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ised (local) operating systems (e.g., Unix, MS-DOS) which
allows transparent remote file access. Subsequent sections
show the RHODOS distributed operating system and distrib-
uted computing environment (DCE), respectively. RHODOS
has been built from scratch on top of a bare computer. It em-
ploys the concept of a microkernel which is a cornerstone of
the whole client-server-based operating system. It provides
full transparency to the user. On the other hand, DCE is built
on top of existing operating systems such as Unix and VMS,
and hides differences among individual computers. However,

CLIENT–SERVER SYSTEMS it does not fully support transparency.

By amalgamating computers and networks into one single com-
THE CLIENT-SERVER MODELputing system, a distributed computing system has created the

possibility of sharing information and peripheral resources.
The Client-Server Model in a Distributed Computing SystemFurthermore, these systems improve performance of a comput-

ing system and individual users through parallel execution of A distributed computing system is a set of application and sys-
programs, load balancing and sharing, and replication of pro- tem programs and data dispersed across a number of indepen-
grams and data. Distributed computing systems are also char- dent personal computers connected by a communication net-
acterised by enhanced availability and increased reliability. work. In order to provide requested services to users the system

However, the amalgamation process has also generated and relevant application programs must be executed. Because
some serious challenges and problems. The most important, services are provided as a result of executing programs on a
critical challenge was to synthesise a model of distributed number of computers with data stored on one or more loca-
computing to be used in the development of both application tions, the whole activity is called distributed computing.
and system software. Another critical challenge was to de- The problem is how to formalize the development of dis-
velop ways to hide distribution of resources and build rele- tributed computing. The main issue of distributed computing
vant services upon them. is programs in execution, which are called processes. The sec-

The synthesis of a model of distributed computing has been ond issue is that these processes cooperate or compete in or-
influenced by a need to deal with the issues generated by dis- der to provide the requested services.
tribution such as The client-server model is a natural model of distributed

computing, which is able to deal with the problems generated
Locating and accessing remote data, programs, and periph- by distribution, could be used to describe these processes and

eral resources their behavior when providing services to users, and allows
the design of system and application software for distributedCoordinating distributed programs executing on different
computing systems.computers

According to this model there are two processes: the client,Maintaining the consistency of replicated data and pro-
which requests a service from another process; and thegrams
server, which is the service provider. The server performs the

Detecting and recovering from failures
requested service and sends back a response. This response

Protecting data and programs stored and in transit could be a processing result, a confirmation of completion of
Authenticating users the requested operation, or even a notice about a failure of

an operation.
The client-server model and the association between thisThe model that has been used to develop application and sys-

tem software of distributed computing systems is the client- model and the physical environment this model is used in are
illustrated in Fig. 1. The basic items of the model are theserver model. Because of this the current image of computing

is client-server distributed computing. client and server and request and response, and the elements
of a distributed computing system are distinguished. ThisThe goal of this article is to introduce and discuss the cli-

ent-server model and the communication paradigm which figure firstly shows that the user must send a request to an
individual server in order to be provided with a given service.supports this model, and to show how this model has influ-

enced the development of different systems and applications. A need for another service requires the user to send a request
to another server. Secondly, the client and server processesThis article contains three major parts. The first part intro-

duces the client-server model and different concepts and ex- execute on two different computers. They communicate at the
virtual (logical) level by exchanging requests and responses.tensions to this model. The second part discusses communica-

tion supporting distributed computing systems built based on In order to achieve this virtual communication physical mes-
sages between these two processes are sent. This implies thatthe client-server model. It contains a detailed discussion of

two dimensions of the communication paradigm: the commu- operating systems of computers and the communication sys-
tem of a distributed computing system are actively involvednication pattern, one-to-one and group communication, and

the techniques, message passing and remote procedure call in the service provision.
The most important features of the client-server model are(RPC), which are used to design and build client-server based

applications. The third part presents advanced applications simplicity, modularity, extensibility, and flexibility. Simplic-
ity manifests itself by closely matching the flow of data withdeveloped based on the client-server model. The first and sim-

plest of the presented applications of the client-server model the control flow. Modularity is achieved by organizing and in-
tegrating a group of computer operations into a separate ser-is the network file system (NFS). It is an extension to central-
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Figure 1. The client–server model and its association with
operating systems and a communication facility.
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vice. Also, any set of data with operations on this data can be In these cases many servers must contribute to the overall
application. Furthermore, it would require in some cases si-organized as a separate service. The whole distributed com-

puting system developed based on the client–server model multaneous requests to be sent to a number of servers. Differ-
ent application will require different semantics for the cooper-can be easily extended by adding new services in the form of

new servers. The servers which do not satisfy user require- ation between clients and servers.
Distributed computing systems have moved from the basicments can be easily modified or even removed. Only the inter-

faces between the clients and servers must be maintained. one-to-one client–server model to the one-to-many and chain
models in order to improve performance and reliability. Fur-From the user’s point of view a distributed computing sys-

tem can provide services such as: printing, electronic mail, thermore, client and server cooperation can be strongly influ-
enced and supported by some active entities which are exten-file service, authentication, naming, database service, and

computing service. These services are provided by appro- sions to the client-server model.
In a distributed computing system there are two differentpriate servers.

forms of cooperation between clients and servers. The first
form assumes that a client requests a temporary service. An-Cooperation between Clients and Servers

in a Distributed Computing System other situation is generated by a client which wants to ar-
range for a number of calls to be directed to a particular serv-

A system where there is only one server would not be able to
ing process. This implies a need for establishing long-term

provide high performance and reliable and cost-effective ser-
bindings between a client and a server.

vices to the user. As was shown in the previous section, one
server is used to provide services to more than one client. The

Groups in Distributed Computing Systems
simplest form of cooperation between clients and servers
(based on sharing) allows for lowering the costs of the whole A group is a collection of processes, in particular servers,

which share common features (described by a set of attri-system and more effective use of resources. An example of a
service which is based on this form of cooperation is a print- butes) or application semantics. In general, processes are

grouped in order to deal with this set of processes as a singleing service and file service.
Processes can act as either clients or servers. It depends abstraction; form a set of servers which can provide an identi-

cal service (but not necessary of the same quality); encapsu-on the context. A file server which receives a request to read
a file from a user’s client process must check on the access late the internal state and hide interactions among group

members from the clients and provide a uniform interface torights of this user. For this purpose it sends a request to an
authentication server and waits for a response. Its response the external world; and deliver a single message to multiple

receivers thereby reducing the sender and receiving over-to the client depends on a response from the authentication
server; the file server acts as a client of the authentication heads (1).

There are two types of groups: closed and open (2). In aserver. Thus, a service provided to the user by a distributed
computing system developed based on the client-server model closed group only the members of the group can send and

receive messages to access the resources of the group. In ancan require a chain of cooperating servers.
Distributed computing systems provide the opportunity to open group not only can the members of the group exchange

messages and request services but nonmembers of the groupimprove performance through parallel execution of programs
on a network (sometimes called clusters) of workstations, and can send messages to group members. Importantly, the non-

members of the group need not join the group nor have anydecrease the response time of databases through data replica-
tion. Furthermore, they can be used to support synchronous knowledge that the requested service is provided by a group.

Four group structures are often supported to provide thedistant meetings and cooperative workgroups. They also can
increase reliability by service multiplication. most appropriate policy for a wide range of user applications.
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The peer group is composed of a set of member processes that eration and communication. Writing resource management
and communication software is expensive, time consuming,cooperate for a particular purpose. Fault-tolerant and load-

sharing applications dominate this type of group style. The and error prone. The interface between the client and the
server is complicated, differs from one application to another,client-server group is made from a potentially large number

of client processes with a peer group of server processes. It is and the whole service provided is not transparent to the cli-
ent process.an open group. The diffusion group is a special case of the

client-server group, where a single request message is sent by Clients can also request multiple services implicitly. This
requires the client to send only one request to a generala client process to all servers. The hierarchical group is an

extension to the client–server group. In large applications server. A requested service will be composed by this invoked
server by cooperating, based on information provided in thewith a need for sharing between large numbers of group

members, it is important to localize interactions within request, with other servers. After completion of necessary op-
erations by involved servers, the general server sends a re-smaller clusters of components in an effort to increase perfor-

mance. sponse back to the client. This coordination operation can be
performed by a properly designed agent. Despite the fact thatAccording to external behavior, groups can be classified

into two major categories: deterministic and nondeterminis- such an agent is quite complicated, the cooperation between
the client and the server is based on a single, well-definedtic. A group is considered deterministic if each member must

receive and act on a request. This requires coordination and interface. Furthermore, transparency is provided to the client
which reduces the complexity of the application.synchronization between the members of the group. In a de-

terministic group, all members are considered equivalent. Cooperation between a client and multiple servers can be
supported by a simple communication system which employsNondeterministic groups assume their applications do not re-

quire consistency in group state and behavior, and they relax a one-to-one message protocol. Although this communication
pattern is simple, its performance is poor because each serverthe deterministic coordination and synchronization. Each

group member is not equivalent and can provide a different involved must be invoked by sending a separate message. The
overall performance of a communication system supportingresponse to a group request, or not respond at all, depending

on the individual group member’s state and function. message delivery in a client–server based distributed comput-
ing system can be dramatically improved if a one-to-manyIn order to act properly and efficiently, each member of the

group must exchange messages amongst themselves (above communication pattern is used. In this case a single request
is sent by the client process to all servers, specified by a singlenormal application messages) to resolve the current status

and membership of the group. Any change in group member- group name. The use of multicast at the physical/data link
layer improves this system even further.ship will require all members to be notified to satisfy the re-

quested message requirements. Furthermore, users are pro-
vided with primitives to support group membership discovery The Three-Tier Client-Server Architecture
(3) and group association operations (4). Group membership

Agents and servers acting as clients can generate differentdiscovery allows a process to determine the state of the group
architectures of distributed computing systems. The three-and its membership. However, as the requesting process has
tier client-server architecture extends the basic client-serverno knowledge of the group members location, a network
model by adding a middle tier to support the application logicbroadcast is required.
and common services. In this architecture, a distributed ap-There are four operations to support group association: cre-
plication consists of the three components: user interface andate, destroy, join, and leave. Initially a process requiring group
presentation processing component, responsible for acceptingcommunication creates the required group. A process is con-
inputs and presenting the results (the client tier); computa-sidered to be a group member after it has successfully issued
tional function processing component, responsible for provid-a group join primitive, and will remain a member of the group
ing transparent, reliable, secure, and efficient distributeduntil the process issues a leave group primitive. When the
computing—it is also responsible for performing necessarylast member of the group leaves, the group will be destroyed.
processing to solve a particular application problem (applica-
tion tier); data access processing component, responsible for

Extensions to the Client-Server Model
accessing data stored on external storage devices, such as
disk drives (back-end tier).A client and server can cooperate either directly or indirectly.

In the former case there is no additional entity which partici- These components can be combined and distributed in var-
ious ways to create different configurations with varying com-pates in exchanging requests and responses between a client

and a server. Indirect cooperation in the client-server model plexity. Figure 2(a) shows a centralized configuration where
all the three types of components are located in a single com-requires two additional entities, called agents, to request a

service and to be provided with the requested service. puter. Figure 2(b) shows three two-tier configurations where
the three types of components are distributed on two comput-The role of these agents can vary from a simple communi-

cation module which hides communication network details to ers. Figure 2(c) shows a three-tier configuration where all the
three types of components are distributed on different com-an entity which is involved in mediating between clients and

servers, resolving heterogeneity issues, and managing re- puters.
Figure 3 illustrates an example implementation of thesources and cooperating servers.

As was presented previously, a client can invoke desired three-tier architecture. In this example, the upper tier con-
sists of client computers that run user interface processingservers explicitly by sending direct requests to these servers.

In this case the programmer of a user application must con- software. The middle tier is computers that run computa-
tional function processing software. The bottom tier is back-centrate on both an application and on managing server coop-
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Figure 2. One- (a), two- (b), and three-tier (c) client–server configurations.

end data servers. In a three-tier client–server architecture, namically, there is a need to learn both whether a proper ser-
vice (e.g., a very fast color printer of high quality) is availableapplication clients usually do not interact directly with the

data servers, instead, they interact with the middle tier at a given time, and if so its name and location. Service dis-
covery is achieved through the following approaches.servers to obtain services. The middle tier servers will then

either fulfil the requests themselves, sending the result back
to the clients, or more commonly, if additional resources are Computer Address Is Hardwired into Client Code. This ap-
required, servers in the middle tier will act (as clients them- proach requires the location of the server, in the form of a
selves) on behalf of the application clients to interact with the computer address, to be provided. However, it is only applica-
data servers in the bottom tier or other servers within the ble in very small and simple systems, where there is only one
middle tier. server process running on the destination computer.

Compared with a normal two-tier client–server architec- Another version of this approach is based on a more ad-
ture, the three-tier client–server architecture demonstrates: vanced naming system, where requests are sent to processes
(1) better transparency, since the servers within the applica- rather than to computers. In this case each process is located
tion tier allow an application to detach the user interface from using a pair �computer_address, process_name�. A client is
back-end resources, and (2) better scalability, since servers as provided with not only the name of a server, but also with
individual entities can be easily modified, added, or removed. the address of a server computer. This solution is not location

transparent as the user is aware of the location of the server.
Service Discovery

To invoke a desired service a client must know whether there Broadcast Is Used to Locate Servers. According to this ap-
proach each process has a unique name. In order to send ais a server which is able to provide this service, its character-

istics, name, and location. This is the issue of service discov- request a client must know the name of the server. However,
this is not enough because the operating system of the com-ery. In the case of a simple distributed computing system,

where there are only a few servers, there is no need to iden- puter where the server runs must know the address of the
server’s computer. For this purpose the client’s operating sys-tify the existence of a desired server—information about all

available servers is available a priori. This implies that ser- tem broadcasts a special locate request containing the name
of the server, which will be received by all computers on avice discovery is restricted to locating the server which pro-

vides the desired service. On the other hand, in a large dis- network. An operating system which finds the server’s name
in the list of its processes sends back a ‘here I am’ responsetributed computing system which is a federation of a set of

distributed computing systems, with the potential for many containing its address (location). The client’s operating sys-
tem receives the response and can store (cache) the server’sservice providers who offer and withdraw these services dy-
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Figure 3. An application of the three-tier
architecture in a distributed computing
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system.

computer address for future communication. This approach is can be characterized by different attributes describing the
transparent; however, the broadcast overhead is high as all services they provide (e.g., one laser printer is a color printer,
computers on a network are involved in the processing of the another is a black and white printer). Furthermore, servers
location request. can be offered by some users and revoked dynamically. A user

is not able to know names and attributes of all these servers,
Server Location Lookup Is Performed via a Name Server. This and their dynamically changing availability. There must be a

approach is very similar to the broadcast-based approach; server which could support users to deal with these problems.
however, it reduces the broadcast overhead. In order to learn
the address of a desired server, an operating system of the

A Broker Is Employed. This approach is very similar to theclient’s computer sends a ‘where is’ request to a special sys-
server location lookup performed via a name server approach.tem server, called a name server, asking for the address of a
However, there are real conceptual differences between a bro-computer where the desired server runs. This means that the
ker and a name server which frees clients from rememberingname and location (computer address) of the name server are
ASCII names or path names of all servers (and eventually theknown to all computers. The name server sends back a re-
server locations), and allows clients to identify attributes ofsponse containing an address of the desired server. The cli-
servers and learn about their availability. A broker is a serverent’s operating system receives the response and can cache
which (1) allows a client to identify available servers whichthe server’s computer address for future communication. This
can be characterized by a set of attributes which describe theapproach is transparent and much more efficient than the
properties of a desired service; (2) mediates cooperation be-broadcast-based approach. However, because the name server
tween clients and servers; (3) allows service providers to reg-is centralized, the overall performance of a distributed com-
ister the services they support by providing their names, loca-puting system could be degraded as the name server can be-
tions, and features in the form of attributes; (4) advertisescome a bottleneck. Furthermore, the reliability of this ap-
registered services and makes them available to clients; andproach is low; if a name server computer crashed a
(5) withdraws services dynamically. Thus, a broker is a serverdistributed computing system cannot work.
which embodies both service management and naming ser-In a large distributed computing system there could be a

large number of servers. Moreover, servers of the same type vices.
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Client–Server Interoperability ity of cases this solution does not fully support transparency.
A distributed operating system is built from scratch, which

Reusability of servers is a critical issue for both users and
hides distribution of resources and services; this solution, al-

software manufactures due to the high cost of software writ-
though futuristic from the current-practice point of view, pro-

ing. This issue can be easily resolved in a homogeneous envi-
vides location transparency.

ronment because the accessing mechanisms of clients may be
It is clear that the extensions to the basic client-server

made compatible with software interfaces, with static compat-
model, described in the previous sections, are achieved

ibility specified by types and dynamic compatibility by pro-
through an operating system. Furthermore, network commu-

tocols.
nication services are invoked by an operating system on be-

Cooperation between heterogeneous clients and servers is
half of cooperating clients and servers.

much more difficult as they are not fully compatible. Thus,
the issue is how to make them interoperable. Wegner (5) de-

COMMUNICATION BETWEEN CLIENTS AND SERVERSfines interoperability as the ability of two or more software
components to cooperate despite differences in language, in-

Distributed computing systems must be fast in order to instilterface, and execution platform.
in users the feeling of a huge powerful computer sitting onThere are two aspects of client–server interoperability: a
their desks. This implies that communication between the cli-unit of interoperation, and interoperation mechanisms. The
ents and servers must be fast. Furthermore, the speed of com-basic unit of interoperation is a procedure (5). However,
munication between remote client and server processeslarger granularity units of interoperation may be required by
should not be highly different from the speed between localsoftware components. Furthermore, preservation of temporal
processes. The issue is how to build a communication facilityand functional properties may also be required.
within a distributed computing system to achieve high com-There are two major mechanisms for interoperation: inter-
munication performance.face standardization and bridging. The objective of the former

One of the strongest factors which influences the perfor-is to map client and server interfaces to a common represen-
mance of a communication facility is the communication para-tation. The advantages of this mechanism are: (1) it separates
digm: that is, the communication model supporting coopera-communication models of clients from those of servers, and
tion between clients and servers and the operating system(2) it provides scalability, since it only requires m � n maps,
support provided to deal with the cooperation.where m and n are the number of clients and servers, respec-

There are two issues in the communication paradigm.tively. The disadvantage of this mechanism is that it is closed.
Firstly, a client can send a request to either a single serverThe objective of the latter is to provide a two-way map be-
or a group of servers. This leads to two patterns of communi-tween client and server. The advantages of this mechanism
cation: one-to-one and one-to-many, also called group commu-are: (1) openness, and (2) flexibility—it can be tailored to the
nication (which are operating system abstractions). Secondly,requirements of a given client and server pair. However, this
these two patterns of interprocess communication could be de-mechanism does not scale as well as the interface standard-
veloped based on two different techniques: message passing,ization mechanism, as it requires m � n maps.
adopted for distributed computing systems in the late 1970s;
and remote procedure call (RPC), adopted for distributed com-

Conclusions puting systems in mid-1980s. These two techniques are sup-
ported by two respective sets of primitives provided by anIn this section we introduced the client-server model and
operating system. Furthermore, communication between pro-some concepts related to this model. Partitioning software
cesses on different computers can be given the same formatinto clients and servers allows us to place these components
as communication between processes on a single computer.independently on computers in a distributed computing sys-

The following topics are discussed in this section: messagetem. Furthermore, it allows these clients and servers to exe-
passing, including communication primitives; semantics ofcute on different computers in a distributed computing sys-
these primitives; direct and indirect communication; blockingtem in order to complete the processing of an application in
and nonblocking primitives; buffered and unbuffered ex-an integrated manner. This paves the way of achieving high
change of messages; and reliable and unreliable primitivesproductivity and high performance in distributed computing.
are considered. Also, RPC is discussed. The basic features ofThe client-server model is becoming the predominant form of
this technique; parameters, results and their marshalling; cli-software application design and operation.
ent-server binding; and reliability issues are presented.However, to fully benefit from the client–server model,
Thirdly, group communication is discussed. In particular, thethere is a need to employ an operating system and communi-
basic concepts of this communication pattern; group struc-cation network which links computers on which these pro-
tures; different types of groups; group membership; messagecesses run. Furthermore, in order to locate a server, the op-
delivery and response semantics; and message ordering inerating system must be involved. The question is what class
group communication are presented.of an operating system can be used. There are two classes

of operating systems which could be employed to develop a
Message Passing—Message-Oriented Communicationdistributed computing system: a network operating system

and a distributed operating system. A network operating sys- We define message-oriented communication as a form of com-
tem is constructed by adding a module to the local centralized munication in which the user is explicitly aware of the mes-
operating system of each computer which allows processes to sage used in communication and the mechanisms used to de-

liver and receive messages (6).access remote resources and services; however, in the major-
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Basic Message Passing Primitives. A message is sent and re- sage from any client to provide a service to whatever client
process calls it.ceived by executing the following two primitives:

Direct communication does not allow more than one client.
Similarly, direct communication does not make it possible tosend(dest, src, buffer). The execution of this primitive sends
send one request to more than one identical server. This im-the message stored in buffer to a server process named
plies the need for a more sophisticated technique. Such adest. The message contains a name of a client process
technique is based on ports.named src to be used by the server to send a response

A port can be abstractly viewed as a protected kernel ob-back.
ject into which messages may be placed by processes and fromreceive(client, buffer). The execution of this primitive
which messages can be removed: that is, the messages arecauses the receiving server process to be blocked until a
sent to and received from ports. Processes may have owner-message arrives. The server process specifies the client
ship, send, and receive rights on a port. Each port has aname of a process from whom a message is desired, and
unique identification (name) that distinguishes it. A processprovides a buffer to store an incoming message.
may communicate with other process by a number of different
ports. In this case dest in the send primitive is a name of a

It is obvious that the receive primitive must be issued be- port of the server the request is sent to.
fore a message arrives; otherwise the request could be de- Logically associated with each port is a FIFO queue of fi-
clared as lost and must be retransmitted by the client. Of nite length. Messages which have been sent to this port but
course, when the server process sends any message to the cli- which have not yet been removed from it by a process reside
ent process, it must use these two primitives also; the server on this queue. Messages may be added to this queue by any
sends a message by executing the primitive send and the cli- process which can refer to the port via a local name (e.g., ca-
ent receives it by executing the primitive receive. pability). A port should be declared. A port declaration serves

There are several points that should be discussed at this to define a queuing point for messages. A process which wants
stage. All of them are connected with a problem stated as to remove a message from a port must have the appropriate
follows: What semantics should these primitives have. The receive rights. Usually, only one process may have receive ac-
following alternatives are presented: direct or indirect com-

cess to a port at a time. Messages sent to a port are normally
munication via ports; blocking versus nonblocking primitives;

queued in FIFO order. However, an emergency message canbuffered versus unbuffered primitives; reliable versus unreli-
be sent to a port and receive special treatment with regardable primitives; and structured forms of message passing
to queuing.based primitives.

Blocking versus Nonblocking Primitives. One of the most im-Direct and Indirect Communication via Ports. A very basic
portant properties of message passing primitives concernsissue in message-based communication is where do messages
whether their execution could cause delay. We distinguishgo. Message communication between processes uses one of
blocking and nonblocking primitives. We say that a primitivetwo techniques: the sender designates either a fixed destina-
has nonblocking semantics if its execution never delays itstion process or a fixed location for receipt of a message. The
invoker; otherwise, a primitive is said to be blocking. In theformer technique is called direct communication—it uses di-
former case, a message must be buffered. The previously de-rect names; the latter is called indirect communication and it
scribed primitives have blocking semantics.exploits the concept of a port.

It is necessary to distinguish two different forms of theIn direct communication, each process that wants to send
blocking send primitives. These forms are generated by differ-or receive a message must explicitly name the recipient or
ent criteria. The first criterion reflects the operating systemsender of the communication. In this case, the send and re-
design and addresses buffer management and message trans-ceive primitives have the following form: send(dest, src,
mission. The blocking and nonblocking send primitives arebuffer), receive(client, buffer). The dest and client are the
illustrated in Fig. 4. If the blocking send primitive is used,names of a destination process (server) and sending process
the sending process (client) is blocked: that is, the instruction(client) from whom the server is prepared to receive a request.
following the send primitive is not executed until the messageThis scheme exhibits a symmetry in naming: that is, both the
has been completely sent. The blocking receive implies thatsender and the receiver have to name one another in order to
the process which issued this primitive remains blocked (sus-communicate. A variant of this scheme employs asymmetry
pended) until a message arrives, and being put into the bufferin naming: only the client names the server, whereas the
specified in the receive primitive. If the nonblocking sendserver is not required to name the client.
primitive is used, the sending process (client) is only blockedDirect communication is easy to implement and to use. It
for the period of copying a message into the kernel buffer.enables a process to control the times at which it receives
This means that the instruction following the send primitivemessages from each process. The disadvantage of the sym-
can be executed even before the message is sent. This canmetric and asymmetric schemes is the limited modularity of
lead toward parallel execution of a process and messagethe resulting process definition. Changing the name of the
transmission.process may necessitate the examination of all other process’

The second criterion reflects the client-server cooperationdestination. All references to the old process must be found,
and the programming language approach to dealing within order to modify them to the new name. This is not desir-
message communication. In this case the client is blocked un-able from the point of view of separate compilation. Moreover,

the receive primitive in a server should allow receipt of a mes- til the server (receiver) has accepted the request message and
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there are two possible solutions: the send may delay until
there is a space in the buffer for the message, or the send
might return a code to the client, indicating that because the
buffer is full the message could not be sent.

The situation of the receiving server is different. The re-
ceive primitive informs an operating system about a buffer
into which the server wishes to put an arrived message. The
problem occurs when the receive primitive is issued after the
message arrives. The question is what to do with the mes-
sage. The first possible approach is to discard the message.
The client could time out and re-send, and hopefully the re-
ceive primitive will be invoked in the meantime. Otherwise,
the client can give up. The second approach to deal with this
problem is to buffer the message in the operating system area
for a specified period of time. If during this period the appro-
priate receive primitive is invoked the message is copied to
the invoking server space. If the receive primitive is not in-
voked and the timeout expires the message is discarded.

Buffered message passing systems are more complex than
unbuffered message passing based systems, since they re-
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quire creation, destruction, and management of the buffers.
Also, they generate protection problems and cause cata-Figure 4. Operating system oriented blocking (a) and unblocking (b)

send primitives. strophic event problems when a process owning a port dies or
is killed.

the result or acknowledgment has been received by the client,
Unreliable versus Reliable Primitives. Different catastrophicillustrated in Fig. 5.

events, such as a computer crash or a communication systemThere are three forms of the receive primitive. The blocking
failure can happen in a distributed computing system. Thesereceive is the most common, since the receiving process often
can cause either a requesting message being lost in the net-has nothing else to do while awaiting receipt of a message.
work, a response message being lost or delayed in transit, orThere is also a nonblocking receive primitive, and a primitive
the responding computer ‘‘dying’’ or becoming unreachable.for checking whether a message is available to receive. As a
Moreover, messages can be duplicated, or delivered out of or-result, a process can receive all messages and then select one
der. The primitives discussed previously cannot cope withto process.
these problems. These are called unreliable primitives. The
unreliable primitive send merely puts a message on the net-Unbuffered versus Buffered Message Passing Primitives. In
work. There is no guarantee of delivery provided and no auto-some message-based communication systems, messages are
matic retransmission is carried out by the operating systembuffered between the time they are sent by a client and re-
when a message is lost.ceived by a server. If a buffer is full when a send is executed,

Dealing with failure requires providing reliable primitives.
In a reliable interprocess communication, the send primitive
handles lost messages using internal retransmissions and ac-
knowledgments on the basis of timeouts. This implies that
when send terminates, the process is sure that the message
was received and acknowledged.

Reliable and unreliable receive differ in that the former au-
tomatically sends an acknowledgment confirming message re-
ception, whereas the latter does not. Two-way communication
requires the utilization of the basic message passing primi-
tives in a symmetrical way. If the client requested any data,
the server sends reply messages (responses) using the send
primitive. For this reason the client has to set the receive
primitive up to receive any message from the server. Reliable
and unreliable primitives are contrasted in Fig. 6.

Structured Forms of Message Passing Based Communication. A
structured form of communication using message passing is
achieved by distinguishing requests and replies and providing
for bidirectional information flow. This means that the client
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sends a request message and waits for a response. The set of
primitives is as follows.Figure 5. Client–server cooperation oriented blocked send primitive.
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When remote procedure calls are used a client interacts
with a server by means of a call statement

service_name (value_args, result_args)

To illustrate that both local and remote procedure calls look
identical to the programmer, suppose that a client program
requires some data from a file. For this purpose there is a
read primitive in the program code.

In a system supported by a classical procedure call, the
read routine from the library is inserted into the program.

Send()

Receive()

Send()

Send()

Send()

(a) (b)

Timeout

Timeout

Timeout

Send()

Receive()
Send()

This procedure, when executing, puts the parameters into
registers, and then traps to the kernel as a result of issuingFigure 6. Unreliable (a) and reliable (b) message passing primitives.
a READ system call. From the programmer point of view
there is nothing special; the read procedure is called by push-
ing the parameters onto the stack and is executed.

send(dest, src, buffer). Sends a request and gets a response; In a system supported by RPC (Fig. 7), the read routine is
it combines the previous client’s send to the server with a remote procedure which runs on a server computer. In this
a receive to get the server’s response. case, another call procedure called a client stub from the li-

get_request(client, buffer). Done by the receiver (server) to brary is inserted into the program. When executing, it also
acquire a message containing work for them to do. traps to the kernel. However, rather than placing the parame-

send_response(src, dest, buffer). The receiver (server) uses ters into registers, it packs them into a message and issues
this primitive to send a reply after completion of the the send primitive, which forces the operating system to send
work. it to the server. Next, it calls the receive primitive and blocks

itself until the response comes back.
It should be emphasised that the semantics, described in The server’s operating system passes the arrived message

the previous sections, can be linked with these primitives. to a server stub, which is bound to the server. The stub is
The result of the send and receive combination in the struc- blocked waiting for messages as a result of issuing the receive
tured form of the send primitive is one operation performed primitive. The parameters are unpacked from the received
by the interprocess communication system. This implies that message and a procedure is called in a conventional manner.
rescheduling overhead is reduced, buffering is simplified (be- Thus, the parameters and return address are on the stack,
cause request data can be left in a client’s buffer, and the and the server does not see that the original call was made
response data can be stored directly in this buffer), and the on a remote client computer. The server executes the proce-
transport-level protocol is simplified. dure call and returns the results to the virtual caller: that is,

the server stub. The stub packs them into a message and is-
Remote Procedure Call sues send to return the results. The stub comes back to the

beginning of its loop to issue the receive primitive, and blocksMessage passing between remote and local processes is visi-
waiting for the next request message.ble to the programmer. It is a completely untyped technique.

The result message on the client computer is copied to theProgramming message passing based applications is difficult
client process (practically to the stub’s part of the client)and error prone. An answer to these problems is the RPC
buffer. The message is unpacked, and the results are ex-technique which is based on the fundamental linguistic con-
tracted and copied to the client in a conventional manner. Ascept known as the procedure call. The very general term re-
a result of calling read, the client process finds its data avail-mote procedure call means a type-checked mechanism that
able. The client does not know that the procedure was execut-permits a language-level call on one computer to be automati-
ing remotely.cally turned into a corresponding language-level call on an-

It is evident that the semantics of remote procedure callsother computer. The first and most complete description of
is analogous to local procedure calls: the client is suspendedthe RPC concept was presented in Ref. 7.
when waiting for results; the client can pass arguments to the
remote procedure; and the called procedure can return re-Basic Features of Remote Procedure Calls. The idea of remote
sults. However, since the client’s and server’s processes are onprocedure calls (RPC) is very simple and is based on the ob-
different computers (with disjoint address spaces), the remoteservation that a client sends a request and then blocks until
procedure has no access to data and variables of the client’sa remote server sends a response. This approach is very simi-
environment.lar to a well-known and well-understood mechanism referred

There is a difference between message passing and remoteto as a procedure call. Thus, the goal of a remote procedure
procedure calls. Whereas in message passing all required val-call is to allow distributed programs to be written in the same
ues must be explicitly assigned into the fields of a messagestyle as conventional programs for centralized computer sys-
before transmission, the remote procedure call provides mar-tems. This implies that RPC must be transparent. This leads
shalling of the parameters for message transmission: that is,to one of the main advantages of this communication ap-
the list of parameters is collected together by the system toproach: the programmer does not have to know that the called

procedure is executing on a local or a remote computer. form a message.
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Figure 7. The sequence of operations in
RPC.
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Parameters and Results in RPCs. One of the most important Extracting the parameters to be passed to the remote pro-
cedure and the results of executing the procedure;problems of the remote procedure call is parameter passing

and the representation of parameters and results in mes- Assembling these two into a form suitable for transmission
sages. Parameters can be passed by value or by reference. among computers involved in the remote procedure call;
By-value message systems require that message data be and
physically copied. Thus, passing value parameters over the Disassembling them on arrival.
network is easy: the stub copies parameters into a message
and transmits it. If the semantics of communication primi-

The marshalling process must reflect the data structures oftives allow the client to be suspended until the message has
the language. Primitive types, structured types, and user-de-been received, only one copy operation is necessary. Asynchro-
fined types must be considered. In the majority of cases, mar-nous message semantics often require that all message data
shalling procedures for scalar data types and procedures tobe copied twice: once into a kernel buffer and again into the
marshal structured types built from the scalar ones are pro-address space of the receiving process. Data copying costs can
vided as a part of the RPC software.dominate the performance of by-value message systems.

Moreover, by-value message systems often limit the maxi-
Client-Server Binding. Usually, RPC hides all details of lo-mum size of a message, forcing large data transfers to be per-

cating servers from clients. However, as we stated in a previ-formed in several message operations reducing performance.
ous section, in a system with more than one server (e.g., filePassing reference parameters (pointers) over a network is
server, print server), the knowledge of location of clients’ filesmore complicated. In general, passing data by-reference re-
or a special type of a printer is important. This implies thequires sharing of memory. Processes may share access to ei-
need for a mechanism to bind a client and a server, in particu-ther specific memory areas or entire address spaces. As a re-
lar, to bind an RPC stub to the right server and remote proce-sult, messages are used only for synchronization and to
dure. There are two aspects of binding: the way the clienttransfer small amounts of data, such as pointers to shared
specifies what it wants to be bound to (this is the problem ofmemory. The main advantage of passing data by-reference is
naming), and the ways the client locates the server and thethat it is cheap—large messages need not be copied more
specification of the procedure to be invoked (this is the prob-than once. The disadvantages of this method are that the pro-
lem of addressing).gramming task becomes more difficult, and it requires a com-

In a distributed computing system there are two differentbination of virtual memory management and interprocess
forms of cooperation between clients and servers. The firstcommunication, in the form of distributed shared memory.
form assumes that a client requests a temporary service. An-
other situation is generated by a client which wants to ar-Marshalling Parameters and Results. Remote procedure calls

require the transfer of language-level data structures be- range for a number of calls to be directed to a particular serv-
ing process. These imply a need for a run-time mechanismtween two computers involved in the call. This is generally

performed by packing the data into a network buffer on one for establishing long-term bindings between this client and
a server.computer and unpacking it at the other site. This operation

is called marshalling. In the case of requests for a temporary service, the problem
can be solved using broadcast and multicast messages to lo-More precisely, marshalling is the process (performed

when sending the request as well as when sending the result cate a server. In the case of a solution based on a name
server, that solution is not enough, because the process wantsback) in which three actions can be distinguished:
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to call the located server during a time horizon. This means of message passing semantics, these two facilities can look
very similar. Examples of a message passing system that lookthat a special binding table should be created containing es-

tablished long-term binding objects (i.e., a client name and a like RPC are message passing for the V system (which in Ref.
8 is called now the remote procedure call system) and mes-server name), should be registered. The RPC run-time proce-

dure for performing remote calls expects to be provided a sage passing for Amoeba (9) and RHODOS (10).
By comparing the remote procedure call and message pass-binding object as one of its arguments. This procedure directs

the call to the binding address received. It should be possible ing, the former has the important advantage that the inter-
face of a remote service can be easily documented as a set ofto add new binding objects to the table, remove binding ob-

jects from the binding table (which in practice means break- procedures with certain parameter and result types. More-
over, from the interface specification, it is possible to auto-ing a binding), and update the binding table. In systems with

name servers, broadcasting is replaced by the operation of matically generate code that hides all of the details of mes-
sages from a programmer.sending requests to a name server requesting a location of a

given server and sending a response with an address of this On the other hand, a message passing model provides flex-
ibility not found in remote procedure call systems. However,server. Binding can take place at compile time, link time, or

call time. this flexibility is at the cost of difficulty in the preparation of
precisely documented behavior of a message passing in-
terface.Error Recovery Issues. Because the client and server are

The problem is when these facilities should be used. Theseparate processes which run on separate computers, they are
message passing approach appears preferable when serializa-prone to failures of themselves, their computers, or the com-
tion of request handling is required. The RPC approach ap-munication system. The remote procedure may not be com-
pears preferable when there are significant performance ben-plete successfully. For example, the result message is not re-
efits to concurrent request handling. RPC is particularlyturned to the client as a response to its call message, because
efficient for request–response transactions.one of four events may occur: the request message is lost; the

result (response) message is lost; the server computer crashes
and is restarted; and the client computer crashes and is re- Group Communication
started. These events form the basis for design of RPC recov-

Distributed computing systems provide the opportunity to im-ery mechanisms.
prove the overall performance through parallel execution ofThree different semantics of RPC and their mechanisms
programs on a network of workstations, decreasing the re-can be identified to deal with problems generated by these
sponse time of databases using data replication, supportingfour events:
synchronous distant meetings and cooperative workgroups,
and increasing reliability by service multiplication. In these

Maybe call semantics. Timeouts are used to prevent a client cases many servers must contribute to the overall application.
waiting indefinitely for a response message; This implies a need to invoke multiple services by sending a

At-least-once call semantics. This mechanism usually in- simultaneous request to a number of servers. This leads to-
cludes timeouts and a call retransmission procedure. ward group communication.
The client tries to call the remote procedure until it gets The concept of a process group is not new. The V-system
a response or can tell that the server has failed; (11), Amoeba (2), Chorus (12), and RHODOS (10) all support

this basic abstraction in providing process groups to applica-Exactly once call semantics. In the case of at-least-once call
tions and operating system services with the use of groupsemantics it can happen that the call can be received by
communication.the server more than once, because of lost responses.

This can have the wrong effect. To avoid this the server
sends each time (when retransmitting) as its response Basic Concepts of Group Communication. Group communica-
the result of the first execution of the called procedure. tion is an operating system abstraction which supports the
Thus, the mechanisms for these semantics include, in programmer by offering convenience and clarity. This op-
addition to those used in at-least-once call semantics erating system abstraction must be distinguished from the
(i.e., timeouts, retransmissions), call identifications and message transmission mechanisms such as multicast (one-to-
the server’s table of current calls. This table is used to many physical entities connected by a network) or its special
store the calls received first time and procedure execu- case broadcast (one-to-all physical entities connected by a
tion results for these calls. network).

A request is sent by a client called src to a group of servers
providing the desired service named group_name by execut-Message Passing versus Remote Procedure Calls. A problem

arises in deciding which of the two interprocess communica- ing either send(group_name, src, buffer) when the message
passing technique is used, or call service_name (value_args,tion techniques presented is better, if any, and whether there

are any suggestions for when, and for what systems, these result_args) when the RPC technique is used.
This request is delivered following the semantics of a prim-facilities should be used.

First of all, the syntax and semantics of the remote proce- itive used. The primitives should be constructed such that
there is no difference between invoking a single server or adure call are the functions of the programming language be-

ing used. On the other hand, choosing a precise syntax and group of servers. This means that communication pattern
transparency is provided to the programmer.semantics for message passing is more difficult than for RPC

because there are no standards for messages. Moreover, ne- Thus, groups should be named in the same manner that
single processes are named. Each group is treated as one sin-glecting language aspects of RPC and because of the variety
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gle entity; its internal structure and interactions are not Message Ordering in Group Communication. The semantics
shown to the users. The mapping of group names on multicast of message ordering are an important factor in providing good
addresses is performed by an interprocess communication fa- application performance and reduction in the complexity of
cility of an operating system and supported by a naming distributed application programming. The order of message
server. However, if multicast or even broadcast is not pro- delivery to members of the group will dictate the type of
vided, group communication could be supported by one-to-one group it is able to support.
communication at the network level. There are four possible message ordering semantics:

Communication groups are dynamic. This means that new
groups can be created and some groups can be destroyed. A No Ordering. This semantic implies that all request mes-
process can be a member of more than one group at the same sages will be sent to the current group of processes in
time. It can leave a group or join another one. no apparent order.

In summary, group communication shares many design
FIFO Ordering. This semantic implies that all requestfeatures with message passing and RPC. However, there are

messages transmitted in the first-in first-out (FIFO) or-some issues which are very specific, and their knowledge
der by a client process to the current members of thecould be of a great value to the application programmer.
group will be delivered in the FIFO order.

Message Delivery Semantics. Message delivery semantics of Causal Ordering. The causal ordering semantic delivers re-
a group relates to the successful delivery of a message to pro- quest messages to all members of the current group
cesses in a group. There are four choices of delivery se- such that the causal ordering of message delivery is pre-
mantics: served. This implies that if the sending of a message m


causally follows the delivery of message m, then each
Single Delivery. Single delivery semantics require that only process in the group receives m before m
.

one of the current group members needs to receive the Total Ordering. Total ordering semantic implies that all
message for the group communication to be successful. messages are reliably delivered in sequence to all cur-

k-Delivery. In k-delivery semantics, at least k members of rent members of the group or no member will receive
the current group will receive the message successfully. the message. Also, total ordered semantic guarantees

Quorum Delivery. With quorum delivery semantics, a ma- that all group members see the same order of messages.
jority of the current group members will receive the Total order is more stringent that FIFO ordering as all
message successfully. message transfers between all current members of the

Atomic Delivery. With atomic delivery all current members group are in order. This implies that all processes
of the group successfully receive the message or none within the current group perceive the same total order-
does. This delivery semantic is the most stringent as ing of messages. In causal ordering we are concerned
processes can and do fail and networks may also parti- with the relationship of two messages while in total or-
tion during the delivery process of the request mes- dering we are concerned with seeing the same order of
sages, making some group members unreachable. messages for all group member processes.

Message Response Semantics. By providing a wide range of
Conclusionsmessage response semantics the application programmer is

capable of providing flexible group communication to a wider In this section we described two issues of the communication
range of applications. The message response semantics spec- paradigm for the client-server cooperation: firstly, the com-
ify the number and type of expected message responses. munication pattern, including one-to-one and one-to-many
There are five broad categories for response semantics: (group communication); secondly, two techniques, message-

passing and RPC, which are used to develop distributed com-
No Responses. By providing no response to a delivered re- puting systems. The message passing technique allows clients

quest message the group communication facility is only and servers to exchange messages explicitly using the send
able to provide unreliable group communication. and receive primitives. Various semantics, such as direct and

Single Response. The client process expects (for successful indirect, blocking and nonblocking, buffered and unbuffered,
delivery of a message) a single response from one mem- reliable and unreliable can be used in message passing. The
ber of the group. RPC technique allows clients to request services from servers

k-Responses. The client process expects to obtain k re- by following a well-defined procedure call interface. Various
sponses for the delivered message from the members of issues are important in RPC, such as marshalling and unmar-
the process group. By using k response semantics the shalling of parameters and results, binding a client to a par-
groups resilience can be defined (13). The resilience of a ticular server, and handling exceptions.
group is based on the minimum number of processes
that must receive and respond to a message.

Majority Response. The client process expects to receive a SUN’S NETWORK FILE SYSTEM
majority of responses from the current members of the
process group. The first major step in the development of distributed soft-

ware was made when inexpensive diskless personal comput-Total Response. The client process requires all current
ers were connected by inexpensive local networks in order tomembers of the group to respond to the delivery of a

request message. share a file service or a printer service.
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Distributed File Systems vide the linkage between the abstract uniform file system in-
terface and the real file system (such as a Unix or MS-DOS

A distributed file system is a key component of any distrib-
file systems) that accesses the data. Further, the VFS/

uted computing system. The main function of such a system
VNODE interface abstraction allows NFS to make remote

is to create a common file system that can be shared by all
files and local files appear identical to a client program.

the clients which run on autonomous computers in the dis-
In NFS, a client process transparently accesses files

tributed computing system. The common file system should
through the normal operating system interface. All operating

store programs and data and make them available as needed.
system calls that manipulate files or file systems are modified

Since files can be stored anywhere in a distributed computing
to perform operations on VFSs/VNODEs. The VFS/VNODE

system, a distributed file system should provide location
interface hides the heterogeneity of underlying file systems

transparency.
and the location of these file systems. The steps of processing

To achieve such a goal a distributed file system usually
a user-level file system call can be described as follows (Fig.

follows the client-server model. A distributed file system typi-
8):

cally provides two types of services: the file service and the
directory service, which are implemented by the file server

1. The user-level client process makes the file system calland the directory server, respectively, distributed over the
through the normal operating system interface.network. These two servers can also be implemented as a sin-

2. The request is redirected to the VFS/VNODE interface.gle server. The file server provides operations on the contents
A VNODE is used to describe the file or directory ac-of files such as read, write, and append. The directory server
cessed by the client process.provides operations such as directory and file creation and

deletion, for manipulating directories and file names. The cli- 3. If the request is for accessing a file stored in the local
ent application program interface (client API, usually in the file system, the INODE pointed by the VNODE is used.
form of a process or a group of processes) runs on each client The INODE interface is used and the request is served
computer and provides a uniform user-level interface for ac- by the Unix file system interface.
cessing file servers. In this section we will present one of the 4. If the request is for accessing a file stored locally in
most important achievement of the 1980s, which is still in use other types of file systems (e.g., MS-DOS file system), a
now, the Network File System, known as NFS, developed proper interface of that file system is used to serve the
based on the client-server model. request.

5. If the request is for accessing a file stored remotely, the
NFS Architecture RNODE pointed to by the VNODE is used and the re-

quest is passed to the NFS client and some RPC mes-NFS was developed by Sun Microsystems and introduced in
sages are sent to the remote NFS server that stores thelate 1984 (14). Since then it has been widely used in both
requested file.industry and academia. NFS was originally developed for use

on Unix workstations. Currently, many manufacturers sup- 6. The NFS server processes the request by using the
port it for other operating systems (e.g., MS-DOS). Here, NFS VFS/VNODE interface to find the appropriate local file
is introduced based on the Unix system. To understand the system to serve the request.
architecture of NFS, we need to define the following terms:

The Role of RPC
INODE. This is a data structure that represents either an

The communication between NFS clients and servers is im-open file or directory within the Unix file system. It is
plemented as a set of RPC procedures. The RPC interface pro-used to identify and locate a file or directory within the
vided by a NFS server includes operations for directory ma-local file system.
nipulation, file access, link manipulation, and file systemRNODE. The remote file node is a data structure that rep-
access (15). The actual specifications for these remote proce-resents either an open file or directory within a remote
dures are defined in the RPC language, and the data struc-file system.
tures used by the procedures are defined in the XDR format.

VNODE. The virtual file node is a data structure that rep- The RPC language is a C-like language used as input into
resents either an open file or directory within the vir- Sun’s RPC Protocol Compiler utility. This utility can be used
tual file system (VFS). to output the actual C language source code.

VFS. The virtual file system is a data structure (linked NFS servers are designed to be stateless, meaning that
lists of VNODEs) that contains all necessary informa- there is no need to maintain information (such as whether a
tion on a real file system that is managed by the NFS. file is open or the position of the file pointer) about past re-
Each VNODE associated with a given file system is in- quests. The client keeps track of all information required to
cluded in a linked list attached to the VFS for that file send requests to the server. Therefore, NFS RPC requests are
system. designed to completely describe the operation to be per-

formed. Also, most NFS RPC requests are idempotent, mean-
ing that an NFS client may send the same request one orThe NFS server integrates functions of both a file server

and a directory server and the NFS clients use a uniform in- more times without any harmful side effects. The net result
of these duplicate requests is the same. NFS RPC requeststerface, the VFS/VNODE interface, to access the NFS server.

The VFS/VNODE interface abstraction makes it possible to are transported using the unreliable User Datagram Protocol
(UDP). NFS servers notify clients when an RPC completes byachieve the goal of supporting multiple file system types in a

generic fashion. The VFS and VNODE data structures pro- sending the client an acknowledgment (also using UDP).
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Figure 8. The NFS structure. See text
for description.
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A NFS client sends its RPC requests to a NFS server one homogeneous computers connected by local or fast wide area
networks.at a time. Although a client computer may have several NFS

RPC requests in progress at any time, each of these requests The results achieved have changed, and are still changing,
operating systems of distributed computing systems and themust come from a different client. When a client makes an

RPC request, it sets a timeout period during which the server development of applications supported by these systems. The
following systems have been developed based on the client-must service and acknowledge it. If the server does not ac-

knowledge during the timeout period, the client retransmits server model: V (8), Amoeba (2), Chorus (12), and RHODOS
(16).the request. This may happen if the request is lost along the

way or if the server is too slow because of overloading. Since
Distributed Operating Systemsthe RPC requests are idempotent, there is no harm if the

server executes the same request twice. If the client gets a A distributed operating system is one that looks to its users
second acknowledgment from the request, the client simply like a centralized operating system, but runs on multiple, in-
discards it. dependent computers connected by fast local or wide area net-

works. There are the following four major goals (the first
Conclusions three are the goals of a centralized operating system) of a

distributed operating system:In this section we showed an application of the client-server
model in the development of a distributed file system based

Hide details of hardware by creating abstractions: for ex-on the Network File System. The NFS server integrates func-
ample, software which provides a set of higher leveltions of both a file server and a directory server. It has been
functions which form a virtual computer;built as an extension module to a centralized operating sys-

tem (e.g., Unix or MS-DOS). NFS clients use RPC to commu- Manage resources to allow their use in the most effective
nicate with the NFS system. This system allows clients run- way and support user processes in the most efficient
ning on diskless computers to access and share files. way;

Create a pleasant user computational environment; and
THE DEVELOPMENT OF THE RHODOS Hide distribution of resources, information, peripheral and

computational resources, in order to provide full trans-
The vast majority of design and implementation efforts in the parency to users.
area of distributed computing systems have concentrated on
client-server-based applications running on centralized op- A generic architecture of a distributed operating system

which allows these goals to be achieved has the following soft-erating systems (e.g., Unix, VMS, OS/2). However, there have
been huge research efforts on the development of operating ware levels. Software providing an abstraction sits on bare

hardware, and allows the handling of interrupts and contextsystems built from scratch based on the client-server model
(called distributed operating systems). These systems support switching. The second level of a distributed operating system

is formed by software which manages physical resources suchdistributed computing systems developed on a set of personal
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as processor time, memory, input/output, and virtual re- stations and providing load sharing and balancing in order to
sources such as processes, remote communication, communi- provide high-performance services to users (10).
cation ports, and network protocols. It depends on the support There are three layers of cooperating processes in
provided by functions of the software abstraction level. The RHODOS: user processes, system servers, and kernel servers
second level provides it services to the system services level. (Fig. 9). Each process executes in user mode and is confined
This third software level allows the management of files and to an individual address space which is controlled and main-
object (services, resources) names, and creates a human user tained by the RHODOS microkernel.
interface formed by graphics terminals, command interpret- In RHODOS, software creating abstractions forms a mi-
ers and authentication systems. This level creates an image crokernel. The microkernel provides the following functions:
of a computer system for users. User processes form the soft- context switching, interrupt handling, basic operations on
ware level sitting on the system services level. memory pages relating to the hardware, and local interpro-

In a client-server based distributed operating system all cess communication. Furthermore, this microkernel is respon-
management functions and services provided to user pro- sible for storing and managing basic data structures.
cesses are modelled and developed as individual cooperating Kernel servers implement the mechanisms of the
server processes. User processes act as clients. However, be- RHODOS functionality. Two groups of kernel servers can be
cause servers cooperate in order to achieve the goals of a dis- distinguished. To the first group belong these servers which
tributed operating system they also act as clients. As physical provide services which could be identified in any distributed
memory in a distributed computing system is not shared, re- or network operating system: process management, memory
mote processes communicate using messages. In order to have management, remote IPC management, communication pro-
a uniform communication model, local processes also commu- tocols, and I/O management (drivers in RHODOS have also
nicate using messages. This provides communication trans- been developed as individual servers). The second group en-
parency in a natural manner. compasses servers which provide advanced services which are

In this section we will use RHODOS to illustrate the appli- necessary to support parallel processing on a network of
cation of the client-server model in the development of a new workstations, and load sharing and balancing. These services
class of distributed operating systems. For this reason we will are: process migration, remote process creation, and data col-
mainly concentrate on the kernel servers and microkernel as lection.
they form a new image of operating systems for distributed System servers implement the policy of the RHODOS func-
computing systems. tionality. They provide services such as naming, file accessing

and manipulation (in basic and transaction modes), two-way
The RHODOS Architecture and m-way authentication, and global scheduling. A broker

service has also been developed and will be installed shortly.RHODOS (research oriented distributed operating system) is
In order to provide these services, system servers act as cli-a microkernel and message passing based system developed
ents and invoke relevant kernel servers and the nucleus usingusing the client-server model. This operating system is capa-

ble of supporting parallel processing on a network of work- standard system calls.

Figure 9. The logical architecture of
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Currently, the transport service is provided by a fast special-
ized RHODOS Reliable Datagram Protocol (RRDP). Network
and data link layer protocols are provided by the IP/
Ethernet suit.

RHODOS Kernel Servers and Services

One of the basic features of the RHODOS design is that each
resource is managed by a relevant server: the process man-
ager is responsible for processes and basic operations on pro-
cesses, the space manager for memory, and the IPC manager
for remote and group communication and address resolution.
A process is a very special resource, because it is constructed
based on some basic resources such as spaces, data structures
usually called process control blocks, communication ports,
and buffers. Thus, in RHODOS advanced operations on pro-
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Microkernel
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Interprocess
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User
process
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cesses such as process migration and remote process creation
Figure 10. RHODOS interprocess communication facility.

are provided by separate servers: the migration manager and
REX manager.

User applications and processes are those developed and Process Manager. The job of the process manager is to man-
allocated to perform task for users. These processes have no age the processes that are created in RHODOS. The process
special privileges and obtain services by calls to the microker- manager manipulates the process queues and deals with par-
nel and system servers. ent processes waiting for child processes to exit. It cooperates

with other kernel servers, for instance with the migration
Communication in RHODOS manager to transfer a process’ state during migration; and

the remote execution manager to set up a process’ state whenIn RHODOS, access to local and remote services is achieved
a process is created.in the same transparent manner, via a system name of that

service and uniform interprocess communication, which is
Space Manager. One of the goals of RHODOS is portabilityprovided by the Interprocess Communication (IPC) facility.

across hardware platforms. Thus, RHODOS memory manage-The facility provides three basic communication primitives:
ment has been separated into two sections: hardware depen-send(), recv(), and call(). Both send() and recv() provide the
dent and hardware independent. The small hardware-depen-basic message passing semantics while the call(), recv(), and
dent section is found in the microkernel and the largersend() in combination provide synchronous RPC. In providing
hardware-independent section comprises RHODOS spaceboth message passing and RPC semantics the programmer is
manager. This server deals with spaces, logical units of mem-able to select the most appropriate communication technique
ory, independent of physical units (e.g., pages), which arefor a given application.
mapped to the physical memory.The functioning of the IPC facility is divided into three sec-

The space manager supports two types of page operations:tions: local IPC module, the IPC manager, and the network
copy_on_write, which allows twin processes to share pagesmanager (Fig. 10). The local IPC module is an integral part of
while they are reading them but makes separate copiesthe RHODOS microkernel and provides local communication
when either process attempts to write to the page;between processes on the same personal computer. If the des-
copy_on_reference, which is used in process migration wheretination process exists on the local computer, the module will
only referenced pages are transferred from a source computercomplete the transfer. Otherwise, the IPC module sends a re-
to a destination computer the process has been migrated.quest to the IPC manager to provide a remote communica-

Handling exceptions, creating spaces and transferringtion service.
pages have been extended by adding additional functions inThe primary responsibility of the IPC Manager is the re-
order to provide an operating system built in support for Dis-ceiving and transmitting of remote messages for all processes
tributed Shared Memory (DSM). Two consistency models arewithin the RHODOS distributed computing system. It also
supported in the RHODOS DSM: invalidation and updatesupports group communication. This service is achieved with
based.the cooperation of the name server by assigning a single name

to a group of names. Furthermore, in order to support one-to-
one and group communication the IPC manager is responsible Device Manager. Transparency is an important feature of

RHODOS. This not only includes interprocess communicationfor address resolution. In particular, a message that is sent
to an individual process or a group requires the IPC manager between remote hosts, but also a transparent unified inter-

face of physical devices such as serial ports, keyboards, videoto resolve the destination processes’ (servers’) location and
provide the mechanism for the transport of the message to screens, and disks. Device drivers provide this interface. De-

vice drivers in RHODOS are in their own right processes withthe desired process or group of processes.
In order to deliver a message to a remote process (server), the privilege and status of kernel servers. The benefits ob-

tained from implementing device drivers as processes includethe IPC manager invokes a delivery server, called the net-
work manager. This server consists of a protocol stack em- the ability to enable and disable new drivers dynamically, as

well as to use normal process debugging tools whilst the de-ploying transport, network, and data link layer protocols.
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vice driver is active. The device manager is the controlling created on a local computer only a local REX manager is in-
volved. If processes are created on remote computers, theentity that allows users to access a requested physical device.
home REX manager cooperates with remote REX managers
to ensure processes are created correctly whilst maintainingMigration Manager. The process migration manager is re-
the link with the process that issued the request. The genericsponsible for the migration of running processes from the
cooperation of the servers is shown in Fig. 11.home computer to a remote computer. To migrate a process in

RHODOS involves migrating the process state, address space,
Data Collection Manager. The RHODOS Data Collectioncommunication state, file state, and other resources. Thus,

System is responsible for collection and dissemination of theprocess migration requires the cooperation of all the servers
operational statistics of processes and exchanged messages inmanaging these resources, the process, space, IPC managers,
the RHODOS environment. The Data Collection System con-and the file server, respectively. The process migration man-
sists of a data collection manager (server) and stubs of codeager only coordinates these servers, and all of them cooperate
within the microkernel and other servers. The data collectionfollowing the client-server model.
manager is designed to be activated periodically and whenProcess migration in RHODOS is a transaction-based oper-
special events occur (e.g., a new process was created, a pro-ation performed on processes. Thus, the initial request from
cess was killed), and provide a central repository for the accu-the source process migration manager to the destination pro-
mulation of statistics. It provides accurate process statisticscess migration manager to migrate a selected process starts
to the global scheduler. These statistics will permit the globalthe transaction. The destination process migration manager
scheduler to make the most appropriate decisions concerningcommits this transaction by sending a response back, if all
process placement within the RHODOS environment.operations of installation of resources on the destination com-

puter by individual servers, the process, space, IPC manag-
RHODOS System Serversers, and the file server have been completed successfully. Oth-

erwise, an abort response is sent back. The RHODOS system provides direct services to users by em-
ploying the following servers: the naming server, file server,
authentication server, and the broker server, called theRemote Execution Manager. The function of the remote exe-

cution (REX) manager is to provide coordination for creation trader. Furthermore, RHODOS provides a special service
which improves the overall performance of all services by em-of processes on local and remote computers. If a process is

Figure 11. The generic cooperation of
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ploying the global scheduler. The utilization of the client-
server model in the development of user-oriented services of
a distributed operating system is presented here based on the
global scheduler.

RHODOS provides global scheduling services in order to
allocate/migrate processes to idle or lightly loaded computers
to share computational resources and balance load. Global
scheduling employs both static allocation and load balancing.
Static allocation is employed when system load remains
steadily high and new processes have to be created. Static
allocation is making the decision of where to create new pro-
cesses. Load balancing is employed to react to large fluctua-
tions in system load. Load balancing is making a decision
when to migrate a process, which process to migrate, and
where to migrate this process. These servers make these deci-

Applications
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service

Directory
services

RPC

Threads

Operating system

Time
service

Distributed file services

Server

sions based on the information about the current load of the Figure 12. The logical architecture of DCE.
personal computers participating in global scheduling, their
load trends, and the process communication pattern.

services, such as creating communication protocols for various
Conclusions parts of a distributed program, building a directory service for

locating those pieces, and maintaining a service for providingIn this section we showed an application of the client-server
security in their own program.model in the development of an advanced distributed op-

In the previous section we mainly addressed the kernelerating system, RHODOS. RHODOS consists of a microkernel
servers and microkernel of RHODOS as they are the result ofand two layers of cooperating servers, called kernel servers
the new approach based on the client-server model and theand system servers. Generally speaking, kernel servers im-
concept of a microkernel to building distributed computingplement the mechanism of the RHODOS functionality,
systems. Here, since DCE is a complete extension of central-whereas system servers implement the policy of the RHODOS
ized operating systems to form a distributed computing sys-functionality. User processes, sitting on top of the RHODOS
tem we mainly concentrate on servers which directly providesoftware, obtain services from RHODOS servers. When a
services to users.RHODOS server receives a service request, it may serve the

request directly, or it may contact other servers if services
The Architecture of DCEfrom these servers are required.

The architecture of DCE masks the physical complexity of the
networked environment by providing a layer of logical sim-BUILDING THE DISTRIBUTED COMPUTING ENVIRONMENT
plicity, composed of a set of services that can be used sepa-ON TOP OF EXISTING OPERATING SYSTEMS
rately or in combination to form a comprehensive distributed
computing system. Servers that provide DCE services usuallyThe previous section contains a presentation of RHODOS, an
run on different computers; so do clients and servers of a dis-example of a distributed operating system, developed based
tributed application program that use DCE.on the client-server model and the concept of a microkernel.

DCE is based on a layered model which integrates a setThe whole system has been built from scratch on bare hard-
of fundamental technologies (Fig. 12). To applications, DCEware. There is another approach to building a distributed
appears to be a single logical system with two broad catego-computing environment by putting it on top of existing op-
ries of services (18):erating systems. Such a software layer hides the differences

among the individual computers, and forms a single comput-
The DCE Core Services. They provide tools with which soft-ing system.

ware developers can create end-user applications and
system software products for distributed computing:The Role of the Client-Server Model in Building
Threads. DCE supports multithreaded applications;a Distributed Computing Environment
RPC. The fundamental communication mechanism

Open Software Foundation’s Distributed Computing Environ- which is used in building all other services and appli-
ment (DCE) (17) is a vendor-neutral platform for supporting cations;
distributed applications. DCE is a standard software struc-

Security Service. Provides the mechanism for writingture for distributed computing that is designed to operate
applications that support secure communication be-across a range of standard Unix, VMS, OS/2, and other op-
tween clients and servers;erating systems. It includes standards for RPC, name, time,

Cell Directory Services (CDS). Provides a mechanism forsecurity, and thread services—all sufficient for client–server
logically naming objects within a DCE cell (a groupcomputing across heterogeneous architectures.
of client and server computers);DCE uses the client–server model to support its infra-

structure and transparent services. All DCE services are pro- Distributed Time Service (DTS). Provides a way to syn-
chronize the clocks on different computers in a dis-vided through servers. By using DCE, application program-

mers can avoid considerable work in creating supporting tributed computing system.
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DCE Data-Sharing Services. In addition to the core ser- The Servers of DCE
vices, DCE provides important data-sharing services,

All the higher-level DCE services, such as the directory ser-
which require no programming on the part of the end

vices, security service, time service, and distributed file ser-
user and which facilitate better use of shared infor-

vices, are provided by relevant servers.
mation:
Distributed File Service (DFS). Provides a high-perfor-

Directory Services. The main job of the directory services ismance, scalable, secure method for sharing remote
to help clients find the locations of appropriate servers. To letfiles;
clients access the services offered by a server, the server has

Enhanced File Service (EFS). Provides features which to place some binding information into the directory. A direc-
greatly increase the availability and further simplify tory is a hierarchically structured database which stores dy-
the administration of DFS. namic system configuration information. The directory is a

realization of the naming system. Each name has attributes
In a typical distributed environment, most clients perform associated with it, which can be obtained via a query using

their communication with only a small set of servers. In DCE, the name.
computers that communicate frequently are placed in a single Each cell in a DCE distributed computing system has its
cell. Cell size and geographical location are determined by the own directory service, called the Cell Directory Service (CDS),
people administering the cell. Cells may exist along social, that stores the directory service information for a cell (18). It
political, or organizational boundaries and may contain up to is optimized for intra-cell access, since most clients communi-
several thousand computers. Although DCE allows clients cate with servers in the same cell. Each CDS consists of CDS
and servers to communicate in different cells, it optimizes for servers and CDS clerks. A CDS server runs on a computer
the more common case of intra-cell communication. One com- containing a database of directory information (called the
puter can belong to only one cell at a time. clearinghouse). Each clearinghouse contains some number of

directories, analogs to but not the same as directories in a file
system. Each directory, in turn, can logically contain otherThe Role of RPC
directories, object entries, or soft links (an alias that points to

DCE RPC is based on the Apollo Network Computing System something else in CDS).
(NCA/RPC). The components of DCE RPC can be split into Each cell may have multiple CDS servers. Nodes which do
the following two groups according to the stage of their usage: not run a CDS server must run a CDS clerk. A CDS clerk

acts as an intermediary between a distributed application and
Used in Development. It includes IDL (Interface Definition the CDS server on a node not running a CDS server.

Language) and the idl compiler. IDL is a language used When a server wishes to make its binding information
to define the data types and operations applicable to available to clients, it exports that information on one of its
each interface in a platform independent manner. idl cell’s CDS servers. When a client wishes to locate a server
compiler is the tool used to translate IDL definitions within its own cell, it imports that information from the ap-
into code which can be used in a distributed application; propriate CDS server by calling on the CDS clerk on its com-

puter.Used in Runtime. It includes RPC runtime library, rpcd
(RPC daemon), and rpccp (RPC control program). DCE uses the Domain Name System (DNS) or Global Di-

rectory Service (GDS, based on the X.500 standard) to enable
clients to access servers in foreign cells. To access a server inTo build a basic DCE application, the programmer has to
a foreign cell, a client gives the cell’s name and the name ofsupply the following three files:
the desired server. A CDS component called a Global Direc-
tory Agent (GDA) extracts the location of the named cell’sThe Interface Definition File. It defines the interfaces (data
CDS server from DNS or GDS, then a query is sent directlystructures, procedure names, and parameters) of the re-
to this foreign server.mote procedures that are offered by the server;

The Client Program. It defines the user interfaces, the calls
Security Service. DCE provides the following four securityto the remote procedures of the server, and the client

services: authentication, authorization, data integrity, andside processing functions;
data privacy. A security server (it may be replicated) is re-

The Server Program. It implements the calls offered by sponsible for providing these services within a cell. The secu-
the server. rity server has the following three components:

DCE uses threads to improve the efficiency of RPCs. A thread
Registry Service. It is a database of principal (a user of theis a lightweight process that executes a portion of a program,

cell), group, and organization accounts, their associatedcooperating with other threads concurrently executing in the
secret keys, and administration policies.same address space of a process. Most of the information that

Key Distribution Service. It provides tickets to clients. Ais a part of a process can then be shared by all threads execut-
ticket is a specially encrypted object that contains a con-ing within the process address space. Sharing reduces sig-
versation key and an identifier that can be presented bynificantly the overhead incurred in creating and maintaining
one principal to another as a proof of identity.the information, and the amount of information that needs to

be saved when switching between threads of the same Privilege Service. It supplies the privileges of a particular
principal. It is used in authorization.program.
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The security server must run on a secure computer, since the
registry on which it relies contains a secret key, generated
from a password, for every principal in the cell. They are
based on the Kerberos V5.0, created by the MIT/Project
Athena, and DCE extends Kerberos version 5 by providing
authorization services.

Time Service. Distributed Time Service (DTS) of DCE is de-
signed to keep a set of clocks on different computers synchro-
nized. DTS uses the usual client-server structure: DTS cli-
ents, daemon processes called clerks, request the correct time
from some number of servers, receive responses, and then re-
set their clocks as necessary to reflect this new knowledge.

There are several components that compose the DCE DTS:

Time Clerk. It is the client side of DTS. It runs on a client
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computer and keeps the computer’s local time synchro-
Figure 13. Interactions between DFS components. 1: file requestnized by asking a time server for the correct time and
from an application; 2: locate the fileset location server; 3: locate theadjusting the local time accordingly.
file server that stores the requested file; 4: access the requested file.

Time Servers. There are three types of time servers. The
local time server maintains the time synchronization of
a given LAN. The global time server and courier time tributed computing. DCE consists of many integrated ser-
servers are used to synchronize time among intercon- vices, such as thread and RPC services, security service, di-
nected LANs. A time server synchronizes with other rectory service, time service, and distributed file service, that
time servers by asking these time servers for correct are necessary in performing client–server computing in a het-
times and by adjusting its time accordingly. erogeneous environment. Most of these services are imple-

mented as individual servers or groups of cooperating servers.DTS API. It provides an interface where application pro-
Application processes act as clients of DCE servers. Now ingrams can access time information provided by the
its fifth year (DCE 1.0 was announced in 1991), DCE has goneDTS.
through several major stages of evolution and enhancement
(through DCE 1.1 and DCE 1.2). Because of its operating sys-Distributed File Services. DCE uses its distributed file ser-
tem independence, DCE has gained significant support fromvices (DFS) to join the file systems of individual computers
user and vendor communities.within a cell into a single file space. A uniform and transpar-

ent interface is provided for applications to accessing files lo-
cated in the network. DFS is derived from the Andrew File BIBLIOGRAPHY
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