
REMOTE PROCEDURE CALLS 459

• Transport independence. Developers of RPC-based appli-
cations do not have to program for a specific underlying
network protocol. This means that the communications
protocol can be changed at runtime without changes to
the program.

RPC TECHNICAL OVERVIEW
REMOTE PROCEDURE CALLS

The RPC is modeled after the ordinary local procedure call.
The remote procedure call (RPC) is a computer technology for The differences between the RPC and the local call are exten-
interprocess communications. A calling program uses an RPC sions resulting from the effects of remoteness that are intro-
to invoke a program running in another process. This other duced when the calling and called operation do not share the
process may be running on the local host machine or may same process.
be on another host machine. RPC implementations make an Local procedure calls are calls that one part of an active
interprocess call look similar to a local procedure call, process makes to another part of the same process (or address
shielding the programmer from many of the complexities of space). Local procedure calls are also called functions, subrou-
the underlying communication technologies. The RPC tech- tines, and application programming interfaces (APIs). Like a
nology allows a programmer to code the calling program the local procedure call, an RPC may or may not contain input
same way, regardless of whether the called program is run- parameters to set initial conditions within the function and
ning on the same host or a remote host. Thus, RPCs simplify output parameters to pass back final state information. Un-
and standardize interprocess communications. In addition, like a local procedure call, however, the RPC executes in two
RPC implementations provide features beyond simple data separate processes that may or may not be running on the
transmission, including platform independence, location same host. The process that initiates an RPC is called the
transparency, security, and transport independence, and run client and the process that receives, processes, and returns
on a wide variety of commercial computer platforms. the request is called the server.

This article is organized as follows: The first section intro- From the programmer’s point of view, RPCs are rooted in
duces RPC technology; the following section covers program- the same programming semantics as local procedure calls.
ming with RPCs and generic RPC functions that are common They have well-defined input and output, and the call returns
to most RPC implementations; and the last section describes when the function has completed processing (synchronous
advanced RPC topics. calls). Having identical semantics as the local procedure call

Examples in this article come from two popular RPC im- means that the programming with RPCs is virtually identical
plementations: the SUN ONC�RPC and the Open Software to programming with the local procedure call. This means
Foundations Distributed Computing Environment (OSF that there is very little additional knowledge that a developer
DCE) RPC. Details of how each of these mechanisms imple- must have when working with RPCs. However, as discussed
ment RPC functionality are discussed in some of the sections. later, there are some additional steps required to check for

the effects of remoteness that must be built into the software,
especially the consideration of RPC call semantics, which gov-

RPC FEATURES ern how applications behave in the case of errors, such as
network failures and server crashes. Figure 1 illustrates the

The main features of RPC programming are as follows:

• Platform independence. RPCs compensate for differences
in how host platforms represent data internally. All RPC
data communication uses standardized data representa-
tion. This means that computers having dissimilar inter-
nal data representation can communicate properly be-
cause all shared data are converted to a standard
representation before being sent to the receiver.

• Location transparency. Computers that make up the ap-
plication are not required to be geographically colocated.
This means that distributed applications could be spread
across large geographic regions to improve response time
and availability.

• Secure network communications. All commercial com-
puter applications are exposed to security threats. Be-
cause the physical communications network is not 100%
secure, distributed applications have a higher exposure
to security violations. Most RPC mechanisms provide
tools to enable various levels of security to guarantee

Client Process

Application
level code

Client
stub

Server
stub

Server Process

RPC library and
network routines

RPC library and
network routines

Local kernel Remote kernel

Application
level code

1 10

2 9
8

7 4

6 5

3

that an application receives the appropriate level of se-
curity. Figure 1. Remote procedure call.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



460 REMOTE PROCEDURE CALLS

RPC model (1) and demonstrates how all the associated com- hosts need not be able to store data. Second, administra-
tion costs are reduced. Only the servers, and not eachponents interact.
client, are backed up on a regular basis. These cost re-
ductions become more and more significant as the ratio1. The client calls the RPC by executing a local procedure
of clients to servers grows.call as defined in the interface definition. (The local

• Increased application power. As more users store theirprocedure call is actually a routine in the client stub
results in a common store, increasingly powerful applica-generated by the interface definition language com-
tions become possible.piler.)

• Elimination of data redundancy problems. Data redun-2. The client stub takes the arguments, if any, and pack-
dancy occurs when each host requires identical consis-ages them into a standard data representation and for-
tent data for the application to run correctly. Managingwards the data to the local kernel code for network
data consistency between more than one computer is ex-transmission.
pensive in terms of application design, implementation,3. The kernel software transmits the information across
and runtime resources. Applications that require com-the network and then waits for the server to reply.
mon data that are asynchronously accessed are simplerThis software also executes all actions necessary to
to design and build using the client/server model. This issupport the network protocol used in the call.
because there is only one copy of the data, and consis-4. The information is received by the remote host kernel
tency is not an issue. An example of this type of applica-level code and forwarded to the server stub for pro-
tion would be consistent times among many applications.cessing.
Keeping multiple hardware clocks at the same time is a

5. The server stub translates the message from the stan- complex task because of different clock drift rates and
dard data representation into the format described in frequency of clock synchronization. However, a time ser-
the interface definition and is passed to the server us- vice provider could parcel out time stamps required by
ing a local procedure call. clients. Removing the requirement for synchronized

6. The server processes the request and returns the data clocks greatly simplifies application design, implementa-
to the server stub in the format described in the inter- tion, and administration.
face definition. From the server’s perspective, it is re- • Reduced specialized hardware requirements. For exam-
turning to a local procedure call. ple, clients running on inexpensive slow computers can

7. The server stub formats the results into a standard send specialized computer-intensive operations to a spe-
data representation format and sends the data back to cialized server that performs mathematical operations
the kernel code. very quickly. This promotes the efficient use of special-

ized equipment.8. The kernel code transmits the data back to the client
host. • Increased availability due to multiple identical servers.

Some services can be provided by multiple servers. Avail-9. The client’s kernel receives the data and sends them
ability is increased because the client has multipleback to the client’s stub.
servers that it can select from to execute a request. When10. The client stub reformats the data from the standard
one server is unavailable, the client can select anotherdata representation into the local data representation
server to satisfy its request.and returns the data in the format defined in the inter-

face definition.
Drawbacks of RPC-Based Distributed Computing

There are design trade-offs in all aspects of computing, and
RPC-BASED DISTRIBUTED COMPUTING RPC-based processing is no exception. Most of the drawbacks
BENEFITS AND DRAWBACKS of RPC applications center on the effects of remoteness. Ef-

fects of remoteness are defined as the potential for dysfunc-
RPC technology is a basic tool of distributed computing, with tion because of the following:
attendant benefits and drawbacks.

• Dependency on the server host being available. Unlike
Benefits of RPC-Based Distributed Computing the local procedure call, a client process has no guarantee

that the computer running the server it wants to contactApplications developed using RPC-based service providers
is available.(servers) enjoy many benefits, including, but not limited to,

• Dependency on the server process running at the timethe following:
the client issues the request. In this case, the target com-
puter is available but the required process is not run-• Reduced administration costs in the areas of data backup
ning.and recovery. Examples of this class of servers include

• Dependency on end-to-end network connectivity. Datafile and database servers that centralize system and ap-
communications networks are physical entities andplication administration to a single host. Client hosts re-
therefore subject to outage because of broken wires andquest files and/or data, manipulate the information, and
network element (routers, bridges, etc.) failure.then store the information back on the server. There can

be many clients and a single server. Costs are reduced in • Latency in processing requests. Because RPCs are more
likely to require calls across a network in a fully distrib-two ways. First, client hardware requirements are re-

duced. Data are centrally stored on the server, so client uted computing environment, clients will have to wait



REMOTE PROCEDURE CALLS 461

longer for a response due to the additional network Service, lightweight directory access protocol (LDAP), and
delay. X.500.

DCE security services are based on private (Kerberos) and• Single point of failure. Once a service is centralized, a
public key authentication. The security service includes au-failure in that service affects more clients.
thentication of servers and clients, support for resource au-• Time shifts due to clock skew and time zone differences.
thorization by an application server in providing services to
its clients, and various levels of message integrity/encryption

These drawbacks are not the only negative effects of remote- (at different levels of computing resources). Two other distrib-
ness, but they are the major challenges when designing, uted services of DCE are its Distributed File System (DFS),
building, and deploying distributed applications. Other fac-

for accessing files across hosts, and Distributed Time Servicetors include debugging in a distributed environment, adminis-
(DTS), for synchronizing clocks across hosts.tration of networked computers, and degraded performance

due to network congestion and network configuration.
Despite the drawbacks, distributed computing remains a

feasible processing model because of the many advances that EVOLUTION OF RPCs
address the effects of remote computing. For example, good
design techniques can be used to compensate gracefully for RPCs are an evolutionary step in the development of commu-
lack of server and network availability. Other advances in

nications tools for distributed computing. RPC technology
software design and development, such as threads and

builds a program-level protocol upon earlier network-levelthreads aware debuggers, minimize the effects of remoteness.
communications protocols. RPC is often layered atop sockets.These design techniques and advances are covered in detail
In turn, object-level communications protocols, such aslater in this article.
DCOM and COBRA, have built on top of RPC technology:
DCOM explicitly uses DCE RPC, and COBRA reimplements
RPC concepts as internal underlying protocols.RPC PRODUCTS

The following two subsections describe basic and advanced
features of RPC computing. Where appropriate, they include

PROGRAMMING WITH RPCsdescriptions of how two popular RPC mechanisms, ONC�
and OSF DCE RPC, implement the feature being described.

Application development with RPCs is slightly different fromArchitecturally, these two products lie between the applica-
typical application development. In addition to the usualtion and the operating system and network services. Client
steps of writing a client (calling) program and a server (called)applications issue a request for service using RPC functions.
program, the developer creates a service interface definitionThese functions, in turn, use the operating system and net-
in one of several languages, each called an interface definitionwork services to communicate that request to a server and
language (IDL). The interface definition is passed to a codethe results of the remote computation back to the client that
generator (compiler) that generates stubs for both the clientmade the request. Both RPC mechanisms are available on a
and server. Stubs are linked into the respective program towide variety of operating systems and support a variety of
provide all the functionality necessary to make the RPC work.network-level protocols.

There are four stages to developing a RPC based appli-
cation:ONC� RPC

ONC� is an RPC implementation developed by Sun Microsys-
tems. It provides core services (2) that enable applications de- 1. Develop a formal description of the services provided by
velopers to design and build distributed applications that run the server. The description includes the service names
in a heterogeneous environment. The communication mecha- and their respective input and output parameters.
nism is the synchronous transport-independent (TI) RPC with Definitions are written in the IDL of the RPC package
support for multithreading to enhance concurrency. ONC� used.
uses external data representation (XDR) to enable platform

2. Generate stub programs for both the client and server.independence.
The RPC package provides an IDL compiler that gener-
ates stubs from IDL. The stubs transform a local proce-

OSF DCE
dure call into a remote procedure call. That is, when

DCE is a collection of services (3) for the development, use, invoked by a client via a local procedure call, the client
and maintenance of transparent distributed systems using stub makes an interprocess call to the server stub,
the client/server architecture. DCE enables application-level which invokes the server via a local procedure call. The
interoperability and portability through common APIs among stubs contain all the code required to marshal the cli-
heterogeneous platforms. The communication paradigm sup- ent’s arguments into a well-known format, send the
ported by DCE is synchronous RPC across address spaces data to the server, and return the respective results to
(over various network protocols), with multithreading within the client.
an address space for concurrency. Client/server location

3. Create server and client application software.transparency is provided by a directory service/name server.
4. Compile and link application server code and serverDCE directory services are provided within an administration

domain, called a cell, and among cells using Domain Name stub and application client code and client stub.



462 REMOTE PROCEDURE CALLS

(5). It also supports multiple input parameters and a single
output parameter for each RPC defined. (Previous releases of
ONC RPC only supported single input and output parame-
ters, and the output parameter had to be of type static.) RPC
arguments cannot be both input and output. Full pointer sup-
port means that RPCs are useful for sending recursive data
types, such as linked lists and trees, across the network. Mul-
tidimensional arrays are defined as linked lists.

DCE RPC IDL supports (6) a wider variety of C language
data types than ONC�. It also supports user-defined data
types and multiple input and output parameters, and all pa-
rameters can be both input and output parameters. Multidi-
mensional arrays can be declared in the language and are
not required to be implemented as linked lists. DCE IDL also
supports a mechanism called pipes that allows transfer of
large quantities of identically typed data.

Integration of Stubs and Application Code. Compiled stubs
are used in the application build process to create complete
clients and servers. The link step is where this step is per-
formed.

One popular way to develop client/server applications is to
build both client and server code together in the same pro-
gram, debug the application, and then split the program into

RPC specification

RPC compiler

Client
stub

Client
stub

Stage 1

Stage 2

Stage 3

Stage 4

Shared filters
and header file

Application
client

Application
server

Compile
and link

Client
executable

Server
executable

RPC
libraries

Compile
and link

its respective client and server modules. Although this devel-
Figure 2. Application integration. opment strategy is not required, it does help to debug the

application before the effects of remoteness are introduced
into the application.Figure 2 illustrates four stages of building an RPC-based ap-

plication (4). The shaded boxes indicate steps performed by
RPC Runtime Semanticsthe applications developer.

Synchronous RPCs. Both RPCs and local procedure calls are
Interface Definition synchronous. This means that the process making the call

waits for the calling routine to complete its tasks. BecauseThe interface definition is the mechanism by which one de-
RPCs are made to other processes, they tend to block the cli-scribes services offered by a server. The purpose of the inter-
ent process. Process blocking causes some performance degra-face definition is to define the programming interface between
dation because the client process must wait while the requestthe client and the server. The interface definition is required
is transmitted across the network, processed by the server,so that the server knows what the client is passing in as pa-
and transmitted back to the client. The use of threads canrameters and the client knows what the server is returning.
alleviate this degradation, as explained later under con-The interface compiler uses an interface definition to gen-
currency.erate the needed header file for the client and server pro-

grams as well as stub code for the client to invoke the service
Asynchronous RPCs. Performance degradation due toand for the server to return the results. The RPC runtime

blocking RPC calls can be addressed with the use of asynchro-service on each host does data marshaling/unmarshaling nec-
nous RPCs, also known as one-way RPCs. Asynchronousessary for RPC programs to run on different hosts and host
RPCs are calls that allow the client process to continue pro-types. Marshalling is the process of preparing the parameters
cessing while the RPC call is pending. When the RPC com-to the RPC for transmission across the network. The marshal-
pletes, a predefined callback routine is invoked.ling logic uses the parameters to the RPC to build a message

Performance improves because of the increase in concurre-in a well-known format, which includes data and control in-
ncy. Concurrency means that the client can perform other op-formation. Unmarshalling is the process of retrieving the pa-
erations, including making more RPCs, while waiting for therameters to the RPC from the message sent across the
RPC to complete.network.

Asynchronous RPCs can be emulated with the use ofThe syntax of most IDLs is a C language syntax. There-
threads in the client. In the threaded model, the client createsfore, most interface specifications look like a series of C lan-
a thread to make the RPC. When the RPC is made, only theguage declarative statements. Most modern IDLs support
thread that made the call blocks. This allows the client pro-primitive data types and allow the developer to create more
cess to execute other operations while the RPC is pending (7).complex data objects using structures. Also, full pointer sup-

Either practice, asynchronous RPCs or multithreaded pro-port is provided to allow linked lists, nested structures, and
gramming, alleviates the degraded performance resultingreference pointers. Reference pointers can be used to pass pa-
from blocking RPC calls.rameters whose length is not known until execution time, by

roughly effecting call-by-reference semantics.
The ONC� IDL supports most C language data primitives Callback RPCs. Callback (8), or follow-up, RPCs are useful

when the application cannot wait for the synchronous RPCin the interface definition as well as user-defined data types



REMOTE PROCEDURE CALLS 463

to complete and multithreading the client is not an option. ports and the number of services is potentially very large. By
running only the lookup service on a well-known transportGraphical user interface (GUI)–based clients are examples of

programs that cannot indefinitely block waiting for a long- selector, the port number of other servers is ascertained by
querying the lookup service.running RPC to complete. Essentially, the flow of control in a

callback RPC is as follows:
Binding Management. Clients manage dynamic binding

information in one of three ways (9). The management tech-1. The client issues the RPC and blocks waiting for a re-
nique used dictates the allowable client behavior, and there-ply.
fore applications must match the correct binding manage-2. The server receives the request and returns an ac-
ment technique with the expected client behavior.knowledgment to the client to indicate the message was

received and starts processing the request.
• Automatic binding is the simplest method because the

3. The client receives the server’s acknowledgment and client stub manages all binding information and com-
continues processing. pletely hides binding information from the application

4. The server completes the request and sends the output, code. Automatic bindings can sometimes automatically
if any, back to the client. retry failed RPCs. Retries are automatically done if the

5. The client receives the reply via application-level poll- previous RPC never began or when the operation is
ing software. idempotent, meaning that it can be executed many times

without affecting correctness, e.g., a ‘‘read’’ operation.
Both ONC� and DCE RPC are synchronous calls. ONC� Drawbacks to the automatic binding include not being

supports callback routines. Both products support multi- able to identify server information such as host name
threaded programming and therefore allow simulated asyn- and network protocol.
chronous RPCs. • Implicit binding is slightly more complex than automatic

binding because the application must establish the
server binding information and assign it to a global vari-ADVANCED RPC TOPICS
able. The global variable identifies the targeted server in
the stub. Benefits of implicit binding include centralizedAdvanced topics in RPC programming include interface man-
binding assignment. Drawbacks to this method includeagement and change control, platform independence, RPC call
restrictions on multiple threads using the global variablesemantics, binding information, supporting service providers,
at the same time.concurrency, and event propagation. These subjects are im-

• Explicit binding is marginally more complex than im-portant in discussing any RPC mechanism because they are
plicit binding because the application code must explic-used by application developers to make better distributed ap-
itly use the binding information on each RPC. Althoughplications. They allow developers to extend the functionality
this method is the most complex, it is also the most flex-of servers (while not requiring existing clients to change), fa-
ible. By allowing the client to manage the binding infor-cilitate location transparency by providing centralized direc-
mation for individual RPCs, the explicit binding methodtory services, facilitate secure processing, and increase perfor-
enable clients to meet special binding requirements.mance.

ONC� supports explicit binding. The binding informationBinding Information
is the last parameter in the RPC call. DCE RPC supports all

Client processes must have information on where a service is three types of binding classes. In the case of explicit binding,
being provided to contact, or bind, with the server. Binding binding information is the first parameter passed in the
information includes the interface number(s), supported net- RPC call.
work protocols, and network address of the host providing the
service. Of these bits of information, the program identifica- Interface Numbers. Interfaces are defined in an IDL and
tion number(s) are usually known at compile time, and the describe the interface specification in human readable form.
server host location can be obtained by a centralized name However, computers require that identification numbers be
service or as a runtime parameter to the client. Network used to identify services in place of human readable format.
transport selection (e.g., TCP or UDP) is usually negotiated To facilitate this mapping of human form to host form, the
at runtime and may vary with each invocation of the client. interface specification must include the interface number and

version information as part of the interface definition.
Binding Classes. Server programs listen for requests on a This information is usually passed to the client and server

logical device called a port. Port numbers can either be well in the common header file generated by the interface com-
known (static binding) between the server and client or dy- piler. These numbers are used by the servers to register their
namically assigned (dynamic binding) at runtime. Static bind- presence to the local port mapper and by clients to tell the
ings assign have their port numbers assigned at compile time, servers port mapper which service they require. The RPC port
and dynamic binding ports are assigned by a well-known mapper is usually responsible for routing the initial client re-
lookup service (well known because the service uses a static quest to the server, and subsequent requests go directly to
binding and resides at the same network address as the the server.
server). Client programs consult the lookup service, or port
mapper, to obtain the server’s port number. Version Numbers. Application requirements tend to be dy-

namic and change over time. Sometimes the changes are sim-Port mapper services are desirable because the range of
well-known transport selectors is very small for some trans- ple, like the addition of new RPCs to the interface, and some-



464 REMOTE PROCEDURE CALLS

times the changes are dramatic, like the removal of fields its data format, as long as it is one of the supported for-
from an RPC call. In either case, the RPC mechanism must mats, for the transmission. Part of the protocol tells the
have a way of allowing the application developers to minimize receiver the translation scheme used in formatting the
the impact of changes to an interface on existing software. message, and the appropriate filter routine is called to

Some RPCs allow for two types of changes, major and mi- reformat the message correctly.
nor. A major change is when the new interface definition is
not backward compatible with existing client software. This In the first case there are always two data conversions per
class of change is usually the redefinition of fields from an transmission, once before transmission and again after recep-
RPC definition. In this case, the existing client software tion. In the ‘‘receiver makes right’’ case, the number of conver-
would not work with the new service provider. Minor changes sions per transmission can range from zero to two, depending
would include the addition of a new procedure call to an ex- on the internal data representations of both the originating
isting interface definition. Since the existing clients would and receiving hosts.
never invoke the new RPC, its software would still be compat-

ONC� RPC interfaces uses the eXternal Data Reference
ible with any server that provided the new service.

(XDR) protocol, which supports a single fixed-format data rep-ONC� RPC supports an allowable range of valid interface
resentation (single canonical format). DCE RPC interfacesnumbers. As such, it is possible to have interface number col-
use the ‘‘receiver makes right’’ multicanonical protocol (12).lisions at both compile time and runtime. To avoid collisions,

SUN recommends that interfaces, or protocol specifications,
Supporting Servicesbe registered with Sun Microsystems (10).

A utility program generates the DCE RPC interface num- Supporting services provide common functionality that en-
bers at development time. Interface number collisions are ables software designers and developers to create secure ap-
eliminated because the utility program uses multiple varying plications with a high degree of location transparency. Secure
input parameters to generate the number. services means that developers do not have to develop custom

security mechanisms. Location transparency means that
Platform Independence there is no impact on the client configuration when the

servers are moved from host to host.Platform independence is important in distributed computing.
Differences in internal data representation should not effect
the results of remote operations. In other words, servers with Security. Distributed applications require security services
one way of representing data must be able to process requests to restrict access to shared resources to valid users and sys-
from clients with a completely different data representation. tems. The security service must provide the capabilities to
Without platform independence, distributed computing would identify users and external systems in a reliable fashion. The
work only with computers of identical data representation. application logic must use the service and determine if the

Host machines have several degrees of freedom in their requester has the authority to perform the specified oper-
internal representations of data (e.g., ASCII or EBCDIC char- ation.
acter representation, check-sum bit representation, floating An additional requirement for the security service is to
point representation, and byte ordering). For example, in byte provide message encryption and decryption. These services
ordering, the two popular data formats are big endian and are necessary because the RPC transmission may take place
little endian. Big endian computers store data in memory on an unsecured network, where it can be intercepted by an
with the high-order byte in the lower address location, and unintended recipient. The application must determine when
little endian computers store data with the low-order memory message encryption is necessary and use the appropriate
location first. Therefore, some protocol is required for commu- level of encryption to ensure optimal security.
nication between computers of dissimilar memory storage.

There are at least two protocols that could be used to
Name Services. Distributed applications use name servicesachieve platform independence (11):

to facilitate location of available servers. Servers register
their names and locations with the name service. Clients• The first protocol defines a single standard format for all
make inquiries into the name service by server name and re-data communications. The sender converts the data from
ceive information to allow direct contact to the server. Use ofthe current format to the standard format and sends the
the name service dictates the use of well-known server namesmessage to the receiver. The receiver, in turn, receives
between the clients and servers. Use of a name service allowsthe information in standard format and converts it to its
clients to contact servers regardless of where the server isrespective format for processing. In this protocol there
running. This is also known as location transparency.are four conversions in each RPC: (1) for the client to

send the data to the server; (2) for the server to convert
the RPC data into the server’s format; (3) for the server Time Services. For a variety of reasons, clocks on all hosts
to convert any results into the standard format; and (4) participating in a distributed computing environment must
for the client to convert the results into its format for be synchronized. Debugging distributed applications is easier
processing. when all cooperating hosts have nearly the same time. Also,

many security packages, such are MIT’s Kerberos, require• The second protocol, known as ‘‘receiver makes right’’,
very tight tolerances in clock differences.supports multiple standard data formats and lets the

ONC� and DCE both support the Network Time Protocol,sender choose any one of the allowed formats to use when
sending the message. In this scenario, the sender can use NTP, for synchronizing host clocks (13).



REMOTE PROCEDURE CALLS 465

RPC Call Semantics Applications can be designed to make non-idempotent op-
erations idempotent by building an application-specific proto-

Call semantics define the behavior of the RPC from the cli-
col that prevents multiple processing of the same request. For

ent’s perspective. Local procedure calls are invoked only once.
example, each client and server interaction can be uniquely

If anything goes wrong, e.g., the server process or host
labeled. The server records all labels and verifies that all new

crashes, the process is terminated, and both the caller and
labels have not been used before processing new RPC calls.

callee are terminated together. Unlike local procedure calls,
While many such protocols can be designed and built, they

RPCs may be invoked once, more than once, or not at all,
add complexity to the application.

because two processes are involved. For example,
Applications that require true atomic, consistency, isola-

tion, and durability (ACID) transaction semantics can obtain
• Server and network failures could cause an RPC either

transaction services from various vendors. The transactionto time out or wait forever.
services shield the applications developer from the RPC call

• After an RPC has been successfully processed by a semantics while managing data transformation from state to
server, the server could crash before the server stub rou- state. Thus, the transaction semantics are not managed at
tines have completed the reply. the application level. However, the application could experi-

• The client could trap the RPC time-out and issue the ence a penalty in performance due to the overhead of the
same request again. transaction management software.

Neither ONC� nor DCE directly support transaction se-
Thus, in a distributed application using RPCs, the definition mantics. However, they can be used to build transaction ser-
of proper RPC call semantics is important to provide for cor- vices.
rect handling of potential error situations, particularly
server crashes. Concurrency and Threads

Idempotent RPCs can be executed many times without af-
One drawback of synchronous RPCs is that they are blockingfecting application correctness. Idempotent services are typi-
calls. Distributed applications use multithreading to addresscally read-only operations, and examples include RPCs that
the blocking issues. Multithreading allows the programmer toreturn the current time, RPCs that return the balance of a
create multiple concurrent flows of control within an addresschecking fund, and servers that return stock quotes.
space and perform multiple operations in a concurrent para-Non-idempotent services usually read and write operations
digm (15). When one thread of a process is waiting on an RPCthat could affect application correctness when executed more
reply (or any I/O), other threads within the process can bethat once. Examples of this class of servers are bank account
doing useful tasks, thus increasing the throughput of an ap-withdrawals, file servers, and application database servers.
plication. Furthermore, the use of threads enables low systemThere are at least three classes of RPC call semantics (14):
overhead, because using multiple threads within a process re-
duces the number and cost of context switches that the op-1. Exactly once, which means that the remote operation is
erating system performs on the process, compared with aexecuted once and only once. This class of service is dif-
multiprocess/shared-memory solution. Context switching be-ficult to achieve because of the effects of remoteness dis-
tween two processes is a lot more expensive, in terms of hostcussed earlier.
resources, than context switching between multiple threads2. At most once, which means that the remote operation
within a process. Concurrency can be realized without usingwas executed once or it was not executed at all. To the
threads, but to do so requires a more complex, high overhead,client, this means that if the RPC returns successfully,
multiple process/shared memory processing model. Thus, athe remote operation completed as expected. However,
threads/RPC combination affords the best of both worlds—if the RPC times out and returns an error code, the cli-
ease of use, and performance.ent does not know if the remote operation was executed

By using threads in the client/server model, server appli-once or perhaps not at all. Non-idempotent servers have
cations can service multiple clients concurrently. A client canthis RPC semantic.
use threads to make multiple simultaneous requests to a

3. At least once, which means the remote procedure was server or multiple servers. Each thread progresses indepen-
executed at least once, but maybe multiple times. With dently using its resources (stack space and registers), periodi-
this semantic, clients can continuously send RPCs until cally synchronizing with other threads and sharing the pro-
a reply is received. The application correctness is not cess-level resources (heap data) as necessary. Some threads
affected if the server processes one or more of the re- continue processing while other threads wait for services,
quests. Idempotent servers have this RPC semantic. such as disk I/O or network packet reception.

Call semantics can be defined both at the system and the ap-
Event Propagation

plication level.
Each server designer and developer must consider these In the context of distributed computing, events are things

that happen within the context of normal processing. Eventssemantics when developing applications. Given that there can
be multiple RPC interfaces per interface definition, there may may occur in all processes, are asynchronous in nature, and

are optionally caught by predetermined event-handling rou-be a hybrid model in which some RPCs have at most once
semantics and other RPCs have at least once semantics. For tines. Processes that do not trap certain events terminate on

reception of the event.example, a bank account interface could have withdraw and
deposit RPCs that are have at most once semantics and a get Remote computing introduces a new class of events and

the concept of event propagation. The new class of events re-balance RPC that has at least once semantics.



466 REMOTE SENSING BY RADAR

15. D. E. Ruddock and B. Dasarathy, Multithreading Prorams:sults from the effects of remoteness and therefore includes
Guidelines for DCE Applications, Piscataway, NJ: IEEE Software,server and network failure. In event propagation, remote
1996, pp. 80–90.events are trapped and forwarded to the client for processing.

16. OSF DCE Application Development Guide, Rev 1.0, EnglewoodOnce the client receives the event, it can process the event
Cliffs, NJ: Prentice-Hall, 1993, pp. 7-1 to 7-12.information, often simply the type of event, to maximize ap-

plication accuracy. Clients that do not trap events usually ter-
DAVID E. RUDDOCKminate abnormally.
RICHARD WIKOFFSome programming languages implement certain events
RICHARD SAKas exceptions. This leads to exception processing, a form of

programming that allows blocks of operations to perform
without having to check for exceptions, such as failures, on
each statement (16). Rather, the programming language in-
tercepts the exception, when generated, and invokes a prede- REMOTE SENSING. See ELECTROMAGNETIC SUBSURFACEfined set of code to process the exception.

REMOTE SENSING; INFORMATION PROCESSING FOR REMOTE SENS-ONC� does not support exception processing for remote
ING; MICROWAVE REMOTE SENSING THEORY; OCEANIC REMOTEevents. This means that an application should check for re-
SENSING; VISIBLE AND INFRARED REMOTE SENSING.mote errors on every remote operation. DCE RPC supports

both individual RPC call error checking and exception pro-
cessing on remote events.

SUMMARY

The RPC is a powerful technology used in interprocess com-
munications. It simplifies the development of distributed ap-
plications. RPC allows a programmer to code the calling pro-
gram the same way, regardless of whether the called program
is running on the same host or on a remote host. RPC imple-
mentations provide platform independence, location transpar-
ency, security, and transport independence and run on a wide
variety of commercial computer platforms.

BIBLIOGRAPHY

1. W. Richard Stevens, UNIX Network Programming, Englewood
Cliffs, NJ: Prentice-Hall, 1990, pp. 693–695.

2. John Bloomer, Power Programming with RPC, Sebastopol, CA:
O’Reilly & Associates, 1992, pp. 3–5.

3. Harold W. Lockhart, Jr., OSF DCE Guide to Developing Distrib-
uted Applications, New York: McGraw-Hill, 1994, pp. 47–48.

4. John Bloomer, Power Programming with RPC, Sebastopol, CA:
O’Reilly & Associates, 1992, p. 58.

5. ONC� Developers Guide, Mountain View, CA: SunSoft, 1995, p.
251.

6. ONC� Developers Guide, Rev 1.0, Englewood Cliffs, NJ; Prentice-
Hall, 1993.

7. D. E. Ruddock and B. Dasarathy, Multithreading Programs:
Guidelines for DCE Applications, Piscataway, NJ: IEEE Software,
January 1996, pp. 80–90.

8. John Bloomer, Power Programming with RPC, Sebastopol, CA:
O’Reilly & Associates, 1992, p. 236.

9. OSF DCE Application Development Guide, Rev 1.0, Englewood
Cliffs, NJ: Prentice-Hall, 1993.

10. John Bloomer, Power Programing with RPC, Sebastopol, CA: O’R-
eilly & Associates, 1992, p. 44.

11. W. Richard Stevens, UNIX Network Programming, Englewood
Cliffs, NJ: Prentice-Hall, 1990, pp. 178–179.

12. John Bloomer, Power Programming with RPC, Sebastopol, CA:
O’Reilly & Associates, 1992, p. 22.

13. John Bloomer, Power Programming with RPC, Sebastopol, CA:
O’Reilly & Associates, 1992, p. 28.

14. W. Richard Stevens, UNIX Network Programming, Englewood
Cliffs, NJ: Prentice-Hall, 1990, pp. 696–697.


