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WAVEGUIDE DISCONTINUITIES

Any deviation from uniformity along the longitudinal axis of a waveguide constitutes a discontinuity. Dis-
continuities are unavoidably present in any microwave circuit, either unintentionally or for the purpose of
performing a prescribed function. In the former case one usually tries to minimize the unwanted mismatching
due to the discontinuity, while in the latter case the discontinuity is instrumental in the design of a spe-
cific component. A typical example of the former category is a waveguide bend, while a metal diaphragm is
representative of the latter.

The electromagnetic (EM) field incident on a discontinuity is partly reflected and partly transmitted,
while reactive energy is stored in the proximity of the discontinuity. If lossy materials are present, some power
may be lost, and in case of open structures, some power may be radiated.

The electromagnetic analysis of a discontinuity involves the solution of Maxwell’s equations with appropri-
ate boundary conditions. Analytical techniques for the solution of boundary-value problems in electromagnetics
are presented and discussed in a number of classical textbooks, such as Refs. 1 2,3,4. Extensive discussion on
waveguide discontinuities and their general properties can be found in Refs. 5 and 6. With the exception of a
few simple cases, for which an analytical solution can be found, some sort of approximation, either analytical
or numerical, is necessary to express the solution of the electromagnetic problem.

The problem can be attacked using either rigorous or approximate approaches. Rigorous approaches differ
from approximate ones in that the exact solution can, in principle, be obtained with any degree of accuracy. In
contrast, the accuracy obtainable with approximate approaches cannot be pushed beyond intrinsical limits.

Although a number of rigorous methods have been developed for the solution of electromagnetic structures
and available computational resources are extremely powerful, rigorous solutions are often too cumbersome
for many practical purposes. Approximate solutions, though less accurate, may be more advantageous as they
are much simpler to achieve.

A large number of numerical methods for the analysis of waveguide discontinuities and, more generally,
for the solution of microwave boundary-value problems have been published. See, for instance, Refs. 7,8,9,10.

One of the most powerful and popular methods for solving waveguide discontinuities is the modal analysis
or mode-matching technique (11,12,13). Besides being a rigorous approach, it lends itself to a physical interpre-
tation of the electromagnetic field behavior due to the presence of the discontinuity and leads to the so-called
microwave network formalism. By virtue of the equivalence between waveguide modes and transmission lines,
the electromagnetic description of the discontinuity can be translated in terms of an equivalent network. The
full computation of the electromagnetic field in the structure is more than is usually required. A terminal
description of the discontinuity as seen from the waveguides connected to it is all that is necessary. This makes
it possible to express a complicated electromagnetic problem in terms of a more familiar circuit theory model.

The description of waveguide discontinuities is introduced on the basis of the modal analysis approach.
This leads to the generalized description of the discontinuity as a multiport network using impedance, admit-
tance, or the scattering matrix (or other matrix descriptions). General properties of waveguide discontinuities
are then presented, as is a categorization of various classes of waveguide discontinuities. The concept of
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2 WAVEGUIDE DISCONTINUITIES

Fig. 1. Generic, two-port waveguide discontinuity and its network representations. (a) waveguide discontinuity; (b) mul-
tiport description; (c) reduced two-port description.

interacting and isolated discontinuities, which is familiar to the microwave engineer but has no counterpart in
conventional circuit theory, is also illustrated by a specific example.

Description of Waveguide Discontinuities

Figure 1(a) depicts a generic discontinuity with two outputs. The structure consists of a central region bounded
by metallic walls, connected to two uniform waveguides. In the present discussion, the structure of Fig. 1(a) is
taken as an example, with the extension to more general cases, for example, multiple outputs and magnetic
walls, being straightforward. Two reference planes T1 and T2 define the boundary between the discontinuity
region and the input and output waveguides. Various types of obstacles, either lossless (perfectly conducting
or perfect dielectric materials) or lossy, isotropic or anisotropic, may be present in the discontinuity region.

When an electromagnetic field impinges on the discontinuity from one or both waveguides, part of the
associated energy is reflected, part is dissipated within the discontinuity, and part is transmitted to the other
waveguide. Reactive energy is stored in the discontinuity region and in the nearby waveguide region.

In most practical cases, what is required is just a terminal description of the discontinuity rather than
the detailed knowledge of the electromagnetic field distribution within the discontinuity. It is worth recalling
that the field distribution in a waveguide results from the superposition of its normal modes. In normal
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operating conditions, the dominant mode is the only propagating mode, while all higher-order modes, excited
at the discontinuity, are exponentially decaying. Usually, the terminal planes are placed far enough from the
discontinuity in such a way that only the dominant modes have nonnegligible amplitudes. In such conditions, a
terminal description of the discontinuity can be obtained by writing the equations relating the field quantities
at the two terminal planes. Such relations may take the form of a 2 × 2 impedance matrix if the electric
fields are expressed in terms of the magnetic fields, or the form of an admittance matrix if the magnetic
fields are expressed in terms of the electric fields. As is specified later, in fact, electric and magnetic fields
can be replaced by equivalent voltage and current amplitudes. In a number of important cases, however, the
terminal planes must be placed near the discontinuity region, so that the field distribution cannot be reduced
to the only dominant modes. This typically happens when multiple discontinuities are cascaded together at
short distances. Higher-order mode interaction takes place between adjacent discontinuities in such a way
that active power may be carried by higher-order modes. In such cases, a more general description of the
discontinuity is needed.

To obtain a terminal description of the discontinuity in the general case, it is worth recalling that each
waveguide mode can be represented by an equivalent transmission line, the voltage and current amplitudes
being proportional to the modal electric and magnetic field amplitudes, respectively

where z is the longitudinal axis of the waveguide, E(i)
t and H(i)

t are the transverse electric and magnetic
fields, V (i)

i and I(i)
i are the voltage and current of the transmission line equivalent to the mth mode of the ith

waveguide, and e(i)
i and h(i)

i are the transverse electric and magnetic modal vectors.
Although in principle an infinite series of modes is involved in the electromagnetic field representation,

in practice only a finite number of modes need to be taken into account to achieve a prescribed accuracy. As a
consequence, the electromagnetic field distribution over each terminal plane is expressed in terms of a finite
number of voltage and current amplitudes. Let Ni be the number of modes taken into account in the field
description at the ith terminal plane (i = 1, 2); the terminal description of the discontinuity will involve N1 +
N2 voltages and the same number of currents. Because of the linearity of Maxwell’s equations, these quantities
are related by a linear set of N1 + N2 equations. One can easily realize that Maxwell’s equations lead to N1 +
N2 equations by the following reasoning. By virtue of the unicity theorem for electromagnetic fields, the entire
electromagnetic field distribution in the structure is determined by the the knowledge of the tangential electric
(or magnetic) field at the two terminal planes, thus by the knowledge of the whole set of N1 + N2 voltages (or
currents) over such planes. In other words, from the knowledge of N1 + N2 voltages (currents) one can compute
the N1 + N2 currents (voltages). This implies that the linear system consists of N1 + N2 equations relating the
N1 + N2 voltages to the N1 + N2 currents.

The modal approach lends itself to the so-called microwave network formalism. The discontinuity, rather
than the electric and magnetic field distribution, is described in terms of voltages and currents, that is, as a
multiport circuit [Fig. 1(b)]. In the equivalent circuit of Fig. 1(b) each port corresponds to a mode excited at one
of the terminal planes of the discontinuity. The system can be put in many different forms. One of the most
convenient approaches consists of expressing currents in terms of voltages. In matrix form this corresponds to
writing
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where [I] is the vector of the currents, [V] that of the voltages and [Y] the admittance matrix. For the case of
the two-terminal-plane network of Fig. 1(a) the vector of the currents is

The subvector of the currents at the ith terminal plane (i = 1, 2) is

with Ni being the number of modes (or electrical ports) considered at the ith plane. The voltage vector is similar
to the current vector, and the admittance matrix is composed by four submatrices as follows:

Observe that while the electromagnetic structure has two outputs (or two apertures), the equivalent circuit
has N1 + N2 electric ports.

In most practical cases the terminal planes are chosen far enough from the discontinuity in such a way
that higher-order modes have vanished. This is possible whenever the discontinuity is isolated, that there are
no other discontinuities close to it. The electromagnetic field at the terminal planes is that of the dominant
modes of the respective waveguides, while higher-order modes have died out. In the multiport equivalent
circuit description of Fig. 1(b), this situation corresponds to terminating the higher-order mode ports with their
characteristic impedances. The multiport description reduces to the two-port description of Fig. 1(c), where the
accessible ports represent the dominant modes of both waveguides.

To compute the 2 × 2 admittance matrix of Fig. 1(c) from the (N1 + N2) × (N1 + N2) admittance matrix
of Fig. 1(b), the matching conditions at the higher-order mode ports are added to Eq. (3):

In Eq. (7) yc,m
(i) is the characteristic admittance of the equivalent transmission line, which has been assumed

as the wave impedance of the waveguide mode

with

where c is the velocity of light, β(i)
M the phase constant, and k(i)

c,m the eigenvalue of the mth mode.
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After rearranging and partitioning the admittance matrix, Eq. (6), according to fundamental (subscript
f) and higher-order modes (subscript h)

the two-port admittance matrix description [ Y ′ ] of the discontinuity is easily obtained from Eqs. (7) and (3)

where [Yc] is the diagonal matrix of the characteristic admittances of the higher-order modes

Alternative descriptions of the discontinuity can be obtained either by rearranging the discontinuity
equations or by using different electrical quantities rather than voltages and currents. In the former case, an
impedance matrix description is obtained by expressing the voltages in terms of the currents

By expressing the waveguide fields in terms of incident [a] and reflected [b] wave vectors one can obtain
a scattering matrix description of the discontinuity

The incident and reflected waves are related to voltage and current amplitudes as

with i = 1,2, and m = l,. . ., Ni. The interrelations among the above matrix description are

where zc,m
(i) = 1/yc,m

(i) is the characteristic impedance of the equivalent transmission line.
The use of a lumped or distributed element equivalent-circuit model to describe the discontinuity can be

advantageous for many practical applications. The circuit model can be easily handled in more conventional
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engineering terms, and when properly derived, reflects the physical behavior of the discontinuity. Moreover, it
has the advantage of easily providing by mere inspection a description of the behavior of the discontinuity and
the way the latter can be used for practical applications (e.g., filters).

From this discussion it is apparent that a certain degree of arbitrariness is involved in the choice of the
reference planes. As a consequence, different equivalent circuits can be assumed, depending on the location
of the terminal planes. A proper choice of the reference plane locations can be used in some cases in order
to reduce the complexity of the equivalent-circuit. This ambiguity is inherent to the distributed nature of
waveguide circuits, as opposed to lumped low-frequency circuits, where no ambiguity exists.

An additional ambiguity in the definition of the equivalent circuit models resides in the arbitrariness in the
definition of the equivalence between waveguide mode and transmission line. In particular, the characteristic
impedance zc,m

(i) of the mth transmission line can be changed by a factor of n2 by transforming the voltages
V (i)

i and currents I(i)
m into a new set V̂(i)

m and Î(i)
m

so that

The new definition is equivalent to the introduction of ideal transformers at the circuit terminals. By an
appropriate selection of both the reference planes and the voltage–current definitions, different equivalent
circuits with reduced complexity can be derived.

In the presence of multiple or cascaded discontinuities special caution should be employed in the use of
the equivalent-circuit models. If adjacent discontinuities are cascaded at a short distance, in fact, the reference
planes cannot be chosen far enough from the discontinuities to make higher-order modes vanish. In this
case, discontinuities interact through higher-order modes. The models for isolated discontinuities may lead to
significant errors. Multiport equivalent networks including higher-order mode interactions must be adopted
instead. This is illustrated with a specific example in the section Isolated and Interacting Discontinuities.

General Properties of Waveguide Discontinuities

This section presents a brief description of the general properties of waveguide discontinuities.
Losslessness. Losses in microwave circuits are due to imperfect dielectric materials (dielectric loss),

finite conductivity of the conductors (conductor loss), and, for open structures, radiation (radiation loss). The
impedance or admittance matrices of lossy discontinuities possess real and imaginary parts that are associated
with the real and the reactive power, respectively.

In many practical cases losses may be neglected with good approximation so that the discontinuity
behaves as a reactive circuit. The admittance and the impedance matrices are purely imaginary and the
scattering matrix is unitary. The latter property is obtained by expressing the balance between incident and
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reflected power in terms of wave vectors, Eqs. (15) and (16), as

Using Eq. (14) one obtains the unitarity condition for the scattering matrix of a lossless discontinuity

In Eqs. (23) and (24) the asterisk stands for complex conjugate.
Reciprocity. As long as Lorentz’s reciprocity theorem holds for the region occupied by the discontinuity,

the latter behaves as a reciprocal network. This implies that the admittance, impedance, and scattering
matrices are symmetrical. As a consequence, a reciprocal N-port discontinuity is characterized by N(N +
1)/2 complex parameters. Such parameters reduce to real parameters for lossless structures. Discontinuities
containing anisotropic materials such as ferrite are examples of nonreciprocal circuits that are characterized
by nonsymmetrical matrix descriptions.

Symmetry. The presence of geometrical symmetries of a discontinuity can be exploited to reduce the
complexity of its analysis, as well as the number of unknown parameters of its equivalent network represen-
tation. For example, in the case of a two-port discontinuity, the existence of a central symmetry plane between
the two outputs implies a corresponding symmetry of the matrix representations, provided that the terminal
planes are chosen symmetrically (e.g. Y11 = Y22). In such a case, the discontinuity, if reciprocal, is character-
ized by only two rather than three parameters, as in the general case. For a more detailed discussion on the
exploitation of symmetry planes in three- or four-port structures, the reader is referred to Ref. 7, Sec. 3.2.

Categorization of Waveguide Discontinuities

There is no unique way to classify waveguide discontinuities, since a number of different criteria can be adopted.
Here we attempt at a categorization of discontinuities with reference to some geometrical characteristics that
are somewhat related to the corresponding electromagnetic problem. Examples of common discontinuities are
shown in Tables 1 to 5. The examples discussed here are not exhaustive but represent just a small fraction of
what can be found in practical applications. The reader is also provided with some representative references
taken from the immense amount of technical publications on this topic.

Uniaxial Junctions. In a uniaxial junction, two waveguides with different cross sections and coin-
cident longitudinal axes are connected together. In the case of rectangular waveguides, examples of such
discontinuities are the E-plane (or capacitive) step (12,14,15), the H-plane (or inductive) step (16), and E-plane
and H-plane offsets. These discontinuities are illustrated in Table 1 As long as both waveguides are in the
single-mode regime, the corresponding equivalent networks have two ports. Other examples of uniaxial dis-
continuities are the junction between two circular waveguides (12), the junction between a coaxial cable and a
circular waveguide (17), and the junction between a rectangular waveguide and a circular waveguide (18,19).

Bifurcations and N-Furcations. One waveguide is joined to two or more waveguides with parallel
longitudinal axes. A theoretical model of N-furcations has been presented in Ref. 20. In rectangular waveguide
the bifurcation can occur in either the E or the H plane, as shown in Table 2 The equivalent circuit may contain
more than three ports, because the larger waveguide may support the propagation of higher-order modes.

Obstacles. Metallic or dielectric obstacles can be inserted in a waveguide to achieve specific electrical
behaviors. Metallic obstacles may have infinitesimal or finite length along the waveguide axis. In the former
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case the equivalent circuit can be reduced to a shunt admittance. Typical examples are metal irises and metal
posts. They have been widely employed as filter and matching network elements. In the case of rectangular
waveguides, depending on the orientation with respect to the electric field of the dominant mode, such obstacles
exhibit inductive or capacitive behavior, as shown in Table 3 Observe that irises are supposed to be infinites-
imally thin. A full-wave model of the inductive iris in rectangular waveguide can be found in Refs. 12 and
21. More complicated geometries involving circular irises (22,23) and slanting and multiple rectangular irises
(24,25) in rectangular waveguides, as well as irises in coaxial cables (26) and circular waveguides (27,28) have
been investigated. Electromagnetic models of posts in rectangular waveguide can be found in, Refs. 29,30,31.

Multiaxial Junctions. Two or more waveguides with different longitudinal axes are connected together
(see Table 4). In the case of uniaxial junctions, the associated boundary-value problem is a two-dimensional
(2-D) one. In the case of multiaxial junctions, in contrast, the analysis involves the solution of a 3-D boundary-
value problem. The simplest case of a biaxial junction is the right-angle junction between two rectangular
waveguides. Depending on the plane of such junction, we have an E-plane or H-plane corner. This type of
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discontinuity effects a 90◦ change of direction in the waveguide axis. To minimize reflections alternative
geometries can be adopted, such as the mitered bends (32,33) and the circular bends (34,35).

More complicated multiaxial junctions in rectangular waveguide technology are the T junctions in the
E-plane (36,37,38) or in the H-plane (39,40,41). The matching of such junctions has been analyzed in detail
in Ref. 42. The so-called magic (hybrid) Tee is a well-known rectangular waveguide component where ports
are decoupled in pairs (43). The aperture in the common wall of two rectangular waveguides (44, 45) can also
be seen as an example of four-port multiaxial junction. An example of a T junction between rectangular and
circular waveguide has been investigated in Ref. 46.

Open Discontinuities. In the examples presented so far, the discontinuities were completely bounded
by metallic walls. An important category of waveguide discontinuities, however, is represented by open discon-
tinuities, where the electromagnetic field can be radiated in the outer space. The equivalent circuits of such
discontinuities contain resistors that represent the radiation loss. Some examples are illustrated in Table 5.

One example is the open-ended waveguide. When the electromagnetic field impinges on such a termina-
tion, part of the associated power is reflected and part is radiated in the free space, so that the termination can
be considered as an antenna. Such terminations, in fact, are widely used as secondary antennas (feeding an-
tennas) in reflector-type antennas or as elements of an array antenna. The study of the radiation mechanism
is rather complicated, and electromagnetic full-wave models are mandatory. The reader is referred to Refs.
(47,48,49) for rectangular waveguides and to Refs. 50 and 51 for coaxial and circular waveguide.

Other radiating discontinuities are obtained by producing apertures in the waveguide walls. The aperture
interrupts locally the conduction current flowing on the walls, producing both a distortion in the lines of flux
as well as a displacement current in the aperture. The latter is necessary to maintain the continuity of the
total current and constitutes the source of the radiated electromagnetic field. The most common example is
the radiating slot in rectangular waveguide. The longitudinal slot in the broad wall has been analyzed in Refs.
52,53,54, the slanting slot in Refs. 55, and the transverse slot has been investigated in Refs. 56 and 57.
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Fig. 2. Capacitive step in rectangular waveguide: (a) structure; (b) equivalent circuit. Geometrical dimensions: a = 19.05
mm, b2 = 9.52 mm, b1 = sb2.

Isolated and Interacting Discontinuities

Earlier it was pointed out that the reduced equivalent circuit valid for an isolated discontinuity may not
be adopted, in general, for adjacent discontinuities, because of the higher-order mode interaction occurring
between them. To illustrate this phenomenon, consider as an example the symmetrical capacitive step in a
rectangular waveguide depicted in Fig. 2(a) The larger waveguide is the WR75 waveguide operating in the 10
GHz to 15 GHz frequency range. The equivalent circuit of the step, assumed to be isolated, is shown in Fig. 2(b).
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Fig. 3. S11 of a capacitive step in a rectangular waveguide for various step ratios s = b1/b2. Comparison between the
equivalent circuit and the full-wave mode-matching analysis.

Fig. 4. Capacitive double step in rectangular waveguide (a) structure; (b) equivalent circuit. Geometrical dimensions: a
= 19.05 mm, b2 = 9.52 mm, b1 = 1.90 mm, s = 0.20.

The shunt capacitance represents the reactive energy stored in the proximity of the step, due to attenuated
higher-order modes excited at the junction between the two waveguides. The step susceptance is sB, s being
the step ratio
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Fig. 5. S11 of the double step versus the normalized length L/λc0 of the central waveguide. Comparison between the
equivalent circuit and the full-wave mode-matching analysis.

and B is easily computed by the approximate formula given in Ref. 7, p. 307. The scattering parameter S11 of
the discontinuity can be evaluated by elementary network analysis

This parameter is shown in Fig. 3 as a function of frequency for different step ratios. For comparison, the
scattering parameter computed by the rigorous mode-matching technique is also shown. The approximate
formula is shown to be very accurate compared with the computationally more expensive mode-matching
method.

Let us now consider two capacitive steps cascaded through a uniform waveguide of length L [Fig. 4(a)].
The step ratio is s = b1/b2 = 0.2. The cascaded steps have been analyzed both by the equivalent circuit of Fig.
4(b) and by the mode-matching method. In the former case the higher-order mode interaction between the two
steps is totally neglected, while, in the latter case, higher order mode interaction has been fully taken into
account. Figure 5 shows the computed scattering parameter S11 = S22 as a function of the normalized length
L/λc0 at the lower (10 GHz) and upper (15 GHz) ends of the frequency range of the WR75 waveguide. λc0 = 2a
= 39 mm is the cutoff wavelength of the waveguide. It is observed that the equivalent circuit of Fig. 4(b), based
on the hypotheses of isolated discontinuities, is accurate as long as the normalized distance exceeds λc0/8. For
lower distances, the error increases and becomes unacceptable below λc0/20. It can be noted that the error
increases with frequency, as a result of the stronger excitation of higher-order modes.
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