
500 GROUP COMMUNICATION

does not apply an update to that replica. This is an example
of an omission inconsistency, as shown in Fig. 1(a).

Inconsistency can also arise, as shown in Fig. 1(b), if one
process creates a new database entry and transmits an in-
struction in a message broadcast to the other processes that
they should also create that entry. A second process receives
the message and generates an update for the new entry, com-
municating the update in a message broadcast to the other
processes. If one of the processes holding a replica of the data-
base receives the second message before the first, it may be
unable to handle the message. This is an example of a causal
ordering inconsistency.

Inconsistency can also arise when two or more processes
try to claim a resource, as shown in Fig. 1(c). The requests for
the resource are sent in broadcast messages to the multiple
processes holding the resources, with the first claimant get-
ting the resource. Multiple processes are needed to manage
the resource to ensure continued operation, if a process
should fail. If those processes receive the messages in differ-
ent orders, they may grant the resource to different request-
ers. This is an example of a total ordering inconsistency.

Group communication systems provide message ordering
and delivery services that assist the application programmer
in avoiding these inconsistencies.

• Reliable delivery of messages ensures that all messages
broadcast to a group of processes are delivered to all
members of the group, thus precluding omission inconsis-

GROUP COMMUNICATION

In distributed computer systems, several or many computers
cooperate to perform an application, and information may be
replicated on several computers. Replication of information
may be required to provide fault tolerance or increased avail-
ability after a fault. Replication may also be used to reduce
the time required to access the information by providing local
or nearby copies of it.

Much of the difficulty of programming distributed applica-
tions derives from the need to maintain the consistency of
replicated information, in the presence of asynchrony and
faults. When the replicated information has become inconsis-
tent, the application programming and/or human interven-
tion required to restore consistency can be quite difficult. In

?

Update A

Create A

Grant A to P1 Grant A to P4

Update A

Claim AClaim A

P1 P2 P3 P4

P1 P2 P3 P4

P1 P2 P3 P4

(a)

(b)

(c)general, it is easier to maintain consistency than to restore it.
Inconsistency can arise, for example, if a process holding Figure 1. Examples of (a) omission inconsistency, (b) causal ordering

inconsistency, and (c) total ordering inconsistency.one replica of the data fails to receive a message and thus

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



GROUP COMMUNICATION 501

tencies. This also requires that messages are delivered Implementing broadcasts by multiple point-to-point messages
results in poor performance. To achieve high performance,exactly once.
group communication systems must address the issues of• Causally ordered delivery of messages ensures that, if a
buffer management and flow control. When several, or many,message depends on a prior message, then no process re-
processes broadcast messages almost simultaneously, theceives that message before it receives the prior message.
communication medium and the buffers can quickly becomeThis precludes causal ordering inconsistency.
exhausted, resulting in lost messages. Broadcasts to many

• Totally ordered delivery of messages ensures that any destinations can also result in large numbers of acknowledg-
pair of messages delivered by two or more processes are ments returning to the source, again exhausting the available
delivered in the same order by those processes, thus pre- resources. The best group communication protocols carefully
cluding total ordering inconsistency. manage the flow of messages to reduce network contention

and ensure that buffers are available at the destinations.
These message delivery services are discussed further in the Such systems deliver messages reliably to many destinations
next section, titled ‘‘Formal Models and Definitions,’’ and al- with performance as good as that of point-to-point protocols
gorithms for achieving these services are given in the section operating between a single source and a single destination.
titled ‘‘Message Delivery Algorithms.’’ Fully integrated group communication protocols (3) ad-

Group communication systems also provide membership dress these issues in a unified fashion. Such systems are
services that maintain the membership of the group, add new highly efficient and provide a comprehensive set of services at
processes to the group, remove departing or faulty processes little or no extra cost. A standard set of services reduces the
from the group, and report changes in the group membership amount of skill required to exploit the protocol effectively. On
to the application. If the network partitions into multiple the other hand, group communication toolkits (4) provide mi-
components with no communication among them, member- croprotocols that the user assembles into a protocol that is
ship algorithms are confronted with conflicting objectives. If customized for the application. A custom protocol avoids the
the application must maintain a single consistent state of its costs of services not needed by the application but, instead,
data, then the membership algorithm must form a single pri- incurs the costs of interfaces and mechanisms that are de-
mary membership component. If, however, all processes must signed to work independently. Furthermore, the user may
continue operation even when disconnected, then the mem- find it difficult to choose an appropriate set of microprotocols
bership algorithm must form multiple disconnected member- for the particular application.
ships. Group membership algorithms for primary component
membership and for partitionable membership are described
in the section titled ‘‘Membership Algorithms.’’ FORMAL MODELS AND DEFINITIONS

Group membership services depend on the detection of
faulty processes. Unfortunately, in an asynchronous model of The models, definitions, and algorithms described here can be
computation, it is impossible to distinguish between a process used for sets of processors or for sets of processes executing
that has crashed and one that is merely slow. Consequently, on multiple processors. In this article, we refer to processes
most group communication systems depend on unreliable but processors can be substituted throughout.
fault detectors (1) that detect faulty processes but that are A distributed system is a collection of processes that com-
unreliable because they might also suspect a slow process to municate by messages. In a group communication system, the
be faulty. Unreliable fault detectors are discussed in the sec- processes are organized into groups and messages are broad-
tion titled ‘‘Fault Detectors.’’ cast to all members of the group. In contrast, messages that

To enable a new member of the group to participate mean- are multicast may be sent to some of the processes but not
ingfully in the group, it is necessary for a process that is al- necessarily all of them. We distinguish between the terms re-
ready a member of the group to assemble and transfer state ceive and deliver. A process receives messages that were
information to the new member. If a message has been pro- broadcast by the processes, and a process delivers messages
cessed before the state information is transferred, and if that to the application.
same message is processed by the new process after it re- Distributed systems can be classified as synchronous or
ceives the state, an incorrect state can result. An incorrect asynchronous. In an asynchronous system, it is not possible
state can also result if a message has not been processed be- to place a bound on the time required for a computation or
fore the state is assembled and transferred, but the new pro- for the communication of a message. Even though processes
cess determines that the message is an old message and thus may have access to local clocks, those clocks are used only for
ignores it. Consequently, processes must agree on which mes- local activities; they are not synchronized and are not used
sages are delivered and processed before the membership for global coordination. The advantage of the asynchronous
change so that their effects are included in the transferred model is that the algorithms can be designed to operate cor-
state, and which messages are delivered after the member- rectly without regard to the number of individual processes
ship change so that they are processed by the new process. or the timing characteristics of the processes or of the commu-
Virtual synchrony (2), discussed in the section titled ‘‘Formal nication medium. The disadvantage is that performance char-
Models and Definitions,’’ ensures that the processes agree on acteristics, such as message delivery latency, are necessarily
which messages precede a membership change and which fol- probabilistic, and performance analysis and prediction are
low it. difficult.

Group communication systems can achieve high perfor- In contrast, the synchronous model requires that processes
mance by exploiting available broadcast mechanisms at the have access to local clocks that are synchronized across the

system with a known bound on the skew between clocks, andphysical and network layers in local- and wide-area networks.



502 GROUP COMMUNICATION

that computation and communication operations complete achieve consensus in finite time in an asynchronous distrib-
uted system, even if communication is reliable and only onewithin specified periods of time. The synchronous model is

particularly suited to hard real-time systems and has the ad- process can crash. Chandra and Toueg (1) have shown, how-
ever, that consensus is possible in an asynchronous distrib-vantage that algorithms are deterministic and less complex.

The disadvantage is that conservative assumptions are re- uted system that is subject to crash faults if an unreliable
fault detector is provided. Randomized algorithms can alsoquired to approximate synchronous operation in the real

world and the resulting system may be inefficient. be used to achieve consensus in an asynchronous distributed
system that is subject to faults (7,8).The timed asynchronous model (5) closely resembles the

asynchronous model but includes, in addition, a requirement In practical systems with unreliable communication, even
the reliable delivery of a single message cannot be guaran-that eventually there will exist an interval of stability within

which computation and communication operations complete teed. There is also a nonzero probability that all of the pro-
cesses will fail. Impossibility results should not, however, besuccessfully within a specified time bound. For this model, the

algorithms are generally similar to those for the asynchro- regarded as a proof that asynchronous distributed systems
cannot be built. Rather, they are a reminder that the algo-nous model but are simpler because they need to guarantee

termination only within the stability interval. The delay until rithms must be robust against unfortunate sequences of asyn-
chronous events and faults, so that message ordering andan interval of stability is reached will, however, probably be

longer than the delay until termination of the asynchronous membership decisions can be reached in a reasonable time
with a high probability.algorithm. The timed asynchronous model trades simpler al-

gorithms against longer termination times.
Message Delivery Services

Fault Models We now consider various message delivery services. The most
basic type of message delivery service is unreliable messageIn any distributed system model, a process that is nonfaulty
delivery, which provides a best-effort service with no guaran-(correct) performs the steps of the algorithms according to the
tees of message delivery or of the order of message delivery.specifications. The behavior of a faulty process depends on the
Unreliable message delivery is used for applications such asparticular fault model adopted.
audio and video streaming. Many other applications, how-In the fail-stop and crash models, a faulty process takes no
ever, require one of the more stringent message delivery ser-actions (i.e., it sends no messages and ignores all messages
vices, which are described here and shown in Fig. 2.that it receives). These two models differ in that a fail-stop

process reports that it has failed, whereas a crash process
Reliable Delivery. Reliable message delivery requires thatdoes not. Both models typically assume that a faulty process

if any nonfaulty (correct) process receives a message, then allnever recovers or, if it recovers, is regarded as a new process.
nonfaulty processes eventually receive that message, possiblyOther models allow a faulty process to be repaired and to
after multiple retransmissions. Reliable delivery can bebe reconfigured into the system. When a process recovers, the
achieved only probabilistically in the presence of an unrelia-process knows its process identifier and can retrieve the data
ble communication medium that repeatedly loses messages.it had written to persistent storage, such as disk, before it

failed.
Source Ordered Delivery. Source ordered delivery, or First-In the more general Byzantine fault model, processes can

In First-Out (FIFO) delivery, requires that messages from aexhibit arbitrary and even malicious behavior, such as gener-
particular source are delivered in the order in which theyating incorrect messages or sending different messages to dif-
were sent. Source ordered delivery is appropriate for multi-ferent processes that purport to be the same message. In gen-
media streaming and data distribution applications.eral, it is more difficult to develop algorithms that are

resilient to Byzantine faults than to fail-stop or crash faults.
Causally Ordered Delivery. Causally ordered delivery (9)Most fault models admit communication faults in the form

satisfies the following two properties:of message loss, which is caused by corruption by the medium
or buffer overflow in the intermediate switches or at the desti-

• If process P sends message M1 before it sends message
nations. Some fault models also admit network partitioning M2 and process Q delivers both messages, then Q deliv-
faults, which split the system into two or more components so ers M1 before it delivers M2.that processes in the disconnected components cannot com-

• If process P receives message M1 before it sends messagemunicate with one another.
M2 and process Q delivers both messages, then Q deliv-The synchronous model augments this fault model in that
ers M1 before it delivers M2.any computation or communication operation that does not

complete within its specified time bound constitutes a fault. Taking the transitive closure of this ‘‘delivers before’’ relation
Similarly, any excessive skew between clocks constitutes a yields a partial order on messages. A partial order, denoted
fault. by �, satisfies the following properties:

Impossibility Results • Antireflexive: M � M.
• Antisymmetric: If M1 � M2, then M2 � M1.The problem of maintaining consistent message delivery and

membership in a system subject to faults is related to the • Transitive: If M1 � M2 and M2 � M3, then M1 � M3.
problem of achieving consensus in such a system. Fischer,
Lynch and Paterson (6) have shown that it is impossible to Delivery of messages in causal order precludes causal order-

ing inconsistency and prevents anomalies in the processing ofdevise a deterministic algorithm that can guarantee to



GROUP COMMUNICATION 503

Figure 2. Examples of four types of message delivery

A1 A1 B1 B2C1

C1 C2 C3

C3A3

B1

C1

A1 A2B2

B2 A2

B3

C1 C2

C1

C1

C2

C2

C2

C3

C3

C3

B1

Process A

Process B

Process C

A1 A1 A2

A2

A2

A3

B2

B1

B1

C1

A2

B2

B2

B2

B3

B3

B3C2

A3

B3

C3

A1

A1

A2 A3

A2 A3

B1

C1 B1

A1 B1

B1

C1

A1

A1

B1

C1 C2 C3

C1

C1 C2 A3 C3

B3

A3 C2

A2 A3B1

B2 B3

B3 C3B2

B2

A1 B1

A1 B1

A1

A2

A2

A2

A3

A3

A3

C1

C1

C1

C3

C3

C3

C2

C2

C2

B2

B2

B2

B3

B3

B3B1

A1 A2 A3

B2

C2 C3

B3

A2 A3

B2

C2

B3

C3

A1

B1

C1

A2

B2

C2

A3

B3

C3

Messages
multicast

Messages
delivered

Unreliable source ordered delivery

Reliable source ordered delivery

Reliable causally ordered delivery

Reliable group ordered delivery services.

data contained in the messages, but it does not alone suffice groups is required. Thus, more generally, totally ordered de-
livery implies that there are no cycles in the total order, be-to maintain the consistency of replicated data.
cause the total order is a partial order.

Group Ordered Delivery. Group ordered delivery requires
that, if processes P and Q are members of a group G, then P Message Stability. A message is stable at a process when
and Q deliver the messages originated by the processes in G that process has determined that all of the other processes
in the same total order. A reliable group ordered message de- in its current membership have received the message. This
livery service helps to maintain the consistency of replicated determination is typically based on acknowledgments of mes-
data, but inconsistencies can still arise in interactions be- sages. When a process determines that a message has become
ween groups. stable, it can reclaim the buffer space used by the message

because it will never need to retransmit that message again.
Totally Ordered Delivery. Totally ordered delivery, also The concept of stability of messages is quite distinct from sta-

called atomic delivery, subsumes partially ordered delivery bility of data, which requires that the data have been written
but requires in addition the property: to nonvolatile storage, such as a disk. Delivery of messages

only when the messages have become stable is useful, for ex-
• Comparable: M1 � M2 or M2 � M1. ample, in transaction-processing systems where a transaction

must be committed by all of the processes or none of them.
Thus, totally ordered delivery requires that, if process P deliv-
ers message M1 before it delivers message M2 and another

Membership Services
process Q delivers both messages, then Q delivers M1 before
it delivers M2. If P and Q are both members of the same pro- Maintaining the membership of the groups is an important

part of group communication systems because algorithmscess group and M1 and M2 are both sent to that group, then
group ordered delivery would have sufficed to ensure this may block if processes are faulty or cannot communicate with

one another. An unreliable fault detector can be used to detectproperty. Typical applications contain hundreds of process
groups, and many messages are sent to multiple groups. To- apparently faulty processes, to trigger the membership algo-

rithm, and to ensure that the algorithm satisfies liveness re-tally ordered delivery precludes total ordering inconsistency
and is important where systemwide consistency across many quirements (i.e., that decisions will be made and that the sys-



504 GROUP COMMUNICATION

• Agreement: All processes in the membership agree on the
membership set.

• Termination: A new membership must be formed within
a finite amount of time.

• Nontriviality: The agreed upon membership should be
appropriate, and nondegenerate if possible.

The appropriateness of the membership may need to be deter-
mined by heuristics. For the partitionable membership prob-
lem, several existing specifications admit algorithms that
yield degenerate memberships by partitioning the member-
ship into singletons even when larger memberships would
have been possible. Specification of the partitionable member-
ship problem is an open research topic.

Virtual Synchrony and Extended Virtual Synchrony

Initial
membership

Primary
component

membership

Primary
component

Suspended

Suspended

Partitionable
membership

Virtual synchrony (2) ensures that view (configuration)Figure 3. The primary component membership model allows only a
changes occur at the same point in the message delivery his-single component of a partitioned system to continue to operate,

whereas the partitionable membership model allows continued opera- tory for all operational processes, as shown in Fig. 4. Pro-
tion in all components. cesses that are members of two successive views must deliver

exactly the same set of messages in the first view. A failed
process that recovers can be readmitted to the system only as
a new process. Thus, failed processes are not constrained as

tem will continue to make progress). The membership to the messages they deliver or their order, and messages de-
algorithm removes apparently faulty processes from the livered by a failed process have no effect on the system. If
membership and adds new or recovered processes into the the system partitions, only processes in one component, the
membership. primary component, continue to operate; all of the other pro-

Different group communication systems have adopted dif- cesses are deemed to have failed.
ferent formulations of the membership problem. In the pri- Extended virtual synchrony (11) extends the concept of vir-
mary component model (2), for each process group a single tual synchrony to systems in which all components of a parti-
sequence of memberships must be maintained across the dis- tioned system continue to operate and can subsequently re-
tributed system over time, as shown at the left of Fig. 3. In merge and to systems in which failed processes can be
this model, the membership algorithm, upon successive invo- repaired and can rejoin the system with stable storage intact.
cations, yields a sequence of memberships over time. Two processes may deliver different sets of messages, when

In contrast, the partitionable membership model (10) one of them has failed or when they are members of different
allows multiple disjoint memberships to exist concurrently. components, but they must not deliver messages inconsis-
At opposite ends of the spectrum are two approaches to the tently. In particular, if process P delivers message M1 before
partitionable membership problem, the maximal member- P delivers message M2, then process Q must not deliver mes-
ships approach and the disjoint memberships approach. In sage M2 before Q delivers message M1, even if the system has
the maximal memberships approach, the memberships are partitioned and P and Q can no longer communicate.
precisely the maximal cliques, and a nonfaulty process may Extended virtual synchrony eliminates gratuitous incon-
belong to several (perhaps many) concurrent memberships. In sistencies between processes that become disconnected by a
the disjoint memberships approach, concurrent memberships partitioning fault. Interestingly, extended virtual synchrony
do not intersect (i.e., each nonfaulty process is a member of
exactly one membership at a time, and any pair of processes
in a membership can communicate). Thus, each membership
is a clique, although not necessarily a maximal clique. The
partitionable membership model with disjoint memberships
is shown at the right of Fig. 3. Neither the disjoint member-
ship approach nor the maximal cliques approach is ideal, but
it is not obvious how an intermediate approach would define
the collection of memberships.

An algorithm that solves these membership problems must
ensure that the processes in a membership reach agreement
on the membership in a finite amount of time. The algorithm
should also ensure that faulty processes are eventually re-

P joins
group

Messages processed
before state transfer

Messages processed
after state transfer

Membership
is P,Q, and R

State transfer

PQR

P Membership
is Q and R

QR

moved from the membership and that nonfaulty processes are Figure 4. When a membership change brings a new process into the
not removed capriciously so that a trivial membership is not group, the current state of the existing members must be transferred
installed when a larger membership could have been in- to the new process. Virtual synchrony ensures that all processes
stalled. Thus, the membership algorithms must ensure the agree on which messages precede the transfer of state to a new pro-

cess and which follow that transfer.following properties:



GROUP COMMUNICATION 505

be used to achieve reliable delivery, even though they use
fewer acknowledgment messages.

Reliable delivery algorithms based on negative acknowl-
edgments suffer from two problems. First, if a message is not
delivered to several destinations (e.g., because it was lost as
a result of buffer overflow at an intermediate switch), all of
those destinations will transmit a negative acknowledgment
when one would have sufficed. This is called the nack implo-
sion problem. As shown in Fig. 6, this waste can be reduced
if a destination suppresses its own negative acknowledgment
if it has received a negative acknowledgment that some other
destination transmitted (12,13). Suppression of negative ac-
knowledgments is combined with a carefully chosen delay be-

Ack

Nack

Multicast
message

fore the negative acknowledgment is transmitted to minimize
the probability that multiple negative acknowledgments areFigure 5. If a process transmits a message to many destinations, it
transmitted.may suffer from an implosion of acknowledgments.

The second problem with negative acknowledgments is
that they provide no indication to the source that all, or even
any, destinations have received the messages. To ensure that

can be guaranteed only if messages are born ordered, meaning the source can retransmit any message for which it might re-
that the relative order of any two messages is determined di- ceive a negative acknowledgment, the source would need to
rectly from the messages, as broadcast by their sources. retain every message indefinitely. Consequently, negative ac-

knowledgments are typically used in combination with posi-
tive acknowledgments. The positive acknowledgments con-MESSAGE DELIVERY ALGORITHMS
firm that messages have been received by every destination
and will not subsequently need to be retransmitted, thusWe now consider algorithms that provide different types of
allowing the source to recover the buffer space used by thosemessage delivery, as defined in the section titled ‘‘Formal
messages.Models and Definitions.’’

The use of acknowledgments and retransmissions is inef-
fective for synchronous systems because it introduces arbi-

Reliable Delivery Algorithms
trary delays into the delivery of messages, delays that might
exceed the specified bounds. Consequently, in many synchro-Reliable delivery algorithms typically depend on underlying

physical or network layer broadcast or multicast mechanisms nous designs, processes transmit messages multiple times,
typically over multiple communication paths and possiblythat provide only an unreliable best-effort service in which

messages may be lost. Algorithms that provide a reliable de- multiple times on each path. With a proper design and a high-
quality communication medium, the probability that no copylivery service aim to ensure that every message is delivered

to all of the intended destinations. Error detection and re- of the message reaches the destination is negligible (14).
transmission are typically more often used to provide reli-

Causal Order Algorithmsable delivery.
Traditional broadcast and multicast algorithms exploit a To determine causal dependencies between messages and de-

positive acknowledgment strategy to provide reliable delivery. livery of messages in causal order, additional information
On receipt of a message, a destination transmits a positive must be included in the messages to indicate their causal pre-
acknowledgment to the source. The source retransmits the decessors. A naive strategy would require a process to include
message repeatedly until it has received a positive acknowl- in every message it transmits a list of all messages it has
edgment from every destination. Positive acknowledgment al- received since the previous message it transmitted.
gorithms are effective in improving reliability, but they suffer
from two problems. First, large numbers of acknowledgments
must be transmitted, even when the underlying mechanisms
are quite reliable and few messages need to be retransmitted.
Second, if there are many destinations, the source must re-
ceive and process many acknowledgments for each message
that it transmits, resulting in substantial processing over-
head, as shown in Fig. 5. This is called the ack implosion
problem.

Consequently, most reliable broadcast and multicast algo-
rithms use negative acknowledgments to achieve reliable de-
livery. The source transmits messages with sequence num-

RetransmissionInitial
multicast

Nack
suppressed

Nack
suppressed

Nack

Message
lost

bers. Destinations detect missing messages by gaps in the
sequence numbers and transmit, to the source, negative ac- Figure 6. Excessive numbers of negative acknowledgments and re-
knowledgments that list the missing messages. On receipt of transmissions can be avoided if each process suppresses its negative
a negative acknowledgment, the source retransmits the re- acknowledgment or retransmission on receiving a similar transmis-

sion from another process.quested messages. Negative acknowledgment algorithms can



506 GROUP COMMUNICATION

ing entry in its local vector clock. If a value in the message’s
vector timestamp is greater than the corresponding value in
its local clock, the process advances the entry in its local clock
to the corresponding value in the message.

To determine the causal order between two messages, a
process compares the corresponding entries in the vector
timestamps of the messages. If every entry in one message’s
vector timestamp is greater than or equal to the correspond-
ing entry in the other message’s vector timestamp, then that
message causally follows the other message. If both vector
timestamps contain an entry that is greater than the corre-
sponding entry in the other message’s vector timestamp, then
the two messages are concurrent and neither follows the
other.

M3

M1

M2

M4

M5

Nack

Ack

P1 P2 P3 P4

Time

The vector clock strategy is effective only if the number of
processes is small. As the number of processes increases, theFigure 7. The transitivity of acknowledgments, piggybacked on reg-
transmission cost for the vector timestamp, and the computa-ular messages, can be used to derive a causal order while requiring
tional cost of maintaining the vector clock, increase propor-little additional information to be transmitted.
tionately.

Some group communication systems are based entirely on
a causal order on the messages (18). Other group communica-A more sophisticated and efficient algorithm exploits tran-

sitivity of positive acknowledgments (15,16). As shown in Fig. tion systems do not construct a causal order on the messages
but rather impose a total order directly, where the total order7, message M3 transmitted by process P1 contains positive ac-

knowledgments of messages M1 and M2. If process P2 now satisfies the causal order requirement. In general, such total
order algorithms are as efficient as causally ordered algo-transmits message M4 containing a positive acknowledgment

of M3, P2’s message also implicitly acknowledges messages rithms within a local area but incur higher latency over
wide areas.M1 and M2 and indicates that M4 causally follows M1, M2 and

M3. If process P3 has received messages M1, M3 and M4 but Most synchronous systems do not construct explicit causal
or total orders on messages during system operation. Rather,has not received message M2, then P3 transmits message M5

containing a positive acknowledgment of M4 and a negative any causal or total order dependencies are considered in ad-
vance during the design of the system and the developmentacknowledgment of M2. The positive acknowledgment of M4

implicitly acknowledges M1 and M3 and indicates that M5 of the preplanned schedule of operations (14).
causally follows M1, M3 and M4. The negative acknowledg-
ment of M2 serves to trigger a retransmission of M2 so that Total Order Algorithms
M2 can be delivered before M5. Because maintaining the

Total order algorithms can be classified as symmetric or asym-
graph structure used by this strategy to determine the causal

metric, depending on whether all processes play the same role
dependencies is computationally expensive, a variation (17)
on this strategy requires a process to receive all of the prede-
cessors of a message before it issues a positive acknowledg-
ment of the message. Thus, the positive acknowledgments di-
rectly yield the causal dependencies, whereas the negative
acknowledgments trigger retransmissions. This reduces the
computational cost of deriving the causal dependencies, with
a small cost in increased latency.

Another strategy commonly used to determine a causal or-
der on messages exploits a vector clock (2). Each process
maintains a local clock that can be either a real-time clock
or a logical Lamport clock (9). A process maintains a logical
Lamport clock as follows. When the process receives a mes-
sage, it compares its local clock with the timestamp in the
message. If the value of the message timestamp is greater
than the value of its local clock, the process advances its local
clock to match the timestamp. When the process transmits a
message, it first increments its local clock and then uses that
value to timestamp the message.

As shown in Fig. 8, each process also maintains a local
vector clock that contains one entry in the vector for each
process in the group. The process’s own entry in the vector is
its own Lamport clock. When a process transmits a message,

This message
causally precedes

this message.

These two messages
are concurrent.

Neither precedes the other.

5 10 15 4 12 14 3 9 17

6 10 15

6 12 15

6 13 15
6 13 15

7 13 15
7 13 15 6 13 18

6 13 17

6 13 15 6 13 15

6 10 17

P1 P2 P3

6 10 156 10 15

it includes the vector clock in the message as a vector time-
stamp. When a process receives a message, it compares every Figure 8. Vector clocks, maintained by the processes and included

in each message, allow the causal order to be derived.entry in the message’s vector timestamp with the correspond-



GROUP COMMUNICATION 507

in the acknowledgment message, it rebroadcasts the message.
If a process finds a message listed in the acknowledgment
message but has not received the message, it requests a re-
transmission with a negative acknowledgment.

If the sequencer broadcasts the messages, each message is
transmitted twice, which increases the load on the communi-
cation medium, and the sequencer may become a bottleneck.
If the originator broadcasts its own messages, the load on the
communication medium and on the sequencer is reduced, but
the processes then receive two transmissions, the broadcast
message and the acknowledgment message from the se-
quencer, which increases the load on the processes.

Because the sequencer is a single point of failure and a
processing bottleneck, and also to avoid the need for positive
acknowledgments, most sequencer algorithms rotate the re-

Acknowledgment
message determines
the message order.

Broadcast
message

Sequencer

Broadcast
message

M5
M21M5

M21

sponsibility for sequencing through the processes in the
group. In Ref. (21), the acknowledgment message not only or-Figure 9. Acknowledgment messages, broadcast by the sequencer

process, impose the total order on messages broadcast by the other ders the message but also transfers the responsibility for se-
processes. quencing the next batch of messages to the next process. If

the sequencer process fails, this rotation stops, as does the
delivery of messages, until the membership algorithm has re-
moved the faulty process from the membership.or some processes are distinguished from others. Typical

asymmetric algorithms are sequencer algorithms in which
Token Algorithmsone process determines the ordering of messages broadcast by

the other processes, and also token algorithms in which a pro- Another strategy for totally ordering messages exploits a to-
cess can broadcast only when it holds a token that rotates ken rotating around a logical ring (3,25–27). Only the holder
through the set of processes. Asymmetric algorithms are quite of the token can broadcast messages. The token contains a
efficient, but they are vulnerable to a single point of failure. sequence number that is incremented every time a message

Algorithms based on timestamping messages are more is broadcast, which imposes a total order on the messages
symmetric and are highly efficient, but they may exhibit high broadcast in the group, as shown in Fig. 10. The token also
latency in wide-area networks. Intermediate between the contains additional information, including positive and nega-
symmetric and asymmetric algorithms are the hybrid algo- tive acknowledgments and also flow control information. To
rithms in which a central core of processes executes a sym- avoid the overhead of circulating the token when there are no
metric total order algorithm and other processes transmit messages to broadcast, the algorithm may contain a mecha-
their own messages to one of the core processes for ordering nism for stopping and restarting the circulation of the token.
and broadcasting. Token algorithms can be very efficient for small groups

None of the preceding algorithms is fault-tolerant. When a with a heavy load of message communication. The processing
process becomes faulty, the total order algorithm blocks tem- required is simple and the flow control information in the to-
porarily until the membership algorithm has detected and di- ken is effective for ensuring that the buffers at the destina-
agnosed the fault and has formed a new membership that tions do not overflow, even under high load. For large groups
excludes the faulty process. A completely different class of al- under low load, the delay waiting for the token to arrive
gorithms contains fault-tolerant total ordering algorithms, causes a higher latency than for a sequencer algorithm. This
based on voting (15,19). Such algorithms continue to order
messages even though some processes are faulty. They are,
however, quite sophisticated and computationally expensive
and, thus, have not been widely used.

Sequencer Algorithms. In the sequencer algorithms, one
process is responsible for determining the total order on mes-
sages broadcast by all processes. In the Amoeba system (20),
every process transmits its messages over a point-to-point
connection to the sequencer process. The sequencer then de-
termines the message order and broadcasts the messages. In
alternative sequencer algorithms (21–24), shown in Fig. 9,
the originators of the messages broadcast their messages. The
messages are received by the sequencer, which then deter-
mines the total order and broadcasts an acknowledgment
message that lists the various broadcast messages in the total

Broadcast
message

5

5 6

M6

M7
7

7

Token

M5

order. Other processes cannot deliver a message until they
have received both the message and the acknowledgment Figure 10. In a token algorithm, the token contains a sequence num-
message from the sequencer containing the ordering informa- ber that is incremented for every message broadcast, imposing a total

order on the messages broadcast in the group.tion. If a process does not find the message it broadcast listed



508 GROUP COMMUNICATION

latency can be minimized by passing the token only to the core processes broadcast and deliver messages using one of
processes that have messages to broadcast and that have re- the other total ordering algorithms. Other processes transmit
quested the token (4,28). If, however, the token does not visit their messages, point-to-point, to any core process, which then
all processes, alternative arrangements must be made for col- orders and broadcasts those messages.
lecting the positive acknowledgments that must be obtained Effective operation of a hybrid algorithm depends on an
from all of the processes in order to manage buffer space effi- appropriate choice of processes for the core. Algorithms have
ciently. been developed to determine that choice dynamically, adding

A faulty process causes loss of the token and stops message processes to the core, or removing them, as their message
transmission until a membership algorithm has removed the transmission rates change.
faulty process from the membership. On the other hand, the Hybrid algorithms are particularly important when the
continuously circulating token allows rapid detection of group size is large (thousands of processes) but only a few
faulty processes. processes transmit frequently, as may occur in Internet appli-

cations. If, however, the listen-only processes require reliable
Timestamp Algorithms. An elegant strategy for totally or- delivery of messages, they must still transmit positive and

dering messages involves timestamping the messages and de- negative acknowledgments, and care is required to avoid ack
livering them in timestamp order (3,29). The timestamps can implosion (13).
be derived from either a logical Lamport clock or, alterna-
tively, from synchronized physical clocks. In order that a pro-

Voting Algorithms. The voting algorithms that produce acess can deliver the message with the lowest timestamp, it
total order on messages (15,19) are completely different frommust know that it will not subsequently receive a message
the algorithms described earlier. They start from a causal or-with a lower timestamp from any other process in the group.
der derived from acknowledgments, as is shown in Fig. 7.This can be guaranteed if it receives the messages in reliable
Candidate messages that have not yet been ordered but doFIFO order and if it has received a message with a higher
not follow any other unordered message are selected. Suchtimestamp from every other process in the group. Some pro-
messages are candidates for immediate advancement into thecesses may need to transmit null messages to ensure that a
total order.message from them is always available, to allow messages

A voting strategy is used in which messages vote for mes-from other processes to be delivered promptly.
sages that precede them in the causal order but that have notTimestamp algorithms involve simple program code and,
yet been advanced to the total order. If the causal order isconsequently, can be very efficient. They also have the advan-
narrow with few concurrent messages, so that it is almost atage that messages can be ordered within small groups with
total order, the voting algorithm is likely to terminate in thethe confidence that the local total and causal order is consis-
first round. If the causal order is broad, several rounds oftent with a system-wide total and causal order, precluding
voting may be required, and termination of the voting algo-subtle ordering anomalies. The disadvantage of timestamp al-
rithm depends on randomness properties of the causal order.gorithms, particularly in large groups where many processes

transmit infrequently, is that large numbers of null messages Unfortunately, space does not permit a full description of the
may be required. Algorithms have been devised to combine rather subtle voting algorithm or of the intricate proof of cor-
null messages from many processes, thereby reducing their rectness (19).
number. As in the sequencer and token algorithms, a faulty The most interesting feature of the voting algorithms is
process causes message ordering to stop until the member- that, unlike other total ordering algorithms, they are fault-
ship algorithm has removed the faulty process from the mem- tolerant and do not stop ordering messages in the presence of
bership. a faulty process. The absence of a hiatus in ordering messages

is important for some applications. Moreover, unlike the other
Hybrid Algorithms. Hybrid algorithms (30,31) for total or- total ordering algorithms, the membership algorithm can be

dering messages provide efficient operation in large systems mounted above the total ordering algorithm (32), which
where many processes have messages to transmit only occa- allows the membership algorithm to be simpler and more ro-
sionally. Certain processes, typically those with high trans- bust. The disadvantage of the voting algorithm is its computa-
mission rates and also high bandwidth communication links, tional cost. The complexity of the algorithm is also a disad-
are designated to be core processes, as shown in Fig. 11. The vantage because few developers want to use an algorithm if

they do not understand why it works.

FLOW CONTROL ALGORITHMS

Group communication systems incur particularly severe flow
control problems because, to achieve high performance, any
one process must be able to transmit messages up to the ca-
pacity of the network and of the destinations. If, however,
several processes transmit messages simultaneously at that
rate, saturation of the communication medium can occur, re-

Message
transmitted

point-to-point
to core group

Message rebroadcast
in order by core group

Core group

M5 M5

sulting in message loss and retransmission. Moreover, several
senders can transmit messages substantially faster than anyFigure 11. In a hybrid message-ordering algorithm, the core pro-
destination can handle them. This causes messages to accu-cesses order and broadcast messages sent to them by the other pro-

cesses. mulate in the input buffers at the destinations until they



GROUP COMMUNICATION 509

overflow and message loss occurs. In a local area, the high pected of being faulty. This includes processes that have not
acknowledged receipt of a message within a reasonablebandwidth of the communication medium may allow even a

single sender to overwhelm the destinations. In a wide area, amount of time. Failure to acknowledge receipt of a message
forces other processes to retain the message in their buffersthe critical resource is the available bandwidth of the net-

work, which is often much lower than in a local area and is for possible retransmission and could exhaust that buffer
space, causing the system to stop. For Byzantine faults, faultpotentially highly variable because of contention with unre-

lated traffic. Experience demonstrates that message loss in detectors must rely on costly techniques such as reliable
broadcast or diffusion algorithms and message signatures.modern communication networks is caused mainly by flow

control and buffering problems. Even in models that admit only fail-stop and crash faults,
fault detectors are inherently unreliable because processesThe most effective flow control algorithms currently avail-

able for a local area are those used by token-based protocols that are nonfaulty but excessively slow or processes that fail
to receive a message an excessive number of times may be(3,26). Only one process can broadcast or multicast at a time

and the token carries flow control information from one pro- suspected, whereas processes that are faulty may not be sus-
pected immediately.cess to the next around the ring. If the number of messages

transmitted in one token rotation is restricted to the buffer
capacity of the receivers, and if each process empties its
buffer before releasing the token, buffer overflow is avoided. MEMBERSHIP ALGORITHMS
The token also carries information about the backlog of mes-
sages that could not be sent because of flow control, ensuring The two types of membership, primary component member-

ship and partitionable membership, shown in Fig. 3, satisfythat all processes receive a fair share of the medium.
Sequencer and timestamp algorithms use a window flow different application objectives. A primary component mem-

bership is most useful when the application must maintain acontrol strategy in the style of that used by TCP/IP (33,34).
When a process broadcasts a message, it reduces the re- single consistent state for its data in the primary component,

at the cost of suspending the operation of processes in themaining window space, restoring the window space when it
has received acknowledgments for that message from all nonprimary components, for example, in banking. A parti-

tionable membership is appropriate when all processes mustmembers of the group (and, thus, no longer needs to buffer
the message for possible retransmission). If each process in continue operation, with the cost of reconciling inconsistent

data when communication is reestablished between discon-a group is provided with its own window then, given finite
resources, those windows must be smaller than what would nected components, for example, in industrial control.

Algorithms exist for both types of membershiphave been possible had the processes shared a window. Thus,
the transmission rate of a process will be restricted because (10,26,32,36–39), and significant problems exist for both

(40,41). For primary component membership, it is possiblesome of the resources have been allocated for other processes.
If all processes share a window, then a process must reduce that no membership satisfies the requirements for being the

primary membership (such as a majority of the processes inthe space in the window for each message it receives as well
as for each message it transmits, again restoring the window the group). In practice, however, membership algorithms al-

most always find primary components quite quickly. For par-space when it has received acknowledgments from all mem-
bers of the group. However, with a shared window and with- titionable membership, the algorithm may form a trivial or

inappropriate membership, such as allowing every process toout control over multiple concurrent transmissions, several
processes may transmit messages that attempt to utilize the form an isolated singleton membership. In practice, however,

partitionable membership algorithms do not choose suchsame residual window space, leading to buffer overflow and
message loss. For wide-area group communication systems memberships in preference to other more appropriate mem-

berships.operating over the Internet, window flow control is essential
to achieve good performance. Internet switches use a flow con- Robust membership algorithms are difficult to program be-

cause they must operate under uncertain conditions and musttrol strategy, Random Early Drop (RED) (35), closely matched
to TCP/IP. In contrast, wide-area group communication sys- handle additional faults that occur during their operation.

Implementation details, such as the relative lengths of time-tems operating over ATM must accommodate the rate-based
quality of service mechanisms of ATM (34), defined for each outs, are very important for robust operation and depend on

the underlying platform on which the algorithms operate. Wetransmitter separately. In both cases, the relatively long de-
lay until acknowledgments are received, which is inevitable provide next a broad outline of the strategies used by typical

membership algorithms. More details can be found in Refs.in wide-area networks, can severely degrade the performance.
26 and 36.

Typical membership algorithms involve four phases—
initiation, discovery, agreement, and recovery—as shown inFAULT DETECTORS
Fig. 12. Initiation of the membership algorithm may result
from an explicit request by a process to join or leave theA fault detector is a distributed algorithm such that each pro-

cess has a local fault detector module that reports the pro- group, a suspicion by a fault detector, or reception of a mes-
sage from a foreign process (not in this membership but incesses it currently suspects as being faulty (1).

For fail-stop and crash faults, fault detectors are typically a concurrent membership within a partitioned system) after
remerging of a partitioned system.based on timeouts that are local to the process, with no com-

munication between processes. If a process has not received a In the discovery phase, all processes broadcast messages
inviting responses from other processes. Each such processmessage from another process within a certain period of time,

its fault detector adds that process to the list of those sus- broadcasts responses that enumerate all processes from



510 GROUP COMMUNICATION

bership are delivered, the algorithm delivers a membership
change message announcing the membership change, enu-
merating the new membership, and starting normal operation
with the new membership. Even before the delivery of some
of the messages of the old membership, the membership algo-
rithm may have delivered additional membership change
messages reporting the loss of processes. Such additional
messages are necessary to achieve extended virtual syn-
chrony. If a process determines that any member of its new
membership has returned to the discovery phase, it first com-
pletes its installation of the new membership and then rein-
vokes the membership algorithm.

For a primary component membership algorithm, it is es-
sential that only a single sequence of memberships exists over
time. If the proposer becomes faulty at a critical moment, it
may be impossible for the remaining processes to determine
whether the proposer has installed the new membership. The

Membership
is P, Q and R

P fails

Initiation phase
Discovery phase
Agreement phase
Recovery phase

Membership
algorithm done

Membership
is Q, R, and S

Membership
algorithm
operating

Normal operation

PQR

Fault detected

S joins
group

Last few messages
of old membership
are delivered

Normal operation
resumes with
new messages

S

system must then stop until the proposer has recovered. This
Figure 12. The four phases of a membership algorithm. risk of a hiatus can be reduced, but not eliminated, by using

three-phase commit in place of two-phase commit.
For a partitionable membership algorithm, termination is

easy to demonstrate. The known set and the fail set are mono-which they have received messages, the known set, and all
processes that they suspect as having failed, the fail set. On tonically increasing and bounded above by the finite number

of potential members. Each attempt to form a membershipreceipt of such a message, a process merges all of the pro-
cesses in the known set of the message into its own known can be defeated by a process that was previously unknown,

causing an increase in the known set, or by a process thatset. Similarly, a process merges all of the processes in the fail
set of the message into its own fail set. If a process has not does not respond, causing an increase in the fail set. Because

both sets increase monotonically and are bounded above byreceived a response from a process in its known set within a
timeout, it also adds that process to its fail set. the set of potential members, the algorithm terminates, possi-

bly in a singleton membership containing only the processThe discovery phase ends either by a timeout or by
agreement on a membership. The discovery phase can, how- itself.

Membership algorithms for operation on top of a fault-tol-ever, be reentered at any time if further processes are sus-
pected, if agreement cannot be reached, or if one or more pro- erant total ordering algorithm (32) are often simpler and

more elegant than the algorithm outlined earlier. This sim-cesses do not install the new membership.
The agreement phase seeks to find a set of processes such plicity comes at the expense of greater complexity in the fault-

tolerant total ordering algorithm.that every process in that set agrees that its proposed new
membership is that set. The proposed membership is typically For synchronous systems, membership algorithms are

much simpler than for asynchronous systems (14,42). Typi-the difference of the known set and the fail set. If the pro-
cesses are only partially connected, so that some processes cally, at the end of each prescheduled sequence of message

exchanges, each process reports the set of processes fromcannot communicate with other processes, a heuristic algo-
rithm may be used to choose an appropriate membership. For which it received messages during that sequence. This set of

processes constitutes its proposed membership. If a processa primary component membership, the proposed membership
must also satisfy some size constraint or other criterion for receives a membership that differs from its own, it can choose

either to exclude that process from its membership or to ex-being a primary component.
The agreement is then confirmed, typically by some varia- clude other processes from its membership so as to bring its

membership into agreement with that of the other process. Intion of two-phase commit. The proposer, usually the process
having the lowest identifier, broadcasts a proposal message. principle, these choices are heuristic choices for synchronous

systems as they are for asynchronous systems. Practical syn-The other members then respond with a commit message.
The proposer then broadcasts an install message to begin the chronous systems, however, typically have simpler and more

robust communication media and, thus, incur fewer problemsrecovery phase and install the new membership. If any pro-
cess rejects the membership or does not respond, the proposer in reaching agreement on a membership quickly.
returns to the discovery phase. Similarly, if a process does not
receive a propose or install message, it returns to the discov-
ery phase. FUTURE DIRECTIONS

In the recovery phase, the processes first complete the de-
livery of messages from the old membership and then install Much research remains to be undertaken in the area of fault-

tolerant distributed systems. An important research topic isthe new membership. The processes in the new membership
and the same old membership exchange information regard- the integration of group communication protocols with proto-

cols for real-time, multimedia, and data transfer. Real-timeing messages that they have received from the old member-
ship and then retransmit those messages so that all members protocols, such as are used for instrumentation and control,

typically seek to provide low latency and low jitter (variancehave them. The messages are then ordered and delivered to
ensure virtual synchrony. When all messages of the old mem- in latency) but not reliable delivery because new data are



GROUP COMMUNICATION 511

transmitted more or less continuously. Multimedia protocols typical application programmers are not well-trained to solve
those problems. Consequently, fault-tolerant distributed sys-that provide broadcasting or multicasting of audio and video,

need low latency and low jitter but not reliable delivery. Data tems are still quite difficult and expensive to program.
New approaches to building fault-tolerant distributed sys-transfer protocols provide reliable delivery and may provide

broadcasting or multicasting but usually do not need message tems are being investigated. Using the Common Object Re-
quest Broker Architecture (CORBA) (48,49), such systemsordering between multiple sources. The use of these protocols

in a distributed system depends on group communication for (46,50) provide transparent object replication and fault toler-
ance. This allows the application programmer to write a dis-overall coordination. It is essential to establish a causal order

between the control information transmitted through the tributed object program as though it were to operate unrepli-
cated, without affecting the application programming or thegroup communication protocol and the start or end of real-

time, multimedia, or data transmission. functional behavior of the application. The approach still em-
ploys group communication protocols such as those describedAs group communication protocols become more estab-

lished, they will be used in larger systems and over wider here, but does not expose those protocols to the application
programmer. Such an approach will make the benefits ofareas. Over wide areas, with high data rates, existing flow

control algorithms are ineffective. To preclude overwhelming fault-tolerant distributed systems available to a wider range
of applications.the buffers in the intermediate switches, a relatively small

window is needed, but messages in the window are quickly
transmitted and the source then remains idle for a long time
until the acknowledgments return. New flow control algo- BIBLIOGRAPHY
rithms will be required. With existing protocols, the latency
to message ordering and delivery can increase substantially 1. T. D. Chandra and S. Toueg, Unreliable failure detectors for reli-

able distributed systems, J. ACM, 43 (2): 225–267, 1996.over a wide area. Some increase in latency is inevitable be-
cause of the propagation delay through the network, but new 2. K. P. Birman and R. van Renesse, Reliable Distributed Comput-

ing with the Isis Toolkit, Los Alamitos, CA: IEEE Comput. Soc.protocols that can order messages with a latency that is close
Press, 1994.to this minimum will be required (27).

Wide-area systems are also subject to network parti- 3. L. E. Moser et al., Totem: A fault-tolerant multicast group com-
munication system, Commun. ACM, 39 (4): 54–63, 1996.tioning; however, many applications require all components

of a partitioned system to continue operation. Existing group 4. R. van Renesse, K. P. Birman, and S. Maffeis, Horus: A flexible
communication systems provide message delivery and mem- group communication system, Commun. ACM, 39 (4): 76–83,

1996.bership algorithms that continue to operate in all components
of a partitioned system. Even though the system is parti- 5. F. Cristian, Synchronous and asynchronous group communica-
tioned, the disconnected components can perform operations tion, Commun. ACM, 39 (4): 88–97, 1996.
that are inconsistent with those performed in other compo- 6. M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of
nents. When communication is eventually restored, these in- distributed consensus with one faulty process, J. ACM, 32 (2):

374–382, 1985.consistencies must be reconciled. The programming required
to achieve such reconciliation is currently quite difficult, and 7. M. Ben-Or, Randomized agreement protocols, in B. Simons and
expensive manual intervention may be required. Proposals A. Spector (ed.), Fault-Tolerant Distributed Computing, Berlin,

Germany: Springer-Verlag, 1990, pp. 72–83.have been made (44–46) to simplify this programming, al-
though human insight is still required to establish the appli- 8. G. Bracha and S. Toueg, Asynchronous consensus and broadcast
cation requirements on which such programming depends. protocols, J. ACM, 32 (4): 824–840, Oct. 1985.
The development of strategies for preventing or reconciling 9. L. Lamport, Time, clocks, and the ordering of events in a distrib-
inconsistencies in partitioned systems is an important topic uted system, Commun. ACM, 21 (7): 558–565, 1978.
of research. 10. D. Dolev, D. Malki, and R. Strong, A framework for partitionable

Group communication is in the middle of a range of ap- membership service, Tech. Rep. CS95-4, Inst. Comput. Sci., He-
proaches to the development of fault-tolerant distributed sys- brew Univ., Jerusalem, Israel, 1995.
tems. One end of that range is focused on efficiency, while 11. L. E. Moser et al., Extended virtual synchrony, Proc. 14th IEEE
the other end is focused on simplification of the application Int. Conf. Distrib. Comput. Syst., Poznan, Poland, 1994, pp.
programming. When communication networks and group 56–65.
communication protocols were slow, a strong emphasis on ef- 12. S. Floyd et al., A reliable multicast framework for light-weight
ficiency was appropriate (47). A similar concern has led to the sessions and application level framing, ACM/IEEE Trans. Netw.,

5: 784–803, 1997.development of microprotocol toolkits (4) from which a custom
group communication protocol can be constructed, optimized 13. K. Berket, L. E. Moser, and P. M. Melliar-Smith, The InterGroup
specifically for the particular application. With increasing protocols: Scalable group communication for the Internet, IEEE

GLOBECOM ’98: 3rd Global Internet Mini-Conf., Sydney, Austra-network performance and more efficient protocols, some of
lia, 1998.that efficiency can be sacrificed for simpler application pro-

gramming. 14. H. Kopetz and G. Grunsteidl, TTP—A protocol for fault-tolerant
real-time systems, IEEE Comput., 27 (1): 14–23, 1994.The group communication protocols described in this arti-

cle employ a message-passing application programmer inter- 15. P. M. Melliar-Smith, L. E. Moser, and V. Agrawala, Broadcast
face. This message-passing interface necessarily exposes to protocols for distributed systems, IEEE Trans. Parallel Distrib.

Syst., 1: 17–25, 1990.the application programmer the problems of distribution, rep-
lication, consistency, and fault tolerance. Correct solutions to 16. P. M. Melliar-Smith and L. E. Moser, Trans: A reliable broadcast

protocol, IEE Proc. I Trans. Commun., 140: 481–492, 1993.these problems require considerable skill and experience, and



512 GROUPWARE

17. Y. Amir et al., Transis: A communication sub-system for high Proc. 12th Symp. Reliable Distrib. Syst., Princeton, NJ: Oct. 1993,
pp. 2–11.availability, Proc. 22nd IEEE Int. Symp. Fault-Tolerant Comput.,

Boston, MA, 1992, pp. 76–84. 39. A. M. Ricciardi and K. P. Birman, Process membership in asyn-
chronous environments, TR 93-1328, Dept. of Computer Science,18. S. Mishra, L. L. Peterson, and R. D. Schlichting, Consul: A com-

munication substrate for fault-tolerant distributed programs, Cornell Univ., Ithaca, NY, 1993.
Distrib. Syst. Eng., 1 (2): 87–103, Dec. 1993. 40. E. Anceaume et al., On the formal specification of group member-

ship services, Tech. Rep. 95-1534, Dept. of Computer Science, Cor-19. L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, Asynchro-
nous fault-tolerant total ordering algorithms, SIAM J. Comput., nell Univ., Ithaca, NY, 1995.
22 (4): 727–750, 1993. 41. T. D. Chandra et al., On the impossibility of group membership,

Tech. Rep. 95-1548, Dept. of Computer Science, Cornell Univ.,20. M. F. Kaashoek and A. S. Tanenbaum, Group communication in
the Amoeba distributed operating system, Proc. 11th IEEE Int. Ithaca, NY, 1995.
Conf. Distrib. Comput. Syst., Arlington, TX, 1991, pp. 222–230. 42. A. S. Tanenbaum, Computer Networks, Upper Saddle River, NJ:

Prentice-Hall, 1996.21. J. M. Chang and N. F. Maxemchuk, Reliable broadcast protocols,
ACM Trans. Comput. Syst., 2: 251–273, 1984. 43. R. Koch, L. E. Moser, and P. M. Melliar-Smith, Global causal

ordering with minimal latency, Tech. Rep. 98-08, Dept. Electr.22. F. Cristian and S. Mishra, The pinwheel asynchronous atomic
broadcast protocols, Proc. 2nd Int. Symp. Autonomous Decentral- Comput. Eng., Univ. California, Santa Barbara, 1998.
ized Syst., Phoenix, AZ: Apr. 1995, pp. 215–221. 44. O. Babaoglu, A. Bartoli, and G. Dini, Enriched view synchrony:

A programming paradigm for partitionable asynchronous distrib-23. W. Jia, J. Kaiser, and E. Nett, RMP: Fault-tolerant group com-
uted systems, IEEE Trans. Comput., 46: 642–658, 1997.munication, IEEE Micro, 16 (2): 59–67, Apr. 1996.

45. P. M. Melliar-Smith and L. E. Moser, Surviving network parti-24. B. Whetten and S. Kaplan, A high performance totally ordered
tioning, IEEE Comput., 31 (3): 62–69, 1998.multicast protocol, Proc. Int. Workshop Theory and Practice Dis-

trib. Syst., Dagstuhl Castle, Berlin, Germany: Springer-Verlag, 46. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith, Replica
Sept. 1994, pp. 33–57. consistency of CORBA objects in partitionable distributed sys-

tems, Distrib. Syst. Eng., 4: 139–150, 1997.25. T. Abdelzaher et al., RTCAST: Lightweight multicast for real-
time process groups, Proc. 1996 IEEE Real-Time Technology and 47. D. R. Cheriton and D. Skeen, Understanding the limitations of
Applications Symp., Brookline, MA: June 1996, pp. 250–259. causally and totally ordered communication, Proc. 14th ACM

Symp. Operating Systems Principles, Asheville, NC: Dec. 1993;26. Y. Amir et al., The Totem single-ring ordering and membership
Operating Syst. Rev., 27 (5): 44–57, Dec. 1993.protocol, ACM Trans. Comput. Syst., 13: 311–342, 1995.

48. Object Management Group. The Common Object Request Broker:27. B. Rajagopalan and P. K. McKinley, A token-based protocol for
Architecture and Specification, Rev. 2.1, OMG Tech. Doc. PTC/reliable, ordered multi-cast communication, Proc. 8th IEEE Symp.
97-09-01, 1997.Reliable Distrib. Syst., Seattle, WA: Oct. 1989, pp. 84–93.

49. R. M. Soley, Object Management Architecture Guide, Object Man-28. G. A. Alvarez, F. Cristian, and S. Mishra, On-demand asynchro-
agement Group, OMG Tech. Doc. 92-11-1, 1992.nous atomic broadcast, Proc. 5th IFIP Int. Working Conf. Depend-

able Computing for Critical Applications, Urbana-Champaign, IL: 50. L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan, Consistent
1995, pp. 119–137. object replication in the Eternal system, Theory Practice Object

Syst., 4 (2): 81–92, 1998.29. D. A. Agarwal et al., The Totem multiple-ring ordering and topol-
ogy maintenance protocol, ACM Trans. Comput. Syst., 16: 93–
132, 1998. P. M. MELLIAR-SMITH

L. E. MOSER30. P. D. Ezhilchelvan, R. A. Macedo, and S. K. Shrivastava, Newtop:
University of CaliforniaA fault-tolerant group communication protocol, Proc. 15th Int.

Conf. Distrib. Computing Syst., Vancouver, BC, Canada: May/
June 1995, pp. 296–306.

31. L. E. T. Rodrigues, H. Fonseca, and P. Verissimo, Totally ordered
multicast in large-scale systems, Proc. 16th IEEE Int. Conf. Dis-
trib. Comput. Syst., Hong Kong, 1996, pp. 503–510.

32. L. E. Moser, P. M. Melliar-Smith, and V. Agrawala, Processor
membership in asynchronous distributed systems, IEEE Trans.
Parallel Distrib. Syst., 5: 459–473, 1994.

33. D. E. Comer, Internetworking with TCP/IP, Englewood Cliffs,
NJ: Prentice-Hall, 1995.

34. S. Floyd and V. Jacobson, Random early detection gateways for
congestion avoidance, IEEE/ACM Trans. Netw., 1: 397–413,
1993.

35. Y. Amir et al., Membership algorithms for multicast communica-
tion groups, Proc. 6th Int. Workshop Distrib. Algorithms, Haifa,
Israel, 1992, pp. 292–312.

36. F. Cristian, Reaching agreement on processor-group membership
in synchronous distributed systems, Distrib. Comput., 4 (4): 175–
187, 1991.

37. M. A. Hiltunen and R. D. Schlichting, A configurable membership
service, IEEE Trans. Comput. 47 (5): 573–586, May 1998.

38. F. Jahanian, S. Fakhouri, and R. Rajkumar, Processor group
membership protocols: Specification, design and implementation,


