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There has been an explosive growth of multimedia com-
munication over networks during the past two decades.
Video, audio, and other continuous media data, as well as
additional discrete media such as graphics, are parts of in-
tegrated network applications. For these applications, the
traditional media (e.g., text, images), as well as the continu-
ous media (e.g., video, audio), must be processed. Such pro-
cessing, referred to as “data coding”, often yields better and
more efficient representations of text, image, graphics, au-
dio, and video signals. The uncompressed media data often
require very high transmission bandwidth and consider-
able storage capacity. To provide feasible and cost-effective
solutions for the current quality requirements, compressed
text, image, graphics, audio, and video streams are trans-
mitted over networks.

As shown in Refs. 1–6 there exist many data coding and
compression techniques that are, in part, competitive, and,
in part, complementary. Most of these techniques are al-
ready used in today’s products, while other methods are
still undergoing development or are only partly realized.
Today and in the near future, the major coding schemes
are linear predictive coding, layered coding, and transform
coding. The most important compression techniques are
entropy coding (e.g., run-length coding, Huffman coding,
and arithmetic coding), source coding (e.g., vector quan-

tization, subsampling, and interpolation), hybrid coding
(e.g., JPEG, MPEG-1, MPEG-2, MPEG-4, H.261, H.263,
and H.264/AVC/Mpeg-4 Part 10), and other proprietary de-
veloped coding techniques (e.g., Intel’s Indeo, Microsoft’s
Windows Media Audio and Video, General Instrument’s
DigiCipher, IBM’s Ultimotion Machine, and Apple’s Quick
Time, etc.).

The purpose of this article is to provide the reader
with a basic understanding of the principles and tech-
niques of data coding and compression. Various compres-
sion schemes are discussed for transforming audio, image
and video signals into compressed digital representations
for efficient transmission or storage. Before embarking on
this venture, it is appropriate to first introduce and clarify
the basic terminology and methods for signal coding and
compression.

BASIC TERMINOLOGY AND METHODS FOR DATA
CODING

The word signal originally referred to a continuous time
and continuous amplitude waveform, called an analog sig-
nal. In a general sense, people now view a signal as a func-
tion of time, where time may be continuous or discrete,
and where the amplitude or values of the function may be
continuous or discrete, and may be scalar or vector-valued.
Thus, a signal is meant to represent a sequence or a wave-
form whose value at any time is a real number or real vec-
tor. In many applications, a signal also refers to an image
which has an amplitude that depends on two spatial coor-
dinates, instead of one time variable; or it can also refer
to a video (moving images), where the amplitude is a func-
tion of two spatial variables and a time variable. The word
data is sometimes used as a synonym for signal, but more
often it refers to a sequence of numbers or more generally,
vectors. Thus, data can often be viewed as a discrete time
signal. During recent years, however, the word data has
been increasingly been associated in most literature with
the discrete or digital case, that is, with discrete time and
discrete amplitude, what is called a digital signal.

Physical sources of analog signals such as speech, au-
dio, image, video, and all observable electrical waveforms
are analog and continuous time in nature. The first step
to convert analog signals to digital form is sampling. An
analog continuously fluctuating waveform can usually be
characterized completely from the knowledge of its ampli-
tude values at a countable set of points in time so that,
in effect, one can “throw away” the rest of the signal. One
does not need to observe how it behaves in between any
two isolated instances of observation. This is at the same
time remarkable and intuitively obvious. It is remarkable
that one can discard so much of the waveform and still be
able to accurately recover the missing parts. The intuitive
idea is that, if one samples periodically at regularly spaced
intervals, and the signal does not fluctuate too quickly so
that no unexpected wiggles can appear between two con-
secutive sampling instants, then one can expect to recover
the complete waveform by a simple process of interpolation
or smoothing, where a smooth curve is drawn that passed
through the known amplitude values at the sampling in-
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stants.
When watching a movie, one is actually seeing 24 still

pictures flashed on the screen every second. (Actually, each
picture is flashed twice.) The movie camera that produced
these pictures was actually photographing a scene by tak-
ing one still picture every 1/24th of a second. Yet, one has
the illusion of seeing continuous motion. In this case, the
cinematic process works because the brain is somehow do-
ing the interpolation. This is an example of sampling in ac-
tion in daily life. For an electrical waveform, or any other
one-dimensional signal, the samples can be carried as am-
plitudes on a periodic train of narrow pulses. Consider a
scalar time function x(t), which has a Fourier transform
X(f). Assume there is a finite upper limit on how fast x(t)
can wiggle around or vary with time. Specifically, assume
that X(f) = 0 for |f| ≥ W. Thus, the signal has a strictly
low-pass spectrum with cutoff frequency W hertz (Hz). To
sample this signal, one can periodically observe the ampli-
tude at isolated time instants t = kT for k = . . . , −2, −1, 0,
1, 2, . . . . The sample rate is fs = 1/T and T is the sampling
period or sampling interval in seconds.

The idealized case of the sampling model is impulse
sampling with a perfect ability to observe isolated ampli-
tude values at the sampling instants kT. The effect of such
a sampling model is seen as the process of multiplying the
original signal x(t) by a sampling function, s(t), which is the
periodic train of impulses p(t) (e.g., Dirac delta functions
for ideal case) given by

where the amplitude scale is normalized to T so that the av-
erage value of s(t) is unity. In the time domain, the effect of
this multiplication operation is to generate a new impulse
train whose amplitudes are samples of the waveform x(t).
Thus

Therefore, one now has a signal y(t) which contains only
the sample values of x(t) and all values in between the sam-
pling instants have been discarded. Figure 1 is an example
of continuous signal waveform and its sampled waveform.
The complete recovery of x(t) from the sampled signal y(t)
can be achieved if the sampling process satisfies the fol-
lowing fundamental theorem:

Nyquist Sampling Theorem. A signal x(t) that is bandlim-
ited to W (Hz) can be exactly reconstructed from its samples
y(t) when it is periodically sampled at a rate fs = 2W.

This minimum sampling frequency of 2W (Hz) is called
the Nyquist frequency or Nyquist rate. If we violate the
condition of the sampling theorem, that is, the sampling
rate is less than twice of the maximum frequency compo-
nent in the spectrum of the signal to be sampled, then the
recovered signal will be the original signal plus an addi-
tional undesired waveform whose spectrum overlaps with
the high-frequency components of the original signal. This

Figure 1. An example of sampling process, which shows (a) the
original analog waveform and (b) its corresponding sampled wave-
form.

undesired component is called aliasing noise and the over-
all effect is referred to as aliasing, since the noise intro-
duced here is actually a part of the signal itself but with
its frequency components shifted to a new frequency.

The rate at which a signal is sampled usually deter-
mines the amount of processing, transmission or storage
that will subsequently be required. Hence, it is desirable
to use the lowest possible sampling rate that will satisfy
a given application. On the other hand, most physical sig-
nals are not strictly bandlimited. However, typically, the
contribution of the higher frequency signal components di-
minishes in importance as frequency increases over cer-
tain values. For example, music often does not have a well-
defined cutoff frequency, below which significant power
density exists, and above which no signal power is present.
But human ears are not sensitive to very-high-frequency
sound. So how does one choose a meaningful sampling rate
that is not higher than necessary and yet does not violate
the sampling theorem?

The answer is to first decide how much of the original
signal spectrum is really needed to be retained. Analog low-
pass filtering is then performed on the analog signal be-
fore sampling, so that the “needless” high-frequency com-
ponents are suppressed. This analog prefiltering is often
called antialias filtering. For example, in digital telephony,
the standard antialias filter has a cutoff of 3.4 kHz, al-
though the speech signal contains frequency components
extending well beyond this frequency.This cutoff allows the
moderate sampling rate of 8 kHz to be used and retains the
voice fidelity that was already achieved with analog tele-
phone circuits, which were already limited to roughly 3.4
kHz. In summary, analog prefiltering is needed to prevent
aliasing of the signal and noise components that lie outside
of the frequency band that must be preserved and repro-
duced.

Just as a waveform is sampled at discrete times, the
value of the sampled waveform at a given time is also con-
verted to a discrete value. Such a conversion process is
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Figure 2. PCM coded signal of sampled waveform in Fig. 1(b).

called quantization, which will introduce loss on sampled
waveform. The resolution of quantization depends on the
number of bits used in measuring the height of the wave-
form. For example, an 8-bit quantization yields 256 possi-
ble values. Lower resolutions of quantization will result in
higher losses of the digital signal.The electronic device that
converts a signal waveform into digital samples is called an
analog-to-digital converter (ADC). The reverse conversion
is performed by a digital-to-analog converter (DAC).

The first process to sample analog signals and then
quantize the sample values was pulse code modulation
(PCM). PCM was invented in the 1930s, but only became
prevalent in the 1960s, when transistors and integrated
circuits became available. Figure 2 depicts the steps in-
volved in PCM at a high level. PCM does not require so-
phisticated signal processing techniques and related cir-
cuitry. Hence, it was the first method to be employed, and is
the prevalent method used today in telephone plants. PCM
provides excellent quality. PCM is specified by the Interna-
tional Telephone and Telegraph Consultative Committee
(CCITT). The current name of the specification is Inter-
national Telecommunication Union (ITU) for voice coding
in Recommendation G.711. A problem with PCM is that
it requires a fairly high bandwidth (e.g., 64 kHz, for voice
coding) to code a signal.

PCM has been around for a long time, and new technolo-
gies are beginning to demand attention. Of all the available
schemes emerging from the laboratory, differential pulse
code modulation (DPCM) and adaptive DPCM (ADPCM)
schemes are among the most promising techniques. If a
signal has a high correlation between adjacent samples,
the variance of the difference between adjacent samples is
smaller than the variance of the original signal. If this dif-
ference is coded, rather than the original signal, fewer bits
are needed for the same desired accuracy. That is, it is suf-
ficient to represent only the first PCM-coded sample as a
whole, and all following samples as the difference from the
previous one. This is the idea behind DPCM. In general,
fewer bits are needed for DPCM than for PCM.

In a typical DPCM system, the input signal is band-
limited, and an estimate of the previous sample (or a pre-
diction of the current signal value) is subtracted from the
input.The difference is then sampled and coded. In the sim-
plest case, the estimate of the previous sample is formed by
taking the sum of the decoded values of all the past differ-
ences (which ideally differ from the previous sample only
by a quantizing error). DPCM exhibits a significant im-
provement over PCM when the signal spectrum is peaked

at the lower frequencies and rolls off toward the higher
frequencies.

A modification of DPCM is delta modulation (DM).
When coding the differences, it uses exactly one bit, which
indicates whether the signal increases or decreases. This
leads to an inaccurate coding of steep edges. This technique
is particularly profitable if the coding does not depend on
8-bit grid units. If differences are small, a smaller number
of bits are sufficient.

A prominent adaptive coding technique is ADPCM. It is
a successive development of DPCM. Here, differences are
encoded by the use of only a small number of bits (e.g.,
4 bits). Therefore, either sharp transitions are coded cor-
rectly (these bits represent bits with a higher significance),
or small changes are coded exactly (DPCM-encoded val-
ues are the less-significant bits). In the second case, a loss
of high frequencies would occur. ADPCM adapts to this
“significance” for a particular data stream as follows: the
coder divides the value of DPCM samples by a suitable co-
efficient and the decoder multiplies the compressed data
by the same coefficient, that is, the step size of the signal
changes.

The value of the coefficient is adapted to the DPCM-
encoded signal by the coder. In the case of a high-frequency
signal, large DPCM coefficient values occur. The coder de-
termines a high value for the coefficient. The result is a
very coarse quantization of the DPCM signal in passages
with steep edges. Low-frequency portions of such passages
are hardly considered at all. For a signal with perma-
nently relatively small DPCM values, the coder will de-
termine a small coefficient. Thereby, a fine resolution of
the dominant low-frequency signal portions is guaranteed.
If high-frequency portions of the signal suddenly occur in
such a passage, a signal distortion, in the form of a slope-
overload, arises. Considering the actually defined step size,
the greatest possible change by a use of the existing num-
ber of bits will not be large enough to represent the DPCM
value with an ADPCM value. The transition of the PCM
signal will be faded.

It is possible to explicitly change the coefficient that is
adaptively adjusted to the data in the coding process. Al-
ternatively, the decoder is able to calculate the coefficients
itself from an ADPCM-encoded data stream. In ADPCM,
the coder can be made to adapt to DPCM value change by
increasing or decreasing the range represented by the en-
coded bits. In principle, the range of bits can be increased
or decreased to match different situations. In practice, the
ADPCM coding device accepts the PCM coded signal and
then applies a special algorithm to reduce the 8-bit sam-
ples to 4-bit words using only 15 quantization levels. These
4-bits words no longer represent sample amplitudes; in-
stead, they contain only enough information to reconstruct
the amplitude at the distant end. The adaptive predictor
predicts the value of the next signal on the level of the pre-
viously sampled signal. A feedback loop ensures that signal
variations are followed with minimal deviation. The devi-
ation of the predicted value, measured against the actual
signal, tends to be small, and can be encoded with 4-bits.
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FUNDAMENTAL COMPRESSION ALGORITHMS

The purpose of compression is to reduce the amount of data
for multimedia communication. The amount of compres-
sion that an encoder achieves can be measured in two dif-
ferent ways. Sometimes the parameter of interest is com-
pression ratio—the ratio between the original source data
and the compressed data sizes. However, for continuous-
tone images another measure, the average number of com-
pressed bits/pixel, is sometimes a more useful parameter
for judging the performance of an encoding system. For a
given image, however, the two are simply different ways of
expressing the same compression.

Compression in multimedia systems is subject to certain
constraints. The quality of the coded and, later on, decoded
data, should be as good as possible. To make a cost-effective
implementation possible, the complexity of the technique
should be minimal. The processing of the algorithm can not
exceed certain time spans.

A natural measure of quality in a data coding and com-
pression system is a quantitative measure of distortion.
Among the quantitative measures, a class of criteria often
used is the mean square criterion. It refers to some type
of average or sum (or integral) of squares of the error be-
tween the sampled data y(t) and decoded or decompressed
data y′(t). For data sequences y(t) and y′(t) of N samples,
the quantity

is called the average least squares error (ALSE). The quan-
tity

is called the mean square error (MSE), where E represents
the mathematical expectation. Often ALSE is used as an
estimate of MSE. In many applications, the (mean square)
error is expressed in terms of a signal-to-noise ratio (SNR),
which is defined in decibels (dB) as

where σ2 is the variance of the original sampled data se-
quence.

Another definition of SNR, used commonly in image and
video coding applications, is

The PSNR value is roughly 12 to 15 dB above the value of
SNR.

Another commonly used method for measuring the per-
formance of data coding and compression system is rate
distortion theory. Rate distortion theory provides some use-
ful results, which tell us the minimum number of bits re-
quired to encode the data, while admitting a certain level
of distortion, and vice versa.

The rate distortion function of a random variable x gives
the minimum average rate RD (in bits per sample) required
to represent (or code) it while allowing a fixed distortion D
in its reproduced value. If x is a Gaussian random vari-
able of variance σ2, and y is its reproduced value and if the
distortion is measured by the mean square value of the dif-
ference (x-y), that is, D = E[(x − y)2], then the rate distortion
function of x is defined as

Data coding and compression systems are considered op-
timal if they maximize the amount of compression subject
to an average or maximum distortion.

As shown in Table 1, compression techniques fit into dif-
ferent categories. For their use in multimedia systems, one
can distinguish among entropy, source, and hybrid coding.
Entropy coding is a lossless process, while source encod-
ing is a lossy process. Most multimedia systems use hy-
brid techniques, which are a combination of the two coding
techniques.

Entropy coding is used independently of the media’s spe-
cific characteristics. Any input data sequence is considered
to be a simple digital sequence and the semantics of the
data is ignored. Entropy encoding reduces the size of the
data sequence by focusing on the statistical characteristics
of the encoded data series to allocate efficient codes, inde-
pendent of the characteristics of the data. Entropy encod-
ing is an example of lossless encoding as the decompression
process regenerates the data completely.

The concept of entropy is derived from classical 19th
century thermodynamics. The basic ideas of entropy cod-
ing are as follows: First, one defines the term information
by using video signals as examples. Consider a video se-
quence in which each pixel takes on one of K values. If the
spatial correlation have been removed from the video sig-
nal, the probability that a particular level i appears will
be Pi , independent of the spatial position. When such a
video signal is transmitted, the information I imparted to
the receiver by knowing which of the K levels is the value
of a particular pixel, is −log2 Pi bits. This value, averaged
over an image, is referred to as the average information
of the image, or the entropy. The entropy can therefore be
expressed as

The entropy is also extremely useful for measuring the
performance of a coding system. In “stationary” systems—
systems where the probabilities are fixed—it provides a
fundamental lower bound, called the entropy limit, for the
compression that can be achieved with a given alphabet of
symbols.

Entropy encoding attempts to perform efficient code al-
location (without increasing the entropy) for a signal. Run-
length encoding, Huffman encoding, and arithmetic encod-
ing are well-known entropy coding methods (7) for efficient
code allocation, and are commonly used in actual encoders.
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Run-length coding is the simplest entropy coding. Data
streams often contain sequences of the same bytes or sym-
bols. By replacing these repeated byte or symbol sequences
with the number of occurrences, a substantial reduction
of data can be achieved. This is called run-length coding,
which is indicated by a special flag that does not occur
in the data stream itself. For example, the data sequence:
GISSSSSSSGIXXXXXX can be run-length coded as: GIS#
7GIX# 6, where # is the indicator flag. The character “S”
occurs 7 consecutive times and is “compressed” to 3 char-
acters “S# 7”, as well as the character “X” occurs 6 consecu-
tive times and is also “compressed” to 3 characters “X# 6”.
Run-length coding is a generalization of zero suppression,
which assumes that just one symbol appears particularly
often in sequences and the coding focuses on uninterrupted
sequences, or runs, of zeros or ones to produce an efficient
encoding.

Huffman coding is an optimal way of coding with
integer-length code words. Huffman coding produces a
“compact” code whose definition is for a particular set of
symbols and probabilities, no other integer code can be
found that will give better coding performance than this
code. Consider the example given in Table 2. The entropy—
the average ideal code length required to transmit the
weather—is given by

However, fractional-bit lengths are not allowed, so the
lengths of the codes listed in the column to the right do not
match the ideal information. Since an integer code always
needs at least one bit, increasing the code for the symbol
“00” to one bit seems logical.

The Huffman code assignment procedure is based on a
coding“tree” structure.This tree is developed by a sequence
of pairing operations, in which the two least probable sym-
bols are joined at a “node” to form two “branches” of the
tree. As the tree is constructed, each node at which two
branches meet is treated as a single symbol with a com-
bined probability that is the sum of the probabilities for all
symbols combined at that node.

Figure 3 shows a Huffman code pairing sequence for the
four-symbol case in Table 2. In Fig. 3 the four symbols are
placed on the number line from 0 to 1, in order of increas-
ing probability. The cumulative sum of the symbol proba-
bilities is shown at the left. The two smallest probability
intervals are paired, leaving three probability intervals of
size 1/8, 1/8, and 3/4. We establish the next branch in the
tree by again pairing the two smallest probability inter-
vals, 1/8 and 1/8, leaving two probability intervals, 1/4 and
3/4. Finally, the tree is completed by pairing the 1/4 and
3/4 intervals. To create the code word for each symbol, one
assigns a 0 and 1, respectively (the order is arbitrary), to
each branch of the tree. Then concatenate the bits assigned
to these branches, starting at the “root” (at the right of the
tree) and the following the branches back to the “leaf” for
each symbol (at the far left). Notice that each node in this
tree requires a binary decision—a choice between the two
possibilities—and, therefore, appends one bit to the code
word.

Figure 3. Huffman coding tree for the sequence symbols given in
Table 2. It demonstrates the Huffman code assignment process.

Figure 4. A process of partitioning the numbered line into subin-
tervals for the arithmetic coding. It illustrates a possible ordering
for the symbol probabilities in Table 2.

One of the problems with Huffman coding is that sym-
bols with probabilities greater than 0.5 still require a code
word of length one. This leads to less efficient coding, as can
be seen for the codes in Table 2. The coding rate R achieved
with Huffman codes in this case is as follows:

This rate, when compared with the entropy limit of 1.186
bit/pixel, represents an efficiency of 86 percent.

Arithmetic coding is an optimal coding procedure that
is not constrained to integer-length codes. In arithmetic
coding, the symbols are ordered on the number line in the
probability interval from 0 to 1 in a sequence that is known
to both encoder and decoder. Each symbol is assigned a
subinterval equal to its probability. Note that, since the
symbol probabilities sum to one, the subintervals precisely
fill the symbol probabilities in Table 2. Figure 4 illustrates
a possible ordering for the symbol probabilities in Table 2.

The objective in arithmetic coding is to create a code
stream that is a binary fraction pointing to the interval for
the symbol being coded. Thus, if the symbol is “00”, the code
stream is a binary fraction greater than or equal to binary
0.01 (decimal 0.25), but less than binary 1.0. If the symbol
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is “01”, the code stream is greater than or equal to binary
0.001, but less than binary 0.01. If the symbol is “10”, the
code stream is greater than or equal to binary 0.0001, but
less than binary 0.001. Finally, if the symbol is “11”, the
code stream is greater than or equal to binary 0, but less
than 0.0001. If the code stream follows these rules, a de-
coder can see which subinterval is pointed to by the code
stream and decode the appropriate symbol. Coding addi-
tional symbols is a matter of subdividing the probability
interval into smaller and smaller subintervals, always in
proportion to the probability of the particular symbol se-
quence. As long as one follows the rule—never allow the
code stream to point outside the subinterval assigned to
the sequence of symbols—the decoder will decode that se-
quence. For a detailed discussion of Huffman coding and
arithmetic coding, interested readers should refer to (7).

Source coding takes into account the semantics of the
data. The degree of compression that can be reached by
source coding depends on the data contents. In the case of
lossy compression techniques, a one-way relation between
the original sequence and the encoded data stream exists;
the data streams are similar but not identical. Different
source coding techniques make extensive use of the charac-
teristics of the specific medium.An example is sound source
coding, where sound is transformed from time-dependent
to frequency-dependent sound concatenations, followed by
the encoding. This transformation, followed by encoding,
substantially reduces the amount of data.

Predictive Coding. Prediction is the most fundamental
aspect of source coding. The basis of predictive encoding
is to reduce the number of bits used to represent infor-
mation by taking advantage of correlation in the input
signal. DPCM and ADPCM, discussed above, are among
the simplest prediction coding methods. For digital video,
signals exhibit correlation both between pixels within a
frame (spatial correlation) and between pixels in differ-
ing frames (temporal correlation). Video compression tech-
niques typically fall into two main types: (1) interframe
prediction, which uses a combination of motion-prediction
and interpolated frames to achieve high-compression ra-
tio; (2) intraframe coding, which compresses every frame of
video individually. Interframe prediction techniques take
advantage of the temporal correlation, while the spatial
correlation is exploited by intraframe coding methods. It
is amenable also to utilize intra- and interfield prediction
methods for interlaced video which scans alternate lines to
distribute the pixels of a single frame across two fields.

Motion compensation (MC), one of the most complex
prediction methods, reduces the prediction error, by pre-
dicting the motion of the imaged objects. The basic idea
of MC arises from a commonsense observation: in a video
sequence, successive frames (or fields) are likely to repre-
sent the same details, with little difference between one
frame and the next. A sequence showing moving objects
over a still background is a good example. Data compres-
sion can be effective if each component of a frame is repre-
sented by its difference with the most similar component—
the predictor—in the previous frame, and by a vector—the

motion vector—expressing the relative position of the two
components. If an actual motion exists between the two
frames, the difference may be null or very small. The orig-
inal component can be reconstructed from the difference,
the motion vector, and the previous frame.

A weakness of prediction-based encoding is that the in-
fluence of any errors during data transmission affects all
subsequent data. In particular, when interframe prediction
is used, the influence of transmission errors is quite no-
ticeable. Since predictive encoding schemes are often used
in combination with other schemes, such as transform-
based schemes, the influence of transmission errors must
be given due consideration.

Transform Coding. If we consider the frequency distri-
bution of signals containing strong correlation, it appears
that the signal power is concentrated in the low-frequency
region. In general, it is possible to exploit for compression
any systematic bias in components of the signal. The key
idea behind transform coding is to transform the original
signal in such a way as to emphasize the bias, making
it more amenable to techniques that remove redundancy.
One optimal transform is called the Karhunen–Loeve (KL)
transformation. The KL transform can completely remove
the statistical correlation of image data and provide a mini-
mum mean-square-error (3). In application of the KL trans-
form to images, there are dimensionality difficulties. The
KL transform depends on the statistics as well as the size
of the image. It is known that fast KL transform algo-
rithms only exist for certain statistical image models. A
number of orthogonal transforms, including the discrete
Fourier transform (DFT) and the discrete cosine transform
(DCT), have been used in various compression algorithms.
Of these transforms, DCT is the most widely used for video
compression, because the power of the transformed signal
is well concentrated in the low frequencies, and it can be
computed rapidly.

The following expresses a two-dimensional DCT for an
N × N pixel block.

where

After the transformation, DCT coefficients are quantized
by levels specified in a quantization table. Usually, larger
values of N improve the SNR, but the effect saturates above
a certain block size. Further, increasing the block size in-
creases the total computation cost required. The value of
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Figure 5. A block diagram of the MC + DCT coding scheme which shows the basic function blocks
such as motion estimation, motion prediction, DCT variable length coding, and so on.

N is thus chosen to balance the efficiency of the transform
and its computation cost, block sizes of 8 and 16 are com-
mon. For large quantization, DCT using block sizes of 8 and
16 often lead to “blocking artifacts”—visible discontinuities
between adjacent blocks.

In practice, DCT is used in conjunction with other tech-
niques, such as prediction and entropy coding. The Motion
Compensation Plus Discrete Cosine Transform (MC + DCT)
scheme, which will repeatedly be referred to, is a prime ex-
ample of such a combination.

MC + DCT. Suppose that the video to be encoded con-
sists of digital television or teleconferencing services. For
this type of video, MC carried out on the basis of frame dif-
ferences is quite effective. MC can be combined with the
DCT for even more effective compression. The overall con-
figuration of MC + DCT is illustrated in Fig. 5. The se-
lection of block size compares its input signal with that of
the previous frame (generally in units of 8 × 8 pixel blocks)
and selects those that exhibit motion. MC operates by com-
paring the input signal in units of blocks against a locally
decoded copy of the previous frame, extracting a motion
vector, and using the motion vector to calculate the frame
difference. The motion vector is extracted by, for example,
shifting vertically or horizontally a region several pixels
on a side and performing matching within the block or the
macroblock (a 16 × 16 pixel segment in a frame) (8).

The motion-compensated frame-difference signal is
then discrete cosine transformed, in order to remove spa-
tial redundancy. A variety of compression techniques are
applied in quantizing the DCT coefficients; the reader is di-
rected to the references for details (8). A leading method is
zig-zag scan, which has been standardized in JPEG, H.261,
H.263, MPEG-1, -2, and -4, for video transmission encoding
(8). Zig-zag scan, which transforms two-dimensional data
into one dimension, is illustrated in Fig. 6. Because the dc
component of the coefficients is of critical importance, ordi-
nary linear quantization is employed for them. Other com-
ponents are scanned, for example, in zig-zag fashion, from
low to high frequency, linearly quantized, and variable-
length-encoded by the use of run-length and Huffman cod-

Figure 6. The zig-zag scan pattern for a 8 × 8 block.

ing.

Subband Coding. Subband coding (5) refers to the com-
pression methods that divide the signal into multiple
bands to take advantage of a bias in the frequency spec-
trum of the video signal. That is, efficient encoding is per-
formed by partitioning the signal into multiple bands and
taking into account the statistical characteristics and vi-
sual significance of each band.

The general form of a subband coding system is shown in
Fig. 7. In the encoder, the analyzing filters partition the in-
put signal into bands. Such a process is called subband de-
composition. Each band is separately encoded, and the en-
coded bands are multiplexed and transmitted. The decoder
reverses this process. Subband encoding does offer several
advantages. Unlike DCT compression techniques, it is not
prone to blocking artifacts. Furthermore, subband encod-
ing is the most natural coding scheme when hierarchical
processing is needed for video coding. The main technolog-
ical features to be determined in subband encoding are the
subband analysis method (2- or 3-dimensional), the struc-
ture of the analyzing filters, the bit allocation method, and
the compression method within each band. In particular,
there are quite a number of candidates for the form of the
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Figure 7. A simplified block diagram of subband coding scheme.

analysis and the structure of the filters. The filters must
not introduce distortion due to aliasing in-band analysis
and synthesis.

Figure 8 shows a two-band analysis and synthesis sys-
tem. Consider the following analyzing filter as an example:

For these analyzing filters, the characteristics of the syn-
thesizing filters are

The relationship between the input and output is then

Clearly, the aliasing components completely cancel. The
basic principles illustrated hold unchanged when two-
dimensional filtering is used in a practical application.

Figure 9 illustrates how the two-dimensional frequency
domain may be partitioned either uniformly or in an oc-
tave parent. If one recalls that signal power will be concen-
trated in the low-frequency components, then the octave
method seems the most natural. Since this corresponds
to constructing the analyzing filters in a tree structure,
it lends itself well to implementation with filter banks.

In practical applications, one of the most important de-
composition filters is what is called discrete wavelet trans-
form (DWT). Wavelet theory provides a unified framework

for multiresolution image compression. DWT-based com-
pression enables coding of still image textures with a high
coding efficiency as well as scaleable spatial resolutions at
fine granularity.

The organization of a subband codec is similar to the
DCT-based codec. The principal difference is that encoding
and decoding are each broken out into a number of inde-
pendent bands. Quality can be fixed at any desired value by
adjusting the compression and quantization parameters of
the encoders for each band. Entropy coding and predictive
coding are often used in conjunction with subband coding
to achieve high-compression performance.

If one considers quality from the point of view of the
rate-distortion curve, then, at any given bit rate, the qual-
ity can be maximized by distributing the bits such that
distortion is constant for all bands. A fixed number of bits
is allocated, in advance, to each band’s quantizer, based on
the statistical characteristics of the band’s signal. In con-
trast, adaptive bit distribution adjusts the bit count of each
band according to the power of the signal. In this case, ei-
ther the decoder of each subband must also determine the
bit count for inverse quantization, using the same criterion
as is used by the encoder, or the bit count information must
be transmitted along with the quantized signal. Therefore,
the method is somewhat lacking in robustness.

Vector Quantization. As opposed to scalar quantization,
in which sample values are independently quantized one at
a time, vector quantization (VQ) attempts to remove redun-
dancy between sample values by collecting several sample
values and quantizing them as a single vector. Since the
input to a scalar quantizer consists of individual sample
values, the signal space is a finite interval of the real num-
ber line. This interval is divided into several regions, and
each region is represented in the quantized outputs by a
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Figure 8. A two-band subband coding system. It demonstrates the in-band encoding and the in-
band decoding blocks in Fig. 7.

Figure 9. Subband splitting patterns in two-dimensional fre-
quency domain: (a) uniform split (8 × 8); (b) octave split.

single value. The input to a vector quantizer is typically
an n-dimensional vector, and the signal space is likewise
an n-dimensional space. To simplify the discussion, con-
sider only the case where n = 2. In this case, the input
to the quantizer is the vector xj , which corresponds to the
pair of samples (s1

j, s
2
j). To perform vector quantization, the

signal space is divided into a finite number of nonoverlap-
ping regions, and a single vector to represent each region
is determined. When the vector xj is input, the region con-
taining xj is determined, and the representative vector for
that region, yj , is output. This concept is shown in Fig. 10.
If we phrase the explanation explicitly in terms of encoding
and decoding, the encoder determines the region to which
the input xj belongs and outputs j, the index value which
represents the region. The decoder receives this value j, ex-
tracts the corresponding vector yj from the representative
vector set, and outputs it. The set of representative vectors
is called the codebook.

The performance of vector quantization is evaluated in
the same manner as for other schemes, that is, by the re-
lationship between the encoding rate and the distortion.
The encoding rate R per sample is given by the following
equation

where K is the vector dimensionality, and N is the num-
ber of quantization levels. The notation �·� represents the
smallest integer greater than or equal to x (the “ceiling” of
x).

We define the distortion as the distance between the in-
put vector xj and the output vector yj . In video encoding,
the square of the Euclidean distance is generally used as

Figure 10. An example of VQ with two-dimensional vectors. To
perform VQ, the signal space is divided into a finite number of
nonoverlapping region, and a single vector is used to represent all
vectors in each region.

a distortion measure, because it makes analytic design of
the vector quantizer for minimal distortion more tractable.
However, it is not necessarily the case that subjective dis-
tortion perceived by a human observer coincides with the
squared distortion.

To design a high-performance vector quantizer, the rep-
resentative vectors and the regions they cover must be cho-
sen to minimize total distortion. If the input vector prob-
ability density function is known in advance, and the vec-
tor dimensionality is low, it is possible to perform an exact
optimization. However, in an actual application it is rare
for the input vector probability density to be known in ad-
vance. The well-known LBG algorithm is widely used for
adaptively designing vector quantizers in this situation (9).
LBG is a practical algorithm that starts out with some rea-
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sonable codebook and, by adaptively iterating the determi-
nation of regions and representative vectors, converges on
a better codebook.

Figure 11 shows the basic structure of an image codec
based on vector quantization. The image is partitioned into
M-pixel blocks, which are presented, one at a time, to the
VQ encoder as the Al-dimensional vector xj . The encoder lo-
cates the closest representative vector in its prepared code-
book and transmits the representative vector’s index. The
decoder, which need only perform a simple table lookup in
the codebook to output the representative vector, is an ex-
tremely simple device. The simplicity of the decoder makes
VQ coding very attractive for distribution-type video ser-
vices. VQ coding, combining with other coding methods,
has been adopted in many high-performance compression
systems.

Table 1 shows examples of coding and compression tech-
niques that are applicable in multimedia applications in
relation to the entropy, source, and hybrid coding classifi-
cation. Hybrid compression techniques are a combination
of well-known algorithms and transformation techniques
that can be applied to multimedia systems. For a better
and clearer understanding of hybrid schemes to be iden-
tified in all schemes (entropy, source, and hybrid) a set of
typical processing steps is described.

This typical sequence of operations has been shown in
Fig. 5, which is performed in the compression of still images
and video sequences. The following four steps describe the
compression of one image:

1. Preparation includes analog-to-digital conversion
and generating an appropriate digital representation
of the information. An image is divided into blocks of
8 × 8 pixels, and represented by a fixed number of
bits per pixel.

2. Processing is actually the first step of the compres-
sion process which makes use of sophisticated algo-
rithms. A transformation from the time to the fre-
quency domain can be performed by a use of DCT. In
the case of motion video compression, interframe cod-
ing uses a motion vector for each 16 × 16 macroblock
or 8 × 8 block.

3. Quantization processes the results of the previous
step. It specifies the granularity of the mapping of
real numbers into integers. This process results in
a reduction of precision. In a transformed domain,
the coefficients are distinguished according to their
significance. For example, they could be quantized
using a different number of bits per coefficient.

4. Entropy encoding is usually the last step. It com-
presses a sequential digital data stream without loss.
For example, a sequence of zeros in a data stream
can be compressed by specifying the number of oc-
currences followed by the zero itself.

In the case of vector quantization, a data stream is divided
into blocks of n bytes each. A predefined table contains a
set of patterns. For each block, a table entry with the most
similar pattern is identified. Each pattern in the table is
associated with an index. Such a table can be multidimen-

sional; in this case, the index will be a vector. A decoder
uses the same table to generate an approximation of the
original data stream.

In the following sections the most relevant work in the
standardization bodies concerning image and video coding
is outlined. In the framework of International Standard Or-
ganization (ISO/IEC/JTC1), three subgroups were estab-
lished in May 1988: the Joint Photographic Experts Group
(JPEG) is working on coding algorithms for still images;
the Joint Bilevel Image Experts Group (JBIG) is working
on the progressive processing of bilevel coding algorithms,
and the Moving Picture Experts Group (MPEG) is work-
ing on representation of motion video. In the International
Telecommunication Union (ITU), H.261 and H.263 are also
developed for video conference and telephone applications.
The results of these standard activities are presented next.

JPEG

The ISO 10918-1 JPEG International Standard (1992) Rec-
ommendation T.81 is a standardization of compression and
decompression of still natural images (4). JPEG provides
the following important features:

� JPEG implementation is independent of image size.
� JPEG implementation is applicable to any image and

pixel aspect ratio.
� Color representation is independent of the special im-

plementation.
� JPEG is for natural images, but image content can be

of any complexity, with any statistical characteristics.
� The encoding and decoding complexities of JPEG are

balanced and can be implemented by a software solu-
tion.

� Sequential decoding (slice-by-slice) and progressive
decoding (refinement of the whole image) should be
possible. A lossless, hierarchical coding of the same
image with different resolutions is supported.

� The user can select the quality of the reproduced im-
age, the compression processing time, and the size of
the compressed image by choosing appropriate indi-
vidual parameters.

The key steps of the JPEG compression are DCT (8 × 8),
quantization, zig-zag scan, and entropy coding. Both Huff-
man coding and arithmetic coding are options of entropy
coding in JPEG. The JPEG decompression just reverses
its compression process. A fast coding and decoding of still
images also used for video sequences is known as Motion
JPEG. Today, JPEG software packages, together with spe-
cific hardware support, are already available in many prod-
ucts.

ISO 11544 JBIG is specified for lossless compression of
binary and limited bits/pixel images (4). The basic struc-
ture of the JBIG compression system is an adaptive binary
arithmetic coder. The arithmetic coder defined for JBIG is
identical to the arithmetic-coder option in JPEG.
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Figure 11. The basic structure of a
VQ codec.

H.261 AND H.263

ITU Recommendations H.261 and H.263 (6) are digital
video compression standards, developed for video confer-
encing and videophone applications, respectively.

Both H.261 and H.263 are developed for real-time en-
coding and decoding. For example, the maximum signal
delay of both compression and decompression for H.261 is
specified to be 150 ms for the end-to-end delay of targeted
applications. Unlike JPEG, H.261 specifies a very precise
image format. Two resolution formats each with an aspect
ratio of 4:3 are specified. The so-called Common Interme-
diate Format (CIF) defines a luminance component (Y) of
288 lines, each with 352 pixels. The chrominance compo-
nents (Cb and Cr ) each have a resolution of 144 lines and
176 pixels per line to fulfill the 2:1:1 requirement. Quarter-
CIF (QCIF) has exactly half of the CIF resolution, that is,
176 × 144 pixels for the luminance and 88 × 72 pixels for
the other components. All H.261 implementations must be
able to encode and decode QCIF.

In H.261 and H.263, data units of the size 8 × 8 pixels
are used for the representation of the Y, as well as the Cb

and Cr components.A macroblock is the result of combining

four Y blocks with one block of the Cb and Cr components.
A group of blocks is defined to consist of 33 macroblocks.
Therefore, a QCIF-image consists of three groups of blocks,
and a CIF-image comprises twelve groups of blocks. Two
types of pictures are considered in the H.261 coding. These
are I-pictures (or intraframes) and P-pictures (or inter-
frames). For I-picture encoding, each macroblock is intra-
coded. That is, each block of 8 × 8 pixels in a macroblock
is transformed into 64 coefficients by a use of DCT and
then quantized. The quantization of dc-coefficients differs
from that of ac-coefficients. The next step is to apply en-
tropy encoding to the dc- and ac-parameters, resulting in
a variable-length encoded word. For P-picture encoding,
the macroblocks are either MC + DCT coded or intracoded.
The prediction of MC + DCT coded macroblocks is deter-
mined by a comparison of macroblocks from previous im-
ages and the current image. Subsequently, the components
of the motion vector are entropy encoded by a use of a loss-
less variable-length coding system. To improve the coding
efficiency for low bit-rate applications, several new cod-
ing tools are included in H.263. Among them are the PB-
picture type and overlapped motion compensation, and so
on.



12 Speech Coding

MPEG

The ISO/IEC/JTC1/SC29/WG11 MPEG working group has
produced three specifications, ISO 11172 MPEG-1, ISO
13818 MPEG-2, and ISO 14496 MPEG-4 (8), for coding
of combined video and audio information. MPEG-1 is in-
tended for image resolutions of approximately CIF or SIF
(360 × 240) and bit rates of about 1.5 Mbit/s for both video
and audio. MPEG-2 is specified for higher resolutions (in-
cluding interlaced video) and higher bit rates (4 Mbit/s to
15 Mbit/s, or more). MPEG-4 was originally targeted for
very low bitrate coding applications. The targeted applica-
tions were modified after MPEG-4 compression was found
to be effective over a wide range of bitrates. In addition,
a completely new concept of encoding a scene as separate
“AV” objects was developed in MPEG-4. There are three
major parts composed in the MPEG-1, -2, and -4 specifi-
cations: Part 1, Systems; Part 2, Video; and Part 3, Audio.
The system part specifies a system coding layer for combin-
ing coded video and audio and also provides the capability
of combining private data streams and streams that may
be defined at a later date. The specification describes the
syntax and semantic rules of the coded data stream.

MPEG’s system coding layer specifies a multiplex of el-
ementary streams such as audio and video, with a syntax
that includes data fields directly supporting synchroniza-
tion of the elementary streams. The system data fields also
assist in the following tasks:

1. Parsing the multiplexed stream after a random access
2. Managing coded information buffers in the decoders
3. Identifying the absolute time of the coded information

The system semantic rules impose some requirements on
the decoders; however, the encoding process is not specified
in the ISO document and can be implemented in a variety
of ways, as long as the resulting data stream meets the
system requirements.

MPEG-1, -2 and -4 video often use three types of frames
(or pictures): Intra (I) frames; Predicted (P) frames; and
Bidirectional (B) frames. Similar to H.261, I-type frames
are compressed using only the information provided by the
DCT algorithm. P-frames are derived from the preceding
I frames (or from other P frames) by using MC (predicting
motion forward in time) + DCT; P frames are compressed
to approximately 60:1. Bidirectional B interpolated frames
are derived from the previous I or P frame and the future
I or P frame. B frames are required to achieve the low av-
erage data rate. Field-block-based DCT and MC were de-
veloped in MPEG-2 for efficient coding of interlaced video.
MPEG-1 and -2 video can yield compression ratios of 50:1 to
200:1. It can provide 50:1 compression for broadcast qual-
ity at 6 Mbit/s. It also can provide 200:1 compression to
yield VHS quality at 1.2 Mbit/s to 1.5 Mbit/s. MPEG-2 can
also provide high-quality video for High Definition Televi-
sion at about 18 Mbit/s.

Note that the MPEG video coding algorithms are asym-
metrical. Namely, in general, it requires more computa-
tional complexity to compress full-motion video than to de-
compress it. This is useful for applications where the signal

is produced at one source but is distributed to many.
The MPEG standards also specify efficient compression

algorithms for high-performance audio (8). For example,
MPEG-1 audio coding uses the same sampling frequencies
as Compact Disc Digital Audio and Digital Audio Tape, that
is, 44.1 kHz and 48 kHz, additionally, 32 kHz is available,
all at 16 bits. Three layers of an encoder are shown in Fig.
12. An implementation of a higher layer must be able to de-
code the MPEG audio signals of lower layers. Similar to the
use of the two-dimensional DCT for video, a transformation
into the frequency domain is applied for audio. The Fast
Fourier Transform (FFT) is suitable for audio coding, and
the spectrum is split into 32 noninterleaved subbands. For
each subband, the amplitude of the audio signal is calcu-
lated. Also, for each subband, the noise level is determined
simultaneously to the actual FFT by using a psychoacous-
tic model. At a higher noise level, a coarse quantization
is performed, and at a lower noise level, a finer quantiza-
tion is applied. The quantized spectral portions of layers
one and two are PCM-encoded and those of layer three are
Huffman-encoded. The audio coding can be performed with
a single channel, two independent channels, or one stereo
signal. In the definition of MPEG, there are two different
stereo modes: two channels that are processed either in-
dependently or as joint stereo. In the case of joint stereo,
MPEG exploits redundancy of both channels to achieve a
higher compression ratio.

Each layer specifies 14 fixed bit rates for the encoded
audio data stream, which, in MPEG, are addressed by a bit
rate index. The minimal value is always 32 kbit/s. These
layers support different maximal bit rates: layer one allows
for a maximal bit rate of 448 kbit/s, layer two for 384 kbit/s,
and layer three for 320 kbit/s. For layers one and two, a
decoder is not required to support a variable bit rate. In
layer three, a variable bit rate is specified by switching the
bit rate index. For layer two, not all combinations of bit
rate and mode are allowed:

� 32 kbit/s, 48 kbit/s, 56 kbit/s, and 80 kbit/s are only
allowed for a single channel.

� 64 kbit/s, 96 kbit/s, 112 kbit/s, 128 kbit/s, 160 kbit/s,
and 192 kbit/s are 192 kbit/s are allowed for all modes.

� 224 kbit/s, 256 kbit/s, 320 kbit/s, and 384 kbit/s are
allowed for the modes stereo, joint stereo, and dual
channel modes.

H.264/AVC/JVT

The latest video codec was developed as a joint effort be-
tween the ITU-T Video Coding Experts Group (VCEG) and
the ISO/IEC Motion Picture Experts Group (MPEG) (10,
11). The intent of this effort was to create a standard that
would produce good video quality at half the bitrates that
previous video standards such as MPEG-2 and H.263 re-
quired. The techniques used in this new standard were to
be constructed in a manner to allow the new standard to
be applicable over a very wide range of bitrates and resolu-
tions. The tradeoff compared to previous standards was an
increase in complexity that could be eased by Moore’s law
and other technological advances. The first version of this



Speech Coding 13

Figure 12. The key functional blocks of audio encoding in
MPEG.

standard was completed in 2003. Additional extensions
known as the Fidelity Range Extensions (FRExt) were fin-
ished in 2004 to support higher-fidelity video coding beyond
the support of 8-bit 4:2:0 video (e.g., 10-bit, 12-bit, 4:2:2 and
4:4:4 video). The same syntax has been published by both
organizations: the ITU-T H.264 standard and the ISO/IEC
MPEG-4 Part 10 standard. Note that MPEG-4 Part 10 is
not the same as MPEG-4 Part 2, the original video codec in
the MPEG-4 suite of standards. This codec may also be re-
ferred to as the AVC (Advanced Video Coding) standard or
the JVT standard which references the joint partnership
between VCEG and MPEG which was known as the Joint
Video Team.

H.264/AVC contains many new features for more effec-
tive video compression than older standards. Some of these
features include:

� Multi-picture inter-picture prediction. Previous stan-
dards had limited inter-picture prediction to one (for
P-pictures) or two (for B-pictures) reference pictures.
H.264/AVC allows for up to 16 reference pictures to be
used. In addition, there are fewer restrictions on the
pictures that can be used for prediction. For example,
in MPEG-2, B-pictures were not allowed to be used as
reference pictures for the prediction of other pictures.
This restriction is not present in H.264/AVC.

� Variable block-size motion compensation. Block sizes
ranging from 4 × 4 pixels to 16 × 16 pixels can be
chosen to match the size of objects and regions in the
video content.

� Motion compensation using increased fractional-pixel
precision. While half-sample precision was used in
MPEG-1, MPEG-2 and H.263, quarter-sample preci-
sion is used for luma and eighth-sample preceision is
used for chroma in H.264/AVC.

� Spatial prediction from neighboring blocks for intra-
coding. For example, only DC coefficients were pre-

dicted in MPEG-2. In H.264/AVC, spatial prediction
using neighboring blocks is performed for AC coeffi-
cients.

� An exact integer transform similar to the DCT is spec-
ified to allow for exact decoding. Previous standards
specified approximations to the ideal DCT which may
result in drift when the encoder and decoder imple-
mentations differed.

� In-loop deblocking filter to reduce the blocking arti-
facts common to DCT-based compression algorithms.

� Context-adaptive binary arithmetic coding and
context-adaptive variable-length coding that are more
efficient than previous entropy coding.

For evaluation of video, image and audio quality, sub-
jective criteria are often used. The subjective criteria em-
ploy rating scales such as goodness scales and impairment
scales. A goodness scale may be a global scale or a group
scale. The overall goodness criterion rates perceptual qual-
ity on a scale ranging from excellent to unsatisfactory. A
training set is used to calibrate such a scale. The group
goodness scale is based on comparisons within a set of
data. The impairment scale rates an image, video or audio
sequence on the basis of the level of degradation present
when compared with a reference image, video or audio se-
quence. It is useful in applications such as video coding,
where the encoding process might introduce degradation
in the output images.
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