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proximate the exact solution with any desired degree of accu-
racy. Does this eliminate the need for analytical methods?
Certainly not! In fact, analytical preprocessing is part of all
numerical methods, and if the analytical content is high, the
method is often described as semi-analytical.

In general, the electromagnetic field problem can be conve-
niently formulated as partial differential equation while that
of the source problem as integral equation (operator equa-
tion). The objective of numerical methods is to transform an
exact operator equation into a solvable (discrete) matrix equa-
tion. To achieve this, virtually all numerical methods follow
the same principle steps: First, to express the unknown func-
tion of the operator equation by a sum of linear independent
functions with unknown expansion coefficients. This is often
called a trial function which approximates the real function if
the number of terms in the sums goes to infinity. Second, the
continuous solution domain is represented by a set of discret-
ized subdomains consisting of a finite number of elements or
nodes. Third, to determine the unknown expansion coeffi-
cients in the trial function, some form of error minimization
is chosen. Employing either variational principles or the
method of weighted residuals, the operator equation is trans-
formed into a matrix equation which must be solved by appro-
priate techniques.

Depending on the kind of operator used, numerical meth-
ods are in general categorized into domain methods and
boundary methods. More recently a new category has been
added, that of hybrid methods.

Domain methods solve the electromagnetic field problem
described by partial differential equations. Examples are the
finite difference method and the finite element method. Both
methods are based on differential equations and on discretiza-
tion of the entire computational domain. Boundary methods
solve the electromagnetic source problem described by inte-
gral equations, either volume integral equations or boundary
integral equations. Examples are the boundary element
method or the method of moments. The latter can also be
used to solve differential equations. Hybrid methods are a
combination of two or more different methods. A hybrid nu-
merical approach can be a two-step procedure or an implicit
hybrid algorithm. In the two-step procedure, one part of theELECTROMAGNETIC MODELING
problem is solved with one method, the results of which be-
come the input parameters for the next method. In the im-Numerical modeling of electromagnetic (EM) fields or compu-

tational electromagnetics is a combination of numerical meth- plicit hybrid algorithm two or more modeling approaches are
combined into one new algorithm to exploit only the advanta-ods and field theory—a discipline in its own right and of

growing importance in such diverse areas as microwave and geous features of each method. Hybrid methods are very use-
ful for problems that can either not be solved within theRF (radio frequency) engineering, antenna design, EM field

scattering, semiconductor physics, bioelectromagnetics, and framework of a single technique or in cases where a combina-
tion of methods results in a computationally more efficientelectromagnetic compatibility and interference (EMC/EMI).

The starting point for modeling electromagnetic fields is algorithm to model the electromagnetic field.
Over the last twenty years the importance of modelingMaxwell’s equations considering a set of known boundary/ini-

tial conditions. In addition, certain theorems and principles, electromagnetic fields has increased manifold. This refers not
only to the analysis of arbitrary electromagnetic field prob-such as superposition, equivalence, and duality can be uti-

lized. Entirely analytical solutions to Maxwell’s equations are lems but also to the CAD (computer-aided design) of circuits
and components. With rising operating frequency and higherpossible only for a narrow range of problems and most of

them were solved a long time ago. Classical analytical meth- circuit density, quasi-static analysis methods are replaced by
full-wave analysis methods to account for near-field effects orods are the methods of separation of variables, conformal

mapping, series expansion, and integral methods (if the inte- higher order mode interaction. Simplifying assumptions
about material properties have been replaced by realistic ma-grals have analytical solutions).

Today’s complexity of relevant EM field problems prevent terial descriptions taking dispersion and losses into account.
With the steady increase in computer power, research in elec-entirely analytical (closed-form) solutions to Maxwell’s equa-

tions. Rather, numerical approaches are necessary which ap- tromagnetic modeling is still advancing at a rapid pace, intro-
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ducing new techniques, expanding the capability of existing The function J (e.g., current density) is the response of the
system represented by the operator L to the excitation gmethods or simply improving their computational efficiency

and accuracy. Only some of the multitude of electromagnetic (magnetic or electric field). When L and g are known, Eq. (1)
represents an analysis problem from which J is determined.modeling techniques available today can be outlined here.

This article will focus only on some mainstream tech- A synthesis problem is one in which both J and g are known
but L is to be determined.niques, most of which employ either the method of weighted

residuals or variational principles. We will begin with model- The MOM solution of Eq. (1) takes advantage of the linear-
ity of the operator L to expand J in a series of the forming techniques in the frequency domain, most importantly the

method of moments (MOM). This section is followed by time-
domain methods and here in particular the finite-difference
time-domain method (FDTD) and the transmission line ma-

JJJ =
X

m

amJJJm (2)

trix (TLM) method. Finally, a brief overview with respect to
The am’s are unknown expansion coefficients and the Jm’s arehybrid methods concludes this article. A comparison between
known functions in the domain of the operator L. The func-the various modeling approaches as well as their advantages
tions Jm, which are assumed to form a complete set, are calledand disadvantages is added where appropriate.
basis functions. Substituting the expansion of J in Eq. (1) andFor a more detailed representation of the various methods,
using the linearity of L, we getthe interested reader is referred to the books by Sadiku (1) or

Zhou (2). Another excellent source of information is the book
edited by Itoh (3) which discusses the various methods in the
context of passive microwave circuit modeling.

LJJJ = L
X

m

amJJJm =
X

m

amLJJJm = ggg (3)

The original problem is now reduced to determining the
FREQUENCY DOMAIN METHODS expansion coefficients from this last equation. In the MOM,

both sides of the equation are projected onto the range of the
Most electromagnetic modeling techniques operate in the fre- operator L. Let Tm denote a complete set of functions in the
quency domain, that is, the time derivative d/dt is replaced range of L. The Tm’s are referred to as testing or weighting
by j�t. Therefore, all calculations are performed at a single functions. Taking the inner product of Eq. (3) against the test-
frequency only. In cases where the electromagnetic field is of ing functions, yields
interest over a frequency band, repeated calculations are nec-
essary. This is in contrast to time-domain methods. Here a
single run of the algorithm, after a proper impulse excitation,

X

m

am〈TTTn, LJJJm〉 = 〈TTTn,ggg〉, n = 1, 2, . . . (4)

followed by a Fourier transform of the impulse response, pro-
vides the information over a wide frequency range. Which Here, a suitable inner product (a linear form) is assumed to
method to use depends on the problem at hand. be known. Usually, the inner product is taken as the integral

of the product of the arguments
The Method of Moments

The method of moments (MOM) is a general form of weighted 〈JJJ,ggg〉 = R
JgJgJg (5)

residuals to solve integral, differential, and integro-differen-
Equation (4) can be rewritten in a more convenient matrixtial equations. The method itself does not provide any infor-
formmation about the derivation of the governing equation,

thereby allowing its applicability to a wide range of physical
[A][a] = [U] (6)phenomena.

The equations solved by MOM are normally an electric
wherefield integral equation (EFIE) or a magnetic field integral

equation (MFIE) of the following form
[A]mn = 〈TTTm, LJJJn〉 (7)

[U]m = 〈TTTm,ggg〉 (8)EFIE: E = fe(J)

MFIE: H = fm(J)

If the matrix [A] is not singular, its inverse [A]�1 exists. The
whereby E and H are the incident field quantities and J is expansion coefficients am are then given by
the induced current density. The form of integral equation
(EFIE or MFIE) depends on the problem. In most cases these [a] = [A]−1[U] (9)
integrals are formulated in the frequency domain although
the MOM can also be applied to solve problems in the time Once the expansion coefficients are known, the solution is
domain. given by Eq. (2). The MOM is most commonly implemented

The MOM as a mathematical technique was first intro- in the form of Galerkin’s method in which the testing func-
duced by Mikhlin (4) and later popularized in the area of nu- tions are equal to the basis functions, Tm � Jm.
merical electromagnetics by Harrington (5).The mathematical In practice, the infinite expansion Eq. (2) is truncated at
formulation of the MOM is simple and general. Consider a some upper value of m. The approximate solution, given by
linear operator L such that Eq. (9), is then straightforwardly computed using a computer.

The efficiency of the technique depends heavily on having ba-
LJJJ = ggg (1) sis functions which approximate well the exact solution with
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only a few terms. Therefore, MOM techniques are not very integrated squared error
effective in the analysis of complex geometries or inhomoge-
neous dielectrics. On the other hand, MOM techniques are
particularly efficient for the analysis of antennas and electro-
magnetic scattering problems.

0 = ∂

∂ai

Z �
g(x) −

NX
i

ai fi(x)

�2

dx

By using the orthogonality of the eigenfunctions f i(x) we findThe Mode Matching Technique
the individual coefficients

The mode matching technique (MMT), or modal analysis
method, can be viewed as a special case of the method of mo-
ments and is a frequently used analysis tool for scattering of
electromagnetic waves at metal waveguide discontinuities. In
this method, the fields immediately left and right from the

Z x2

x1

fi(x)g(x) dx
Z x2

x1

fi(x)2 dx
= ai (14)

discontinuity are expanded in a series of weighted eigenfunc-
tions. From the matching condition or continuity condition of

It should be noted that the integral in the denominator ofthe fields tangential to the discontinuity plane the coefficients
Eq. (14) is a normalization constant while the integral in theof the series expansions can be determined. Details of the
numerator (the coupling integral) can in most cases be solvedmethod can be found in Refs. 6 and 7. The MMT has been
analytically, except in cases where the geometry of the re-successfully applied to eigenvalue as well as to scattering
gions left and right of a discontinuity is described by differentproblems both in homogeneous waveguides as well as par-
coordinate systems.tially dielectric loaded waveguides. Numerous application ex-

The MMT becomes a powerful analysis tool in conjunctionamples for eigenvalue problems are given, for example, in
with the generalized scattering matrix approach (GSM). TheRefs. 8 and 9 and for scattering problems in Refs. 10 and 11.
GSM relates all reflected wave amplitudes of fundamentalThe basic problem to be solved in the MMT is to find the
and higher order modes at discontinuities to the incidentcoefficients of the field expansion to minimize the least square
wave amplitudes. Wave amplitudes are in this context theerror between the exact EM field and the approximating se-
power normalized expansion coefficients in Eq. (10).ries of eigenfunctions. If we postulate g(x) as the exact field

A simple example illustrates the MMT in conjunction within the aperture between two subregions, the approximation
the GSM technique. A waveguide step discontinuity is shownby a series of orthogonal eigenfunctions f i(x) is written
in Fig. 1. We assume that in both waveguide sections only the
fundamental TE10 mode can propagate.

The TE10 mode consists of three field components of which
two, Ey and Hx, are tangential to the discontinuity plane at

g(x) ∼=
NX

i

ai fi(x), x ∈ x1, x2 (10)

z � 0 [Fig. 1(b)]. In region 1 and 2, the electric field compo-
nent can be expressed as a series of eigenfunctions such as inwhere ai denote the weighting (expansion) coefficients. By
Eq. (10). Applying the continuity condition at the discontinu-multiplying both sides of Eq. (10) with a set of weighting func-
ity plane (z � 0), E1

y � E2
y, results intions, wj(x), and integrate over the domain of x results in

Z x2

x1

wj (x)g(x) dx =
NX
i

ai

Z x2

x1

wji(x) fi(x) dx (11)

We solve Eq. (11) such that its weighted residual is zero:

MX

m=1
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m sin

�mπ
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NX

n=1
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n sin
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The coefficients T in Eq. (15) ensure power normalization of
the incident, A, and reflected, B, wave amplitudes for funda-

Z x2

x1

wj (x)

�
g(x) −

NX
i

ai fi(x) dx

�
dx = 0, j = 1, 2, . . . N (12)

mental and higher order modes. The products T 
 A or T 
 B
are the expansion coefficients of Eq. (10). Multiplying bothIf the weighting function is a set of delta functions
sides of Eq. (15) with sin(i�/a x) and integrating over the

wj (x) = δ(x − xj )

Eq. (10) becomes Eq. (13) which is known as point matching
Eq. (11)

g(xj )
∼=

NX

i

ai fi(xj ), j = 1, 2, . . . N (13)

A1

B1

A2

B2

a

x1

z = 0x

yb

z

(b)(a)Eq. (13) is solved for the ai’s. If the weighting functions are
the eigen-functions themselves, we use the least square error Figure 1. H-plane discontinuity in rectangular waveguide. (a) Per-

spective view; (b) Scattered wave amplitudes.to select the expansion coefficients such as to minimize the
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cross-section x � 0�a yields can be found in Refs. 12 and 13; here we only show how the
edge condition at a single discontinuity is handled through
the CIET. For this we refer again to the example of Fig. 1.

The tangential electric field within the discontinuity region
(the gap region) is expanded in a series of basic functions
which are chosen such that they include the edge condition of
the electric field at x � x1

Ey: A1
i + B1

i =
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n) (16) Egap(x) =
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ciEi(x)

�
Egap = 0, 0 ≤ x ≤ x1

Egap �= 0, x1 < x ≤ a
(20)

The normal modes satisfy the orthogonality relation and the
integral in the denominator of Eq. (16) thus becomes A possible set of basic functions that satisfy the edge condi-

tion is the followingZ a

0
sin2

� iπ
a

x
�

dx = a
2

(17)

A similar equation is obtained from the continuity condition Ei(x) =
sin

�
iπ

a − x1
(x − x1)

�

[(x − x1)(2a − x1 − x)]1/3
of the Hx-component

Matching the tangential electric field of both regions (1 and
2) to the electric field in the discontinuity plane, Egap, yields

E1
y (x) = Egap(x), 0 ≤ x ≤ a

E2
y (x) = Egap(x), x1 ≤ x ≤ a

(21)

From Eq. (21), using Eq. (20), one obtains

Hx:
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Both equations can be written in matrix notation B1
i = −δi1 + 2

a
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(22)
Ey: [A]1 + [B]1 = [LE] · ([A]2 + [B]2)

Hx: [LH ] · ([A]1 − [B]1) = [A]2 − [B]2

Utilizing the matching condition from the tangential mag-Rearranging these equations leads to the generalized scatter-
netic field, H1

x � H2
x, which is defined in the interval x1 � x �ing matrix of the waveguide discontinuity

a and replacing the expansion coefficients therein by using
Eq. (22), leads to the following integral equation�
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�
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��
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[B]2

�
(19)

A well-known problem in the MMT is the slow convergence
rate and the relative convergence phenomenon. The latter can
be alleviated to some degree by choosing the number of modes
on both sides of the discontinuity in the same ratio as the
waveguide dimensions left and right from the discontinuity.
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The MMT is also not well suited for problems in which the
structure contains a mixed coordinate system. Coupling inte- The remaining step is to find the expansion coefficients ci in
grals must then be solved numerically which makes the algo- Eq. (20). This is accomplished by substituting Eq. (20) in Eq.
rithm slow and not very effective. In those cases the MMT can (23) and using the method of moments in the form of Galer-
be combined with other techniques (hybrid methods discussed kin’s method. The number of terms in Eq. (20), the value of
later) which are more appropriate for certain parts of the I, is increased until convergence is achieved. Typically only a
problem. few terms are needed to accurately describe the discontinuity.

Although the analytical content of the CIET is higher than
for the MMT, the numerical efficiency is significantly betterCoupled Integral Equation Technique
and no relative convergence problems are encountered.

The problem of slow convergence in the MMT is due mainly
to the fact that the eigenfunctions of the waveguides left and

The Spectral Domain Method
right from the discontinuity do not accommodate the bound-
ary conditions of the fields in the discontinuity plane. This is The spectral domain method (SDM) (14) utilizes the Fourier

transformation to eliminate all but one space variable in thenot so in the coupled integral equation technique (CIET). A
major advantage of the CIET is its ability to include a priori Helmholtz equation. The latter is then solved analytically for

the remaining space variable. The SDM is a computationallyinformation, such as the edge conditions, at multiple disconti-
nuities simultaneously. The salient features of the technique very efficient analysis tool for microwave transmission lines.



454 ELECTROMAGNETIC MODELING

The method has found numerous applications, mainly in the Using Galerkin’s technique, Ẽx and Ẽz in Eq. (26) can be
eliminated and a matrix equation for the expansion coeffi-analysis of electromagnetic fields in planar transmission line

structures where the overall cross-section can be divided into cients cm and dm is found
homogeneous dielectric subregions. Although the method was
originally introduced for single conductor transmission lines
with infinitely thin conductor (15), the SDM has been general-
ized recently [i.e., (16,17)] to include also finite metallization
thickness and multiple dielectric layers.

The method is best illustrated by considering the example
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���
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c
d

�
= 0 (27)

of a microstrip line (Fig. 2). In regions with constant � and �
the electromagnetic field, represented by a potential function The propagation constant 	 is contained in the matrix ele-
�e,h, satisfies the Helmholtz equation ments of Z̃. The transformed currents on the strip are found

from an educated guess of the current distribution on the
strip in the space domain. To describe the current in the

�
∂

∂x2 + ∂

∂y2 + ∂

∂z2 + k2
�

φe,h(x, y, z) = 0
space domain as accurate as possible, basis functions must be
employed that are zero outside the strip area and also model

A two-dimensional Fourier transform on �e,h (for example on the singular behaviour of the magnetic field components nor-
x and z) mal to the strip edge. Equation (27) can then be solved for 	

by finding the zeros of the determinant of [A] (i.e., det[A] � 0).
A disadvantage of the SDM is that the algorithm is devel-φ̃e,h(α,y, β) = R R

e− j(αx+βz)φe,h(x, y, z) dx dz (24)

oped for very specific transmission line geometries. If the ge-
transforms the Helmholtz equation into one that contains ometry changes, for example, substrate regions become inho-
only one space variable mogeneous, or conductor contours do not fit into a rectangular

coordinate system, the SDM algorithm must be reformulated.
This applies also to the previous methods and can only be
avoided if more general methods are utilized that are based

∂2φ̃e,h

∂y2 − (α2 + β2 − k2)φ̃e,h = 0 (25)

on finite element or finite difference discretization of Max-
well’s equations or the Helmholtz equation.A solution to this equation is known in the form of exponen-

tial functions or hyperbolic functions. In each homogeneous
The Generalized Multipole Methodsubregion, �e,h can thus be transformed from one boundary to

the opposite. With respect to Fig. 2, this implies that the The generalized multipole technique (GMT) is also based on
known boundary condition of the electromagnetic field at the weighted residual technique. It is a unique form of the
planes y � 0 and y � h can be transformed into plane y � d. method of moments in that the expansion functions are ana-
The final step in the formulation of the SDM is then to satisfy lytic solutions of the fields generated by sources a distance
the boundary condition of the tangential fields at the interface away from the surface where the boundary condition is being
y � d, which are in the transformed domain enforced. The GMT is a frequency domain method for calcu-

lating electromagnetic fields both in 2-D and in 3-D. The
Ẽz1 = Ẽz2; Ẽx1 = Ẽx2; H̃x2 − H̃x1 = J̃z; H̃z2 − H̃z1 = −J̃x method is also known as the multiple multipole method

[(MMP) (19)]. In the GMT the field domain is separated into
J̃x and J̃z are the Fourier transforms of the unknown currents a number of subdomains Di, each with linear and homoge-
on the strip. From this, a matrix equation can be derived as neous material. In each Di, a separate expansion of the elec-
follows tromagnetic field is given as

�
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�
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�
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Z̃xzZ̃xx
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J̃x

�
(26)
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(28)

with J̃z � �M
m cmJ̃zm(�) and J̃x � �N

m dmJ̃xm(�). In static cases, either the electric or magnetic field is replaced
by a potential. E0, H0 in Eq. (28) is a given excitation. Any
choice of the unknown coefficients al results in a correct solu-
tion of Maxwell’s equation, since El and Hl is such a solution.
Thus, all degrees of freedom in this solution, that is, the set
al, may be used to satisfy the boundary conditions. The GMT
is often referred to as a semi-analytical method since the dif-
ferential equations (i.e., Maxwell’s equations) in each subdo-
main Di are solved analytically (� exactly), while the bound-
ary conditions on the boundaries �Dij between subdomains Di

and Dj are solved numerically (� approximately). In order to
accelerate convergence and to keep the number of unknowns
as low as possible, the expansion in each subdomain Di is cho-

h

d
y

x

W

Metal top plane

Metal ground plane
0

,   = const Region 2

Region 1

µ

sen such that it fits best to the particular shape of Di and the
particular excitation.Figure 2. Cross section of a microstrip transmission line.



ELECTROMAGNETIC MODELING 455

The boundary conditions are fulfilled numerically (approxi-
mately), using the extended point matching technique. This
is numerically equivalent to both a projection technique using
Galerkin’s choice of test functions and a least squares error
minimization. All the boundary conditions concerning fields
may be taken into account. As a special case, surface imped-
ance boundary conditions are also possible. Also in the GMT/
MMP, a system of linear equations is developed which is
solved for the best coefficients of the expansion functions. In
order to save computer memory and to improve the numerical
stability, matrix solvers like Givens plane rotation may be
used.

The difference between the GMT and the MOM is that the
latter normally employs expansion functions which are lo-

y = d

∆x = h

3

2

1

x = a/2 x = 0

r

y = b

y = 0

y = d + t 

w/2

cated on the boundary representing quantities such as charge
Figure 3. Discretization scheme of the method of lines for a micro-

or current. The fields are then determined by integrating strip transmission line with metallic enclosure of dimensions a � b.
these quantities over the entire surface. This integration is
not necessary in the GMT since the expansion functions are
already field solutions corresponding to multiple poles.

components are defined on the solid lines (x � kh, k � 0, 1, 2,Dielectric and conducting boundaries are treated with the
. . .) in order to fulfill the Dirichlet boundary condition atsame efficiency in the GMT because the same expansion func-
x � 0 by setting Etangential � 0. The magnetic field will be de-tions are used. Therefore, GMT models are quite general and
fined on the dashed lines (x � kh � h/2, k � 0, 1, 2, . . .),do not suffer from the limitations of most MOM models. On
where the Neumann boundary condition at x � 0 can be ful-the other hand, MOM models that employ functions opti-
filled to a first order [Htangential(�h/2) � Htangential(�h/2)]. Similarmized for a particular problem, are generally more efficient
considerations apply to the magnetic wall boundary at x �than GMT models.
a/2, as well as to subdomain 2 besides the strip. The discreti-An overview article about GMT was published by Ludwig
zation in x-direction is done by a finite difference scheme, and(18). Details of the GMT and application examples are given
the second-order derivative at line i can be written asin the text by Hafner (19) and Leuchtmann (20).

The Method of Lines
∂2φ

∂x2

�
�
�
�

i

≈ φi−1 − 2φi + φi+1

h2

The method of lines (MOL) is also a semianalytical method
The coupled differential equations in each subregion are thenwhich was developed by Russian mathematicians (21,22) to
found in matrix form assolve partial differential equations. In this scheme a set of

coupled differential equations is transformed into a set of or-
dinary differential equations which can be solved analytically.
As such the MOL can also be classified as a hybrid method

∂2φφφ

∂y2 − 1
h2 [P]φφφ + k2

cφφφ = 0 (29)

since it combines an analytical approach with the finite differ-
whereby the vector � represents either the longitudinal elec-ence method. For the microwave domain, Pregla and co-work-
tric (Ez) or magnetic (Hz) field component. The second-orderers were the first to adopt this method, mainly for the analy-
difference operator [P] couples the differential equations ofsis of planar microwave circuits. A very detailed description
three neighboring lines. Because matrix [P] is symmetric, de-of the method is given by Pregla and Pascher in Ref. 23. The
coupling of the above differential equations is possible by anMOL provides, in comparison to the MMT or the SDM, more
orthogonal transformation matrix [T] ([T]�1 � [T]t) such thatflexibility in the analysis of transmission line geometries with

almost arbitrary cross section. The only restriction is that at
least one space direction must be amenable to an analytical φφφ = [T]tφφφ

solution, which is always true for planar transmission lines.
The eigenvectors of [P] are the columns of [T]. The discretizedTo illustrate the MOL, it is best to choose a two-dimen-
wave equations in the transformed domain is decoupled andsional problem, although three-dimensional problems can be
written assolved as well. An example of a cross section suitable for an

MOL analysis is again the microstrip line as shown in Fig. 2,
only this time we consider also the finite metallization thick-
ness. The objective is to find the effective permittivity, �eff.

∂2φφφ

∂y2
+
�

k2
c −

�
λk

h

�2
�

φφφ = 0 (30)

Assuming a symmetrical structure, the domain is bounded
with a magnetic wall at the symmetry plane, and with electric where 2

k are the eigenvalues of [P]. Equation (30) can now be
walls elsewhere. The discretization of the cross section by solved analytically along each line by using trigonometric
lines is shown in Fig. 3 with 3 homogeneous subdomains. In functions. In other words, the EM fields in the transformed
each subregion the wave equation is discretized in x-direction domain can be transformed from one boundary of a subregion
with step size h, and analytical solutions are sought in y-di- to the opposite. At the interfaces between subregions (i.e., at
rection along the solid and dashed lines shown in the figure. y � d and at y � d � t, Fig. 3), the tangential fields are

matched at the points where the lines cross the interfaceTo be more precise, analytical solutions for the electric field
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planes. Depending on the problem at hand, field matching is
done either in the transformed domain or in the space do-
main. The latter requires full matrix inversions, which com-
plicates the algorithm. Regarding the example of the micro-
strip line, field matching in the space domain becomes neces-
sary due to the finite thickness of the strip (i.e., the number
of lines to match is different from one subregion to another).
The assumption of an infinitely thin strip would make possi-
ble a field matching in the transformed domain and, there-
fore, lower the computational cost of the algorithm by
avoiding several matrix inversions. In any case, an eigenvalue
problem must be solved for kc. The size of the eigenvalue ma-
trix corresponds to the minimum number of lines in one layer,
i.e., the number of lines in region 2 besides the strip. The
effective permittivity of the microstrip line is then found from
the wavenumber kc.

A significant advantage of the MOL over other space dis-
cretization methods like the finite difference method or the
finite element method is that a two-dimensional problem re-
quires only a one-dimensional space discretization. This fea-
ture can lower the computational requirements significantly

y

x – h
y – h

y + h

y

x x + h

x

r

W

O

at the cost of a higher analytical content.
Figure 4. Finite difference discretization of a microstrip transmis-

The Finite-Difference Method sion line.

The finite-difference method (FDM) is an approximate
method to solve partial differential equations. In contrast to
the method of lines, the computational domain is discretized Where �(h4) is the remaining error. Adding these equations
in all three space directions. The derivative operations, for and considering that the resulting term
example for the space variable x, ��/�x and �2�/�x2 are ap-
proximated by ��(x)/�x and �2�(x)/�x2 and thus the partial
differential equation is reduced to a set of algebraic equa- h2

�
∂2φ

∂x2 + ∂2φ

∂y2

�
O

= 0
tions. In electromagnetics as in other areas of engineering,
the FDM is one of the most important methods to solve a

the approximation of �o at node center o becomeswide range of problems. These include linear and nonlinear
problems, time and frequency domain problems, wave propa-
gation in homogeneous and inhomogeneous media and in 1

4
(φx+h + φx−h + φy+h + φy−h) = φOmedia with different boundary conditions. An early example

on the application of the FDM to waveguide problems is given
Whereby it is assumed that �(h4) is negligible. This equationin Refs. 25 and 26. Detailed chapters on the FDM can be
shows that the value of �o is the average of the potentials atfound in books by Sadiku and Zhou (1,2).
the four neighbouring points. The above equation for the 2-DTo illustrate the FDM, we choose a problem that can be
problem is also said to be the five point difference equation ofdescribed by the two-dimensional Laplace equation
the Laplacian problem. For a 3-D problem the above equation
expands to a seven-star node

∂2φ

∂x2 + ∂2φ

∂y2 = 0 (31)

Sampling the continuous electromagnetic field in the compu- 1
6

(φx+h + φx−h + φy+h + φy−h + φz+h + φz−h) = φO
tational domain by a mesh of regular points separated by a
constant distance h (Fig. 4), Eq. (31) is approximated by the

Repeating this procedure over the whole computational do-difference quotients at the adjacent mesh points. Depending
main and considering the boundary conditions on �, leads toon the choice of the difference and the difference quotient,
the following matrix equationdifferent methods can be used to derive the discretization for-

mulations. Using a Taylor expansion, the potentials sur-
rounding the center node o (Fig. 4) can be expressed as [A]f = X

Since the individual grid points are only connected to their
neighboring points, the coefficient matrix [A] contains a large
number of zero elements (banded sparse matrix) and only the
diagonal and nearby elements are filled. f is a vector of all
potentials on the interior nodes and X contains the informa-
tion about the boundary conditions (or sources). Matrix [A]
can be solved by the Gauss-elimination method but due to the
sparsity of the matrix, iterative methods such as the over-
relaxation iteration are more economical in terms of com-
puter resources.
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Substituting the functions obtained from Eq. (35) into Eq. (34)
yields

φe =
X

p

Ne
pφe

p (36)

Ne
p are the so-called shape functions. The potential �e within

each element is thus a linear combination of the shape func-
tions and the three nodal values of the triangle.

The next step in the FEM is to determine the potential at
the corners of all elements. This is usually done by minimiz-
ing (or maximizing) a functional that is known to be station-
ary about the true solution (variational method). For a Lapla-
cian problem, the equivalent functional for each element is

Ie(φe) =
Z

se

1
2

ε|∇φe|2 dx dy (37)

φ

X

Y

e
3

3

21

φ e
2φ e

1

The functional over all elements is then the sum over Eq.Figure 5. Finite-element discretization of a ridged waveguide.
(37). From a physical point of view, Ie is the energy per unit
length of the element e. Substituting the approximation for
�e into Eq. (37) yields

Finite-Element Method

Although the finite-element method (FEM) was used by me-
chanical and civil engineers for many years (27), its applica-
tion to the electromagnetics area was not before 1967 by

Ie = 1
2

3X

p=1

3X

k=1

εφe
p

�Z
se

∇Ne
p · ∇Ne

k dx dy
�

� �z �
Cpk

φe
k (38)

Winslow (28) and in 1970 by Silvester and co-workers (29).
Since then, the FEM has become a widely used numerical or in matrix form
simulation tool for electromagnetic fields in structures with
arbitrary boundary shape (30,31). In contrast to the finite-
difference method, the finite element method discretizes the Ie = 1

2
ε[φe]T [C e][φe] (39)

computational domain with a number of small interconnected
subregions, called elements (Fig. 5). The shape of these ele- [Ce] is the element coefficient matrix (stiffness matrix in
ments is typically rectangular or triangular. This explains structural analysis). The matrix elements represent the cou-
why there are virtually no restrictions on the shape of the pling between the nodes. Summation of Eq. (39) over all the
structures that can be analyzed with the FEM. This feature elements and applying the extremum condition of the func-
is its main advantage over other methods. tional

The FEM is based on the fact that the potential function
�e (superscript e denotes ‘element’) within each element, can
be approximated by an (often linear) interpolation function

∂I(φ)

∂φi
= 0

which is zero outside the element. Summation of �e over all
elements N gives an approximate solution for the total poten- yields the system matrix equation
tial in the computational domain

[C][φ] = 0 (40)

[C] is a sparse, symmetric and banded matrix of size M � Mφ =
NX

p

φe(x, y) (33)

(M � total number of nodes). Equation (40) can be solved for
the potentials of all nodes in the computational domain.

The simplest form of approximation for �e within a triangular The FEM is one of the most flexible numerical modeling
element (Fig. 5) is the following: approaches which can be applied to nonlinear problems and

also can be formulated in time and frequency domain. Al-
though its formulation is more involved than the finite differ-φe = a + bx + cy (34)
ence method the advantage of the FEM is that it can be ap-
plied to almost arbitrarily shaped boundaries. Application toIt is assumed that the field strength is uniform within a small
open boundaries is difficult except if the FEM is combinedelement and that the potential varies linearly depending on
with other methods which are more suitable for open bound-the coordinates x and y. The unknown parameters a, b, c are
ary problems.found from the nodal parameters �e

p, xp and yp (p � 1, 2, 3) as

The Boundary-Element Method

The boundary-element method (BEM) or boundary integral
element method is similar to the finite-element method ap-
plied to the boundary only. As such the BEM is also known

�
��

a
b
c

�
�� =

�
��

1 x1 y1

1 x2 y2

1 x3 y3

�
��

−1 �
��

φe
1

φe
2

φe
3

�
�� (35)
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as a form of weighted residual technique that falls under the tween frequency- and time-domain methods exists also in the
framework of the TLM method.category of moment methods. The main advantage of the

BEM over the FEM is that it reduces the dimension of the In the FDTD and TDTLM methods of electromagnetic
modeling the continuous field functions that satisfy Maxwell’sproblem by one. For example, in a three-dimensional problem

only the surface of the computational domain needs to be dis- equations are approximated by samples of these functions de-
fined only at discrete points in space and time. In the mostcretized and not the entire volume which leads to a much

smaller number of algebraic equations. For two-dimensional general sense, FDTD and TLM belong to the method of mo-
ments (MOM) family. In FDTD the electromagnetic field isproblems the boundary elements are taken as straight line

segments, whereas for three-dimensional problems triangular approximated by a set of local pulse functions in space and
time, while in TLM it is expressed as a superposition of im-elements are taken. Disadvantages of the BEM are that the

number of integrations required are great and that singularit- pulse waves traveling forward and backward along the coordi-
nate directions, their sum yielding the electric and their dif-ies must be considered. The calculation of the coefficient ma-

trix may require more time than in the FEM. ference the magnetic field values, respectively. Thus, FDTD
is formulated in terms of total electric and magnetic fieldA very detailed account of the BEM may be found in Ref.

2. In the BEM the quantity of interest � anywhere within the samples in discretized space, whereas the TLM formulation
employs elementary incident and reflected waves traveling oncomputational domain is expressed in terms of a functional,

except that this functional now depends only on the value of a mesh of transmission lines (scattering formulation).
While both methods can be derived rigorously from Max-� at the boundary and its normal derivative thereon. Again,

for the Laplace equation in a source free volume � bounded well’s equations using MOM formalism (33) a more intuitive
approach which is also historically authentic will be used toby a surface �, for example, the potential �i inside the volume

is given by the integral equation formulate the basic FDTD and TLM algorithms. Their proper-
ties and associated errors will be discussed, and some recent
variations will be mentioned.φi = 1

4π

Z
�

�1
r

∂φ

∂n
− φ

∂

∂n

�1
r

��
d�

Finite-Difference Time-Domain Method
In most of the relevant EM problems, the governing equation

The finite-difference time-domain (FDTD) scheme is obtainedis not Laplace’s and � on the boundary is unknown. Then
by replacing the partial derivatives (space and time) in Max-the boundary contour is discretized and � for each boundary
well’s curl equations by finite differences. The best approxi-element is derived using the method of weighted residuals
mation is obtained by central differencing (trapezoidal rule),where the expansion and weighting functions are only defined
resulting in an error that is proportional to the square of thewithin the boundary cell. The integral equation is thus trans-
space and time step (second-order accuracy).formed into a set of algebraic equations at the nodes of the

The first FDTD formulation was proposed by Yee in 1966boundary, and the value for � and its derivatives are found
(34) and subsequently applied and developed further bysimultaneously by solving a matrix equation (2).
Taflove and Brodwin (35). Yee simply replaced the partial de-
rivatives in Maxwell’s curl equations by central finite differ-

TIME-DOMAIN METHODS ences. Weiland (36) derived an equivalent discretization ap-
proach using finite integration of Maxwell’s equations in

Time-domain methods are important if the time-domain re- 1977. Figure 6 shows a unit FDTD cell (Yee cell) of a
sponse of an electromagnetic structure is required. Lately, Cartesian space grid. Continuous space and time coordinates
time-domain methods have also gained momentum over fre- (x, y, z, t) are replaced by discrete coordinates l �x, m �y, n
quency-domain methods since they deliver, depending on the

�z, k �t, where l, m, n, k are integers and �x, �y, �z and �t
excitation, all frequencies of interest with one computation are the space and time steps. Note that the three electric field
run without the need for large matrix inversions. This feature components are defined along the edges of the cell, while the
is attractive if a wide band frequency response is required. magnetic field components are normal to the cell faces. The
One might also add that a variety of problems are more natu-
rally formulated in the time domain than in the frequency
domain. This is in particular the case for nonlinear problems.

Some of the frequency-domain methods discussed before
can be formulated also in the time domain. This is a great
advantage if one is already familiar with a particular method.
Extending the formulation from one domain into the other
without leaving the framework of one method not only mini-
mizes the development effort but also expands the application
range of that method. Among the many different techniques
that can be formulated in both domains, the finite-difference
time-domain (FDTD) method and the time-domain transmis-
sion line matrix (TDTLM) method are the most prominent
ones. While the finite-difference method in the frequency do-
main, the FDM or FDFDM, has been discussed in a previous

Hz

Hx

Hx

Hz

EzEz

EzEz

Ex

Ex

Ex

Ex

Ey

Ey

Ey

Ey

Hy
Hy

z/∆ z

x /∆ x

y/∆ y

(l,m + 1, n)

(l,m, n + 1)

(l,m,n)

(l + 1,m + 1, n)(l + 1,m,n)section, the frequency-domain version of the TLM method, the
FDTLM method (32), is not discussed here. However, as in Figure 6. Topology of the elementary FDTD cell (Yee cell). Electric

and magnetic field components are interleaved in space and time.the framework of the finite-difference methods the duality be-
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staggering of the field components by one-half of the cell di- Stability. The process is stable as long as the time step is
smaller than a maximum value known as the so-calledmensions is due to the central difference approximation of the

differential operators. For the same reason, electric and mag- Courant stability limit. For electrically and magnetically iso-
tropic media characterized by �r and �r the stability criterionnetic field components are also staggered in time, the electric

field components being defined at time points k �t and the is:
magnetic field components at [k � (1/2) �t.

If we assume that �x � p �l; �x � q �l; �x � r �l where
�l is the unit reference length, and the scaling coefficients p,
q, and r are all smaller or equal to unity, then the finite differ-

�t ≤ �l
√

µrεr

c

�
1
p2

+ 1
q2

+ 1
r2

(43)

ence equations for the electric and magnetic field components
in each cell are given by Since in anisotropic media the wave velocity depends on the

(generally unknown) polarization, it is prudent to enter the
smallest of the three �- and �-values of the diagonal tensors
into the stability condition. For free space discretized into cu-
bic cells (�r � �r � p � q � r � 1) it becomes:

�t ≤ �l

c
√

3
(44)

Initial and Boundary Conditions. At the start of a computa-
tion the initial values of all electric and/or magnetic field com-
ponents in the computational domain are specified before the
updating process can begin. By enforcing the field values in
certain regions at each time step, source functions with arbi-
trary time and space dependence can be modeled.

Boundary conditions must be enforced at each time step as
well. Electric and magnetic walls are modeled by extending
the discretized space one cell beyond the boundary and impos-
ing appropriate symmetry conditions upon the field values on
each side of the boundary. For example, the tangential elec-
tric field components must be identical on either side of a
magnetic wall (ideal open circuit) and equal and opposite on
either side of an electric wall (ideal short circuit). A dual con-
dition applies to the tangential magnetic field components.
Lossy resistive boundary conditions call for a fixed ratio be-
tween the tangential electric and magnetic field components
at the boundary. More complex boundary conditions such as
wide band absorbing walls or frequency dispersive boundaries
call for special algorithms, such as one-way absorbing bound-
ary conditions (37,38) or Berenger’s perfectly matched layer
(39). A detailed discussion of absorbing boundary conditions

k+1Ex(l+ 1
2 , m, n) = kEx(l+ 1

2 , m, n)+sx{[k+1/2Hz(l+ 1
2 , m+ 1

2 , n)

− k+1/2Hz(l + 1
2 , m − 1

2 , n)]/q + [k+1/2Hy(l + 1
2 , m, n − 1

2 )

− k+1/2Hy(l + 1
2 , m, n + 1

2 )]/r}

k+1Ey(l,m+ 1
2 , n) = kEy(l, m+ 1

2 , n)+sy{[k+1/2Hx(l,m+ 1
2 , n+ 1

2 )

− k+1/2Hx(l, m + 1
2 , n − 1

2 )]/r + [k+1/2Hz(l − 1
2 , m, n + 1

2 , n)

− k+1/2Hz(l + 1
2 , m + 1

2 , n)]/p}

k+1Ez(l,m, n+ 1
2 ) = kEz(l,m, n+ 1

2 )+sz{[k+1/2Hx(l,m− 1
2 , n+ 1

2 )

− k+1/2Hx(l,m + 1
2 , n + 1

2 )]/q + [k+1/2Hy(l + 1
2 , m, n + 1

2 )

− k+1/2Hy(l − 1
2 , m, n + 1

2 )]/p}

k+1/2Hx(l,m + 1
2 , n + 1

2 ) = k−1/2Hx(l,m + 1
2 , n + 1

2 )

+ sx′{[kEy(l,m + 1
2 , n + 1) − kEy(l,m + 1

2 , n)]/p

+ [kEz(l, m, n + 1
2 ) − kEz(l,m + 1, n + 1

2 )]/q}

k+1/2Hy(l + 1
2 , m, n + 1

2 ) = k−1/2Hy(l + 1
2 , m, n + 1

2 )

+ sy′{[kEx(l + 1
2 , m, n) − kEx(l + 1

2 , m, n + 1)]/r

+ [kEz(l + 1, m, n + 1
2 ) − kEz(l,m, n + 1

2 )]/p}

k+1/2Hz(l + 1
2 , m + 1

2 , n) = k−1/2Hz(l + 1
2 , m + 1

2 , n)

+ sz′{[kEx(l + 1
2 , m + 1, n) − kEx(l + 1

2 , m, n)]/q

+ [kEy(l,m + 1
2 , n) − kEy(l + 1,m + 1

2 , n)]/r}
(41) in FDTD and TLM can be found in Ref. 40. Similar ap-

proaches are required for the modeling of complex materials
where and devices.

The books by Kunz and Luebbers (41) and Taflove (42) are
excellent sources of information on all aspects of FDTD mod-
eling and contain extensive bibliographies on the theory, im-
plementation and application of the FDTD method. Together
with Yee’s seminal paper (34) they are good starting points
for exploring the extensive literature on FDTD theory and ap-
plications.

sx = Z0c�t/(εrx�l)

sy = Z0c�t/(εry�l)

sz = Z0c�t/(εrz�l)

sx′ = c�t/(µrxZ0�l)

sy′ = c�t/(µryZ0�l)

sz′ = c�t/(µrzZ0�l)

(42)

Transmission Line Matrix Method

The Expanded Node. The transmission line matrix (TLM)In these expressions, c and Zo are the velocity of light and the
wave impedance in vacuo, and �rx, �ry, �rz and �rx, �ry, �rz are formulation of Maxwell’s equations was first proposed in 1971

by Johns and Beurle (43). In their seminal paper they de-the diagonal elements of the relative permittivity and perme-
ability tensors of the medium, respectively. This algorithm ex- scribe a novel numerical technique for solving two-dimen-

sional scattering problems. Inspired by earlier network simu-plicitly updates each field component in a leapfrog time-step-
ping process. The change in each E-field component is lation techniques (44), they employ a Cartesian mesh of

shunt-connected two-wire transmission lines as a discretizedcomputed from the four H-field components circulating
around it, and vice versa. 2-D propagation medium. The nodes of this mesh act as scat-
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step, and the process is repeated. This series of events can be
described in symbolic form as follows:

�
kvr� = S · �kvi�,

�
k+1vi� = C · �kvr� (45)

where [kvr] and [kvi] are the vectors of reflected and incident
pulses at the kth time step, S is the impulse scattering matrix
of the node, and C is a connection matrix describing the topol-
ogy of the network. It governs the transfer of the reflected
pulses to the connected ports of the neighboring cells and/or
the reflection from boundaries. The subscripts k and k � 1
denote the discrete time points at which the pulses are scat-
tered at the nodes.

For a homogeneous, lossless, and isotropic medium, all
transmission lines of a cubic cell have the same characteristic
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impedance. The 12 � 12 scattering matrix S is then

Figure 7. Topology of the expanded TLM node. Electric field compo-
nents are modeled by the voltage across shunt connections, while
magnetic field components are modeled by the loop current in series
connections of transmission lines. The positions of the field compo-
nents in space and time are identical to those in the Yee cell.
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where the submatrix S0 is given bytering centers for short voltage impulses. Johns and Akhtar-
zad (45) extended the method to three space dimensions (the
expanded node TLM model) in 1974, by creating an intricate
3-D lattice of shunt- and series-connected transmission lines,
as shown in Fig. 7. This model is, in many respects, similar
to the Yee cell in Fig. 6 since it yields identical solutions for
the six field components when the time step in the Yee algo-
rithm is set to �t � �l/(2c) (free space, cubic cell). However,
in contrast to the strictly mathematical formulation of FDTD,
the TLM model is a ‘‘hardwired’’ network (albeit conceptual
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(47)

rather than material) to which all known techniques of circuit
and transmission line analysis can be applied, both in fre- Since the transit time �t of the pulses is linked to the space
quency and time domains. step �l by the pulse propagation velocity along the transmis-

sion lines, the TLM process is unconditionally stable. The
The Symmetrical Condensed Node. One of the shortcomings time step is automatically set to �t � �l/(2c).

of these algorithms resides in the complicated topology of
their unit cells and in the separate locations of electric and
magnetic field components in space and time. This makes the
modeling of complex boundary conditions and interfaces be-
tween materials more difficult and may introduce errors. To
overcome these drawbacks, Johns (46,47) introduced the sym-
metrical condensed TLM node in 1986. This spawned the de-
velopment of several new TLM formulations, from the hybrid
and super condensed nodes to the alternating and rotated al-
ternating (48) TLM models. In the following, the basic formu-
lation proposed by Johns will be outlined. However, the port
numbering scheme proposed by Russer (49) will be used since
it allows a simpler and more compact representation of the
TLM algorithm than Johns’ original numbering scheme.

The Symmetrical Condensed Node TLM Algorithm. A unit cell
of the symmetrical condensed TLM model is shown in Fig. 8.
It contains a hybrid junction of twelve transmission lines (the
node) which is characterized by a 12 � 12 scattering matrix.
The time domain TLM algorithm is executed in two steps.
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Firstly, twelve short voltage pulses are simultaneously in-
jected into the node ports 1 to 12. The pulses are scattered Figure 8. Topology of the symmetrical condensed TLM node. All six
and give rise to twelve reflected voltage pulses. Secondly, the electric and magnetic field components are defined in the center of
reflected pulses are transferred to the neighboring nodes the node, and tangential field components are defined in the cell

boundaries as well.where they become incident pulses at the subsequent time
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Inhomogeneous Materials and Losses. Dielectric or magnetic time, or the numerical model can simply not be applied to the
structure at hand. For example, the method of moments ismaterials can be modeled by loading the nodes situated inside

these materials with reactive shunt stubs of appropriate nor- not applicable to structures with inhomogeneous or nonlinear
dielectrics. The finite difference method is difficult to imple-malized characteristic admittance and a length �l/2 (46). An

open-circuited shunt stub will produce the effect of additional ment when fine circuit details must be resolved within a
structure of large dimensions. The discretization size chosencapacitance at the node, while a short-circuited series stub

creates additional inductance. The resulting storage of reac- for the smallest circuit detail determines the total number of
discretization cells and thus the total matrix size to be han-tive energy reduces the phase velocity and alters the intrinsic

impedance in the structure. The interface conditions at the dled may become too large. This problem is even more pro-
nounced for the time domain version of the finite differenceboundary between different materials are automatically ful-

filled. Each cell can have a different set of stubs, (three per- method, the FDTD, since here also the time is discretized.
Similarily, the finite element method cannot efficiently modelmittivity and three permeability stubs) thus allowing the

modeling of inhomogeneous anisotropic materials with diago- large radiation problems because of the large computational
space that must be discretized.nal permittivity and permeability tensors. The six stubs add

six more ports to the node, and as a result, the S becomes an In practice, many of these—and more—complicating fac-
tors are encountered. Not all appear in the same problem and18 � 18 matrix. Losses can be modeled by connecting so-

called loss stubs to the nodes. The loss stubs are matched at the same time, thus making it possible to choose one elec-
tromagnetic modeling approach over the other. But there is atransmission line sections that extract a fraction of the energy

scattered at the node at each time step. Since no pulses travel significant number of problems (and others are emerging)
that can not be solved within the framework of any of theback into the nodes on these stubs, they only modify the ele-

ments of S without increasing its size. previous methods.
A solution to those problems is possible by combining two

or more techniques. The task is to apply each method to theInitial and Boundary Conditions. At the start of a computa-
problem domain for which it is best suited. There are twotion the initial values of all pulses incident on all field compo-
possible approaches. A two or more step procedure is utilizednents are uniquely determined in the center of the nodes by
in which one part of the problem is solved by one method anda linear combination of these pulses at the moment of scatter-
the results are used as input data to solve remaining parts ofing (47). When the pulses transit from one cell to the next
the problem with other techniques. That requires that bound-(t/�t � k � 1/2) the tangential components of the fields are
ary conditions are established that must be enforced at theobtained in the cell boundaries as well. By enforcing the pulse
interfaces between the different regions. This approach isvalues (and hence the corresponding electric and magnetic
called an explicit hybrid approach. An implicit hybrid ap-field values) in certain regions at each time step, source func-
proach is one in which the advantageous features of one tech-tions with arbitrary time and space dependence can be
nique are combined with those of another technique to formmodeled.
a new stand-alone algorithm.Boundary conditions can be imposed either in the center of

Several successful implementations of hybrid methodsthe nodes or in the cell boundaries. In the latter case, bound-
have been reported in the literature. Although this researcharies are represented by means of impulse reflection coeffi-
direction does not replace the effort to improve existing singlecients. Electric walls reflect pulses with ‘a �1’ reflection coef-
methods, hybrid methods offer electromagnetic modeling of aficient, while magnetic walls have ‘a �1’ reflection coefficient.
whole new class of problems and may in particular be impor-Lossy resistive boundaries have impulse reflection coefficients
tant in the area of CAD.less than unity in magnitude. More complex boundary condi-

tions such as wide band absorbing walls or frequency disper-
sive boundaries are treated in the same way as FDTD bound- Combinations of Frequency-Domain Methods
aries with the difference that the boundary operators are

GTD and MOM. The first combinations of electromagneticapplied to the incident pulses rather than to the field quanti-
modeling approaches appeared in the analysis of antennaties at the boundaries. It is straightforward to implement
problems and radar cross-sections. The geometrical theory ofnonrecursive and recursive convolution techniques for the
diffraction (GTD) and the method of moments were used tomodeling of frequency dispersive boundaries and for parti-
analyze antenna problems in Ref. 53. The GTD is an exten-tioning large computational domains using time domain dia-
sion to geometric optics which includes the effect of diffrac-koptics (49). Similar approaches are required for the modeling
tion. This method is only accurate if the dimensions of theof complex materials and devices (50).
object being analyzed is large compared to the wavelength ofJohns’ seminal papers (43,45–47) are good starting points
the field. For that reason this method is also called high-for exploring the world of TLM modeling, as are an introduc-
frequency method. In the combination of the GTD and thetory chapter on TLM by Hoefer (51) and a book by Christo-
MOM, the latter is used to solve the region close to the an-poulos (52). They contain many references and describe the
tenna, while the GTD is used for the free space surroundingimplementation and applications of TLM in detail.
the antenna.

FEM and GSM Technique. A combination of the finite-ele-HYBRID METHODS
ment method (FEM) and the generalized scattering matrix
(GSM) technique was utilized in the study of scattering fromNone of the previous methods is capable of solving all electro-

magnetic modeling problems. The methods are either limited jet engines (54). The FEM was applied to the complex part of
the scatterer to generate the GSM at its boundary which canby the available computer memory and/or by computer run
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then be interfaced with high frequency techniques for compu- in the case of a 3-D mesh. A Fourier transform provides the
frequency at which the assumed value of 	 is valid.tation of the engine’s scattered fields without reference to the

geometry of the jet engine. One of the methods alone would The same principle can be applied to the time domain TLM
method and also here significant savings in computer re-not have been able to solve this complex problem.
sources are possible if only the propagation constant and re-
lated quantities (characteristic impedance, losses) are of in-FEM/FDM and MMT. For the analysis of microwave circuits
terest.the combination of the FEM and the mode matching tech-

nique (MMT) has been proposed to study large cavities (55).
TDTLM and MMT. In the TDTLM analysis of complex cas-In Ref. 56 the FEM was applied to analyze waveguide discon-

caded discontinuity problems, diakoptics is used to subdividetinuities with arbitrary boundary shape. In Ref. 57 the FDM
the problem into simpler subsections which are then modelledwas employed instead of the FEM to analyze segments of
individually. Interconnecting the individual solutions re-waveguide structures that are not suitable for a MMT analy-
quires a node to node convolution at the interface. This ap-sis, for example a circular stub in a rectangular waveguide.
proach tends to be computationally quite demanding since theIn all these papers the MMT was used to characterize the
number of convolutions increases with N2 (N is the number ofuniform sections of the waveguide while the FEM or FDM
branches of interest). To reduce the computational effort, itwas employed to analyze rounded corners or discontinuity
was suggested in Ref. 61 that the uniform sections of theshapes that do not fit into the coordinate system of the MMT.
problem domain are modelled by modal functions treated inThe latter was then used to derive the scattering parameters
the time domain (time domain Green’s function), while theof the overall circuit.
discontinuity region is represented by the TDTLM method for
which the incident fields are superpositions of those modes.Method of Lines and SDM. For the 3-D analysis of planar
The response of that subvolume to an excitation is obtainedwaveguide problems a combination of the method of lines and
by convolution of the excitation with the time domain Green’sthe spectral domain method was introduced in Ref. 58. The
function. This approach leads to a significant reduction of thepurpose of this combination was to eliminate some of the
computational resources as compared to the analysis withproblems associated with the 2-D MOL and the 2-D SDM.
only the TDTLM. Furthermore, the complex discontinuity re-The problem in the latter was the difficulty to find 2-D basis
gion is now represented by its generalized scattering matrixfunctions which converge easily, while for the 2-D MOL a 2-D
(GSM) which makes it easy to cascade discontinuities.discretization may not always be able to satisfy all boundary

conditions simultaneously with effortable computer memory.
Combinations of Time-Domain MethodsThe combination of the computationally very efficient 1-D

SDM in transverse direction of the propagating wave with the FDTD and FEM. The FDTD method is well suited for appli-
equally efficient 1-D MOL in propagation direction eliminates cations in Cartesian coordinates. However, as soon as mixed
these problems. coordinates are necessary to describe the problem contour, a

staircase approximation must be utilized. For example, a
Combinations of Time- and Frequency-Domain Methods round structure within a rectangular mesh layout can only be

described accurately by a fine staircase approximation. ThisHybrid Finite-Difference Time-Domain Method. The hybrid
leads to a very fine mesh and consequently a small time stepfinite-difference time-domain (HFDTD) method is a combina-
to satisfy the stability condition. The computational effort totion of frequency-domain and time-domain concepts. In its
calculate such a structure with acceptable accuracy becomeswidest sense, the technique utilizes a standard FDTD mesh
prohibitive. An alternative solution is to model the arbitraryin the areas of structure inhomogenouity and expansion into
boundary with the finite element method and incorporate thisa known set of modes in transversely homogeneous regions of
approach in the FDTD method which is applied elsewhere inthe structure. This provides substantial savings both in terms
the problem domain (62).of computer memory and CPU-time as was first demonstrated

The list of methods that have been combined can be contin-in the eigenvalue analysis of planar transmission lines (60).
ued and new combinations appear every month in the variousA conventional FDTD analysis of such a structure requires a
periodicals. A good starting point to find out more about hy-3-D mesh which, depending on the space resolution required,
brid methods and the rational behind their combinations is inneeds several thousand time iterations before a Fourier trans-
Ref. 63.form can provide the results for the propagation constant. By

replacing the space discretization in propagation direction
(z) by a simple phase shift (note that the field at location lz is SUMMARY
different from that at location lz � z by only a factor e�j	z),
results in a 2-D FDTD mesh (59). Multiplying the field equa- The tremendous increase of computer power over the last ten
tions furthermore by a factor j such that years has inspired a new era in the field of electromagnetic

modeling or computational electromagnetics. Numerical codes
that ran only on super-computers yesterday are running on
workstation computers today. This development will not stop

Ex, Ey, Hz = j(Ex, Ey, Hz )e− jβz

Hx, Hy, Ez = (Hx, Hy, Ez)e− jβz

here and the electromagnetic modeling problem that appears
to be inaccessible by any of today’s available codes (becauseleads to discretized Maxwell’s equations without complex

quantities. This feature accelerates the computation consider- the required computer resources are just too large) will be
solvable with tomorrow’s computers and the then availableably. Exciting the 2-D mesh with a time domain impulse re-

quires much less time iterations for the impulse to settle than (unlimited?) computer memory.
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13. S. Amari, J. Bornemann, and R. Vahldieck, Accurate and fastBecause of this rapid development in computer hardware,
analysis of waveguide filters by the coupled-integral equationelectromagnetic modeling has become a common place in the
technique, IEEE Trans. Microw. Theory Tech., MTT-45: 1611–world of electrical engineers. Many of the methods that we
1618, 1997.have briefly described are already implemented in commercial

14. Itoh and R. Mittra, Spectral-domain approach for calculating thesimulation tools used in practice to analyze a wide variety of
dispersion characteristics of microstrip lines, IEEE Trans.problems and to design (CAD) a wide range of circuits and
Microw. Theory Tech., MTT-21: 496–499, 1973.components which would not function otherwise.

15. T. Uwaro and T. Itoh, Spectral domain approach, in T. Itoh (ed.),We have divided the methods into frequency-domain, time-
Numerical Techniques For Microwave and Millimeter-Wave Pas-domain, and hybrid methods. They all have advantages and
sive Structures, New York: Wiley, 1989, chap. 5.disadvantages depending on the problem range they are ap-

16. T. Kitazawa, Metallization thickness effect of striplines with ani-plied to. The aim of this article was not to provide extensive
sotropic media: quasi-static and hybrid mode analysis, IEEEinformation on all of these methods but to introduce the
Trans. Microw. Theory Tech., MTT-37: 769–775, 1989.

reader to those numerical methods that have a broad enough
17. T. Kitazawa and R. Mittra, Analysis of finline with finite metalli-application as well as to provide key references for further

zation thickness, IEEE Trans. Microw. Theory Tech., MTT-32:reading. 1484–1487, 1984.

18. A. Ludwig, A new technique for numerical electromagnetics,
IEEE AP-S Newslett., 31: 40–41, February 1989.FURTHER READING

19. Ch. Hafner and L. Bomholt, The 3D Electrodynamic Wave Simula-
tor, New York: Wiley, 1993.The literature on electromagnetic field modeling is quite ex-

20. P. Leuchtmann, The multiple multipole program (MMP): theory,tensive and only a few key references could be cited here. For
practical use and latest features, ACES, Mar. 1995. 121 pages,more information on the subject the reader is referred to the
available from author, leuchtmann@ifh.ee.ethz.ch.books by R. Sorrentino (64) and E. Miller et al. (65), who have

21. O. A. Liskovets, The method of lines, Review, Diff. Uravneniya,assembled a collection of reprints of key papers on the subject,
1: 1662–1678, 1965.and the book by E. Yamashita (66). Furthermore, various

22. B. P. Demidowitsch et al., Numerical Methods of Analysis, Berlin:journals and conferences are devoted to the topic of numerical
VEB Wissenschaften, 1968, chap. 5, in German.modeling of electromagnetic fields.

23. R. Pregla and W. Pascher, The method of lines, in T. Itoh (ed.),
Numerical Techniques for Microwave and Millimeter—Wave Pas-
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