
FERRITE LOADED WAVEGUIDES

Ferrites, as well as their technological applications, have
been known for some time. Magnetite, the first known mag-
netic material, is actually a ferrous ferrite. In 1269 Peter
Peregrinus gave a detailed description of a compass made
with a floating magnetite needle, probably a Chinese in-
vention. The first experimental ferrite device in microwave
technology was demonstrated in 1949 [1]. Since then,appli-
cations of artificial ferrite materials in microwave technol-
ogy have grown rapidly and have become a mature technol-
ogy, which has been discussed in many classical textbooks
[2] - [10]. A good historical survey of the beginnings of mi-
crowave ferrite technology can be found in Button [1]. A
complete bibliography containing the most relevant con-
tributions in this field during the years that followed can
be found in [11] and [12]. Finally, a survey of ferrite technol-
ogy in Europe, the United States and Japan can be found
in [13], [14] and [15], respectively.

This article describes the main physical effects due to
the propagation and guidance of electromagnetic waves in
ferrite loaded waveguides useful in microwave technology.
The linear approach, in which the high frequency mag-
netic susceptibility of the ferrite is a function of the in-
ternal static magnetic field, will be considered valid. This
approach includes the analysis of exchange free electro-
magnetic waves, as well as magnetostatic waves and other
approximations, but not the analysis of spin waves and
nonlinear effects, magnetoelastic waves and other complex
interactions.

The choice of units in the analysis of microwave appli-
cations of ferrites presents some particularities. SI (Inter-
national System) units are preferred for most of the elec-
tronic and electrical engineers. Nevertheless, c.g.s. units
are mainly used by researchers in the area of the consti-
tutive electromagnetic properties of ferrites. The usage in
this text is a compromise between both alternatives. Since
in the linear theory the equations for the static biasing
magnetic field are decoupled from the radio frequency field
equations, we will use c.g.s. units in the derivation of the
internal magnetostatic field, as well as in the expression of
the magnetic permeability in terms of the static bias field
H0, measured in Oersted, and the saturation magnetiza-
tion 4πM0, with M0 measured in Gauss (1Oe = 4πG). For
the electromagnetic r.f. equations we will use SI units.

FUNDAMENTALS OF ELECTRODYNAMICS OF FERRITE
MATERIALS

As long as the linear approach remains valid, the problem
of finding the radio frequency electromagnetic field inside
a magnetized ferrite can be divided into three steps. First
we must find the internal static field H0 as a function of the
external applied static field Hext . Then we must obtain the
RF magnetic permeability tensor that will be a function of
the internal static field. Finally, we must solve the Maxwell
equations for the RF field with the appropriate boundary
conditions. Notice that, in the linear approach, the equa-
tions for the static field H0 remains independent from the
equations for the RF field. The coupling between these two

fields occurs only by means of the dependence of the RF
magnetic permeability tensor on the static magnetic field.

The Static Field

As a general statement, the internal static field H0 is the so-
lution of the static equations inside the ferrite with the ap-
propriate constitutive relations and boundary conditions.
In the simplest case of a saturated isotropic ferrite, the
static constitutive relations reduces to B0 = H0 + 4πMs

(remember that we will use c.g.s. units in this part of the
analysis), where Ms is the magnetization of the ferrite at
saturation which, in isotropic ferrites, will be parallel to
both B0 and H0. In many cases, the ferrite is placed in a
known external static and uniform field Hext provided by
a magnet. In this case the internal static field is the sum
of the external field and a demagnetization field Hd cre-
ated by the ferrite internal magnetization. For ellipsoidal
ferrite samples, rods and plates this problem is a classical
one and is solved analytically, expressing the demagneti-
zation field as the dot product of the saturation magneti-
zation by a known demagnetization tensor, which depends
on the shape and the orientation of the ferrite sample. In
particular, for ferrite plates and rods placed in an external
magnetic field parallel to the rod axis or the plane of the
plate, it is easy to show that H0 = Hext . For ferrite plates
placed in an external magnetic field perpendicular to the
plate, it is H0 = Hext − 4πMs.

The RF Magnetic Permeability Tensor

In this section we will state the more usual RF constitu-
tive relationships for magnetized ferrites. First we will con-
sider the simplest case of an intrinsically isotropic ferrite.
In this context intrinsic isotropy means that the internal
static magnetic field is the only source of anisotropy (in-
duced anisotropy). Thus, after magnetization, the ferrite
becomes an uniaxial medium with an RF permeability ten-
sor given by (the z—axis is chosen as the direction of inter-
nal magnetization):

[µ] = µ0

(
[µ]t 0
0 µz

)
= µ0

(
µ jk 0
− jk µ 0
0 0 µz

)
(1)

where µ and κ are in general complex quantities that de-
pend on the internal magnetic field and ferrite magneti-
zation. This particular form of both [µ] and [µ]t ensures
the invariance of the permeability tensor after rotations
around the z axis, which is the unique symmetry require-
ment. Notice that, if κ �= 0, the tensor is not symmetric.
Thus, a magnetized ferrite is a nonreciprocal medium. For
lossless ferrites the permeability tensor must be hermitian
and therefore µ, κ and µz are real numbers.

The theory leading to appropriate expressions for µ, κ
and µz, valid for intrinsically isotropic saturated ferrites
was first developed by Polder in 1949 from the analysis of
the precession of molecular magnetic dipoles in the static
internal field. The derivation of such expressions may be
found in many textbooks [2] - [7]. The final expressions are:

µ = 1 + ωMωH

ω2
H − ω2

(2)

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Ferrite Loaded Waveguides

κ = ωωM

ω2
H − ω2

(3)

and µz = 1, where ωH is the resonance frequency given by

ωH = γH0 (4)

and

ωM = 4πγMs (5)

(γ is the gyromagnetic ratio γ = ge

2mec
,, where g is the

Lande factor, −e and me the electron charge and mass re-
spectively and c the speed of light; in most ferrites the mag-
netization is due to the electron spin alone, therefore g = 2
and γ = 1.76 × 107 rad/secOe).

There is also a wide class of useful microwave devices
which uses ferrites at the rema-nent magnetization. These
are named latch ferrite devices and use ferrite materials
with a square hysteresis loop, so that the remanence mag-
netization Mr is very close to the saturation magnetization.
At remanence H0 = 0 and (2)and (3)simplify to µ = 1 and
κ = −4πMr/ω. Nevertheless, the use of these expressions is
subject to some restrictions related to the magnetic losses
that may appear at low values of H0 [6].

The lossless ferrite is an approximation. Actually, there
are many mechanism of losses in ferrites. Some of them,
such as the ohmic conductivity, can be introduced in the RF
constitutive relationships adding an imaginary part to the
dielectric permittivity. Moreover, there are magnetic losses
coming from the damping of the magnetic oscillations de-
scribed by the Polder tensor. The presence of the resonance
frequency ω0 in that tensor clearly suggest the presence of
losses in actual ferrites, with a maximum at this frequency.
Magnetic losses may be included in the Polder tensor after
the transformation [10]:

ωH →ωH + jαω (6)

where α is a new parameter accounting for losses. The α
parameter is often substituted by the resonance linewidth
�H , i.e. the width of the resonance curves for the real part
of κ and µ− 1 plotted against H0. The resonance linewidth
is related to α by �H = 2αωH/γ. The magnitude of mag-
netic losses varies widely in ferrites used for microwave
applications. The resonance linewidth ranges from about
0.1 Oe for single YIG crystals to several hundreds for poly-
cristalline ferrite materials. In the first case we can obtain
meaningful results neglecting magnetic losses, but this ap-
proximation may lead to significant misleading in other
cases.

Until now we have considered only ferrites with intrin-
sic isotropy. This assumption is not realistic in all cases,
because ferrites are crystalline materials with complex in-
ternal structure. Magnetocrystalline intrinsic anisotropy
usually induces in the crystal easy and hard directions of
magnetization. The modifications of the Polder tensor in-
duced by the magnetocrystalline anisotropy are complex
and will not be analyzed here. The reader interested in
this topic is referred to the textbooks that develop such ex-
pressions (e.g. [8]). The most important magnetocrystalline
effect occurs in uniaxial hexagonal ferrites. In these crys-
tals, the resonance is pushed to a extremely high frequency,
even when the applied static field is small. Thus, hexagonal

ferrites found most of its practical applications at millime-
ter wave frequencies.

The Radiofrequency Field

The RF field in a ferrite, characterized by the tensor per-
meability (1), is obtained by solving the Maxwell equa-
tions with the appropriate boundary conditions. Assuming
a time-harmonic dependence of the kind exp jωt, as well
as the vanishing of current sources, these equations will
read:

∇ ×E = − jω[µ] ·H (7)

∇ ×H = jωεE (8)

where the dielectric permittivity ε is, in general, a com-
plex quantity, in order to incorporate dielectric and ohmic
losses.

Uniform Plane Waves with Longitudinal Magnetization.
Although the aim of this text is to analyze propagation
along waveguides, the analysis of the propagation in an
unbounded ferrite medium will provide an useful introduc-
tion to some relevant aspects of the propagation in ferrite
waveguides. We will first suppose an uniform plane wave
with a space-time dependence of the kind exp j(−kz+ ωt)
(this factor will be suppressed in the following) and an
internal static magnetic field directed along the z—axis
H0 = H0az.The analysis of (7)and (8)with these restrictions
leads to two TEM wave solutions with right handed circu-
lar polarization (RCP) and left handed circular polarization
(LCP) referred to the static field H0 orientation. These two
waves have different phase constants given by:

k± = ω
√
εµe f f (9)

where the + sign stands for the RCP polarization and the
− sign for the LCP polarization and µe f f is an effective
magnetic permeability given by the two eigenvalues of [µ]t :

µ±
e f f = µ0(µ± κ) (10)

The polarization handedness is defined with regard to the
internal static magnetic field orientation, regardless of the
direction of propagation. Therefore, if one of these waves is
fully reflected (by a perfect conducting plate perpendicular
to propagation, for instance), the handedness of the circular
polarization, as well as the value of the propagation con-
stant, will remain unchanged, giving rise to an stationary
wave.

The values of k± for an isotropic lossless ferrite with
RCP and LCP polarization are shown in Fig. 1 for a fer-
rite magnetized under the usual technological condition of
H0<4πM0. A forbidden frequency range for RCP waves, in
which k+ becomes imaginary, is given by:

ωH <ω<ωH + ωM (11)

If magnetic losses are considered, the transformation
(6)must be introduced in the expressions for µ±

e f f . This
leads to two complex propagation constants, the propaga-
tion constant of the RCP wave showing a typical resonant
behavior with high resonance losses (see Fig. 1).
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Figure 1. Normalized complex propagation constant for the RCP
wave (10)in a lossy ferrite with ωM = 1.5ωH and γ�H = 0.1ωH
(solid lines). The normalized phase constants for the two RCP and
LCP waves in a lossless ferrite with ωM = 1.5ωH and γ�H = 0 are
also shown (dashed lines).

The most relevant effect related to plane wave propa-
gation in a longitudinally magnetized ferrite is the non-
reciprocal Faraday rotation of the plane of polarization of
a linearly polarized wave. A linearly polarized wave is not
a solution of (7)and (8), but it can be obtained by adding
two contra-rotating RCP and LCP waves of equal ampli-
tude. Since the phase constants of these two waves are not
equal, the result is a rotation of the plane of polarization
of the linearly polarized wave. The rotation angle after the
wave has advanced a length �z is given by:

θ = 1
2

(k− − k+)�z (12)

When a linearly polarized wave is reflected backward,
the hand of rotation of the polarization plane remains un-
changed. Thus, the planes of polarization of the incident
and the reflected waves will be different at a given distance
from the plane of reflection. Therefore, the Faraday rota-
tion in ferrites is non-reciprocal. If losses are considered,
the RCP and the LCP waves have different attenuation
constants. This leads to an unequal change in the ampli-
tudes of the RCP and LCP waves, which causes Faraday
elipticity of the original linearly polarized wave. Detailed
treatments of Faraday rotation and elipticity may be found
in the literature cited in the introduction.

Transverse Magnetization. Let us suppose now an uni-
form plane wave with a space-time dependence of the kind
exp j(−kx+ ωt) (this factor will be suppressed in the fol-
lowing) and an internal static magnetic field directed along
the z—axisH0 = H0az. The solution to (7)and (8)with these
restrictions leads two independent uniform plane waves
withe the E field linearly polarized. One of them is a
TEM wave with the magnetic field parallel to H0. Thus,
there is no interaction between the RF field and the elec-
tronic spins, and the effective magnetic permeability is
µe f f = µ0µz. This solution is called the ordinary wave,
with phase constant k2 = ω

√
εµ0µz. There is also an ex-

traordinary wave, whose propagation constant is still given
by (9), but with µe f f given by:

µe f f = µ0
µ2 − κ2

µ
(13)

Figure 2. Normalized phase and complex propagation constants
for the extraordinary waves in the infinite lossless (dashed lines)
and lossy (solid lines) ferrites of Fig. 1 with transverse magneti-
zation.

The extraordinary wave is a TE wave with the electric field
polarized parallel to H0 and the magnetic field elliptically
polarized in the plane perpendicular to H0. The values of
the propagation constants of the extraordinary waves for
the lossless and the lossy ferrites of Fig. 1 are shown in Fig.
2. For the lossless extraordinary wave there is a frequency
forbidden range for which k becomes imaginary, defined by:√

ωH (ωH + ωM)<ω<ωH + ωM (14)

The presence of an ordinary wave and an extraordinary
wave with orthogonal polarization, recalls the birrefrin-
gence of uniaxial crystals. This birrefringence can be used
in the design of microwave devices such as half and quarter
wave plates, polarizers, etc.

Magnetization at Any Angle. In this case, the phase con-
stant can still be written as in (9), with an effective mag-
netic permeability that depends on the angle θk between
the static magnetization and the wave phase velocity. The
final expression for this effective permeability is [10]:

µe f f (θk)

= µ0

2 + ( µt
µz

− 1)sin2
θk ±

√
( µt
µz

− 1)2sin4
θk + 4 κ2

µ2 cos2θk

2( sin2θk
µz

+ cos2θk
µ

)

(15)

with µt = (µ2 − κ2)/µ. For a fixed frequency, a plot of k, θk
in polar coordinates, with k = ω

√
εµe f f , gives the phase

constants corresponding to the two solutions of (15). These
curves can are the isofrequency curves of the dispersion
equation ω = ω(k, θk) in the k, θk plane. The group velocity
vg = ∇kω is perpendicular to these curves at each point.
Therefore, for arbitrary θk the direction of the optical ray
is not parallel to the direction of propagation of the wave
fronts.

Nonreciprocity. One of the basic theorems of electro-
magnetism is the Lorentz Reciprocity Theorem. It applies
to any linear and causal media whose constitutive rela-
tionships can be described by symmetrical frequency de-
pendent dielectric permittivity and/or magnetic permeabil-
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ity tensors. As it was already mentioned, since the tensor
magnetic susceptibility (1)is not symmetric, this is not the
case for ferrites. In fact, many of the practical applications
of ferrites in microwave technology, such as circulators or
isolators, arise from this non-reciprocal behavior. However,
there is still possible to re-formulate the reciprocity theo-
rem in a form that is applicable to ferrite media. Follow-
ing Harrington [16] and McIsaac [17], we will start from
Onsager symmetry relations, which states that any tensor
macroscopic susceptibility of a causal and linear medium
must be equal to its transpose after reversal in time of all
the physical relevant quantities. For an externally magne-
tized ferrite, taking into account that the static bias field
changes of sign after reversal in time, we conclude that the
tensor magnetic susceptibility of a ferrite (1)must equal to
its transpose after a change of sign of the static biasing
field. From this conclusion, we can directly state the reci-
procity theorem for ferrite media:∫ ∫

(E×H′ −E′ ×H) · dS =
∫ ∫ ∫

(E′ · J−E · J′)dV (16)

where the physical quantities must be reinterpreted as fol-
lows: E, H and E′ , H′ are two independent electromagnetic
field configurations produced by source current densities J
and J′ respectively,at frequencyω in the same medium con-
taining ferrites, except that the medium in which the prime
quantities are defined has reversed static magnetization:
H′

0 = −H0. The surface integrals on the left hand side of
(16)are taken over any surface containing the source cur-
rent densities included in the volume integral on the right
side. This generalized reciprocity theorem is useful for the
analysis of mode orthogonality in ferrite loaded waveg-
uides, as well as in the analysis of ferrite loaded waveguide
junctions.

MICROWAVE PROPAGATION IN FERRITE LOADED
WAVEGUIDES

In the preceding section microwave propagation in un-
bounded ferrite media has been analyzed. Many of the
studied effects, such as Faraday rotation and nonreciproc-
ity, also appear when the RF field propagates along waveg-
uides. Moreover, the microwave propagation along ferrite
loaded waveguides presents new interesting and useful ef-
fects, such as unidirectionality, field displacement, propa-
gation of complex and backward modes, slow magnetostatic
waves, and many others.

In the following, we will choose the z—axis as the waveg-
uide axis, and a space time dependence of the kind exp
j(ωt − kz) will be supposed. The mode phase constant k will
be, in general, a complex number k = β − jα. Both β and α
will be chosen real without loss of generality, and the factor
exp j(ωt − kz) will be suppressed in the following.

Unidirectional and Bidirectional Modes

A mode with phase constant k which has not a symmet-
rical pair with the opposite phase constant −k is called
unidirectional. All lossless and reciprocal waveguides are
bidirectional. This is not the case for ferrite loaded waveg-
uides,because magnetized ferrites are nonreciprocal media

which are not invariant after time reversal. The presence
of unidirectional modes of propagation in ferrite loaded
waveguides is useful in many microwave devices, such as
isolators and nonreciprocal phase shifters. However, fer-
rite loaded waveguides which remain invariant after some
symmetry transformations are bidirectional, i.e. unidirec-
tional modes can not propagate along these waveguides.
McIsaac [18] and, more recently, Dmitriyev [19] have in-
vestigated these symmetries. Mc.Isaac [18] concludes that
bidirectionality is ensured if the waveguide remains the
same after one or more of the following transformations:

� Reflection in a plane perpendicular to z axis.
� Rotation by 180◦ about an axis perpendicular to the z

axis.
� Inversion at any point

In performing these transformations, the pseudo-vectorial
nature of the static bias field H0 has to be taken into ac-
count (i.e. H0 remains the same after spatial inversion and
after reflection in a a perpendicular plane, but changes of
sign after reflection in a parallel plane). In particular, any
ferrite loaded waveguide with longitudinal magnetization
must be bidirectional, because this waveguide remains un-
changed after reflection in a plane perpendicular to the z
axis

Bidirectionality does not imply that all the character-
istics of the modes remain unchanged when the direction
of propagation is reversed. For instance, the energy dis-
tribution and/or the polarization of a pair of bidirectional
modes having the same but opposite phase constant may
be different. Moreover, although all modes in bidirectional
ferrite loaded waveguides must be bidirectional, not all the
modes in non bidirectional ferrite loaded waveguides are
unidirectional: Some of them, having the appropriate po-
larization, may be bidirectional.

Complex and Backward Modes

Complex modes in inhomogeneously filled lossless waveg-
uides were first reported by Tai in 1960 and by Carricoats
in 1965 [20]. Complex modes in lossless reciprocal waveg-
uides are characterized by a complex propagation constant
k = ±β± jα and appear in groups of four solutions, for which
all the possible combination of signs are allowed. How-
ever, in non reciprocal waveguides, unidirectional complex
modes with k = β ± jα may appear. For a single complex
mode, power flows in opposite directions along the differ-
ent media filling the waveguide, giving a zero net power
flux. Therefore, complex modes in lossless waveguides are
reactive modes. Complex modes have proven to be a very
important part of the spectra of ferrite loaded waveguides
[20] (in fact they were first reported in ferrite loaded waveg-
uides by Tai). In particular, all the unidirectional and reac-
tive modes in ferrite loaded waveguides must be complex
[21, 22].

Complex modes are closely related to backward modes
(i.e. modes with negative group velocity). In fact, a pair of
complex modes in lossless waveguides usually changes to a
pair of propagating forward and backward modes when fre-
quency varies [20]. Backward modes in the spectra of fer-
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rite loaded waveguides, mainly in the magnetostatic wave
region, have been widely analyzed (see, for instance, [8]).

Mode Orthogonality

Mode orthogonality in ferrite loaded waveguides was an-
alyzed in [23]. Applying the generalized reciprocity the-
orem (16)to two modes b fem,hm(x, y) exp j(ωt − kmz) and
b fe′n,h

′
n(x, y) exp j(ωt − k′

nz) of the actual waveguide and
the complementary waveguide (the complementary waveg-
uide is defined as the original one with the static magnetic
field reversed), the following relation is obtained:

(k′
n + km)

∫ ∫
(e′
n × hm − em × h′

n) · uz dxdy = 0 (17)

where the integral must be taken over the cross section
of the waveguide. This equation can be considered as a
general orthogonality relation since the integral must be
zero unless km = k′

n. This relation simplify for most practi-
cal situations, in which the static magnetic field is either
parallel or perpendicular to the waveguide axis. The ex-
plicit orthogonality relationships for these particular but
important cases can be found in [23].

Field Displacement Effects

It was pointed out above that electromagnetic wave prop-
agation in unbounded ferrites at an oblique angle with re-
spect to the magnetizing field usually implies that power
flux and phase velocity are not parallel. However, in a non-
radiating waveguide, both power flux and wave propaga-
tion are forced to be parallel to the waveguide axis. Thus,
this effect can not be present in non-radiating waveguides.
Instead, this tendency of energy to flow in a direction dif-
ferent from wave propagation may cause strongly unsym-
metrical accumulations of electromagnetic energy across
the waveguide section. This effect is usually nonreciprocal
and can be used in the design of microwave isolators and
phase shifters.

The Magnetostatic Approximation. Near the resonances
µe f f → ∞ and the effect of the Maxwell displacement cur-
rent may be neglected with regard to Faraday induction ef-
fects. This leads to the magnetostatic approximation. Tak-
ing into account that ∇ ·B = 0, a magnetostatic potential
H = −∇ψ is defined, which must satisfy:

∇ · ([µ] · ∇ψ) = 0 (18)

(in ferrite loaded waveguides, the nabla operator is re-
placed by ∇ → ∇t − jkuz. The solutions to (18), with the
appropriate boundary conditions, are the magnetostatic
modes of the waveguide. Magnetostatic surface and vol-
ume wave propagation in layered ferrite loaded structures
is extensively analyzed in [8]. Magnetostatic waves can be
also excited in microstrip and slot lines [24]. The main ap-
plications of magnetostatic waves in microwave technology
arises from its small wavelength. This result in broad ap-
plications in miniature controllable devices, such as delay
lines, filters, power limiters and signal to noise enhancers
[25].

Basic Properties of Ferrite Loaded Waveguide Junctions

A waveguide junction is characterized by its scattering ma-
trix Si, j. It is a well known fact that, if the materials filling
the junction are reciprocal, the scattering matrix must be
symmetrical. If the junction is nonreciprocal, this state-
ment must be modified as a consequence of the reformula-
tion of the reciprocity theorem (16). This modification leads
to the following relations between the scattering matrix el-
ements of a ferrite loaded junction and its complementary
(i.e., the junction with the biasing static magnetic field re-
versed):

Si, j(ω,H0) = Sj,i(ω,−H0) (19)

If the junction is also lossless, the scattering matrix
must be unitary (Si, jS.k, j = δi,k; where the rule of summa-
tion over all the repeated subindex has been used). Other
symmetries of the scattering matrix may be deduced from
the spatial symmetries of the junction (including the bias
field) [19].

The use of the scattering matrix symmetry properties
is useful in the design of many microwave devices, such
as isolators, phase shifters and circulators. The Y circu-
lator is perhaps the most useful and known nonrecipro-
cal junction. An Y circulator is a symmetrical three port
junction with some specific properties. A symmetrical three
port junction must have S1,1 = S2,2 = S3,3, S1,2 = S2,3 = S3,1

and S2,1 = S1,3 = S3,2. These relations are fulfilled by any
junction having a rotation symmetry axis of third order
and magnetized along this axis. The circuit theory of three
and N port circulators may be found in [6] and other text-
books. It can be shown that if a lossless, nonreciprocal and
symmetrical three port waveguide junction is matched (i.e.
S1,1 = 0), it is also an ideal Y circulator (i.e. S1,2 = 1 or 0, and
S1,3 = 0 or 1). If the magnetization of a nonreciprocal three
port Y circulator is reversed, the direction of circulation is
also reversed, as a consequence of (19).

FERRITE LOADED WAVEGUIDES FOR PRACTICAL
APPLICATIONS

In this section we will describe the most widely used ferrite
loaded waveguides. There are many classical textbooks and
papers, eg. [5], [2], [3], [6], [7], and more recently [9], [26]...
that describe these waveguides, as well as the most useful
microwave devices that may be designed using them. The
reader may use these and other texts for broadening the
information contained in this section.

Circular Waveguides with Longitudinal Magnetization

It is a well known fact of the theory of hollow waveg-
uides that the fundamental mode of the empty circular
waveguide is the TE1,1 mode, which is a double degenerate
mode with two perpendicular polarizations in the waveg-
uide cross section. This mode has a field distribution which
is almost TEM in the vicinity of the waveguide axis. Thus,
if a ferrite rod with longitudinal magnetization is placed
at the center of the waveguide (see Fig. 3), the two orthog-
onal and degenerate TE1,1 fundamental modes will inter-
act as a consequence of the Faraday rotation effect, giving
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Figure 3. Cylindrical waveguide with an inner centered ferrite
rod of longitudinal magnetization.

rise to two nondegenerate cicularly polarized RCP and LCP
modes (with the hand of polarization defined with respect
to the static bias field orientation). These modes can be
approximated by the same RCP and LCP modes of a cir-
cular waveguide with an inner isotropic rod with an scalar
magnetic susceptibility given by (10). In the same way, if
a linearly polarized wave with linear polarization enters
the ferrite loaded waveguide, this wave will experience a
Faraday rotation by an angle approximately given by (12),
where k+ and k− are now the phase constants of the RCP
and LCP ferrite loaded waveguide modes.

The phase constants, as well as the mode fields of the
two nondegenerate RCP and LCP ferrite loaded waveguide
modes were obtained analytically by Waldron in 1958. An-
alytical solutions, not only for the cylindrical waveguide
with a ferrite rod, but also for many other related struc-
tures, such as cylindrical waveguides loaded with ferrite
and dielectric tubes, may be also found in [4]. Modes in
this kind of ferrite loaded waveguides are not TE nor TM,
but becomes TE ad TM at cutoff [4], therefore modes are
named HE and EH depending on whether the magnetic
Hz or the electric Ez field dominates. At cutoff, HE modes
become TE and EH modes become TM.

RCP modes in ferrite filled circular waveguides present
an interesting behavior. For such modes, the effective
transverse permeability is approximately given by (10), be-
coming negative in some frequency band (see Fig. 1). How-
ever, the longitudinal permeability is µ0>0. This combi-
nation of negative/positive transverse/longitudinal perme-
ability gives rise to an anti-cutoff behavior [27]: the RCP
mode is evanescent when the empty waveguide is above
cutoff, and becomes propagative when the waveguide ra-
dius decreases, so that the empty waveguide is at cutoff.
This anti-cutoff behavior appears for the RCP mode in the
region of negative µ+. Outside this frequency band the
mode presents a regular behavior, becoming evanescent
when the waveguide radius decreases.

Ferrite loaded circular waveguides with longitudinal
magnetization are extensively used in Faraday rotation
devices, based on the aforementioned rotation of the po-
larization plane of a linearly polarized wave. The most
known Faraday rotation device is the four port circulator,
described in many textbooks. Faraday rotation may be also
used in the design of magnetically tuned variable attenu-
ators, isolators and phase shifters (see for instance [9] and

references therein). In the first years of the microwave fer-
rite technology, much effort was devoted to develop Fara-
day rotation circulators and other microwave devices with
cylindrical geometry. In the following years, however, the
Y-junction circulators, as well as phase shifters and atten-
uators in rectangular and/or planar technology were found
to be smaller, simpler and more appropriate for most ap-
plications, and the research effort turns on these devices.

E-plane Transversely Magnetized Ferrite Loaded
Rectangular Waveguides

Fig. 4.a shows the variation of the magnetic field compo-
nents Hx and Hz of the fundamental TE1,0 mode in a hollow
rectangular waveguide. The magnetic field is circularly po-
larized around the y axis were |Hz| = |Hx|. This condition
occurs at two symmetrical positions, at a distance d of the
rectangular side walls, given by:

d = a

π
cot−1(

√
4a2

λ2
0

− 1) (20)

If an E-plane ferrite slab biased with a static magnetic
field directed along the y axis is placed at a distance d of
one of the lateral side walls (see Fig. 4.b), the wave propa-
gating in the positive (negative) direction along the z-axis
is right (left) handed polarized with respect to the static
bias field. Thus, we can expect that the forward (backward)
wave will see the effective magnetic permeability of the
slab µ+

e f f (µ−
e f f ), given by (10). Therefore, wave propaga-

tion will be unidirectional, with different phase constants
for the opposite directions of propagation. Moreover, since
the dependence ofµ+

e f f with H0 is much stronger than that
of µ−

e f f , the forward wave will be much more affected by
variations in the intensity of H0 than the backward one. If
the bias field is chosen so that µ+

e f f is positive the waveg-
uide can be used as a nonreciprocal phase shifter. If the bias
field is chosen at the resonance condition (ωH = ω), the for-
ward wave will see a resonant magnetic permeability and
will experience strong attenuation due to the resonance
losses. Then, the waveguide may be used as a resonance
isolator. If the bias field is chosen at the antirresonance
condition ωH = ω − ωM , the forward wave will see a perfect
diamagnet with µ+

e f f = 0, which imposes perfect diamag-
netic boundary conditions at both slab sides and, therefore,
zero tangential electric RF field at these boundaries. If an
absorber is located at the inner boundary of the slab, it
is expected that the forward wave will not be attenuated
whereas the backward wave will be strongly attenuated.
This configuration can be used as a field displacement iso-
lator.

The wave propagation characteristics along this waveg-
uide can be found analytically. The first published results
on this subject are due to of Kales (1953). Gardiol [28] gave
a general method for computing the propagation charac-
teristics of rectangular waveguides filled with an arbitrary
number of anisotropic slabs - including ferrite slabs - mak-
ing use of the transverse transmission matrix method. Re-
ferred to the geometry of Fig. 4.b, the transverse trans-
mission matrix of the i-region [Ti] is defined as the matrix
relating the tangential fields, Ey and Hz, at both sides of
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Figure 4. (a) Plot of the intensities of the magnetic field
components |Hx| and |Hz| of the fundamental TE1,0 mode
in a rectangular hollow waveguide (frequency 9 GHz,
a=23mm.), dashed lines: planes of circular polarization.
(b) Rectangular waveguide loaded with a transversely
magnetized ferrite slab at a plane of circular polarization
of the RF magnetic field

the i-th region of the waveguide. In a notation that becomes
apparent, we can write:

(
Ey
Hz

)
x=a

= [T3] · [T2] · [T1] ·
(
Ey
Hz

)
x=0

=
(
t1,1 t1,2
t2,1 t2,2

)
·
(
Ey
Hz

)
x=0

(21)

Since the lateral side walls are assumed to be perfect
conducting walls, the tangential electric field must van-
ish at these boundaries. This imply that t1,2 = 0, which can
be considered an implicit equation for the phase constant.
This method can be applied to rectangular waveguides with
any number of E-plane transversely magnetized ferrite
slabs and/or lossy dielectric slabs, thus providing a gen-
eral method for the analysis of ferrite isolators and phase
shifters in rectangular waveguide technology.

The nonreciprocal isolation and phase variation effects
of the E-plane ferrite loaded waveguide of Fig. 4.b may be
increased by placing a symmetrical ferrite slab with re-
verse magnetization at the remaining plane of circular po-
larization of the TE1,0 mode. Since at this plane the circular
polarization of the TE1,0 wave has opposite handedness, the
effect of the new ferrite slab adds to the effect of the former
one. A variation of this two-slabs ferrite loaded waveguide
is the latch ferrite toroid in rectangular waveguide (Fig.
5.a) proposed by Treuhaft (1958) for phase sifting applica-
tions. The main advantage of this configuration is that the
permanent magnet is substituted by a ferrite toroid mag-
netized at remanence by an electric current pulse, driven
by a single wire at the center of the waveguide (this wire
is perpendicular to the RF electric field and has a negli-
gible effect on microwave propagation). This structure is
also suitable for fast switching between the two opposite
nonreciprocal states of the waveguide. In the analysis of
this structure, the upper and lower branches of the fer-
rite toroid, which do not have substantial effect in phase
change, may be neglected leading thus to the simpler struc-
ture of Fig. 5.b. Gardiol [29] give expressions that trans-
form the geometry of Fig. 5.a in the geometry of Fig. 5.b
with a gain in accuracy. An alternative for reducing the
unwanted effects of the upper and lower branches of the
ferrite toroid is to place this into a rectangular grooved
waveguide, as proposed in [30]. If nonreciprocity is not de-
sired, a reciprocal phase shifter may be still obtained mag-
netizing both slabs of Fig. 5.b with parallel and equal static
magnetic field. This structure is symmetric after inversion
at a point in the waveguide axis and, therefore, it is bidi-
rectional.

Regarding the anti-cutoff behavior previously reported
for ferrite-filled waveguides with longitudinal magnetiza-
tion [27], a similar behavior has been recently reported in
ferrite filled rectangular waveguides with transverse mag-
netization [31]. Since both configurations show backward-
wave characterististics, they seem to be good candidates for
left-handed media simulation in a waveguide environment
[32].

Other Useful Cylindrical and Rectangular Ferrite Loaded
Waveguides

Although the circular and the rectangular geometries
seems to be the natural geometries for longitudinal and
transverse magnetization, respectively, there are also some
useful devices which use transversely magnetized circu-
lar waveguides and longitudinally magnetized rectangu-
lar waveguides. Similar effects to those reported above for
rectangular waveguides are present in cylindrical waveg-
uides loaded with latch ferrite tubes magnetized in the
azimu-tal direction. The dual-mode ferrite phase shifters
include latch and transversely magnetized circular waveg-
uide sections [33]. A widely used ferrite loaded rectangular
waveguide with longitudinal magnetization is the Reggia-
Spencer phase shifter [34], which consists of a ferrite rod
with longitudinal magnetization placed at the center of
a rectangular waveguide. If the dimensions of the hol-
low waveguide only allows for the propagation of the first
TE1,0 mode, Faraday rotation can not take place. Instead,
a strong variation of the wave phase constant with the ap-
plied static magnetic field occurs. Like all waveguides hav-
ing longitudinal magnetization, the Reggia-Spencer phase
shifter is bidirectional, therefore the phase shift is recipro-
cal.

FERRITE LOADED MICROSTRIPS, SLOT LINES AND FIN
LINES

After the middle of the 1960s, when planar microwave in-
tegrated circuits became a viable technology, ferrite loaded
microstrips and slot lines began to be investigated as an
alternative to traditional ferrite loaded waveguides for the
design of reciprocal and non reciprocal phase shifters [35],
isolators [36] and other useful devices, which have been
summarized in some classical review papers [26] and text-
books [9]. Later, when fin lines emerged as an useful alter-
native for planar technology in millimeter wave circuits,
ferrite loaded fin lines [37], [38] also began to be investi-
gated.
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Figure 5. (a) Rectangular waveguide loaded with a latch
ferrite toroid. (b) Rectangular waveguide loaded with two
oppositely magnetized ferrite slabs at the planes of circu-
lar polarization of the r.f. magnetic field.

Figure 6. Parallel plate waveguide filled by a multilayer medium
including one or more ferrite slabs (ε(y) and [µ](y) are piezewise
constant functions of y)

The Ferrite Loaded Parallel Plate Waveguide

Before considering ferrite loaded standard planar trans-
mission lines, it will be useful to analyze the much simpler
ferrite loaded parallel plate waveguide of Fig. 6. It has been
shown [26] that for magnetization parallel to propagation,
these waveguides supports a quasi-TEM mode, and that
the ferrite layers may be characterized by an effective per-
meability given by (13). For magnetization perpendicular
to both, the direction of propagation and the plane of the
waveguide, the ferrite layers may be again characterized
by the scalar effective permeability (13), but the field is
no longer TEM due to birrefringence effects. Finally, for
magnetization perpendicular to propagation and parallel
to the waveguide plane, there is almost no interaction be-
tween the static magnetic field and the RF field, and the
ferrite layers are characterized by the scalar permeabil-
ity µz. Near the forbidden frequency range, the analysis
becomes more complicated, due to the apparition of mag-
netostatic modes. Magnetostatic modes in parallel plate
ferrite loaded waveguides have been extensively analyzed
in [8] and references therein.

Ferrite Loaded Microstrip Lines

Microstrip line (see Fig. 7.a) is the most used waveguide in
planar technology. Although exact methods of analysis are
now available, considerable insight on the physical behav-
ior of ferrite loaded microstrip lines can be obtained from
the well known parallel plate microstrip model (see Fig.
7.b). In this model, the microstrip line is substituted by a
section of parallel plate waveguide between two magnetic
walls. This section is slightly wider than the microstrip, in
order to incorporate the effects of the fringing fields. The
parallel-plate waveguide model for the microstrip line is
valid provided there is not radiation leakage through sur-
face waves excited at both sides of the microstrip.

Microstrip with Longitudinal Magnetization. Using the
model of Fig. 7.b and the results reported above, the quali-
tative behavior of ferrite loaded microstrip lines can be de-
duced - at least qualitatively - from the analysis of a section
of parallel plate waveguide loaded with one or more mag-
netic slabs with the effective magnetic permeability (13),
bounded by two perfect magnetic walls. This model pre-
dicts a bidirectional quasi-TEM fundamental mode, with
a phase constant which is a function of the biasing mag-
netic field. The same qualitative results are provided by
more accurate quasi-TEM analysis of the actual microstrip
line, using either the effective permeability (13)[26], or the
tensor magnetic permeability (1) [39], [40]; or by a full
wave analysis that will be discussed later in this article.
The main application of microstrip lines with longitudi-
nal magnetization is in phase shifting by meander lines,
a design that minimize the size of the device [35]. The
phase variation with the applied magnetic field may be
increased if strongly coupled quarter wave meander line
sections are used. These structures provides strong nonre-
ciprocal phase shifting [35] were nonreciprocity is due to
the coupling effects.

Transversely Magnetized Microstrip Lines. Along this sec-
tion we will consider the two orthogonal magnetizations,
perpendicular and parallel to the ground plane. For the
second case, since the RF magnetic field is parallel to the
static bias field, there is no interaction between the bias
and the RF fields in the parallel plate waveguide model
of Fig. 7.b. Therefore, a very small interaction, due only to
fringing fields, is expected in the actual microstrip line. In
fact, only a slightly nonreciprocal phase shift is observed
in practical devices.

Of much more interest is the microstrip line with mag-
netization perpendicular to the ground plane. First, a sin-
gle microstrip line over a grounded ferrite slab will be con-
sidered. Considering anew the parallel plate waveguide
model of Fig. 7.b, Hines [36] showed that such waveguide
supports a non-reciprocal (though bidirectional) quasi-
TEM mode, with a strong field displacement towards
one of the magnetic walls. For invititely wide strips, the
phase constant of this mode is given by k = k0(

√
εrµaz +

j(κ/µ)
√
εrµax), and its imaginary part accounts for the field

displacement. The sign of this imaginary part - and, there-
fore, the direction of the field displacement - changes when
the direction of propagation, or the static magnetization,
is reversed (interestingly, k · k = k2

0εr(µ
2 − κ2)/µ i.e. k · k

is the same as for a nonuniform plane wave in a slab of
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Figure 7. (a) Microstrip line on a multi-
layer ferrite loaded substrate (as in Fig.
6 ε(y) and [µ](y) are piezewise constant
functions of y). (b) Parallel plate waveg-
uide model for the microstrip line of (a).

effective permeability µe f f (13)). Although this analysis
has been made for a specific configuration, similar qualita-
tive results can be expected for multilayered ferrite loaded
microstrip lines. Hines modes, also named edge modes be-
cause the RF field is mainly concentrated in the vicinity of a
microstrip edge, are useful for the design of wideband edge
mode isolators and nonreciprocal phase shifters [36], [42],
[43]. For edge mode isolators, for instance, a small piece
of absorbing material is placed near one of the microstrip
edges, so as only one of the Hines modes - that with the
appropriate direction of propagation - is attenuated. The
analysis of this kind of structures is usually made by ap-
proximate models. More recently, the spectral domain inte-
gral method has been successfully applied to the analysis
of edge mode isolators without approximations [44].

Ferrite Loaded Slot Lines and Fin Lines

Slot lines, Fig. 8.a, and coplanar waveguides are useful al-
ternatives to microstrip lines in the design of microwave
integrated circuits. In millimeter wave technology, fin lines
in rectangular waveguides, Fig. 8.b, also are a good al-
ternative for integration which prevents radiation losses.
By adding ferrite layers to these waveguides, many of
the described effects for ferrite loaded microstrips may
be achieved. Since the RF magnetic field in slot-lines and
fin-lines is mainly concentrated in the slot and directed
perpendicular to the air interface, it is expected that the
strongest effects for transversely magnetized slot-lines and
fin-lines will occur for magnetization parallel to the sub-
strate layers. Such kind of structures have been proposed
for the design of field displacement isolators and phase
shifters [26]. A millimeter wave field displacement fin line
isolator was proposed in [37]. Transversely magnetized
slot-lines and fin-lines for nonreciprocal phase shifting ap-
plications have been analyzed in [46], [47], [41] and [48].
Applications of fin-lines with longitudinal magnetization
have been also investigated [38].

Methods of Analysis of Ferrite Loaded Quasi-Planar
Layered Structures

With a few exceptions, quasi-TEM analysis usually pro-
vide accurate enough results for the analysis of conven-
tional microstrip and coplanar or slot lines. However, this
analysis is usually not suitable for these structures when
they are ferrite loaded. In fact, quasi-TEM modes are by
definition bidirectional and reciprocal, and therefore the
quasi-TEM analysis can not take into account many of the

most relevant physical effects in ferrite loaded transmis-
sion lines. Quasi-TEM analysis in its standard form is re-
stricted to longitudinally magnetized lines [39], [40]. More
recently, however, some attempts have been made in or-
der to generalize this analysis to transversely magnetized
structures [45]. Nevertheless, in general, planar and quasi-
planar ferrite loaded transmission lines need of a full-wave
analysis.

With regard to numerical techniques, spectral domain
analysis (SDA) is by far the most widely used technique
for the analysis of ferrite loaded strip and/or slot struc-
tures ([39], [40], [41], [44], [47], [48], [41] and [49]). Funda-
mentals of SDA may be found in many textbooks, as that
of Misherkar-Shyakal [50]. SDA is specially well suited for
the analysis of microstrips and/or slot- and fin-lines on pla-
nar single- or multilayer substrates, because of the trans-
lational symmetry of these substrates. Since the SDA ap-
plied to microstrip or microslot structures is adequately
described in [50] and other textbooks, we only briefly de-
scribe here the main specific characteristics of the SDA
when is applied to ferrite loaded microstrip and/or mi-
croslot waveguides. The main difficulty in the application
of the SDA to ferrite loaded microstrip or microslot lines on
infinite planar substrates is the determination of the spec-

tral domain Green’s function dyad
°
G(kx, kz) which relates

a surface current source Js = Js,0 exp − jkxx exp − jkzz in
the plane of the structure, with the r.f. tangential electric
fieldEt = Et,0 exp − jkxx exp − jkzz (Et = (Ex,Ez)t) over the
same or other parallel plane:

J0 = °
G(kx, kz) ·Et,0, (22)

General methods for the computation of the spectral
Green’s dyad in multilayered ferrite loaded substrates (in
fact in general layered bianisotropic substrates) are re-
ported in [51] and [52]. The SDA may be also applied to
boxed strip- and fin-line structures. In this case the inte-
gral Fourier transform of the field and currents must be
substituted by a Fourier series transform in an equivalent
periodic structure. For magnetized ferrite layered media in
rectangular metallic boxes this imposes an important re-
striction: Strictly speaking, the SDA can only be applied to
substrates with static magnetization perpendicular to the
lateral side walls. In any other case, due to the properties of
the magnetic field after spatial reflection, it is not possible
to find an equivalent periodic structure with translational
symmetry suitable for the application of the series Fourier
transform. Therefore, the application of the SDA to boxed
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Figure 8. (a) Slot line line on a mul-
tilayer ferrite loaded substrate. (b) fin-
line with a multilayer ferrite loaded sub-
strate. As in Figs.6 and 87 ε(y) and [µ](y)
are piezewise constant functions of y.

structures magnetized in any direction different from the
aforementioned one, must be considered only as an approx-
imation. The SDA, as described previously, only applies to
structures with strips or fins of negligible thickness. Struc-
tures with non-negligible fin or strip thickness may be an-
alyzed using a mode matching technique in the transverse
direction,which also implies an SDA [53].A similar method
may be applied to boxed structures with asymmetrical rect-
angular piecewise boxes [54]. Finally, the SDA also applies
to structures having fully or partly lossy strips or fins, pro-
vided that these lossy strips or fins can be described by a
suitable surface impedance, defined over the strip or the
fin region [44].
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