
SKIN EFFECT

INTRODUCTION

The term skin effect is used to indicate that electromag-
netic waves penetrate only a small distance into a conduc-
tor. Equivalently, the skin effect is the phenomenon that
time-varying current densities are concentrated in a thin
layer near the surface or skin of a conductor. The current
densities are concentrated at the side of the conductor ex-
posed to the source of these currents. These currents are
often referred to by the term eddy currents.

For time-harmonic fields the amplitude of these fields
decays exponentially with the distance from the surface.
The distance over which the amplitude of the fields, and
hence of the current density, decreases by a factor e is called
the skin depth δ given by

Thus, the layer in which the fields are concentrated be-
comes thinner when the frequency f = ω/(2π) increases, the
permeability µ increases, or the conductivity σ increases.
In the limit of perfect conductors, fields and current density
are concentrated in a vanishingly thin layer at the surface
of the conductor.

If a current flows in a conductor with finite conductivity
this will cause a voltage drop along the flow of the current.
The ratio of the voltage drop to the current is the internal
impedance of the conductor. If the current density is con-
centrated in a thin layer at the surface of the conductor this
internal impedance, expressed per unit square, that is, for
a unit length and a unit width of the conductor, is called
the surface impedance Zs. For a cylindrical wire with ra-
dius r this amounts to an internal impedance Zs/(2πr) per
unit length. This surface impedance Zs is given by

If Zs is decomposed in its real and imaginary part as Zs = Rs

+ jωLi then Rs is the surface resistance and Li the internal
inductance per unit square. The surface impedance also
expresses the ratio between the tangential electric field
and tangential magnetic field at the surface of a conductor.

For a conductor several skin depths thick, the electro-
magnetic fields will not penetrate through the conductor.
For a hollow conductor, such as a coaxial cable, this means
that the internal electromagnetic field is decoupled from
the external field. This is the electromagnetic shielding
property of conductors. Since for copper at 60 Hz the skin
depth δ = 8.5 mm, the skin effect is not only important at ra-
diofrequencies but also plays an important role for the de-
sign of power transmission lines, electrical machines, and
electrification of railways. Because of the concentration of
the current density at the surface of the wires, the Ohmic
losses per unit length and voltage drops per unit length are
substantially higher than what would be expected from a
uniform distribution of the current density over the cross

section of the wire. This concentration also imposes a limi-
tation on the useful diameter of wires for power transmis-
sion.

The dissipated power per unit length Pd by a current I
in the skin layer is given by

It is thus seen that for a given current this dissipation
increases with frequency and permeability and decreases
with conductivity.

Strictly speaking, the previous expressions for δ, Zs, and
Pd are valid only in good conductors with planar surfaces.
However, if the radii of curvature of the conductor surface
are large compared to the skin depth δ, these formulas are
still good approximations. Table 1 shows the skin depth
δ and surface resistance Rs for a number of conductors.
Except for iron, the relative permeability µ/µ0, with µ0 the
free-space permeability, is equal to one for all metals.

When the surface of the conductor is rough, the losses
inside the conductor will increase because the surface re-
sistance increases. Porosity of the surface also will increase
the surface resistance considerably.

To take the skin effect into account in numerical electro-
magnetic simulations, two approaches are possible. First,
one can replace the boundary condition of a vanishing
tangential electric field for a perfect conductor by an
impedance boundary condition relating the tangential elec-
tric field to the tangential magnetic field through the sur-
face impedance. In most cases this is an approximation,
but it can be a very good one. A second approach is to also
perform a simulation of the fields inside the conductor. For
numerical techniques such as finite-element techniques,
finite-difference techniques, or volume integral equation
techniques, which discretize the volume of the conductors,
a fine discretization is needed in order to accurately model
the exponential decay of the fields inside the conductors.
For boundary integral equation techniques the second ap-
proach does not entail extra complications.

THEORY

Plane Interfaces

To study the skin effect quantitatively consider the struc-
ture of Fig. 1, consisting of a conductor with planar inter-
face that occupies the semiinfinite region z > 0 and that
is characterised by the material parameters ε, µ, and σ.
The region z < 0 is assumed to be free space with param-
eters ε0 and µ0. Outside the conductor and in the absence
of sources, the electromagnetic fields in time-harmonic
regime ejωt satisfy the Maxwell curl equations

∇ × H = jωε0E (5)

Inside the conductor the fields satisfy

∇ × H = ( jωε + σ)E ≈ σE (7)
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In the last equation the displacement current term
was neglected compared to the conduction current
term, which is allowed for all practical conductors
at practical frequencies. For example, in platinum
ωε becomes comparable to σ only at 1.5 PHz. Tak-
ing the curl of Eqs. (4) and (<xref target="W4949-
mdis-0006" style="unformatted">6</xref>), substitut-
ing Eqs. (5) and (<xref target="W4949-mdis-0007"
style="unformatted">7</xref>) and using the Maxwell
divergence equations ∇ · E = ∇ · H = 0, both in free space
and in the conductor, shows that the electric field in free
space satisfies the Helmholtz equation

with k2
0 = ω2ε0µ0 and in the conductor the Helmholtz equa-

tion

Now illuminate the conductor by a plane electromagnetic
wave (see Fig. 1). Assume that this plane wave has TE
(transverse electric) polarization, that is, according to the
coordinate system of Fig. 1 the electric field has only a
component in the y-direction. This incident electric field
is given by

where uy the unit vector in the y-direction. Substituting
in Eq. (8) and taking into account an angle of incident θi

yields kx = k0 sin θi and ky = k0 cos θi. From Eq. (4) the
incident magnetic field is then found to be

where ux and uz unit vectors in x- and z-direction respec-
tively. The incident plane wave will give rise to a reflected
plane wave in free space and a transmitted plane wave in
the conductor. All these plane waves will have the same
phase variation e− jkxx in the x-direction along the interface

and they will all be TE polarized. This means that the re-
flected plane wave takes the form

with R the reflection coefficient, which is still to be deter-
mined. The transmitted electric field in the conductor takes
the form

Substituting in Eq. (9) shows that f(z) satisfies

Because kx = k0 sin θi is of the same order of magnitude
as k0, we neglect the term k2

x in the previous equation
on the same grounds for neglecting ωε in Eq. (7). Taking
into account that f(z) should remain bounded for z → +∞
yields f(z) = Te−(1+j )z/δ with δ the skin depth defined in Eq.
(1). From Eqs. (14) and (6) the fields in the conductor are
thus found to be

where T the transmission coefficient. It is seen that the
amplitudes of the fields decrease by a factor of e when they
propagate over a distance perpendicular to the interface
equal to the skin depth δ. The reflection and transmission
coefficients follow from imposing the continuity of the tan-
gential fields, that is of Ey
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Figure 1. Incident plane electromagnetic TE wave on a plane
conductor with conductivity σ and permeability µ. The angle of
incidence is θi.

and Hx

at the interface z = 0. The solution of this set of equations
is

and

At the interface z = 0 the relation between the tangential
electric field Et and the tangential magnetic field Ht can
be expressed as

where Zs the surface impedance defined in Eq. (2) and un =
−uz for the configuration of Fig. 1. Indeed from Eq. (16) it
follows that Et = TE0uye

− jkzz and from Eq. (17) that Ht =
−1 − j/ωµδ TE0uxe

− jkxx and hence that Zs is given by Eq.
(2).

The current density J in the conductor is σE and from
Eq. (16)

The total current per unit length I flowing in the conductor
from the integration of Eq. (23) over all z > 0 is given by I
= Js · uy with

where the notation Js indicates that this can be viewed
as an equivalent surface current density. When this cur-
rent flows across the conductor in the y-direction over a
unit distance it causes a voltage drop V equal to Et(z =
0) × uy = TE0e

− jkxx. The ratio V/I can be seen as the inter-
nal impedance per unit square of the conductor and is given
by the surface impedance Zs. The real part of the surface
impedance is the surface resistance Rs and the imaginary
part the internal reactance ωLi which are both equal to
1/(σδ). This means that the surface resistance can be seen
as the resistance per unit square when all the current is ho-
mogeneously distributed over and concentrated in a layer
with thickness δ at the surface of the conductor, that is, as
the dc resistance of a planar conductor with thickness δ.

The dissipated power Pd in the skin layer, per unit dis-
tance in the x-direction, due to ohmic losses is given by

From Eq. (23) it follows that

which allows one to recast Eq. (25) as

Pd = |I|2
2σδ

= 1
2

Rs|I|2 (27)

This shows that Pd can be seen as the power dissipated
per unit length in the surface impedance by the surface
current I.

The skin depth δ and the surface impedance Zs are inde-
pendent of kx = k0 sin θi, that is, independent of the angle of
incidence of the plane wave. The previous derivations can
also be repeated for a TM (transverse magnetic) polarized
plane wave leading to the same conclusions. Only the ex-
pressions Eqs. (20) and (<xref target="W4949-mdis-0021"
style="unformatted">21</xref>) for R and T will change.
This means that the previous analysis remains valid for
arbitrary plane waves incident on the conductor surface.
The amplitudes of the fields inside the conductor will al-
ways decrease by a factor e after having traveled a distance
δ given by Eq. (1), and the surface impedance Zs is always
given by Eq. (2) independent of the angle of incidence. Since
an arbitrary incident field can always be expressed as a su-
perposition of plane waves, these conclusions remain valid
for arbitrary illuminations of the conductor. For more on
the plane-wave interaction with conductors, we refer the
reader to Stratton (1).

Curved Interfaces

To investigate the effect of curvature on the penetration
of electromagnetic fields in a conductor, consider the struc-
ture of Fig. 2 consisting of a round wire, with radius r0, con-
ductivity σ, and permeability µ stretched along the z axis
(see also Ref. 2). It is assumed that some time-harmonic
z-directed current flows inside the wire that depends only
on the radial coordinate r. Since J = σE, it follows from Eq.
(9) that the longitudinal current density Jz satisfies the
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Figure 2. Round wire with radius r0, conductivity σ and perme-
ability µ stretched along the z-axis.

equation

A general solution of this equation is Jz = AJ0[(1 − j)r/δ]
+ BY0[(1 − j)r/δ] with J0(x) the Bessel function and Y0(x)
the Neumann function of order zero and argument x. Since
the current density needs to remain finite at the center of
the wire, B should be zero. If Jz, at r = r0, is denoted by Jz,0

then Jz can be expressed as

In Fig. 3 |Jz/Jz,0| is shown for different values of a = δ/r0

and compared with

for a planar conductor with r0 −r the distance from the
surface [see Eq. (23) with a change of coordinates]. One
notes that for r0 > 7δ there is a good agreement between
both results. This means that for r0 > 7δ the conductor
can be regarded to be planar (i.e., the curvature can be
neglected) with respect to the skin effect.

The total current I flowing inside the wire is given by

The voltage drop V per unit length is given by Ez = Jz/σ at
r = r0 or

From Eqs. (31) and (32) it follows that the internal
impedance per unit length of the wire is given by

Comparing Zi with Zs/(2πr0) gives an indication of the ra-
dius of curvature above which it is possible to use the sur-
face impedance Zs for a planar conductor to calculate the
internal impedance of a curved conductor. For a 10% er-
ror on Rs it is easily determined that r0/δ should be larger

than 5.5 and for the same error on ωLi, r0/δ should be larger
than 2.2. In (3) the results shown in Fig. 3 are compared
to spherically curved surfaces.

Thin Conducting Layer

Instead of a semi-infinite conducting space as shown in Fig.
1, consider a thin conducting layer with thickness d, con-
ductivity σ, and permeability µ. This thin layer between
z = 0 and z = d is embedded in free space. Assume fields
inside this layer that only depend on the z coordinate. Tak-
ing an x and y dependence into account will not change
the conclusions of this section. Assume also, without loss
of generality, that the electric field is oriented along the y
axis and the magnetic field along the x axis. If the displace-
ment current in the layer is neglected, the total current I
flowing in the conductor per unit length in the x direction
is given by I = Js · uy with

Js = uz × [H(z = d) − H(z = 0)]
= [Hx(z = d) − Hx(z = 0)]uy

(34)

Maxwell’s equations Eqs. (<xref target="W4949-
mdis-0006" style="unformatted">6</xref>)
and (<xref target="W4949-mdis-0007"
style="unformatted">7</xref>) relate the electric and
magnetic fields at z = d and z = 0:

Hx(z = d) = − j

Zssin[(1 − j)d/δ]

× {cos[
(1 − j)d

δ
]Ey(z = 0) − Ey(z = 0)}

(35)

Hx(z = d) = − j

Zssin[(1 − j)d/δ]

× {Ey(z = 0) − cos[
(1 − j)d

δ
]Ey(z = 0)}

(36)

From Eq. (34) it now follows that

I = − j{cos[(1 − j)d/δ] − 1}
Zssin[(1 − j)d/δ]

[Ey(z = d) + Ey(z = 0)] (37)

The voltage drop over a unit distance caused by the current
I is with good approximation given by V ≈ Ey(z = d/2) ≈
[Ey(z = d) + Ey(z = 0)]. This approximation is valid as long
as the conductor is thin compared to the wavelength in free
space. Hence, the internal impedance per unit square of the
thin layer is given by

Zi = V

I
= Zssin[(1 − j)d/δ]

2 j{1 − cos[(1 − j)d/δ]} = Zs

2 j
tan

(1 − j)d
2δ

(38)

This means that under the aforementioned restrictions a
thin conducting layer can be replaced with an infinitely
thin conducting sheet with impedance Zi.

In the low-frequency limit, that is, in the limit where
the thickness d of the layer is small compared to the skin
depth δ, one verifies that

Zi = 1
σd

(39)

In this case the current density is homogeneously dis-
tributed over the conductor and the internal impedance
becomes equal to the DC resistance of a planar conductor
with thickness d.
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Figure 3. Current density distribution in a conducting wire
(continuous lines) compared with the current distribution in a
plane conductor (dashed lines) for different values of a = r0/δ
where r0 is the radius of the wire and δ the skin depth.

At high frequencies, that is, when the thickness d of the
layer exceeds several skin depths δ, one verifies that

Zi = Zs

2
(40)

In this case all the current is concentrated in thin sheets
at the top and the bottom of the layer. Each of these cur-
rent sheets yields an internal impedance Zs. Since both
impedances are in parallel, the total internal impedance is
Zs/2.

A General Conducting Object

Consider a conducting object with surface S embedded in
free space. If the radius of curvature or the thickness of this
object is not too small compared to the skin depth δ then,
as described in Section 2.2, Equation (22) can be used to
express the relation between the tangential electric field Et

and the tangential magnetic field Ht . If this is not the case,
one can, in principle, still replace the object by a boundary
condition that relates Et and Ht at its surface. The most
general form of this relation is

Et(r) =
∫

S

=
Zs,tt(r|r′) · [un × Ht(r′)]dS′, (41)

where
=
Zs,tt(r|r′) is a planar dyadic function and where un

is the normal vector to the surface S. For high frequencies
=
Zs,tt(r|r′) will become Zs

=
Ittδ(r − r′) with

=
Itt the planar unit

dyadic. The dyadic function
=
Zs,tt(r|r′) takes the shape and

the material parameters of the object into account. It can
be derived using numerical techniques such as boundary
integral equations. For an example we refer to (4). Note
that the object can have an inhomogeneous material dis-
tribution.

Surface Roughness

Because of the increased surface area, the surface re-
sistance increases when the conductor has a rough sur-
face. For limited surface roughness the relative increase of
the surface resistance �Rs/Rs is proportional to the RMS
roughness ρ according to the empirical law

�Rs

Rs
= 0.29

ρ

δ
(42)

This law is valid up to ρ/δ ≈ 1.5, independent of the type of
material or frequency. At ρ/δ ≈ 3 the relative increase satu-
rates at �Rs/Rs ≈ 0.6 [see (4)]. Not only surface roughness
but also porosity of the surface will substantially increase
the surface resistance. The increase in resistivity will re-
sult in an increase of the dissipation according to the first
part of Eq. (3).

Numerical Simulations

In numerical electromagnetic simulation techniques the
finite conductivity is most easily taken into account by im-
posing the impedance boundary condition Eq. (22) instead
of Et = 0 for perfect conductors. The relation Eq. (22) can
also be expressed as

Et = ZsJs (43)

where Js is the current density concentrated at the surface.
Consider the electric field integral equation for perfect

conductors of the form

0 = lim
r → S

[Ei
t(r) +

∫
S

=
Gtt(r|r′) · Js(r′)dS′] (44)

where Ei(r) is an incident electric field and
=
Gtt is the

electric-electric Green dyadic. This integral equation is a
Fredholm equation of the first kind. For a conductor with
finite conductivity this integral equation is replaced by

ZsJs = lim
r → S

[Ei
t(r) +

∫
S

°
Gtt(r|r′) · Js(r′)dS′] (45)

which is a Fredholm integral equation of the second kind.
Inclusion of the surface impedance in the finite-element

method goes along the same lines as for integral equation
techniques. Consider the functional for a volume V with
surface S and internal sources J

F (E) = 1
2

∫
V

[(∇ × E) · (∇ × E) − k2E · E + 2 jωµE · J]dV

+ jωµ
∫

S
E · (un × H)dS

(46)

with un the unit normal pointing into V and k2 = ω2εµ. The
surface impedance is now taken into account by replacing
un × H in the surface integral term by ZsE.

The finite-difference time-domain technique is more
complicated because of the frequency dependence of Zs.
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Equation (22) has to be expressed in the time domain,
which involves a convolution integral

et(t) = un ×
∫ t

0

zs(t − τ)ht(τ)dτ (47)

where zs(t) is the inverse Fourier transform of Zs. After dis-
cretization with respect to time this convolution implies
that in principle the magnetic fields of all previous time
steps need to be remembered. However, several techniques
(5) have been developed to limit the number of field val-
ues that have to be stored. In these techniques the surface
impedance is approximated by a series of first-order ratio-
nal functions in ω.

When analyzing the eigenmodes of resonators, an im-
portant quantity is the quality factor of the resonances. If
the walls of the resonator consist of good conducting mate-
rial, the quality factor Q can be estimated very well from a
calculation of the eigenmodes in a resonator with perfectly
conducting walls followed by a perturbation analysis tak-
ing into account the wall losses due to the skin effect. If
Hm are the magnetic fields corresponding to a mode in the
resonator, then Q is given by

Q = 2
δ

∫
V

|Hm|2dV∫
S
|un × Hm|2dS

(48)

with V the volume of the resonator and S its surface (6).
For an eigenmode in a waveguide with conducting walls,

the skin effect will give rise to an attenuation of the eigen-
modes. Just as the quality factor for a resonator, the atten-
uation constant αm of an eigenmode can be estimated from
the fields Em and Hm of the eigenmode propagating in a
waveguide with perfectly conducting walls. If the waveg-
uide is oriented along the z axis, then αm is given by

αm = Rs

2

∫
c
|un × Hm|2dc∫

S
(Em × H∗

m) · uzdS
(49)

where S is the crosssection of the waveguide and c is the
contour cut out of the crosssection by the perfectly conduct-
ing walls. The attenuation of the eigenmode in dB/m is then
given by 8.69 αm.

In numerical simulations a thin conducting layer can be
replaced by an infinitely thin sheet with a sheet condition
given by

Et = Ziun × �Ht (50)

where Zi is as given by Eq. (38) and �Ht is the jump in the
tangential magnetic field over the sheet. The tangential
electric field Et remains continuous over the sheet.
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DANIËL DE ZUTTER

Ghent University, Ghent,
Belgium


