Holes in Waveguides
forward using modern microwave network analyzers. In Fig.

The coupling from a waveguide to a cavity can be provided by
20, a single-port and two-port cavity measurement set-ups are

apertures consisting of holes and slits. The aperture can be
shown. The magnitude and phase of the reflection and trans-

infinitesimally thin or with finite thickness. The insertion loss
mission coefficients are measured to determine the resonator

caused by a hole of finite thickness t is given by
parameters.

αT = αb + αt (58)
Single-Port Resonator

where �b is the attenuation resulting from the susceptance of The equivalent circuit of a single-port cavity resonator is
the hole, and �t is the attenuation in the below cutoff wave- shown in Fig. 1, where R, L, and C are the equivalent lumped
guide hole. resistance, inductance, and capacitance. The equivalent par-

allel and series circuits of Fig. 1(a) and (b) are also known as
Holes in a Rectangular Waveguide. For a hole of diameter d the detuned short and open configurations, respectively. The

in a rectangular waveguide normal to the direction of propa- equivalence between series and shunt parameters of these
gation, the normalized susceptance B is given by resonant circuits is as shown in the following table.

B
Y0

∼= 3
2π

abλg

d3
(59)

where Y0 is the characteristic admittance of the dominant
waveguide mode, and g is the guide wavelength of a wave-
guide having broadside dimension a and smaller dimen-
sion b.

The attenuation �b resulting from the hole is

Parameter Series Tuned Parallel Tuned

f0
1

�LC

1

�LC

Qu
�L
R

R
�L

�
R
Z0

Z0

R

QL
Qu

1 � �

Qu

1 � �
αb = 20 log

B
2Y0

(60)

The input impedance of the circuit in Fig. 1(a) can be re-
written asand the attenuation resulting from the finite thickness �t is

Zin = R
1 + j2Quδ

(64)αt = 32

�
1 −

�
1.706

d
λ

�2 t
d

∼= 32
t
d

dB (61)

where � � (� � �0)/�0 represents the frequency detuning pa-where  is the operating wavelength.
rameter (12). By varying �, the locus of the impedance given
by Eq. (64) is determined. On a Smith chart, a circular locus,Holes in a Circular Waveguide. For a hole of diameter d nor-

mal to the direction of propagation in a circular waveguide of
diameter 2a, the normalized susceptance B is given by

B
Y0

= λg

4a

�
5.71

a3

d3 − 2.344
�

(62)

where Y0 is the characteristic admittance of the dominant
waveguide mode, and g is the guide wavelength of the domi-
nant mode.

The attenuation �b resulting from the hole is

αb = 10 log
[

(B/Y0)2

4
− 1

]
dB (63)

and the attenuation �t resulting from the finite thickness is
given by Eq. (61), and the total attenuation is calculated us-
ing Eq. (58).

RESONATOR MEASUREMENTS

Network
analyzer

(a) (b)

Network
analyzer

S-parameter
test setup

S-parameter
test setup

Signal
generator

Signal
generator

DUT DUT

As described earlier, the resonator is described fully in terms Figure 20. Measurement setup for (a) reflection and (b) transmis-
sion resonator.of the resonant frequency f 0, the coupling coefficient, and the
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Other quality factors can be determined from Eq. (64),
which can be rewritten as

Zin = Zin

Z0
= β

1 + j2Quδ
= β

1 + j2QL(1 + β)
= β

1 + j2Qeβ
(67)

The Qu, QL, and Qe are related as

Qu = QL(1 + β) = Qeβ (68)

The normalized frequency deviations for unloaded, loaded,
and external quality factors are given by

Undercoupled

Overcoupled

R = 1
R = 0 R = ∞

B

A

C

Nearly
critical

Figure 21. Input impedance of a single-port resonant cavity on the
δu = ± 1

2Qu
, δL = ± 1

2QL
, and δe = ± 1

2Qe
(69)

Smith chart for three degrees of coupling.
From Eqs. (69) and (67), the impedance locus of Qu is deter-

mined and is given by

as shown in Fig. 21 is obtained depending on the coupling
coefficient. For circle A, R � Z0 and the locus passes through (Zin)u = β

1 ± j
(70)

the origin. This condition is called critical coupling and corre-
sponds to � � 1, implying that it provides a perfect match to Equation (70) represents the points on the impedance locus
the transmission line at resonance. The circle B with R � Z0 where the real and imaginary parts of the impedance are the
is called undercoupled condition and � � 1. Finally, the circle same. Figure 22 represents the locus of these points (corre-
C with R � Z0 is an overcoupled condition with � � 1 (13). sponding to R � X) for all possible values of �. This locus is

The coupling coefficient for any cavity is calculated using an arc whose center is at Z � 0 � j, and the radius is the
the measurement of reflection coefficient S11,�0

at resonance. distance to the point 0 � j. The intersection of this arc with
For the undercoupled case, the impedance locus determines the Qu measurement points:

Qu = f0

f1 − f2
(71)β =

1 − S11,ω0

1 + S11,ω0

(65)

The frequencies f 1 and f 2 are called half-power points be-and for the overcoupled case,
cause these points correspond to R � X on the impedance
locus. The loaded and external Q values can be determined in
a similar way. Equations (67) and (69), the impedances corre-
sponding to Qe and QL, are given by

β =
1 + S11,ω0

1 − S11,ω0

(66)

The intersection of the impedance locus with the real axis
provides the value of � as shown in Fig. 22.

(Zin)e = β

1 ± jβ
(72)

and

(Zin)L = β

1 ± j(1 + β)
(73)

By using Eqs. (72) and (73), the Qe and QL loci are easily
determined. These loci are shown in Fig. 22.

Two-Port Resonator

The equivalent circuit of a two-port cavity resonator is shown
in Fig. 23. In this case, the input and output coupling are
represented as �1 and �2. They are determined from

β1 = Y01

n2
1G

and β2 = Y02

n2
2G

(74)

Impedance
locus

δ1

δ2

δ5

δ6

δ3

δ4

r = x

R = 1

= 1
β

Smith chart

B = G + 1

R = 0 R = ∞
β

where Y01 and Y02 are the admittances seen at the input and
output ports. The coupling coefficients are directly deter-Figure 22. Determination of � and the half power points from the
mined by measuring the VSWR at the input and output portsSmith chart. Q0 locus is given by X � R(B � G); QL by X � R � 1;

Q�ext by X � 1. with the other port open circuited.
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used for narrowband as well as wideband filters. The applica-
tions of cavity resonators are concomitant with those of fil-
ters. In that sense, cavity resonators have applications in low-
pass, band-pass, band-stop, and high-pass filters. They are
also used in diplexers, multiplexers, and directional filters.

In the following sections, the preceding applications will be
reviewed and their key aspects will be highlighted. Additional
information can be found in other relevant sections of this en-
cyclopedia.

Applications in Microwave Tubes

There were many problems in the early development of micro-
wave valves that were caused by circuit elements and their
interconnections. The development of resonant cavities led to
the invention of klystron. The cavity resonators were able to
reduce the transit time. The capacitance between the cathode
and grid was used to resonate with the low inductance pro-
vided by the cavity.

In klystron amplifiers, multiple cavities are used to allow
bunching of electrons. Because the electromagnetic fields in a
cavity are changing as a function of time, the alternating elec-
tric fields at the grid cause bunching of electrons. By using
another cavity at an optimum distance, the electrons are fur-
ther bunched to build up oscillations. The first ‘‘buncher’’ res-
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3 dB
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T

QLY01

1β 2β

Y02

n2n1

C

(b)

(a)

∆f

onator is excited into resonance through external means, and
Figure 23. Equivalent circuit of a two-port resonator with input and the second ‘‘catcher’’ resonator takes out the power. In kly-
output transformers. (b) Transmission response of a two-port reso- stron amplifiers, internal feedback is also provided via open-
nator. ings in the cavities.

In the reflex klystron, the electron beam is bunched by
passing through a single resonator. The reflector returns the

The transmission response of such a resonant circuit mea- electron beam to this cavity at an optimum bunched condi-
sured using the setup of Fig. 20, is shown in Fig. 23. The tion. At this time, the energy is extracted from the cavity.
coupling coefficients and the quality factors for two-port reso- Magnetrons use various shapes of cavities to build oscilla-
nators determined from the measurement of the insertion loss tions and power. The power is extracted from one of the reso-
T at resonant frequency and the 3-dB bandwidth �f using the nators through a coupling loop or an iris.
following well-known relations (14) In traveling wave tubes, cavities are used as part of the

slow wave structure. For additional information, refer to the
appropriate section in this encyclopedia.T = 2

√
β1β2

1 + β1 + β2
(75)

FiltersQL = f0


 f
(76)

In order to use cavity resonators in filter applications, a re-
actance or susceptance slope parameter is generally required.Qu = QL(1 + β1 + β2) (77)
The reactance slope parameter for a series resonant structure
is defined as

APPLICATIONS

A development of the cavity resonators was an important
milestone in microwave technology. Early work on cavity res-

χ = ω0

2
dX
dω

∣∣∣∣
ω=ω0

ohms (78)

onators focused on cavities of regular shapes. But the develop-
ment of microwave oscillators and amplifiers required com- Similarly, the susceptance slope parameter for the parallel
plex shapes to achieve the performance required in the resonant structure is defined as
development of klystrons, magnetrons, and traveling wave
tubes. Some of those shapes were covered in this chapter to
illustrate the fact that different cavity structures are required B = ω0

2
dG
dω

∣∣∣∣
ω=ω0

siemens (79)

to achieve the desired results.
Cavity resonators are also used extensively to measure fre-

From Eqs. (78) and (79), it is straightforward to see thatquency or wavelength. Tunable cavities are made to resonate
for a series resonant circuit at resonanceat different frequencies by varying size and then calibrating

size against frequency.
Cavity resonators are now most widely used to develop fil-

ters. Depending on the characteristics of the cavity, it can be
χ = ω0L = 1

ω0C
(80)
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and

Q = χ

R
(81)

Similarly, for a parallel resonant circuit at resonance

B = ω0C = 1
ω0L

(82)

and

Q = B
G

(83)

In a bandpass filter design, impedance or admittance in-
verters can be used with series or shunt-type resonant struc-

Waveguide

Moveable plunger

(b)

(a)

tures. The reactance or admittance slope parameter is related
Figure 25. Cylindrical cavity wavemeter. (a) End view. (b) Top view.to filter prototype element values. The external Q and cou-

pling coefficients are also expressed in terms of the reactance
or admittance slope parameter. Inductive posts or irises with

whenever the cavity length is half a wavelength. Measuringimpedance inverters can be used to make a bandpass filter.
the change in plunger positions between two successive min-For details on waveguide filters, refer to the appropriate sec-
ima and multiplying by two will give the wavelength of opera-tion in this encyclopedia.
tion. Because of the large surface area of the coaxial outer
wall, the cavity Q is not very high.Measurement of Frequency

Cylindrical cavities are generally used for wavemeters, as
Both coaxial and waveguide resonators have been used in shown in Fig. 25. The currents in the TM01 mode flow circum-
commercially available wavemeters. The main requirement in ferential to the cavity cross section. Therefore, the shorting
selecting cavity dimensions is to ensure that the cavity reso- plunger does not need to have a good contact and provides
nates in the fundamental mode, that there are no degenerate easy manufacturability. Furthermore, other higher-order
modes, and that they are easy to manufacture and calibrate. modes that require current flow in the end plates are not sup-

These wavemeters are basically tunable cavities, and when ported. In order to prevent other modes from being excited,
the length is g/2, the cavity resonates by taking in some en- two coupling holes in the side wall of a waveguide, which are
ergy from the transmission line, coaxial or waveguide. This a half wavelength apart, are used. The bandwidth of the cou-
action will produce a dip in the transmitted power. When the pling structures can be increased by selecting an elongated
length of the cavity is calibrated, the frequency or wavelength hole.
can be read off directly from the dial. The extent of the dip
depends on the amount of coupling. The Q of wavemeter cavi-
ties is quite high, on the order of 5000 to 10,000 depending BIBLIOGRAPHY
on the desired accuracy.
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