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putations. In any case, since the actual traffic offered to a
network is generally unknown or difficult to describe, the out-
comes of these performance models only approximate reality
to varying degrees of accuracy. Nevertheless, queueing analy-
sis is an essential tool in the design, operation, and theory
of networks.

Many of these models are applicable to a wide variety of
network types, while others are quite specific. For instance,
Markov chains are particularly useful in the evaluation of
both circuit and packet switched networks. On the other
hand, there are several modern models which are applicable
to networks such as Asynchronous Transfer Mode (ATM) net-
works which provide virtual circuits with quality of service
(QoS) guarantees.

We first define some of the most common performance met-
rics that queueing theory can predict. We will then describe
how these predictions are used in network design and opera-
tion. After that, we will describe some of the most common
models and important results.

Network Performance Metrics

There are a variety of QoS metrics, or measures, of a net-
work’s performance—for example, blocking probabilities,
packet and message delay, delay jitter, throughput, and prob-
ability of loss. Roughly speaking, a blocking probability is the
probability a new connection request is denied access to the
network, packet (message) delay is a measure of how long
the network takes to deliver the packet (message), jitter is a
measure of how much variance there is between successive
packet (message) deliveries, throughput is a measure of how
much information is delivered per unit time, and loss proba-
bility is the probability a packet (message) is never delivered.

The relevance of a particular metric depends upon the type
of network (e.g., connection-oriented or connectionless), the
requirements of the applications which are using the network
(e.g., real-time or non-real time), and goals of the network op-
erator.

Blocking Probability. Blocking probability is a fundamental
metric of most connection-oriented networks—that is, circuit-
switched and virtual-circuit networks. In these networks, an
application requests bandwidth in the form of a connection
before transmitting data into the network. If insufficient re-
sources are available for the connection (as determined by the
type of network, a description of the desired resources, and
network policy), the request is blocked.

The QoS of a single-rate circuit-switched network is often
NETWORK PERFORMANCE measured by the blocking probability, defined as the probabil-

ity that a new call request is denied access to the network.AND QUEUEING MODELS
Modern circuit-switched networks [e.g., integrated services
digital network (ISDN)] provide multiple-rate circuits. TheQueueing models are an important class of mathematical

models which can ‘‘predict’’ and explain certain aspects of the analysis of a multirate circuit network is more complex than
that of a single-rate network, but the underlying queueingperformance of networks and other systems where users sta-

tistically share resources. For communication networks, theory is quite similar. One key difference is that multirate
networks are generally not evaluated based on a singlequeueing models are often used to predict basic performance

metrics such as blocking probability in circuit switched net- blocking probability parameter, but rather on the set of
blocking probabilities, one for each available rate.works or packet delay in packet switched networks. Some of

these models exactly predict the performance under some as- Blocking probabilities are a function of the statistics of the
traffic offered to the network (the call arrivals, the durationssumed traffic conditions, while others are only approximate.

Some are statistical, some are deterministic. Some have sim- of calls, and the requested resources), the call admission con-
trol (CAC) policy which determines if a connection will be ac-ple analytical solutions, while others require numerical com-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



NETWORK PERFORMANCE AND QUEUEING MODELS 205

cepted, and the routing algorithm used to assign resources to predict message delays seen by the application. However,
such an analysis can often be quite complex, and hence sim-within the network. As such, blocking probabilities are often

used to evaluate CAC and routing algorithms. Also, since user plifying approximations are typically used. The situation be-
comes even more complex when packet networks are layered;traffic can vary dramatically over time, blocking probabilities

are often measured over time periods longer than a call dura- that is, one packet network is used to send the packets of
another packet network. A common example is the delivery oftion but short enough so that traffic characteristics do not

significantly change. Very often connection-oriented networks IP packets over an ATM or Frame Relay network.
are evaluated based on their blocking probabilities during the
busiest hour of the day. Throughput. Throughput is a measure of the amount of

data delivered per unit time.
Packet (Message) Delay and Loss. Classical data networks Throughput is often measured in packets per second, but

such as the Internet are typically used to transfer messages may also be measured in terms of bits per second. Note that
between computer applications. For these applications, the throughput is a time-varying quantity and hence can be mea-
most basic metrics are message delay and loss. sured on different time scales.

Message delay is the total time the network takes to de- Also note that if the packet loss rate is low, the throughput
liver the message from the time the first bit of the message should be approximately equal to the rate at which bits are
enters the network to the time the last bit is delivered to the offered to the network. The maximum throughput is the max-
destination (if it is delivered). The message loss probability imum rate at which the packet loss rate and the packet delay
is the probability that a message offered to the network is are below predetermined acceptable levels.
never delivered. Throughput is important for real-time applications. For ex-

Most networks do not transfer messages as their basic ample, good-quality video using MPEG-2 video compression
unit. The main reason for this is that simple queueing models requires a minimum throughput of 6 Mb/s.
show that message delays can be reduced by breaking down Since throughput is strongly related to the amount of ac-
messages into smaller-sized units called packets. The Internet tivity, a typical performance analysis will measure the packet
Protocol (IP) is the most common packet switching protocol delay and packet loss as functions of the throughput. Such an
and uses variable-sized packets with a minimum size of 20 analysis is useful in a variety of situations. For instance, if
bytes and a maximum size of 64,000 bytes. Packet networks we wish to compare two design options, we can say that one
can also use fixed-size packets. Continuous-time queueing performs better if it has lower delay and loss for the same
models are used for variable-sized packet networks; discrete- throughput.
time queueing models are used for fixed-sized packet net-
works. Most classical data networks use variable-sized pack- Delay Jitter. An important metric in some virtual circuit
ets. Modern fast packet networks use both variable-sized packet networks is packet delay jitter. Jitter is a measure of
(Frame Relay) and fixed-size (ATM) packets. These latter net- the degree of variability in the time between successive
works can also transfer real-time applications such as voice packet deliveries in a virtual circuit. Excessive jitter can be
and video, which tend to be very sensitive to delay and loss. highly detrimental to real-time applications such as video and

The most basic and fundamental measures of the perfor- voice. Packet delay and jitter may be traded off against each
mance of a packet network are packet delay and loss. Packet other. For example, if jitter is high, a large number of packets
delay is the total time the network takes to deliver a packet may have to be buffered at the destination in order to ensure
from the time the first bit of the packet enters the network to a smooth play-out to the application.
the time it is delivered to the destination in its entirety. The
packet loss probability is the probability that a packet offered
to the network is never delivered. ROLE OF QUEUEING ANALYSIS IN

NETWORK DESIGN AND OPERATIONPacket delay and loss are important for the obvious rea-
sons that they strongly influence the total time needed to

By modeling traffic, queueing models describe the system per-transfer a message as well as affecting the quality of real-
time applications. For instance, delays in voice connections formance. These descriptions can then be used in the network

planning, design, and operation.greater than a quarter of a second are quite perceptible and
annoying to the participants. Note that message delays are Queueing models are widely used in network design. For

instance, in the early planning stages of a new network, cer-functions of packet delays and packet losses. In case of packet
loss, lost packets must be retransmitted, which delays the tain decisions have to be made. These decisions range from

the most basic, such as deciding whether the network shouldcomplete delivery of the message.
Delays and loss can occur for a variety of reasons but tend be a packet network or a circuit network, to more complex

decisions, such as the amount of bandwidth needed on theto dramatically increase as the amount of activity in the net-
work increases; an excess of activity leads to congestion in link, the topology of the network, and the protocols to be used

(or invented).all or part of the network, which causes queues to become
backlogged or possibly run out of memory and overflow. Since There are generally innumerable choices for the physical

layer of the network. For the purposes of this article, theusage is very often dynamic and hard to predict, delays and
losses are time-varying random metrics. Given an appropriate physical layer may be thought of as a specified network topol-

ogy which indicates which nodes, or switches, are connectedstatistical model for the offered traffic (packet arrivals and
size), queueing models can predict the average packet delay, to each other as well as a specification of the link bandwidths,

or the rates at which nodes can communicate. Once the physi-the variance of the packet delay, and a full statistical descrip-
tion of the delays and loss. These delays in turn can be used cal topology is determined, several other decisions must be
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made, including routing, flow control, and admission control The simplest queueing system is a single-server queue
which consists of a waiting room and a server as shown inpolicies. There are many options that can be considered in

each of these decisions. As such, it is generally impossible for Fig. 1. An arriving customer enters the waiting room and
waits for its turn to receive service. In the context of a com-a human to reach an optimal answer (very often it is impossi-

ble for a computer to reach it since many network design munication network, the customers are often either data
packets or connection requests, and the waiting room is anproblems fall into the category of NP-complete problems).

Nevertheless, complex algorithms are used to design net- electronic buffer (queue). The terms packet, queue, and server
will be used to refer to the components of this queueing sys-works. Many of these algorithms use queueing models to eval-

uate the quality of a design and to decide on how to modify tem. We will use the terms queue and buffer interchangeably.
An important issue in the design of a single-server queuethe current design to obtain a better design.

Queueing models are also needed in the operation of net- is the service discipline. In first-in first-out (FIFO) service,
the packets are served in the order of arrival with the earlierworks. Operational decisions based on queueing analysis oc-

cur on many different time scales. In the longest scale, the arrivals exiting the system before later arrivals. In last-in
first-out (LIFO) service, the service order is reversed. The ser-network operator or owner may decide to change some feature

of the network—for example, purchase more bandwidth for a vice discipline in a broadband network with multiple classes
of traffic may be priority-based: Packets from a high-priorityparticular link. These decisions can be based on an analysis

of the network and why the improved network should perform class are served before lower-priority packets.
Several system parameters must be specified to model abetter—that is, generate more revenue, provide better ser-

vice, and so on. On shorter time scales, the network operation single-server queue. The average arrival rate � (in packets per
unit time) is a measure of the expected demand for the sys-can be modified in various ways. For instance, the routing

decisions can be changed; the decisions as to which route to tem. The average service rate � is the average number of pack-
ets that are served per unit time by a busy server. The servicefollow can be based on measured congestion in the network

and some mapping of how congestion affects performance. rate determines the average speed of the server in units of
packets per second—for example, the speed of transmission
line in a multiplexer. The average time a packet spends in the
server is given by 1/�. Finally, the buffer size is the maximumAN INTRODUCTION TO QUEUEING THEORY
number of packets that can be held in the buffer, including
the packet receiving service.Queueing theory is the mathematical framework used in the

analysis and design of queueing systems. A queueing system The average arrival and service rates do not completely
characterize the arrival and service processes. Probability dis-is a system to which ‘‘customers’’ arrive in order to get ‘‘ser-

vice.’’ A bank branch in which tellers serve customer requests, tributions of these processes are required for system perfor-
mance analysis. Several canonical distributions are commonlya packet switch in a communication network which routes

packets from its input ports to its output ports, and a statisti- used for this purpose; these will be described in the following
sections. First, an interesting and useful property that relatescal multiplexer which combines several traffic streams into

one higher-rate stream are all examples of queueing systems. the average rates in an arbitrary queueing system to the av-
erage system occupancy and delay will be described.An important characteristic of these systems is the nondeter-

ministic nature of the customer arrivals and their service de-
mands. In the bank branch example above, it is not possible

LITTLE’S RESULT
to determine the exact number and arrival times of custom-
ers, with certainty and a priori. Similarly the time required

Let � denote the average arrival rate into a general queueing
to serve a customer is typically unknown before the actual

system (for systems in which arriving packets may be blocked
service takes place. Therefore, probabilistic models are em-

from entering the system, � must be replaced by the rate of
ployed to statistically characterize the arrival times and the

packets entering the system). Suppose a packet P that arrives
service times of customers in a queueing system. Queueing

at this system in the steady state spends a time T in the sys-
theory is a branch of applied probability in which appropriate

tem. [Steady state means that the system has been in opera-
probability models are developed and utilized to predict sys-

tion for a sufficiently long time such that transient effects of
tem performance.

an initially atypical (e.g., empty) system have subsided.] The
As in many engineering problems in which quantitative

value of T is random due to (a) the random number of packets
models are employed, queueing models involve tradeoffs be-

that P finds in the system upon its arrival and (b) the random
tween the capability of the model in reflecting the real sys-

service requirements of these packets as well as that of P.
tem’s properties and the model complexity. At one extreme

Also suppose N is the number of packets in the system as
are the simple queueing models that make simplifying as-

seen by an independent observer at the steady state. J. Little
sumptions about arrival and service statistics to ensure ana-

has found that the average (expected) values of N and T are
lytical tractability, and at the other extreme are complex and
realistic computer models, sometimes developed from experi-
mental observations of the real system, that require extensive
development and simulation times. Often, a combination of
analytical and computational techniques are used to evaluate
the performance of the queueing system of interest. This arti-

Input

Buffer
Server

Output

cle emphasizes analytical techniques because they have
broader applicability and they provide valuable insights into Figure 1. A single-server queueing system. Incoming customers wait

in the buffer until they are processed by the server.the fundamental nature of queueing systems.
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related as follows (1): rival times X1, X2, . . . are statistically independent and iden-
tically distributed (i.i.d.) random variables. That is, succes-
sive interarrivals are assumed to have no correlation. In thisE(N) = λE(T )

case the complete statistical description of the arrival process
[We use the notation E(X) to denote the expected value of a requires a single function to be specified, namely that charac-
random variable X.] This relationship, known as Little’s re- terizing the probabilistic behavior of the generic interarrival
sult, is perhaps the most useful result in queueing theory. time X. Arrival processes with i.i.d. interarrival times are
The result is of surprising generality; it is valid irrespective said to have the renewal property, because at each arrival
of arrival or service distributions, the average service rate, instant the same probabilistic behavior is expected for the
the service discipline, and even the precise composition of the next arrival regardless of the past behavior of the process.
system. Little’s result quantifies the intuition that congested A distinction must be made between continuous-time and
systems [large E(N)] result in large delays and vice versa. The discrete-time queueing systems before specifying the interar-
result also indicates that systems with large arrival rates rival statistics. In a continuous-time queueing system, arriv-
tend to get more congested than those with lower arrival als and departures can occur at any time instant t. On the
rates. other hand, arrivals and departures are allowed to occur only

Little’s result has found many applications in queueing at discrete time instants in a discrete-time queueing system.
theory. With appropriate definitions of a system and the Discrete-time queueing systems will be considered in the sec-
quantities N, T, and �, many interesting results can be ob- tion entitled ‘‘Discrete-Time Queues.’’ For continuous-time
tained with economy. For instance, when the server of a sin- systems, interarrival statistics are often described in terms of
gle-server queue with average service rate � is considered as a probability density function fX(x). This function quantifies
the system of interest, one obtains the likelihood of the random variable X taking a value

around x. In particular, for small � � 0, the probability P(x �
E(N) = λ/µ = ρ X � x � �) is approximately � fX(x). (This interpretation also

justifies the term ‘‘density.’’)
because the average time in the server is 1/�. (The service A common probability density function (pdf) in continuous-
rate must exceed the arrival rate for the system to be stable, time queueing theory is the exponential density
a fact that will be elaborated upon when queueing delay is
considered in detail.) Since the server can have 0 or 1 packets fX (x) = λe−λx, x ≥ 0
at a given time, E(N) is the probability that N � 1. Thus 	 is
the fraction of time the server is busy and is called the where � is a positive parameter. X is said to be exponentially
server utilization. distributed if it has the pdf above. The expected value of X is

Little’s result is particularly useful when either the aver- E(X) � 1/�. Thus, � is the average number of arrivals per unit
age system occupancy or the average system delay is known time and is called the (average) arrival rate. An arrival pro-
and the other quantity is to be found. The reader is referred cess with exponential interarrival pdf has the probability dis-
to Ref. 2 for an elementary and insightful proof of this result tribution
as well as many interesting applications to network perfor-
mance analysis. Reference 3 provides a review of various gen-
eralizations of Little’s result. P(N(t) = k) = (λt)k

k!
e−λt , k = 0, 1. . . .

This is the Poisson distribution, and an arrival process withARRIVAL AND SERVICE DISTRIBUTIONS IN QUEUEING
this distribution is called a Poisson process. Hence a queueing
system has Poisson arrivals if (and only if) the interarrivalIn order to obtain explicit performance results for queueing

systems, one has to develop models for the statistics of arrival times are exponentially distributed i.i.d. random variables.
The Poisson arrival process plays an important role inand service processes. Some of these models result in closed-

form expressions, while others require numerical evaluation. queueing theory because it simplifies the analysis of many
queueing systems. While the traffic in real networks is almostA natural means to model packet arrivals in queueing sys-

tems is through the use of counting processes. A counting pro- certainly non-Poisson, networks designed using the Poisson
traffic assumption have usually performed well. In a networkcess N(t) is an integer-valued random process, whose value

N(t) is the number of events (packet arrivals) that occur up to with a large number of users each offering a small amount of
traffic, the aggregate traffic tends to the Poisson distribution.(and including) time t. Thus N(t) � N(s) is the number of ar-

rivals during the time interval (s, t]. It is usually assumed In this sense, the role of the Poisson process in traffic model-
ing is analogous to that of the Gaussian process in noise mod-that the process starts at time 0, so N(0) � 0.

A particular realization of the packet arrival process can eling.
The exponential distribution is the only continuous distri-be specified by the counting process �N(t): t 
 0� or, equiva-

lently, by the sequence of packet arrival times �Sn: n � 1, 2, bution that has the following property. If X has exponential
distribution, the conditional probability of the event X 
 t �. . .�, where Sn is the arrival time of the nth packet. The

statement N(t) � n is equivalent to the statement Sn � t � s given that X 
 s is the unconditional probability of the event
X 
 t; that is, P(X 
 t � s � X 
 s) � P(X 
 t). If X is theSn�1. A third equivalent characterization of an arrival process

is through the interarrival times Xn � Sn � Sn�1, where Xn is waiting time until the occurrence of an event (say the arrival
of a bus at a bus stop), according to this property, the amountthe time elapsed between the (n � 1)th and nth packet arriv-

als. This last characterization is the most common in of additional waiting is independent of the amount already
spent waiting. This is known as the memoryless property, andqueueing analysis. It is typically assumed that the interar-
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it is the primary reason for the frequent use of Poisson traffic
in queueing theory.

The second component of traffic characterization is the de-
scription of service times. Service times of packets in a
queueing system may be random due to variable packet
lengths (as in Internet and Ethernet). Even when the packet
length is fixed (as in ATM), the amount of time a packet occu-
pies the ‘‘head-of-line’’ in a queue may be random due to sta-
tistical sharing of transmission resources (e.g., in a switch).
Therefore service times are commonly modeled as random
variables in queueing analysis. The service times of packets
are assumed to be statistically independent of the arrival
times. In many systems the service times of successive pack-
ets may be accurately modeled as i.i.d. random variables. For
these systems it suffices to specify a single probability density
function fY(y) for the service time of a generic packet. Expo-
nential distribution fY(y) � �e��y, y 
 0, is a frequent choice.
Here E(Y) � 1/� is the average service time, and � is the
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Server utilization, ρaverage service rate of the server. Other service distributions
are also common, including deterministic service for fixed-size Figure 2. Average system occupancy of the M/M/1 queue as a func-
packets served by a dedicated constant rate server. tion of the server utilization 	. The system size increases slowly with

	 (server utilization) at first, then very sharply for 	 
 0.8.

BASIC QUEUEING MODELS

A queueing system is typically described using a shorthand E(T ) = 1
λ

E(N) = 1
µ − λnotation of the form A/B/L/K. In this notation, A refers to

the interarrival distribution, B refers to the service distribu-
which exhibits a similar behavior with increasing server utili-tion, L denotes the number of servers in the system, and K
zation as the one shown in Fig. 2. It is observed that the aver-denotes the size of the buffer. The last quantity is usually
age time a packet spends in the system is larger than theomitted when there is no limit on the number of customers
average service time 1/� by a factor 1/(1 � 	) due to the wait-that can be admitted to the system (K � �). Typical choices
ing time in the buffer.for the first two letters A and B are �M, D, G�, where M corre-

The average rate of packets processed by the queueing sys-sponds to exponentially distributed interarrivals or service
tem is also known as the throughput of the system. Thus the(memoryless), D stands for a deterministic quantity, and G
server utilization 	 is also the normalized system throughputstands for a general (arbitrary) distribution. Examples of this
(throughput per average service time). The increase in systemnotation are M/M/1, M/D/1/K, G/M/K/K, and so on. This
delay with increasing throughput is known as the through-notation provides a compact reference to the queueing system
put-delay tradeoff. While throughput is a measure of the reve-under consideration and is due to D. G. Kendall.
nue expected by the network operator, delay is a measure ofThe simplest queueing system is the M/M/1, a single-
the service quality the network customers get. A satisfactoryserver queue with Poisson arrivals, exponential service, and
resolution of this tradeoff is a critical task in network design.infinite buffer size. This system can be analyzed using contin-

As an application of the M/M/1 results above, consider auous-time Markov chains, and many quantities of interest
packet transmission system whose arrival rate is increasedcan be determined with ease. For example, the probability
from � to b� (where b � 1) while the service rate is increasedthat there are n packets in this system in the steady state is
from � to b�. The server utilization remains the same; there-given by
fore the average number of packets in the system is not af-
fected by the scale-up. However, the average packet delay ispn = P(N = n) = ρn(1 − ρ), n = 0,1, 2, . . .
reduced by a factor b. That is, a transmission system b times
as fast will accommodate b times as many packets per secondwhere 	 � �/� is the server utilization (see section entitled
at b times smaller delay. This is an important reason why‘‘Little’s Result’’). The average number of packets in the sys-
queueing delays may not be as important in high-speed net-tem (system occupancy) is then found to be
works.

The example above also points out the benefit of statistical
multiplexing in networks. Suppose there are b traffic streams

E(N) =
∞∑

n=0

npn = ρ

1 − ρ

each at rate � packets per second and a total server capacity
of b� packets per second. In traditional time division multi-which is depicted in Fig. 2. Note that as the utilization in-

creases, so does the system congestion, and sharply so beyond plexing (TDM), each of the streams see an effective service
rate of �, while in statistical multiplexing the streams are80% utilization. This observation continues to hold for more

general queueing systems and points out the need for excess merged into an aggregate stream of rate b� and a single
server of rate b� is employed. As a result, the packet delaysservice capacity to avoid system congestion and the associated

delays. Little’s result can be used to relate the system occu- are b times lower with statistical multiplexing. It is also seen
that it is advantageous to merge waiting lines in a multiplepancy to average packet delay as
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server environment (such as a bank branch or a fast food en- ken ring are examples of this type. Nodes in these networks
can be modeled as M/G/1 queues with server vacations. Interprise). This observation continues to hold for arbitrary ar-

rival and service statistics. this model, the server takes a ‘‘vacation’’ after serving all the
packets in a buffer. The amount of time the server spends inThe analyses of the single-server, finite-buffer queueing

system M/M/1/s and the s-server queueing system M/M/s vacation is a random variable V with moments E(V) and
E(V2). The average system delay in this setting is given byutilize the same Markov chain formulation as the M/M/1.

Specific results on delay and system occupancy can be found the generalized Pollaczek–Khinchin formula
in standard texts on queueing theory (e.g., Ref. 2). An inter-
esting variant of the M/M/s system is the s-server loss sys-
tem M/M/s/s. In this system there are s servers and no

E(T ) = 1
µ

+ λE(Y2)

2(1 − ρ)
+ E(V 2)

2E(V )

buffers. A packet that finds all the servers busy upon arrival
does not enter the system and is lost. Hence the accepted Among all vacation queues with a given mean vacation pe-
packet rate into the system is lower than the arrival rate by riod, the server with deterministic vacation causes the small-
a factor 1 � PB, where PB is the packet loss (blocking) proba- est delay and the smallest queue size.
bility given by

PRIORITY QUEUEING
PB = (λ/µ)s/s!∑s

i=0(λ/µ)i/i!
Modern broadband networks are designed to serve multiple
classes of traffic, such as voice, video, data, and so on. EachThis equation is known as the Erlang-B formula and is very
such traffic class has a different delay requirement. Real-timeuseful in dimensioning M/M/s/s systems. The M/M/s/s
traffic such as voice and video are sensitive to delay, whileformulation finds a variety of applications in the design and
data traffic (e.g., e-mail and file transfer applications on In-analysis of telephone networks where it is used to estimate
ternet) is relatively delay-tolerant. When different trafficthe call blocking probability as a function of traffic load per
types share common network resources, such as transmissiontrunk �/� and the number of trunks s. It turns out that this
lines, routers, and so on, they may be given different serviceloss formula is insensitive to service distribution and remains
priorities to accommodate their service requirements. For ex-valid for M/G/s/s systems with service rate � (4).
ample, in a single server system, delay-sensitive traffic mayThe M/G/1 queueing system is a generalization of the
be served before delay-tolerant traffic. One possible scenarioM/M/1 system with an arbitrary probability density func-
is to divide traffic into L priority classes with class i havingtion fY(y) for the service time. The first two moments of the
priority over class i � 1 and to maintain a separate queue forservice time E(Y) � 1/� and E(Y2) are sufficient to obtain the
each priority class. When a server becomes free, it starts serv-average packet delay and system occupancy. The typical anal-
ing a packet from the highest priority queue that is non-ysis involves an embedded Markov chain obtained by observ-
empty. In a nonpreemptive priority scheme, a packet serviceing the system just after a service completion. At these time
is completed without interruption even if a higher-priorityinstants the memoryless property of interarrival times and
packet arrives during that service. In preemptive prioritythe fresh start of a new packet service imply that the future
schemes, packet service is interrupted with the arrival of aevolution of the system state (the number of packets in the
high-priority packet which starts receiving service immedi-system) is independent of the past. An important expression
ately. The discussion below will focus on nonpreemptive prior-in the analysis of M/G/1 queues is the Pollaczek–Khinchin
ity, which is more appropriate for packet transmission by aformula, which relates the average system occupancy to the
single server.arrival and service parameters as

The M/M/1 framework can be extended to multiple prior-
ities as follows. For simplicity, we consider the case with two
priorities. Let the Poisson arrival and exponential serviceE(N) = ρ + λ2E(Y 2)

2(1 − ρ)
rates of class i traffic be �i and �i, respectively, with 	i �
�i/�i. Assume for stability that 	1 � 	2 � 1. The average wait-which in conjunction with Little’s result yields the average
ing time for a high-priority packet before it can start receivingpacket delay as
service is

E(T ) = 1
µ

+ λE(Y2)

2(1 − ρ) E(W1) = E(R) +
E(N1

Q)

µ1

Note that these M/G/1 expressions reduce to the corre-
where R is the residual time of the packet being served at thesponding M/M/1 expressions since E(Y2) � 2/�2 for exponen-
time of arrival and N1

Q is the number of high-priority packetstial service. It is also interesting to observe that deterministic
already in the queue. Little’s result applied to the high-prior-service with Y � 1/� minimizes both the average system occu-
ity buffer yields E(N1

Q) � �1E(W1); thereforepancy and the average packet delay among all service distri-
butions with the same service rate. For this M/D/1 queue,
the second term in the delay expression above, which is the
average waiting time in the buffer prior to service, is exactly

E(W1) = E(R)

1 − ρ1
50% of the corresponding value for M/M/1.

In some multiple access networks the server is shared For the low-priority class, two additional delay components
are present. A low-priority packet has to wait for the serviceamong many nodes. Token passing networks such as the to-
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of all the packets that have arrived earlier, as well as those Open Queueing Networks
high-priority packets that arrive before this packet starts ser-

An open queueing network is a collection of queues with ex-
vice. Then

ternal arrivals and departures. Every packet entering an
open network eventually departs from it.

In a queueing network, the basic assumption of statistical
independence between interarrival times and packet service

E(W2) = E(R) +
E(N1

Q)

µ1
+

E(N2
Q)

µ2
+ ρ1E(W2)

times that makes the analysis of a single queue possible no
longer holds for the downstream queues. Consider, as an ex-where the last term is due to tardy high-priority packets.
ample, two single-server queues in tandem. The output pack-Applying Little’s result to both buffers one obtains
ets from the first server join the queue for the second server,
and packets leave the system once they are served by the sec-
ond server. If the packet lengths (service times) are exponen-E(W2) = E(R)

(1 − ρ1)(1 − ρ1 − ρ2)
tially distributed and the external arrival process to the first
queue is Poisson, the first queue can be analyzed by using

It is observed that low-priority packets experience a larger the M/M/1 framework. An important result known as
waiting time than high-priority packets by a factor (1 � 	1 � Burke’s theorem, which applies not only to M/M/1 but more
	2)�1. The final step to complete the delay analysis involves generally to M/M/s and M/M/� queues, implies that the
the calculation of the average residual time E(R). The server departure process from the first queue is also Poisson. There-
is idle with probability (1 � 	1 � 	2) and busy serving a class fore the second queue has Poisson arrivals. However, an in-
i packet with probability 	i. The memoryless property of the terarrival time X at the second queue and the service time
exponential service distribution then yields Y of the arriving packet at the first queue are statistically

dependent (to see this, observe that X 
 Y). The packet length
remains constant through the network; as a consequence, theE(R) = ρ1

µ1
+ ρ2

µ2 service times at the second queue are not statistically inde-
pendent of the interarrival times. Due to this correlation be-

which can be used to obtain the waiting times explicitly. The tween arrivals and service, the second queue is not M/M/1
average packet delays of the two classes are then found as (or even G/G/1).

The exact analysis of the system with two queues in tan-
dem is not known, because it is inherently difficult to account
for the correlation illustrated above. To resolve this difficulty,

E(Ti) = E(Wi) + 1
µi

, i = 1, 2

an engineering approximation is employed in the analysis of
queueing networks. This approximation is motivated by theThe average packet delay of an arbitrary packet is
fact that the input stream into a queue is typically a mixture
of several packet streams. Kleinrock has suggested that this
mixing effectively restores the independence of the arrivalE(T ) = λ1E(T1) + λ2E(T2)

λ1 + λ2
times and packet lengths. Consequently, Kleinrock’s indepen-
dence approximation adopts an M/M/1 model for each queue

This final delay expression can be used to verify that the aver-
in a network. The approximation is accurate for networks

age packet delay is minimized by assigning high priority to
with Poisson external traffic, exponentially distributed packet

traffic with higher service rate. This is because a shorter
lengths, and a densely connected topology to ensure adequate

packet will cause a lower waiting time for a longer packet
mixing of traffic streams.

than the case with reversed service orders. However, the
A typical application of Kleinrock’s independence approxi-

packet delay averaged over service classes is often not the
mation in a queueing network is the delay analysis of a vir-

relevant performance measure due to difference in maximum
tual circuit network. Here each packet stream l has a packet

tolerable delays for various traffic types. The priority assign-
arrival rate �l and is assigned a path from the source node to

ments as well as the rate assignments must be chosen such
the destination node in a given network topology. Let (i, j)

that the delays for all traffic classes satisfy their require-
denote the directed link from node i to node j and let S(i, j)

ments.
denote the set of streams that use this link. Each link is then
modeled as an M/M/1 queue with the arrival rate

NETWORKS OF QUEUES
λi j =

∑
l∈S(i, j)

λl

In a communication network, packets traverse a sequence of
servers, such as transmission lines, switches, and store-and-

and service rate �ij. As a result, the average number of pack-forward nodes. Such a network may be modeled as an inter-
ets in the network at the steady state is given byconnection of queues where a packet departing from a server

may enter another queue (or may depart from the network).
An important characteristic of these systems is traffic mixing;
different traffic streams interact with each other, making a

E(N) =
∑
(i, j)

ρi j

1 − ρi j

compact traffic description very difficult.
There are two classes of queueing networks, open and where 	ij � �ij/�ij is the utilization of link (i, j). Little’s result,

when applied to the whole network, yields the average packetclosed networks, which will be treated separately below.
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delay as for closed networks. However, the joint probability distribu-
tion of (n1, n2, . . ., nK) can still be written as

E(T ) = 1
γ

∑
(i, j)

ρi j

1 − ρi j
P(n1, n2, . . ., nK ) = c(L)P1(n1)P2(n2) · · · PK (nK ),

n1 + n2 + · · · + nK = L

where � � �l �l is the total arrival rate into the network.
where c(L) � (�n1� � � � �nK�L P1(n1)P2(n2) � � � PK(nK))�1 andWhen processing and propagation delays are significant, the
Pi(ni) � 	nii with 	i � �i/�i. Here �i is the service rate of thedelay expression can be easily modified to take these effects
ith server and �i is the arrival rate to the ith queue. The ar-into account. When the packet lengths are not exponentially
rival rates are determined by the routing probability matrixdistributed, the M/G/1 Pollaczek–Khinchin formula re-
R whose (i, j)th entry Rij is the probability that a packet leav-places the M/M/1 expressions above.
ing the ith queue joins the jth queue. The arrival rate vectorJackson’s theorem is a powerful result which shows that
� � (�1, �2, . . ., �K)T is the solution to the equation � � RT

the delay expression above is exact, provided that packets are
�. This equation has a unique nonzero solution within aassigned anew independent and exponentially distributed
multiplicative factor for a well-behaved R (the technical re-service times in the queues they traverse. More generally,
quirement is the irreducibility of the Markov chain with theJackson’s theorem states that for a network with Poisson ex-
transition probability matrix R). The multiplicative factorternal arrivals the number of packets in each queue is sta-
does not affect the probability distribution and can be arbi-tistically independent of those in all other queues. If (n1,
trarily chosen.n2, . . ., nK) denotes the number of packets in a network of K

As an example, let us consider two queues in tandem withqueues, one has as the joint probability distribution
L circulating packets. Both servers have service rate �. A
packet served by the first server joins the second queue withP(n1, n2, . . ., nK ) = P1(n1)P2(n2) · · · PK (nK )
probability r and returns back to the first queue with proba-
bility 1 � r. The output packets from the second queue joinwhere
the first queue. The arrival rates then satisfy �2 � �1r. The
packet occupancy distribution is then found asPj(nj ) = (1 − ρ j )ρ

n j
j

, nj = 0, 1,2, . . .

is the geometric distribution one would have for an M/M/1 P(n1, L − n1) = 1 − r
r−L − r

r−n1 , n1 = 0, 1, . . ., L
queue in isolation, and 	j is the utilization of the jth server.

The importance of Jackson’s theorem lies in the fact that from which other quantities of interest, such as average
it enables each queue in the network to be considered as an queue occupancy and packet delay, can be determined.
M/M/1 system in isolation, although the actual arrival pro-
cess to the queue is, in general, non-Poisson. To see the latter,

DISCRETE-TIME QUEUESconsider a single queue with external Poisson arrivals of rate
�0 and a service rate �  �0. Suppose each packet completing

Our discussion has so far focussed on continuous-time queuesservice immediately returns to the queue with probability p
in which packet arrivals and service may occur at any timeand departs the system with probability 1 � p. The total ar-
instant. There has been an increasing interest in broadbandrival rate into the queue is �0/(1 � p), and from Jackson’s the-
networks with fixed packet sizes over the last decade. Thisorem the number of packets in the system is geometrically
interest is primarily motivated by the asynchronous trans-distributed with parameter 	 � �0/�(1 � p). Since each exter-
fer mode (ATM) standard for broadband ISDN. ATM usesnal arrival is likely to find the system empty, it induces an-
53-byte packets (cells) and the network elements operate syn-other arrival after a short time with probability p (due to the
chronously using time slots. The fixed packet size and time-short service time). Hence the aggregate arrival process is
slotted operation simplify the architecture and implementa-bursty and non-Poisson, although the system can be analyzed
tion of packet switches. Since the servers in such a networkas if it were an M/M/1 system.
start service only at slot boundaries, the nature of queueing
in a discrete-time queue is quite different from that in a con-

Closed Queueing Networks
tinuous-time queue. In particular, the exact arrival times of
packets are of secondary importance: The number of packetsA closed queueing network is a network in which a fixed num-

ber L of packets circulate without any external arrivals or that arrive during a time slot is what affects the state of the
system when observed at the beginning of the next time slot.departures. Such a model is usually employed to investigate

the effect of limited system resources by implicitly assuming For this reason, it is usually more convenient to describe the
arrival process of a discrete-time queue in terms of the num-that each departure is immediately replaced by a new arrival.

A common application of closed networks is in the analysis of ber of arrivals per slot instead of interarrival times. The
packet service times are described in integer number of timewindow-based flow control schemes in packet-switched net-

works (5). slots. Hence the G-D-1 queue refers to a discrete-time queue
with a general distribution on the number of arrivals per slot,The typical quantity of interest in a closed network is the

joint probability distribution of the number of packets in dif- a deterministic service time, and a single server. The G-G-1
queue is similarly defined.ferent queues. In a network of K queues these numbers n1,

n2, . . ., nK are clearly statistically dependent because their The discrete-time G-D-1 queue is of primary interest in an
ATM setting where each fixed-size packet needs a single timesum is a constant. Consequently, the isolation afforded by

Jackson’s theorem for open queueing networks does not hold slot of service. The arrival process is i.i.d. from one slot to
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another and is specified by the probability distribution lowed. Consequently, the arrival rate is � packets per port per
slot. The analysis decomposes the switch into M independentPA(n) � Pr(n packet arrivals) or equivalently by the probabil-

ity generating function �A(z) � ��
n�0 PA(n)zn. The arrival rate queueing systems in which a HOL packet is served with prob-

ability q in each time slot. Therefore the service time of ais defined as the average number of packet arrivals per slot,
� � �n nPA(n). For stability � should not exceed unity. Let us HOL packet is geometrically distributed with parameter q.

(Since the packet interarrivals are geometrically distributedobserve the system at the beginning of each time slot. Let Nk

be the number of packets in the system at the beginning of as well, this queue is sometimes referred to as a Geom/Geom/
1 queue.) The decomposition approximation is known to beslot k, and let Ak be the number of arrivals that occur during

that slot. The system occupancy is then described by the dy- accurate when the parameter q is calculated by taking the
HOL effect into account. This calculation yields (6)namic evolution equation

Nk+1 = Nk − u(Nk) + Ak q = 2(1 − λ)

2 − λ

where u(n) � 1 for n � 0 and u(0) � 0. The term u(Nk) is the
The average number of packets per input port can then benumber of served packets in the kth slot. Since the number of
found asarrivals Ak is independent of the state Nk, the sequence �Nk�

is a discrete-time Markov chain with transition probabilities
E(N) = λ(1 − λ)

q − λPi j = Pr(Nk+1 = j | Nk = i) = PA( j − i + u(i))

and the average packet delay is obtained from Little’s resultThe steady-state distribution of this chain has the generating
as E(T) � (1 � �)/(q � �).function

The maximum throughput of this switch is defined as the
traffic rate � beyond which finite system size and packet de-
lay cannot be supported. This can be calculated from �max �φN (z) = (1 − λ)

(z − 1)φA(z)

z − φA(z)
2(1 � �max)/(2 � �max) as �max � 2 � �2 � 0.586. HOL blocking
and destination conflicts reduce the maximum switchwhich can be inverse z-transformed, for a given arrival distri-
throughput from 100% to 58.6%. If the correlation betweenbution, to obtain the steady-state system occupancy distri-
HOL destinations can be eliminated (e.g., by dropping thebution. The average system occupancy can be found from
HOL packets that cannot be immediately switched), theE(N) � ��N(1) as
throughput can be improved to 1 � e�1 � 63.2% at the ex-
pense of packet loss (7). It has been shown recently that 100%
throughput can be achieved if non-FIFO service disciplinesE(N) = λ

2
+ σ 2

A

2(1 − λ)
are used (8).

where �2
A is the variance of the arrival distribution. This is

the discrete-time Pollaczek–Khinchin formula, and it shows FUTURE TRENDS IN QUEUEING ANALYSIS
AND NETWORK PERFORMANCEthat deterministic arrivals minimize average system occu-

pancy and delay.
In this final section we outline some of the research issues inAn important application of discrete-time queueing is the

analysis of an input-queueing packet switch. This switch is modern network engineering which are related to queueing
analysis.an M-input M-output device with a queue per input port.

Each incoming packet is assumed to be equally likely to be A nonprobabilistic characterization of arrival processes has
been developed by Cruz (9,10). This model assumes that everydestined to any one of the M output ports. These packets have

fixed size which equals the slot duration. The switch serves arrival process obeys certain average rate and burstiness cri-
teria. Namely for all time intervals [s, t], the number of pack-up to M head-of-line (HOL) packets every time slot, two HOL

packets with the same destination cannot be served in the ets that enter the network during this time interval is upper
bounded by � � 	 (t � s), where 	 is the long-term averagesame time slot. The system has a first-in first-out (FIFO) ser-

vice discipline for each input queue. This means that a HOL packet rate and � is a parameter that controls the size of
allowed packet bursts. This deterministic traffic descriptionpacket that cannot be served in a given slot makes it impossi-

ble for a subsequent packet in the same input queue to be allows a worst-case characterization of packet delay and sys-
tem occupancy. This framework has been applied to flow con-served in that slot, even if the output request of the latter

packet could be honored. This effect is known as HOL trol in broadband ISDN (11,12).
Another current issue in network traffic engineering is theblocking and introduces a correlation between destinations of

HOL packets. (Two HOL packets are more likely to have an characterization of correlation and burstiness in statistical
traffic models. Data, voice, image, and video sources all ex-output conflict than two non-HOL packets.) This correlation

has to be taken into account in the performance analysis. hibit a strong temporal correlation which is not well-modeled
by traditional models. Several advanced models have beenThe input-queueing packet switch is a system of M dis-

crete-time queues with correlated service. The performance of proposed to account for correlation, such as Markov modu-
lated Poisson processes (MMPP), fluid models (13), spectralthis switch has been analyzed in Refs. 6 and 7 for Bernoulli

arrivals. In this arrival model each input port receives a new models (14), and so on. These models attempt to quantify traf-
fic correlation and burstiness in a parsimonious manner thatpacket with probability � in a time slot. Multiple packet arriv-

als at the same input port in the same time slot are not al- enables a performance analysis. A consensus is yet to emerge
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14. S. Q. Li and C. L. Hwang, Queue response to input correlationon the adequacy of these models for characterizing traffic in
functions: discrete spectral analysis, IEEE/ACM Trans. Netw., 1:modern networks. For a discussion of these issues the reader
522–533, 1993.is referred to Ref. 15.

15. R. G. Gallager et al., Advances in the fundamentals of net-A related research topic in network performance is mea-
working–part I: Bridging fundamental theory and networking,surement-based traffic modeling. Many real traffic traces, in-
IEEE J. Selected Areas Commun., 13: 1995.cluding measurements of Ethernet and Internet traffic, have

16. W. E. Leland et al., On the self-similar nature of Ethernet trafficbeen observed to exhibit strong and slowly decaying temporal
(extended version), IEEE/ACM Trans. Netw., 2: 1–15, 1994.correlation (16). Statistical analyses of measured traffic data

17. I. E. Telatar and R. G. Gallager, Combining queueing theory within many different network settings suggest a self-similar na-
information theory for multiaccess, IEEE J. Selected Areas Com-ture to network traffic. That is, time-averaged traffic seems
mun., 13: 963–969, 1995.to exhibit a behavior that is independent of the time scale

18. V. Anantharam and S. Verdu, Bits through queues, IEEE Trans.over a wide range of such time scales, from a few milliseconds
Inf. Theory, 42: 4–18, 1996.to several hours. This behavior is quite different from that of

traditional traffic models used in queueing analysis and re-
MURAT AZIZOG̃LUquires further study. Network performance implications of
University of Washington

self-similar traffic are largely unknown at present. While
RICHARD A. BARRYearly results suggest dramatic differences with certain perfor-
MIT Lincoln Laboratorymance metrics (e.g., packet loss probability in finite buffers),

a comprehensive understanding of the queueing behavior
with self-similar traffic is yet to be developed.

Finally, the interaction between delay in communication
networks as quantified by queueing theory and the funda-
mental limits to reliable information transfer rates as quanti-
fied by Shannon’s information theory remains to be fully un-
derstood. There are some interesting early results in this
context (17,18); however, a basic framework that unifies
queueing and information theories for network performance
analysis is quite far in the horizon.
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