
618 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

PARALLEL NUMERICAL ALGORITHMS
AND SOFTWARE

It has been recognized that a large number of scientific prob-
lems have led to models whose simulation necessitates the
solution of algebraic equations. Moreover, the cost of setting
up and solving these systems dominates the overall complex-
ity of the simulation. In practice, the overall quantitative and
qualitative accuracy that these computational partial differ-
ential equation (PDE) models can achieve in representing the
physical situations or artifacts depends to a great extent upon
the computer resources available to solve the corresponding
PDE discrete algebraic systems. The recent advances in high-
performance computing technologies have provided an oppor-
tunity to significantly speed up these computational PDE
models and dramatically increase their numerical resolution
and complexity.

The purpose of this article is twofold. First, we review the
various parallelization techniques proposed to speed up the
existing computational PDE models, which are based on the
divide and conquer computational paradigm and involve some
form of decomposition of the geometric or algebraic data
structures associated with these computations. Second, we re-

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 619

view the parallel algorithms proposed to solve various classes Parallelization Methodologies for ‘‘Legacy’’ PDE Software
of algebraic systems which are applicable to discrete PDE sys-

There is significant ‘‘legacy’’ software for elliptic and parabolic
tems. For the sake of brevity of this exposition we focus on

PDEs. It represents hundreds of labor-years of effort which
computational models derived from elliptic PDE models. Most

will be unrealistic to expect to be transformed by ‘‘hand’’ (in
of the parallelization techniques presented here are applica-

the absence of parallelizing compilers) on some virtual or
ble to general semidiscrete and steady-state models.

physical parallel environment. The legacy software can be
Specifically, we consider PDE models consisting of a PDE

classified into two large classes. The first class contains cus-equation Lu � f , defined on some region � and subject to
tomized PDE software for specific applications. An example ofsome auxiliary condition Bu � g on the boundary of � (� ��).
such software is PISCES (3), which is usually difficult toIt appears that one can formulate many (thousands) computa-
adapt to the simulation of a different application. The secondtional models to simulate the above general mathematical
class contains PDE software that supports the numerical so-model. They depend on the approximation technique selected
lution of well-defined mathematical models which can be usedto discretize the domain of definition, the specific PDE and
easily to support the simulation of multiple applications. Theboundary conditions, and so on. In this article, we have se-
first class tends to be application-domain-specific, and thuslected to review parallel computational models based on the
the parallelization efforts and results appear in many diversemost popular discretization techniques, such as finite-differ-
sources. In this article we review the parallelization tech-ence approximations of L and B and finite-element approxi-
niques proposed for the second class of PDE software. Somemations of the solution u. In these parallel computational
of the public domain ‘‘legacy’’ software available in themodels, the continuous PDE problem is reduced to a distrib-
//ELLPACK system (4) are the following: ELLPACK, FIDISOL,uted sparse system of linear equations. As the operator,
VECFEM, CADSOL, PDEONE, PDECOL, PDETWO,boundary conditions, and domain range from the most gen-
MGGHAT.eral (e.g., nonseparable, non-self-adjoint) to the simplest

It is worth reminding the reader that the majority of the(Poisson, rectangular domain), the corresponding finite-differ-
code of each PDE system is implementing the geometric andence or finite-element system of equations can be solved by
the PDE model discretization phases. This tends to be thegeneral sparse iterative solvers or direct ‘‘rapid’’ solvers. In
most knowledge-intensive part of the code. The rest of thethis article we discuss the various proposed parallel linear
code deals with the solution of the discrete finite-difference oralgebraic equation solvers and the grid/mesh partitioning
finite-element equations, which is better understood, andstrategies for the implementation of these two classes of PDE
many alternative solution paths exist. We review those effortssolvers on a virtual parallel machine environment.
that have already been implemented in the form of software.This article is organized as follows. We first focus on the
In Table 1 we summarize the above observations, and in itsparallelization techniques of general elliptic PDE computa-
last column we estimate the parallelization effort needed totions that both allow the reuse of existing (‘‘legacy’’) elliptic
convert or reimplement the components of the legacy PDEPDE software parts and provide a template or framework to
code into some parallel environment ‘‘by hand’’. It is clear thatbuild new parallel elliptic PDE software. We then review the
any parallel methodology that attempts to reuse the PDE dis-needed infrastructure to support these methodologies. A list
cretization software parts is well-justified. We describe belowof available parallel PDE problem-solving environments is
three parallel methodologies that are based on some ‘‘optimal’’also included. The next section deals with parallel dense lin-
partitioning of the discrete PDE geometric data structuresear algebraic solvers. We first present a review of paralleliz-
(i.e., grids and meshes). Figure 1 depicts these three decompo-ing techniques for the LU factorization method and then we
sition approaches for a two dimensional region and messagepresent a unified view of the parallel rapid elliptic PDE
passing computational paradigm. The two left most paths insolvers using tensor product formulation. In the final section
Fig. 1 depict methodologies that support the reuse require-we discuss parallel sparse linear algebraic solvers that are
ment. The third path provides a framework to develop newalready available in a form of software. Both direct and itera-
customized parallel code for the discretization part of thetive approaches are presented.
PDE computation. All three approaches assume the availabil-
ity of parallel linear solvers implemented on distributed alge-
braic data structures obtained through some ‘‘optimal’’ parti-PARALLEL ELLIPTIC PDE SOLVERS
tioning of the corresponding PDE geometric data structures.
Next, we elaborate on these approaches and indicate the re-The plethora of numerical elliptic PDE solvers can be distin-
quired infrastructure.guished and classified by the levels of grid(s)/mesh(es) used

The left path in Fig. 1 depicts an off-line parallelizationto approximate the continuous PDE model (i.e., single-level or
approach, referred to as M�, which assumes that the discreti-multilevel), the refinement of the grid as a function of the
zation of the PDE model is realized by an existing sequentialdiscretization error in an intermediate computed solution
‘‘legacy’’ PDE code, while it goes off-line to a parallel machine[i.e., static or dynamic (adaptive)] and the implementation
to solve the system of discrete equations. For the parallel so-structure of the PDE software (i.e., multisegment or single-
lution of the discrete PDE equations, a decomposition of thesegment). In this article we have selected to review the paral-
sequentially produced algebraic system is required. It can belelization techniques proposed for single-level grid elliptic
either implicitly obtained through a decomposition of thePDE solvers for general and model elliptic PDE boundary
mesh or grid data or explicitly specified by the user. Then, thevalue problems. Some of the parallelization approaches pre-
partitioning system is downloaded on the parallel machine.sented here are applicable to multilevel elliptic PDE solvers
This is the most widely used methodology, since it allows for(see Ref. 1). The parallelization of adaptive elliptic PDE

solvers is a much harder problem (2). the preservation of the most knowledge-intensive part of the

620 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

Table 1. The Complexity of the Elliptic PDE Software Parts and Estimates of the
Parallelization Effort Needed

Computational Knowledge Parallelization
Components Intensity Intensity Effort Needed

Geometric dis- O(N) Very high Significant
cretization

PDE model dis- O(N) Very high Significant
cretization

Solution O(N�), Well understood–high Relatively easy
1 � � � 3

Graphical display O(N) High Needs specialized
of solution hardware

N denotes the size of the discrete problem.

code and for speeding up the most computationally intensive supported by standards such as MPI. The input to this tool
consists of the system and a partitioning of the associatedone. The obvious disadvantage of this approach is the memory

bottleneck of the sequential server. To address this problem, matrix. The partitioning of the matrix problem can be ob-
tained either explicitly by decomposing the matrix graph orvarious off-line pipeline techniques have been proposed. The

current version of the //ELLPACK system includes a software implicitly by decomposing the discrete geometric data (i.e.,
mesh or grid). A comprehensive overview of the explicit ma-tool to support this methodology for a large class of legacy

software systems available. The tool is self-contained and can trix partitioning techniques and their performance evaluation
can be found in Ref. 5.be used for any PDE software and virtual parallel machines

Figure 1. Three domain-decomposition-
based parallel methodologies for elliptic
PDEs. The left path depicts an off-line
parallel approach for solving the sequen-
tially generated PDE equations, the cen-
ter path depicts an on-line nonoverlap-
ping domain decomposition approach
capable of reusing existing discretization
PDE software, and the right path depicts
a framework for developing new parallel
PDE software.

Decompose
domain

Discretize PDF problem
sequentially

Matrix partitioning
using M+

Discretize PDE problem
using D+ methodology

Exchange interface
algebraic information

Solve linear system
 in parallel

Parallel discretizing
framework

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 621

The right path in Fig. 1 corresponds to a framework for aspect ratios of the subdomains (local matrix problem well-
conditioned). The problem of graph partitioning the subjectdeveloping customized PDE software. It is defined by a set of

predefined decomposed geometric and algebraic data struc- solely to the first two criteria has been found to be extremely
hard to achieve computationally, and therefore most of thetures and their interfaces. The decomposition of the PDE data

structures is chosen so that the underlying computations are proposed partitioning strategies are approximate (i.e., heuris-
tic) in nature. These heuristics have been found to be veryuniformly distributed among processors and the interface

length is minimum. Later, we review the proposed geometric costly even for moderate-sized PDE problems (9). Two ‘‘fast’’
alternative strategies have been formulated and implementeddecompositions and the parallel algebraic solvers to support

this framework. This parallel framework has been used by in parallel for grid (9) and mesh (10), respectively, which are
based on an encapsulation approach and easily outperformmany researchers to implement PDE-based applications and

to develop general PDE software (4). The parallel PDE solvers the ones that are based on the partition of the exact grid.
Unfortunately, this approach cannot be generalized for finite-implemented on the above framework are distinguished pri-

marily by the way they handle the interface equations and element meshes.
The heuristics that are commonly used for mesh parti-unknowns. An overview of the various parallel solution strat-

egies proposed for handling the interface and interior equa- tioning are based on a variety of techniques and methodolo-
gies which we briefly review next.tions can be found in Ref. 6. The simplest of these parallel

strategies calls for the implementation of efficient sequential
algebraic solvers on the framework data structures through Neighborhood Search Schemes. This class consists of heu-

ristics that are based on some neighborhood search schemethe use of parallel sparse basic linear algebra subroutines
(BLAS) (7) that employ message passing primitives to ex- utilizing the connectivity information of the mesh graph G.

For these schemes, the partitioning of G is equivalent to thechange or accumulate interface quantities and carry out ma-
trix–vector and vector–vector operations. The advantage of construction of a traversal tree from the mesh graph G. Two

well-known such schemes are based on depth-first andthis approach is the fact that no new theory is required. Such
parallel PDE solvers based on certain instances of finite-dif- breadth-first search strategies (11). If the traversal order

scheme remains fixed for the entire mesh graph G, then theference and finite-element schemes for elliptic PDEs can be
found in //ELLPACK system (4,8). These PDE solvers are de- searching strategy is called stripwise; and if it is allowed to

change after the formulation of each subdomain Di, then thescribed in Ref. 9 together with their performance evaluation.
The center path in Fig. 1 illustrates a third methodology search is called domainwise. Another set of neighborhood

search heuristics are the ones used for bandwidth reductionfor developing parallel PDE software that supports the reuse
of existing PDE codes and attempts to address the shortcom- of a matrix. A well-known such ordering scheme is the so-

called reverse Cuthill–McKee (RCM). Other graph-basedings of the previous two. It is referred to as D�. The basic idea
of this approach is to use the mesh/grid decomposition to de- mapping heuristics and their performance are presented in

Ref. 12. Various implementations of the above heuristics forfine a number of auxiliary PDE problems that can be discret-
ized independently using the ‘‘legacy’’ PDE codes. Depending finite-element meshes and grids together with their perfor-

mance evaluation are reported in Refs. 10, 13, and 14.on the PDE operator and the approximation scheme used, ap-
propriate continuous interface conditions must be selected to
guarantee that the parallel on-line generated system of equa- Spectral Search Heuristics. According to these search

schemes the vertices V are visited (sorted) in the order de-tions is complete and equivalent (apart from round-off error)
to the sequential discrete algebraic system. In some instances fined by the size of the components of an eigenvector or a

combination of eigenvectors of the Laplacian matrix L(G) ofa data exchange among processors might be required to com-
plete the system of algebraic equations. A software environ- the graph G � (V, E). Fiedler (15) observed that the second

eigenvector of L represents a good measure of the connectivityment that supports the D� approach for elliptic PDEs is avail-
able in the //ELLPACK system. of the graph G. This led to a recursive implementation re-

ferred to as recursive spectral bisection (RSB) (16). Other
spectral heuristics combining several eigenvectors of L withDiscrete Geometric Data Partitioning Strategies and Software
quadrisection and octasection implementations are proposed

The parallel methodologies considered in this article are and discussed in Ref. 17. The performance of spectral heuris-
based on some decomposition of the PDE discrete geometric tics is presented in Refs. 10 and 18.
data (i.e., grid or mesh). Without loss of generality, we discuss
the various proposed decomposition strategies in terms of fi- Coordinate Axis Splitting. This is another class of enumera-
nite-element meshes. The formulation and implementation of tive schemes whose main characteristic is that they ignore
this phase of the proposed parallel methodologies is often the connectivity information of the mesh graph G. They are
done at the topological graph of the finite element mesh G � based on coordinate sorting and partitioning along cartesian,
(V, E) of a domain �, where V denotes the set of elements or polar, and symmetric inertial axis of the graph G. A compre-
nodes and E is the set of edges of G that represent the connec- hensive evaluation of these heuristics is reported in Ref. 10,
tivity of the vertices V with its neighbors. The mesh decompo- while Refs. 19 and 20 review the underlying ideas of these
sition is usually defined in terms of several optimality criteria strategies.
that include load balancing (subdomains of almost equal size),
minimum interface length (minimum number of common Deterministic Optimization Heuristics. The mesh parti-
edges or nodes between subdomains), minimum subdomain tioning problem can be formulated as a constrained or uncon-
connectivity (minimum number of neighbor subdomains), strained optimization problem. This set of heuristics is ap-

plied to solve these associated optimization problems. Theminimum bandwidth of the local matrix problem, and optimal

622 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

basis of most of them is the so-called Kernighan and Lin A technique similar to the above methodology follows the
PARTY partitioning library. It provides a variety of methods(K–L) algorithm. A detailed review of these class of strategies

together with the description of an efficient improvement of for global and local partitioning and offers the option of either
(1) partitioning the graph into two parts and then applying athe K–L algorithm for mesh/grid can be found in Ref. 21.
recursive procedure or (2) directly partitioning the graph in
the required number of parts. PARTY has been also incorpo-Stochastic Optimization Heuristics. Another class of heuris-

tics is based on stochastic techniques such as simulated an- rated into //ELLPACK. Another modern partitioning software
package worth mentioning is JOSTLE which can be also usednealing and Hopfield neural networks. Their application and

modification for the partitioning of finite element mesh graph to repartition existing partitions, such as those driving from
adaptive refined meshes.has been studied by several authors (20,22). Although these

techniques usually generate more accurate solutions to the
Parallel PDE Software Packagesmesh partitioning problem, tend to be computationally very

intensive. We conclude this section by briefly presenting in Table 2 some
of the software systems publicly available for solving PDE

Hybrid Multilevel Heuristics. Many of the above-described problems on modern (mostly distributed memory) parallel
schemes can be accelerated using a multilevel technique. The computers. In its first column we list the acronyms, the prin-
main idea, whose popularity increased lately, is to replace the cipal investigators, and their affiliation. The second column
graph by a coarser graph with many fewer nodes, partition describes the class of PDE problems targeted, and the third
the coarser graph, and use the coarse partition as a starting column gives the parallelization methodologies and the soft-
guess to obtain a partition of the original graph. The coarse ware libraries for communication used in the implementation.
graph may in turn be partitioned by means of the same algo- The last column deals with the software languages and the
rithm recursively; a yet coarser graph is partitioned to get a floating point arithmetic associated. More information can be
starting guess, and so on. Such recursiveness allows the use obtained from their web servers whose URL addresses are
of different heuristic schemes on a different level, resulting in also listed.
significantly more efficient implementations. This approach,
whose typical representative is the multilevel version of RSB

PARALLEL DENSE LINEAR ALGEBRAIC SOLVERS(MRSB) (18), been extensively used in modern graph parti-
tioning software tools which we review next. Several tools

One of the most typical representatives of dense linear alge-have been developed to incorporate the above algorithmic in-
bra solvers is the LU decomposition algorithm. In this sectionfrastructure. Next we briefly comment on five of the most re-
we first review some of the techniques used to parallelize thecent and well-known ones. For a comprehensive review of
LU and LU-like factorizations for dense linear systems. Nextthese software tools see Ref. 23.
we present, in a unified way, the parallelization methodolo-The //ELLPACK system has a graphical tool (DOMAIN DE-
gies for a class of fast numerical algebraic solvers specificallyCOMPOSER) that allow users to obtain and display auto-
designed for special types of elliptic PDEs.matic decompositions by a variety of heuristics for two- and

three-dimensional meshes/grids. The user can either modify
Factorization Methods

interactively these decompositions or specify his own. The
current version supports both element- and nodewise parti- The goal of the LU decomposition is to factor an n � n matrix

A into a lower triangular matrix L and an upper triangulartionings using most of the heuristics described above. This
tool is completely integrated with the //ELLPACK problem-solv- matrix U. This factorization is certainly one of the most used

of all numerical linear computations. The classical LU factor-ing environment, and thus it supports all the parallel discreti-
zation and solution modules currently available in the ization can be expressed in terms of any of the three levels

of the BLAS (24,25), and techniques needed to achieve high//ELLPACK library.
The CHACO graph partitioning software consists of a library performance for both shared and distributed memory systems

have been considered in great detail in the literature.that realizes a variety of partitioning algorithms including
spectral bisection, quadrisection, and octasection, the inertial We consider first some of the approaches used in the litera-

ture for implementing the LU factorization of a matrix A �method, variations of the K–L algorithm, and multilevel par-
titions. In addition, it intelligently embeds the partitions it �n�n on shared memory multiprocessors in which each pro-

cessor is either of vector or RISC architecture. To simplify thegenerates into several different interconnection topologies. It
also provides easy access to Fiedler’s eigenvectors and ad- discussion of the effects of hierarchical memory organization,

we move directly to the block versions of the algorithms.vanced schemes for improving data locality. CHACO has been
interface, through a GUI to //ELLPACK. Throughout the discussion, � denotes the blocksize used and

the more familiar BLAS2 (24)-based versions of the algo-Another system that has been integrated into //ELLPACK is
the METIS unstructured graph partitioning tool which imple- rithms can be derived by setting � � 1. Four different organi-

zations of the computation of the classical LU factorizationments various multilevel algorithms. There are three basic
steps for these algorithms: (1) Collapse vertices of original without pivoting are presented with emphasis on identifying

the computational primitives involved in each. The additiongraph G to coarsen it down to a few hundred vertices, (2) com-
pute a minimum edge-cut bisection of the coarsen graph of partial pivoting is then considered and a block generaliza-

tion of the LU factorization (L and U being block triangular)which is assumed to contain information for intelligently en-
forcing a balanced partition, and (3) project back to the origi- is presented for use with diagonally dominant matrices.

There are several ways to organize the computations fornal graph by periodically further improving partitions using
a local refinement heuristic. calculating the LU factorization of a matrix. These reorgani-

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 623

Table 2. List of Software Packages for Parallel PDE Computations

Package Applicability Parallelism Software

COGITO Smedsaas, Thun, Wah- Time-dependent PDES Commun. libs: NX, MPI, Callable: f90
lund, Uppsala University PVM, MPL Arithmetic: Real

Methodology: on-line
URL: http://www.tdb.uu.se/research/swtools/cogito.html

DIFFPACK Bruaset, Cai, Lang- General 1–3 dim DEs Commun. libs: custom Callable: GUI, C��

tangen, Tveiko, University of Methodology: on-line Arithmetic: Real
Oslo

URL: http://www.nobjects.com/prodserv/diffpack/

//ELLPACK Houstis, Rice et al., General 1–3 dim DEs Commun. libs: NX, MPI, Callable: GUI, WEB, f77
Purdue University PVM, NX ... Arithmetic: Real

Methodology: on-line, off-line,
new

URL: http://www.cs.purdue.edu/ellpack/ellpack.html

PETSc Balay, Gropp, McInnes, General 1–3 dim DEs Commun. libs: MPI Callable: f77, C/C��

Smith, Argonne National Lab Methodology: on-line, off-line Arithmetic: Real, Complex
URL: http://www.mcs.anl.gov/petsc/petsc.html

PINEAPL Derakhshan, Hammar- 2–3 dim Poisson, Helmholtz Commun. libs: PVM, MPI Callable: f77
ling, NAG Methodology: on-line Arithmetic: Real, Complex

URL: http://extweb.nag.co.uk/projects/PINEAPL.html

SUMAA3D Freitag, Gooch, Jones, General 2–3 dim DEs Commun. libs: MPI Callable: f77
Plassmann, Argonne National Methodology: on-line Arithmetic: Real, Complex
Lab

URL: http://www.mcs.anl.gov/Projects/SUMAA/

TUCHEM Rame, Soucie, Klie, Application specific PDEs Commun. libs: MPI Callable: f77
Wheeler, TICAM, Methodology: on-line, new Arithmetic: Real, Complex

URL: http://www.ticam.utexas.edu/Groups/SubSurfMod/software.html

VECFEM Grosz, Schoenauer, General 2–3 dim boundary Commun. libs: MPI, NX Callable: GUI, f77
Weis, University of Karlsruhe value problems Methodology: on-line Arithmetic: Real, complex

URL: http://www.uni-karlsruhe.de/ vecfem/vecfem2.html

zations are typically listed in terms of the ordering of the gorithm consists of four phases depicted in Table 3. Clearly,
repeating this step on successively larger submatrices willnested loops that define the standard computation. The essen-
produce the factorization of A � �n�n.tial differences between the various forms are: the set of com-

Version 2 of the algorithm assumes that the first � � (i �putational primitives required, the distribution of work
1)� columns of L and � rows of U are known at the start ofamong the primitives, and the size and shape of the subpro-
step i, and it also assumes that the transformations necessaryblems upon which the primitives operate. Since architectural
to compute this information have been applied to the subma-characteristics can favor one primitive over another, the
trix Ai � �n���n�� in the lower right-hand corner of A that haschoice of computational organization can be crucial in achiev-
yet to be reduced. The algorithm proceeds by producing theing high performance. Of course, this choice in turn depends
next � columns and rows of L and U, respectively, and com-on a careful analysis of the architecture/primitive mapping.
puting Ai�1. This is a straightforward block generalization ofVersion 1 of the algorithm assumes that at step i the LU
the standard rank-1-based Gaussian elimination algorithm.factorization of the leading principal submatrix of dimension
Assume that the factorization of the matrix Ai � �n���n�� is(i � 1)�, Ai�1 � Li�1Ui�1, is available. The next � rows of L
partitioned as follows:and � columns of U are computed during step i to produce

the factorization of the leading principal submatrix of order
i�. Clearly, after k � n/� such steps the factorization LU �
A results. The basic step of the algorithm can be deduced by

Ai =
�

A11 A12

A21 A22

�
=
�

L11 0
L21 I

��
U11 U12

0 Ai+1

�

considering the following partitioning of the factorization of
where A11 is square and of order � and the other submatricesthe matrix Ai � �i��i�:
are dimensioned conformally. L11, L21, and U12 are the desired
� columns and rows of L and U and identity defines Ai�1. The
basic step of the algorithm is presented in Table 3. Clearly,Ai =

�
Ai−1 C
BT H

�
=
�

Li−1 0
MT L2

��
Ui−1 G

0 U2

�
the updated A22 is Ai�1 and the algorithm proceeds by re-
peating the four phases involved.

where H is a square matrix of order � and the rest of the Version 3 of the algorithm can be viewed as a hybrid of the
first two versions. Like Version 2, it is assumed that the firstblocks are dimensioned conformally. The basic step of the al-

624 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

Table 3. The Main Step of Four LU Versions

Version 1 Version 2
(i) Solve for G: C � Li�1G � C Factor: A11 � L11U11 � A11

(ii) Solve for M: B � UT
i�1M � B Solve for L21: A21 � UT

11LT
21 � AT

21

(iii) H � H � MTG Solve for U12: A12 � L11U12 � A12

(iv) Factor H � L2U2 � H A22 � A22 � L21U12

Version 4 Version 5
(i) Solve for M: Ã1 � L11M � Ã1 A11 � A�1

11

(ii) [ÃT
2 , ÃT

3]T � [ÃT
2, ÃT

3]T � L21M A21 � L21 � A21A11

(iii) Factor: Ã2 � L̃Ũ � Ã2 A22 � B � A22 � L21A12

(iv) Solve for G: Ã3 � ŨTGT � ÃT
3 Proceed recursively on matrix B

The arrow is used to represent the portion of the array which is overwritten by the new
information obtained in each phase.

(i � 1)� columns of L and rows of U are known at the start In the second phase, the first � rows and columns of the fac-
torization of the updated A22 are then given by the following:of step i. It also assumes, like Version 1, that the transforma-

tions that produced these known columns and rows must be
applied elements of A which are to be transformed into the 1. Factor: H � L̃11Ũ11 � H
next � columns and rows of L and U. As a result, Version 3 2. Solve for L̃21: B � ŨT

11L̃T
21 � BT

does not update the remainder of the matrix at every step. 3. Solve for Ũ12: C � L̃11Ũ12 � CT

Consider the factorization

Version 4 of the algorithm assumes that at the beginning
of step i the first (i � 1)� columns of L and U are known.
Step i computes the next � columns of the two triangular fac-

A =
�

A11 A12

A21 A22

�
=
�

L11 0
L21 L22

��
U11 U12

0 U22

�

tors. Consider the factorization

where A11 is a square matrix of order (i � 1)� and the rest
are partitioned conformally. By our assumptions, L11, L21,
U11, and U12 are known and the first � columns of L22 and the

A =
�

A11 A12

A21 A22

�
=
�

L11 0
L21 L22

��
U11 U12

0 U22

�

first � rows of U22 are to be computed. Since Version 3 as-
where A11 is a square matrix of order (i � 1)� and the restsumes that none of the update A22 � A22 � L21U12 has occurred
are partitioned conformally. By our assumptions, L11, L21, andin the first i � 1 steps of the algorithm, the first part of step i
U11 are known.is to perform the update to the portion upon which the desired

Let L�, U�, and A� be the matrices of dimension n � �columns of L22 and rows of U22 depend. This is then followed
formed of the first � columns of [0, LT

22]T, [UT
12, UT

22]T, and [AT
12,by the calculation of the columns and rows. To derive the form

AT
22]T, respectively. [These are also columns (i � 1)� � 1of the computations, suppose that the update of A22 and its

through i� of L, U, and A.] Consider the partitioningsubsequent factorization are partitioned as

A22 ←
�

H CT

B Ã22

�
=
�

Ĥ ĈT

B̂ Â22

�
− L21U12 Lω =

�
0

L̃
G

�
, Uω =

�
M

Ũ
0

�
, Aω =

�
Ã1

Ã2

Ã3

�

with where L̃, Ũ, and Ã2 are square matrices of order � with L̃ and
Ũ lower and upper triangular, respectively. Step i calculates
L� and U� by applying all of the transformations from steps 1
to i � 1 to A� and then factoring a rectangular matrix. Spe-

�
H CT

B Ã22

�
=
�

L̃11 0

L̃21 L̃22

��
Ũ11 Ũ12

0 Ũ22

�
cifically, step i comprises the computations depicted in Ta-
ble 3.

where H and Ĥ are square matrices of order � and the other Partial pivoting can be easily added to Versions 2, 3, and
submatrices are dimensioned conformally. Step i then has two 4 of the algorithm. Step i of each of the versions requires the
major phases: Calculate H, B, and C; and calculate L̃11, L̃21, LU factorization of a rectangular matrix M � �h��, where
Ũ11, and Ũ12. As a result, at the end of stage i, the first i� h � n � (i � 1)�. Specifically, step i computes
rows and columns of the triangular factors of A are known.
Let L21 � [MT

1, MT
2]T and U12 � [M3, M4], where M1 and M3

consist of the first � rows and columns of the respective ma- M =
�

M1

M2

�
=
�

L̂11

L̂21

�
Û11

trices. The first phase of step i computes

where L̂11 and Û11 are, respectively, lower and upper triangu-
1. [HT, BT]T � [HT, BT]T � [ĤT, B̂T]T � L21M3 lar matrices of order �. In the versions above without pivot-

ing, this calculation could be split into two pieces: the factor-2. C � CT � ĈT � M1M4

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 625

ization of a system of order �, L̂11Û11 � M1; and the solution block algorithm uses three primitives: a Gauss–Jordan inver-
sion (or LU decomposition), A � AB, and a rank-� update.of a triangular system of order � with h � � right-hand sides.

When partial pivoting is added, these computations at each Note that when � � 1 this form of the algorithm becomes
the BLAS2 version based on rank 1 updates. As with Versionsstep cannot be separated and are replaced by a single primi-

tive which produces the factorization of a rectangular matrix 1–4, which produce the classical LU factorization, the compu-
tations of Version 5 can be reorganized so that different com-with permuted rows, that is,
binations of BLAS3 primitives and different shapes of subma-
trices are used (26).

For distributed-memory implementations we consider thePM = P

�
M1

M2

�
=
�

L̂11

L̂21

�
Û11

two basic storage schemes: storage of A by rows and by col-
umns. These row storage cases lead to the so-called Row Stor-

where P is a permutation matrix. This primitive is usually age with Row Pivoting (RSRP) algorithm and the Column Stor-
cast as a BLAS2 version of one of the versions above. Note, age with Row Pivoting (CSRP) scheme. Gaussian elimination
however, a fundamental difference compared to the nonpivot- with pairwise pivoting is an alternative to LU factorization,
ing versions. The ability to split the factorization of the tall which is attractive on a variety of distributed memory archi-
matrix into smaller BLAS3 (25)-based components in the lat- tectures since it introduces parallelism into the pivoting
ter case has benefits with respect to hierarchical memory us- strategy. Pairwise pivoting can also be useful on shared mem-
age, since � is usually taken so that such systems fit in cache ory machines to break the bottleneck caused by partial pivot-
or local memory. In the case of pivoting, these operations are ing discussed earlier.
performed via BLAS2 primitives repeatedly updating a ma-
trix which cannot be kept locally. As a result, the arithmetic

Rapid Direct Solverscomponent of time and the data transfer overhead both in-
crease. In fact, a conflict between their reductions occurs. This Often the physical problem and its mathematical model pos-
situation is similar to that in Version 5 presented below along sess properties that can be exploited to design fast numerical
with a solution. solution procedures. Such methods exist for special types of

The information contained in the permutations associated elliptic PDEs and are collectively known as rapid elliptic
with each step, Pi, can be applied in various ways. For exam- solvers (RES), though the more specific term fast Poisson
ple, the permutation can be applied immediately to the trans- solvers is also used. These methods consist primarily of nonit-
formations of the previous steps, which are stored in the ele- erative techniques that achieve significantly lower complexi-
ments of the array A to the left of the active area for step i, ties than traditional solution methods. Several RES have
and to the elements of the array A which have yet to reach their roots in classical analytical techniques such as separa-
their final form, which, of course, appear to the right of the tion of variables and the use of Fourier expansions (27,28).
active area for step i. The application to either portion of the For a detailed examination of the topic of this article we also
matrix may also be delayed. The update of the elements of refer the reader to the Ref. 29.
the array which have yet to reach their final form could be Here we concentrate on parallel aspects of RES algo-
delayed by maintaining a global permutation matrix which is rithms. The model problem that will be used is Poisson’s
then applied to only the elements required for the next step. equation with Dirichlet boundary conditions on the unit
Similarly, the application to the transformations from steps 1 square:
through i � 1 could be suppressed and the Pi could be kept
separately and applied incrementally in a modified forward
and backward substitution routine.

− (Vxx + Vyy) = F

for (x, y) ∈ ≡ [0, 1] × [0, 1] and V (x, y) given on ∂ (1)
In some cases it is possible to use a block generalization

(Version 5) of the classical LU factorization in which L and U It is easy, in theory, to solve Eq. (1). For example, when the
are lower and upper block triangular matrices, respectively. boundary conditions are homogeneous, the solution can be
The use of such a block generalization is most appropriate written as an integral of the product of the right-hand side
when considering systems which do not require pivoting for and Green’s function for the Laplacian on the unit square
stability—for example, diagonally dominant or symmetric (27). However, the evaluation of this integral is not practical
positive definite. This algorithm decomposes A into a lower in principle and we have to resort to alternative numerical
block triangular matrix L� and an upper block triangular ma- techniques.
trix U� with blocks of the size � by � (it is assumed for sim- We use tensor (Kronecker) products to describe the
plicity that n � k�, k 1). Assume that A is diagonally domi- method. These capture the parallel aspects of the method and
nant and consider the factorization highlight the manner in which multidimensional data arrays

are manipulated by applying operations on lower-dimensional
data slices (30,31).

The discretization of Eq. (1) with second-order differences
A =

�
A11 A12

A21 A22

�
=
�

I 0
L21 I

��
A11 A12

0 B

�

on a uniformly spaced rectangular grid and the incorporation
of the boundary conditions leads, under natural ordering (32),where A11 is a square matrix of order �. The block LU algo-
to the order N � nxny linear system:rithm is given in Table 3, where statements (i) and (ii) can be

implemented in several ways (26).
If the Gauss–Jordan kernel is used, as is assumed below, −(Iny ⊗ Tx + Ty ⊗ Inx)u = f (2)

the block LU algorithm is more expensive by a factor of ap-
proximately (1 � 2/k2) than the classical LU factorization, where Tx and Ty are symmetric tridiagonal matrices of orders

nx and ny, respectively, that correspond to the finite-differencewhich requires about 2n3/3 operations. In this form, the above

626 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

approximation of second-order derivative operators. We next hence,
describe some important characteristics of Tx (which is diago-
nalizable) with the understanding that the corresponding re- −(Iny ⊗ �x + Ty ⊗ Inx)(Iny ⊗ Q−1

x)u = Iny ⊗ Q−1
x f (3)

sults hold for Ty. For the model problem, Tx :� tridnx
[�1, 2,

�1] and Ty :� tridny
[��, 2�, ��], � :� h2

y /h2
x, where hx � Matrix Iny

� �x � Ty � Inx
in Eq. (3) is block tridiagonal

(nx � 1)�1 and hy � (ny � 1)�1 are the discretization steps in with diagonal nonzero blocks and can be reordered to block
diagonal form with tridiagonal nonzero blocks. This re-the x and y directions, respectively.
arrangement is achieved through an order N � nxny permuta-When n :� nx � ny the best sequential complexity for solv-
tion matrix �N,nx

whose action on an order N vector x is de-ing the model problem via direct methods is O(n2 log n).
fined as follows:(Throughout this section, log denotes log2.) The RES that we

describe solve Eq. (2) with asymptotic operation counts O(n2

logk n) and parallel complexities T(logk n, nm), where T(�, P) y := �N,nx
x = [x(1 : nx : N), x(2 : nx : N), . . ., x(nx : nx : N)]T

denotes the complexity of an algorithm that requires time
O(�) when P processors are used and where k and m are small If x is organized as a two-dimensional array with nx rows and
constants. RES can achieve parallel time as low as O(log n) ny columns, then y is obtained after transposing x and num-
on certain computational models of O(n2) processors. It has bering its elements in column major order. Two important
been seen that some of the methods we describe are asymp- properties are that �N,nx

�N,ny
� Inxny

and �N,nx
(C � Inx

)�N,ny
� Inx

totically time optimal. Nevertheless, a useful evaluation of � C for any order ny matrix C. Therefore Eq. (3) can be rewrit-
performance requires more realistic computational models. ten as
Unfortunately, a unifying model for the wide spectrum of par-
allel architectures has yet to be established.

One unifying aspect of all the methods described in this
−�N,nx

(Iny ⊗ �x + Ty ⊗ Inx)(Iny ⊗ Q−1
x)u = �N,nx

(Iny ⊗ Q−1
x) f

(4)
article is that they are composed of two basic computational

from which follows that the solution can be expressed asprimitives: (1) the solution of banded (mostly tridiagonal) sys-
tems of equations and (2) the discrete Fourier transform. It is
thus possible to provide a first approximation to the perfor-
mance of these methods from performance information about

u = −(Iny ⊗ Qx)�N,ny
(�x ⊗ Iny + Inz ⊗ Ty)

−1�N,nx
(Iny ⊗ Q−1

x) f
(5)

the primitives. Other advantages of this formulation include
In the sequel we will assume that whenever the operator (Irthe easier and more flexible, and hence faster, development
� Cs) is applied on an rs vector f , the vector f is partitionedof codes for a range of architectures, along with better identi-
into r subvectors of order s each. Algorithm MD solves Eq. (2)fication of weaknesses in current architectures and their sup-
using the formulation in Eq. (5):porting software (26). Software design also becomes easier us-

ing, for instance, primitives that hide most of the
Algorithm MD (Matrix Decomposition)architectural details.

The RES described below have a multiphase structure;
1. Solve: Qxyj � f j (1 � j � ny).each phase consists of the application of one or more in-
2. Permute: y � �N,nx

y.stances of a computational primitive. Synchronization is en-
forced between phases. During a single phase, in addition to 3. Solve: (Ty � �(x)

i I)ŷi � yi (1 � i � nx).
the parallelism available within the algorithm implementing 4. Permute: y � �N,ny

ŷ.
the underlying primitive, another major source of parallelism 5. Compute uj � Qxyj (1 � j � ny).can be found in the independent application of multiple in-
stances of the computational primitive—for example, the ap- This algorithm consists of three major computational steps:
plication of the same matrix operation on several vectors. As (i) the computation of ny Fourier transforms of length nx each,
in the case of the BLAS (26), we expect that the best RES will (ii) the solution of nx tridiagonal systems of order ny each, and
combine these two sources of parallelism. (iii) the computation of ny inverse Fourier transforms of

Matrix decomposition (MD) is one of the most important length nx each. Regarding the cost of computing the entries
RES methods (33,34). If Qx denotes the matrix with elements of Qx, whenever this is necessary, we take that it is amortized
[Qx]jk � sin(�jk/(nx � 1)) (1 � k, j � nx), then Q�1

x TxQx � �x over several calls to MD, so we do not consider it in the cost
denotes the diagonal matrix of the eigenvalues �j � 2 � 2 estimates. Let us represent steps i–iii by the letter sequence
cos(�j/(nx � 1)) (1 � j � nx) of Tx. The inverse is readily avail- FTF, where F and T represent the application of several inde-
able and satisfies Q�1

x � (2/nx)Qx. Since Qx is the matrix repre- pendent computational primitives for the Fourier transform
sentation of the discrete sine transform operator, its applica- and the solution of tridiagonal systems, respectively.
tion on a vector of length nx can be accomplished using an Since each step of MD calls for multiple instances of the
FFT algorithm, at a cost of O(nx log nx) operations instead of tridiagonal solver and the FFT primitives, there are two basic
O(n2

x). This remark is at the root of the low-complexity solvers parallel approaches. One is to use a serial algorithm to com-
described here. pute each instance of a computational primitive; we use the

Premultiplying Eq. (2) by Iny
� Q�1

x , we obtain superscript s to denote such an implementation. This ap-
proach requires that prior to the call to a primitive, all the
necessary data are available in the memory of each executing
processor. Since no communication is required across the pro-
cessors during each of the steps, this method offers large

− Iny ⊗ Q−1
x (Iny ⊗ Tx + Ty ⊗ Inz)(Iny ⊗ Qx)(Iny ⊗ Q−1

x)u

= Iny ⊗ Q−1
x f

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 627

grain parallelism. In the second approach, a parallel algo- The methodology that we used above to present the MD imple-
mentations will be applied below to other RES.rithm is used to evaluate each primitive. We use the super-

script p to denote such implementations. Each processor will The MD method is based on the fact that using fast trans-
forms and row and column permutations, the coefficient ma-have to deal with segments from one or more independent

data sets. Communication is thus necessary across the pro- trix can be brought into block diagonal form with tridiagonal
blocks in the diagonal. The next method uses the fact thatcessors during execution; hence this method offers medium

and fine grain parallelism. In the literature, the above two this block diagonal matrix can be further reduced into diago-
nal form by means of fast transforms. To see this, premultiplymethods have been called the ‘‘distributed data’’ and the ‘‘dis-

tributed algorithm’’ approaches. both sides of Eq. (2) by Q�1
y � Inx

to obtain
We define four practical instances of the MD algorithm for

the two-dimensional model problem: FsTsFs, FsTpFs, FpTpFp,
and FpTsFp, which we review next.

− (Iny ⊗ �x + �y ⊗ Inx)(Q−1
y ⊗ Inx)(Iny ⊗ Q−1

x)u

= (Q−1
y ⊗ Inx)(Iny ⊗ Q−1

x) f (6)
F sT sF s. In the first step of this method, each processor calls

an algorithm to apply length nx fast Fourier transforms Hence the solution can be expressed as
(FFTs) on data from ny/p grid rows. Subsequently, each pro-
cessor calls an algorithm to solve nx/p tridiagonal systems of
order ny each. The right-hand sides of these systems corre-

u = (Iny ⊗ Qx)�N,ny
(Inx ⊗ Qy)�N,nx

(Iny ⊗ �x + �y ⊗ Inx)−1

(7)
spond to grid columns of data. Finally, each processor calls
an algorithm to apply length nx inverse FFTs on ny/p grid �N,ny

(Inx ⊗ Q−1
y)�N,nx

(Iny ⊗ Q−1
x) f (8)

rows of data. Processors must synchronize between steps (35).
One advantage of this method is that no parallel algorithm is We call the methods based on the formulation in Eq. (7)
required to implement the computational primitives. We can ‘‘full matrix diagonalization’’ (FMD) methods. The terms ‘‘mul-
thus view this as a parallel method synthesized out of serial, tiple Fourier’’ or ‘‘complete Fourier’’ methods have also been
off-the-shelf pieces (35). Nevertheless, the implementation used.
has to be done carefully; otherwise performance will degrade

Algorithm FMDdue to excessive data traffic between the processors and the
memory system (36).

1. yj � QT
xf j, (1 � j � ny), y � �N,nx

y.On shared memory architectures no explicit data transpo-
2a. ŷi � QT

yyj, (1 � i � nx), y � �N,ny
ŷ.sition is necessary. One cause of performance loss is bank con-

flicts originating from non-unit stride memory references in 2b. ŷj,i � (�(y)
j � �(x)

i)�1ŷj,i, (1 � i � nx, 1 � j � ny), y �
one of the steps. On distributed memory machines, there is a �N,nx

ŷ.
need for a matrix transposition primitive in order to imple- 3. yi � Qyyi, (1 � i � nx), ŷ � �N,ny

y.
ment the stride permutation described earlier and bring into 4. uj � Qxŷj, (1 � j � ny).each processor’s local memory one or more columns of data
computed during step Fs. Parallel algorithms and implemen-

FMD methods can be represented by the pattern FF�FF,
tations for matrix transposition can be found in Ref. 31, where � denotes element by element division of two length N
Chap. 3. vectors and F denotes the application of Fourier transforms

F sT pF s. The first and last steps of this method are as for on rows and columns of data. Synchronization is needed be-
FsTsFs. Immediately prior to the second step, each processor tween phases (see Refs. 31, 38, and 39).
has immediate access to ny/p components from each of the nx The FMD approach trades the tridiagonal solvers of MD with
tridiagonal systems; hence explicit transposition is unneces- Fourier transforms. This is not necessarily cost effective; for
sary (37). These are solved using one of the parallel algo- instance, on a uniprocessor, computing the FFT is more ex-
rithms described previously. The method also exploits any of pensive than solving a tridiagonal system. On parallel archi-
the system’s vector and communication pipelining capabil- tectures, however, the situation can change, since both Tp

ities. and Fp can be implemented in O(log n) parallel arithmetic
F pT pF p. This method is uses parallel algorithms for each of operations. It is easy to see that an implementation of

the computational primitives. Trivially, Tp and Fp require less FpFp�FpFp can achieve T(log(nxny), nxny) parallel arithmetic
parallel time than T1 and F 1, respectively; therefore, this complexity. Implementations of the FpFp�FpFp method can be
method can achieve the best parallel arithmetic complexity faster than the other solvers presented in this article (38, Al-
among all other MD methods. The performance of this algo- gorithm PARAFT).
rithm on actual systems is significantly affected by the time The method of block cyclic reduction (BCR) (40–42) forms
spent in memory accesses and interprocessor communication the basis of a popular package for the rapid solution of elliptic
(37). To achieve optimal arithmetic complexity, it is critical to PDEs, called FISHPAK (43). We first present the algorithm
use algorithms of commensurate (logarithmic) complexity for and review the idea behind its parallelization. For simplicity
each step. It thus becomes necessary to use a tridiagonal let ny � 2k � 1 and consider the equations for three adjacent
solver such as cyclic reduction, instead of parallel substruc- block rows (it is assumed that u�1 � u2k

�1 � 0 and that u0 and
tured Gaussian elimination. u2k have been absorbed in the right-hand side):

F pT sF p. The parallel arithmetic complexity of this method
for square grids is O(n). The methods above can be general-
ized to handle three-dimensional problems; in that case, how-
ever, there is a larger number of parallel implementations
that can be defined (FsFsTsFsFs, FsFpTsFpFs, and FsFsTpFsFs).

−u2i−2 + Au2i−1 − u2i = f2i−1

−ui−1 + Au2i − ui+1 = f2i

−u2i + Au2i+1 − u2i+2 = f2i+1

628 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

Multiplying the first and last equations by A and adding them those of FISHPAK when running on vector machines, while
the speedup for parallel BCR was only between 4 and 5.to the second one, we obtain

The FACR (Fourier analysis, cyclic reduction) (38,50–54)
family of methods combines BCR and MD. The motivation for−u2i−2 + (A2 − 2I)u2i − u2i+2 = f2i−1 + A f2i + f2i+1 (9)
the algorithm was to reduce the number of Fourier trans-
forms necessary in the first and fourth steps of the MD algo-We call this a reduction step, and by letting i � 1, . . ., 2k�1

rithm. The key idea is to start with r steps of block reduction� 1 we form the block system
to obtain the block tridiagonal system trid2k�r

�1[�I, A(r), �
I]X(r) � Y(r), where A(r) is a matrix polynomial in A. Therefore,
if we apply the Fourier transform matrix Q that was used in
algorithm MD to diagonalize A, we obtain QTA(r)Q � �(r), where
�(r) is a diagonal matrix with coefficients P2r(�j). Hence we
apply first the MD algorithm to solve the reduced system and
then apply back-substitution steps to recover the remaining

A(1) −I
−I A(1)

. . . −I
−I A(1)

u2

u4

...
u

2k−2

 =

f (1)

2·1
...
...

f (1)

2(2k−1−1)

(10)

unknowns.

where A(1) :� A2 � 2I and f (1)
2i � Af 2i � f 2i�1 � f 2i�1.

The system in Eq. (10) is approximately half the size of the PARALLEL SPARSE LINEAR ALGEBRAIC SOLVERS
original one and only involves even indexed unknown vectors.
Once this system has been solved, the remaining unknowns Very frequently a physical phenomenon or problem involves
can be obtained from the block diagonal system operators that act locally. This is reflected at the linear algebra

level as sparsity in the corresponding linear system. Sparse-
ness therefore is a basic characteristic of many large-scale sci-
entific and engineering computations (Table 4). All three paral-
lel methodologies depicted in Fig. 1 assume the existence of
efficient parallel linear sparse solvers implemented on a set of
distributed algebraic data structures. The overall efficiency of
a linear solver can be enormously increased if the underline al-
gorithm properly exploits the nonzero structure of the associ-

A 0
0 A 0 .

. . .
. . .

. . .

0 A

u1

u3

...
u2k−1

 =

f1 + u2

f3 + u2 + u4

...

...
f2k−1 + u2k−2

(11)

ated coefficient matrix. In fact it is still infeasible to solve a
large class of important physical problems without exploitingTo form the right-hand sides of the reduced system [Eq.

(10)] we need the products A[f 2, f 4, . . ., f 2k
�2]. These can be their sparseness. We call a matrix sparse if it is worth to exploit

its nonzero structure. In practice, such matrices should have acomputed with a sparse by dense matrix multiplication ker-
nel. In turn, the solution of the system in Eq. (11) can be small constant number of nonzero elements per column/row. In

some cases the sparsity can be organized so the dense solversachieved with a kernel that solves a tridiagonal system of
equations with multiple right-hand sides AX̃ � B̃, where X, B described in previous sections can be effectively applied. A typi-

cal, and important, organized sparseness is when all of the non-are of size nx � (2k�1).
Note that A(1) is a polynomial of degree 2 in A that we de- zero elements are packed inside a relatively small zone that

contains the main diagonal of the matrix. Such matrices arenote by p2(A) :� A2 � 2I. To avoid fill-in, it is preferable to
express the polynomial in factored form p2(A) � (A � called banded and appear frequently in discretizing PDE prob-

lems. Unfortunately, sparsity often comes with irregularity2(�2/2)I)(A � 2(�2/2)I). The reduction and factorization pro-
cess can be repeated until a system consisting of a system for and diversity which justifies the existence of the MatrixMarket

web server, with nearly 500 sparse matrices from a variety ofthe ‘‘middle’’ unknown vector is left. Unfortunately this pro-
cess is unstable. The scheme used in practice was proposed applications, as well as matrix generation tools and services

and the SPARSEKIT software package for manipulating andby Buneman (40,44). Where the recurrence A(j) � (A(j�1))2 �
2I, A(0) � A, it is shown that A(r) � P2r(A) � T2r(A/2), where working with different forms of sparse matrices. Compared to

dense computations, sparse matrix computations use more so-T2r is the Chebyshev polynomial of the first kind and degree
2r. Hence all operations involving A(r) are written as opera- phisticated data structures and involve more irregular memory

reference patterns and therefore are significantly more difficulttions with polynomials in A. There are several interesting de-
sign issues that face the implementor of parallel BCR which to effectively parallelize them. Several parallelization ap-

proaches using purely deterministic mathematical approaches,are discussed in Refs. 41 and 45–48.
A software package that implements some of the rapid heuristics, and run-time and compiler technologies have al-

ready been applied with notable success.solvers described above is CRAY-FISHPAK (49) (a vectorized
and parallelized version of FISHPAK). CRAYFISHPAK con- Many parallel sparse solvers have been proposed and stud-

ied in the literature. Their detailed exposition is beyond thetains ‘‘driver’’ and ‘‘solver’’ routines for the Helmholtz equa-
tion over regular regions in two or three dimensions in scope of this article. Instead, we discuss and reference those

that are already available in the form of software and havecartesian, cylindrical, or spherical coordinates. One important
extension of CRAYFISHPAK is that it contains solvers that been tested for the parallel solution of PDE equations. It is

worth noting, however, that there is still no general-purposeare based on FFT-based matrix decomposition as well, in ad-
dition to the solvers based on the parallel version of Bune- sparse software system that exhibits significant efficiency on

modern parallel computers. We split the rest of this section intoman’s BCR. Sweet (49) reported that the FFT-based solvers
are preferable since they were 10 to 20 times faster than four parts. The first deals with direct sparse solvers, the second

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 629

Table 4. List of Software Packages for Parallel Sparse Computations

General
SPARSEKIT 1994 http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
MatrixMarket 1996 http://math.nist.gov/MatrixMarket/

Direct
CAPSS 1996 http://www.netlib.org/scalapack/capss.tar.gz
PSPASES 1997 http://www-users.cs.umn.edu/ mjoshi/pspases/
SPOOLES 1997 http://www.netlib.org/linalg/spooles.1.0.tar.gz
SuperLU 1998 http://www.netlib.org/scalapack/prototype/index.html

Iterative
AZTEC 1998 http://www.cs.sandia.gov/CRF/aztec1.html
BlockSolve95 1995 http://www.mcs.anl.gov/sumaa3d/BlockSolve/index.html
� ITPACK 1996 http://pellpack.cs.purdue.edu/
PCG 1995 http://www.cfdlab.ae.utexas.edu/pcg/index.html
PIM 1997 http://www.mat.ufrgs.br/pim-e.html
P-SPARSLIB 1998 http://www.cs.umn.edu/Research/arpa/p sparslib/psp-abs.html

Preconditioning
SPAI 1997 http://lovelace.nas.nasa.gov/NAS/SPAI/download.html
ParPre 1997 http://www.math.ucla.edu/eijkhout/parpre.html

In the first column we have the name of the package, in the second column we have the year of the last
release, and in the last column we have the address of the associated web page.

with iterative methods and the third with preconditioning. The 4. Solve the resulting two triangular systems to compute
the solution.last part contains a table which provides links to the web pages

of all parallel sparse software packages considered.
The task of determining an optimum ordering of A that mini-
mizes fill-ins proved to be an NP-complete problem. ThereforeSparse Direct Methods
various heuristic approaches are currently employed for step

In the absence of any particular nonzero structure a sparse 1 above. They use a graph representation of the nonzero
system needs to be solved by factorizing its coefficient matrix structure of the matrices and are based on most of the graph
using a Gauss elimination-type algorithm. Such algorithms, partitioning schemes discussed earlier in the section entitled
unfortunately, generate at run time intermediate results and ‘‘Hybrid Multilevel Heuristics.’’ In particular, for almost a de-
computational tasks of varying granularity in a rather unpre- cade the minimum degree (MD) ordering algorithm was (and
dictable way. Specifically the LU factorization algorithm for a to some extent remains so) the only efficient scheme that pro-
sparse matrix A leads to the generation of nonzero elements duces reasonably good orderings. In contrast to the minimum
in the factors L and U at places where A is zero. This phenom- degree that uses a local view of sparseness, the relatively re-
enon (known as ‘‘fill-in’’) strongly depends on the ordering of cent nested dissection (ND) ordering method is based on a
the equations/unknowns of the linear system and might to- global view and usually produces better orderings for a large
tally destroy the sparseness of A producing almost dense fac- class of matrices. Its drawback is that it is difficult to apply
tors. Besides computational and memory overheads, fill-in it to general matrices effectively. Step 1 usually costs less
makes the prediction of the data structures required for the than the subsequent steps. Nevertheless, one needs to paral-
factors L, U impossible without actually performing the fac- lelize it if good over all scalabability is desired. For this in the
torization beforehead. Due to the above reasons, achieving past few years several effective parallel (and serial)
good efficiency for sparse matrix computation on modern com- extensions/implementations of the MD and ND (both are not
puters is still a challenge. Several excellent review articles easily parallelizable) have been proposed (55). Step 3 con-
already exist on this subject, with Refs. 55 and 56 being the sumes most of the computing time. Its main source of paral-
most recent ones. lelism is in performing a set of row or column modifications

To simplify the beginning of our discussion we assume that by using multiple of prior rows columns. A key technique that
A is well-conditioned (e.g., positive definite) and therefore leads to significant improvement in the performance of paral-
there is no need for pivoting during the elimination process lel sparse direct methods is to recognize that as the elimina-
to avoid round-off error affects. This is a basic assumption tion progresses, the reduced matrix in sparse Gaussian elimi-
which, along with symmetricity on A, is very frequently im- nation becomes denser and at some point it is more efficient
posed in sparse factorization studies. Therefore we consider to switch to dense code. There are two main approaches here
the Cholesky factorization process of A � LLT which requires that allow the utilization of higher-level BLAS through the
the following steps: entire factorization. These are the frontal and supernodal ap-

proaches (56).
1. Order A to achieve sparseness in L. CAPPS is a package that implements the above factoriza-
2. Determine data structures for L by symbolically factor- tion scheme in parallel by assuming that the coefficient ma-

izing the ordered matrix. trix is symmetric and positive definite. It further assumes
that each unknown is associated with a set of coordinates in3. Compute L by numerically factorizing the ordered ma-

trix. Euclidean space (e.g., associated with a mesh point whose co-

630 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

ordinates are known). It uses a Cartesian nested dissection natural way and do not involve fill-ins. Nevertheless, the fun-
ordering to minimize the fill-in and increase parallelism and damental trade-off between parallelism (which prefers local-
consists of two disjoint codes, Map and Solve. Map first reads ity) and fast convergence rate (which is based on global de-
the matrix in a generalized symmetric sparse form and then pendence) poses challenges. Next we present some of the
runs sequential to map columns and nonzero elements to pro- recent parallel iterative packages that are publicly available,
cessors by generating a set of input files. Each one of them but the reader is referred to Ref. 58 for more technical details.
contains the local to each processor data. Solve is the fully AZTEC is a software package that contains several paral-
parallel code which runs hostless on each processor, reads the lel Krylov iterative methods (CG, GMRES, CGS, TFQMR,
associated input file, and solves the linear system by ex- BiCGstab) to solve general sparse matrices arbitrarily distrib-
ploiting the block nonzero structure of the ordered matrix. uted among processors. Its major kernel operation is a paral-
Specifically the nested dissection ordering creates zero blocks lel sparse matrix–vector one where the matrix and the vec-
that are preserved during the solution process and that allow tors must be distributed across the processors. In particular
the factorization of certain of the nonzero blocks to be done in the vector elements on each node are ordered into internal,
parallel. PSPASES is another parallel sparse solver restricted border and external sets depending on the information
to symmetric and positive definite linear systems. In contrast needed by the matrix–vector kernel. The internal and border
to CAPPS, it is fully parallel utilizing ParaMETRIS to deter- elements are updated by the node they are assigned to, and
mine a fill-in reducing ordering. Both PSPASES and CAPSS the values of the external elements are obtained via commu-
are MPI-based implementations written in Fortran/C. nication whenever the product is performed. Two distributed

Many important applications do not lead to either symmet- variants of modified sparse row and variable block row (see
ric or positive definite matrices. Therefore one needs to switch SPARSEKIT) data structures are used to store the local sub-
from Cholesky to LU factorization Partial pivoting to achieve matrices which are reordered in a manner similar to the one
numerical stability in the last two steps of the above given used for the local vectors. An additional high-level data inter-
algorithm. Unfortunately, this leads to data structure varia- face provides a local to global numbering which facilitates
tions during pivoting and unpredictable dependency struc- proper communication and synchronization.
tures and processor loads. Note that dynamic scheduling has A technique similar to the above parallelization approach
high run-time overhead compared to relatively fine grain com- has been used in //ITPACK, which consists of seven modules
putation and that cache performance is usually low. There- implementing SOR, Jacobi-CG, Jacobi-SI, RSCG, RSSI,
fore, parallelizing sparse LU factorization is an open problem. SSOR-CG, and SSOR-SI under different indexing schemes,
Nevertheless, the following two recent packages have achieve and it is integrated in the //ELLPACK system. The code is based
promising parallel performance. They both come in two ver- on the sequential version of ITPACK which was parallelized
sions: a shared memory and a distributed memory. by utilizing a subset of sparse BLAS routines.

SPOOLES implements multithreaded shared memory and
BlockSolve95 is another iterative library based on parallelMPI-based distributed memory parallel LU and QR factoriza-

BLAS kernels. Its main unique feature is the utilization oftion methods. Three ordering schemes are available while so-
powerful heuristic matrix ordering algorithms that allow thephisticated object-oriented data structures and manipulators
usage of higher-level dense BLAS operations. It assumes thatare extensively used. Each object has several methods to en-
a matrix is symmetric in structure and contains CG,ter data into, extract data from, and manipulate the data in
SYMMLQ, and GMRES synchronous and asynchronousthe objects. It is the first (and probably the only) parallel
methods. It exhibits increased parallel efficiency for linearsparse solver for full-rank overdetermined systems.
systems that are associated with PDE problems which involveSuperLU implements Gauss elimination with partial piv-
multiple degrees of freedom per node. This is achieved by tak-oting and is particularly appropriate for very unsymmetric
ing advantage of repeated communication patterns.matrices. It utilizes the supernode technique and involves

Another preconditioned CG-based software system for solv-both a user-supplied array organized as a two-ended stack
ing systems of sparse linear algebraic equations methods on(one for the L and one for the U matrix) and dynamically
a variety of computer architectures is PCG. This software isgrowing arrays. Although its original version was sequential,
designed to give high performance with nearly identical usercarefully designed to exploit memory hierarchies, parallel ver-
interface across different scalar, vector, and parallel plat-sions for both shared and distributed memory systems are
forms as well as across different programming models suchcurrently available. In the shared memory implementation an
as shared memory, data parallel, and message passing pro-asynchronous scheduling algorithm is used by a scheduler
gramming interfaces. This portability is achieved through theroutine which forces a priority-based scheduling policy. This

results in significant space and time improvements. A non- m4 macro preprocessor. PCG has several levels of access
trivial modification of superLU (57) that is based on a run- allowing the user to either (1) call the driver routine using
time partitioning and scheduling library consists of a distrib- one of the predefined sparse matrix data structures as a black
uted memory LU implementation that achieved promising box or (2) call at the level of the iterative method with a direct
parallel efficiency. We should note that for brevity reasons communication interface and user-defined sparse matrix data
the very recent era of automatic parallelization of sparse com- structures and matrix vector routines or finally use an in-
putations through parallelizing compilers and run-time com- verse communication layer that allows full user control and
pilation techniques (57) is not considered here. permits more general matrix–vector product operations.

A similar to PCG package that solely focuses on iterative
Iterative Solvers methods is PIM. Its is largely independent of data structures

and communication protocols, and the user is expected to cus-Iterative methods can in principle be parallelized easier than
direct methods mainly because they exploit sparseness in a tomize the basic matrix–vector and vector–vector operations

PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE 631

needed in the algorithm on the intended targeting parallel en- decomposition methods (Schur complement, Additive and
Multiplicative Schwartz, and generalized Block Jacobi andvironment.

Finally, P-SPARSLIB follows the methodology of //IT- SSOR). In addition, it provides a mechanism that allows the
user to control the sequentiality while trying to make thePACK and contains a large class of iterative methods and pre-

conditioners and preprocessing tools. The lower level of this right trade-off between parallelism and fast convergence rate.
We note that although the BlockSolve95 package containslibrary is a collection of message-passing tools coupled with

local BLAS-1 routines. This message-passing toolkit consists several iterative methods, it was designed for its multicolor-
ing, fully parallel, incomplete factorization preconditioner.of boundary information exchange routines, distributed dot

product, send/receive routines used at the preprocessing
stage, and auxiliary functions for machine configuration and ACKNOWLEDGMENTS
task synchronization. The rest of the modules, which exploit
issues in domain decomposition, distribute sparse data struc- We are grateful to V. Verykios for the constructive discussion
tures, and avoid communication redundancies due to repeated which helped us review the domain decomposition software
data exchange patterns, are completely machine-independent. packages. The work of E. Houstis was supported by the Na-

The source code of //ITPACK, PCG, PIM, and P-SPARSLIB tional Science Foundation under grants NSF CDA-9123502
is mainly in dialects of Fortran, while AZTEC and and CCR-92022536 and ARPA grant DAAH04-94-G-0010. The
BlockSolve95 are written in C/C��. All of the dialects in- work of A. Sameh and E. Gallopoulos was supported by the Na-
clude a PVM and/or an MPI version. It is worth noting that tional Science Foundation under grant NSF CCR-912010. The
all the above software packages do not partition the matrix work of E. Vavalis was supported by PENED grants 95-602 and
across processors. Their performance strongly depends on the 95-107. The work of T. Papatheodorou was supported by ES-
assumed partition usually obtained by the algorithms and in- PRIT Basic Research Action Project APPARC.
frastructure presented in the section entitled ‘‘Parallel Dense
Linear Algebraic Solvers.’’

BIBLIOGRAPHY

Preconditioning 1. T. Chan and R. S. Tuminaro, A survey of parallel multigrid algo-
rithms, Amer. Soc. Mech. Eng., AMD-86, 1987.The most efficient algorithms for solving sparse linear sys-

2. J. Flaherty et al., Parallel Computation in Adaptive Finite Ele-tems appear to be the ones that combine both direct and itera-
ment Analysis, in C. Brebbia and M. Aliabadi (eds.), Adaptivetive methods through a technique known as preconditioning.
Finite Element and Boundary Element Methods, London: Elsevier

Given the linear system Ax � b, a preconditioner matrix M is Applied Science, 1993.
sought such that it consists of a good approximation of A and

3. M. Pinto, C. Rafferty, and R. Dutton, Pisces-ii Poisson and conti-
is easily invertible. Given such a preconditioner, we solve the nuity equation solver, Stanford Univ. Electron. Laboratory Tech.
preconditioned system M�1Ax � M�1b by standard iterative Rep., 1984.
methods in which only actions on A and M�1 are needed. Pre- 4. E. N. Houstis et al., ELLPACK: A Numerical Simulation Pro-
conditioners can be either algebraic in nature (constructed gramming Environment for Parallel MIMD machines, in D. Ma-
solely from the linear system) or PDE-based (using knowledge rinescu and R. Frost (eds.), Int. Conf. Supercomput., New York:
from the associated continuous PDE problem). Due to its di- ACM Press, 1990, pp. 96–107.
versity, the latter case will not be considered here. Incomplete 5. C. Pommerell, M. Annaratone, and W. Fichtner, A set of new
factorization preconditioners (ILU class) or iterative matrix- mapping and coloring heuristics for distributed-memory parallel

processors, SIAM J. Sci. Stat. Comput., 13: 194–226, 1992.based preconditioners (Jacobi, SSOR, etc.) belong in the first
category and are relatively easy to parallelize following the 6. C. Farhat and H. D. Simon, TOP/DOMDEC—a software tool for

mesh partitioning and parallel processing, Tech. Rep. RNR-93-techniques presented previously in this article. Nevertheless,
011, NASA Ames Res. Center, 1993, pp. 1–28.the trade-off between parallelism and fast convergence rate

7. D. S. Dodson, R. G. Grimes, and J. G. Lewis, Sparse extensionsmentioned previously is much more crucial in preconditioning
to the Fortran basic linear algebra subprograms, ACM Trans.and makes its parallelization very challenging. Assuming
Math.Softw., 17: 253–263, 1991.that the linear system comes from a PDE discretization

8. E. N. Houstis and J. R. Rice, Parallel ELLPACK: A developmentmethod, one can exploit parallelism by using (1) node reorder-
and problem solving environment for high performance comput-ing or grouping, (2) series expansion [Neumann or Euler
ing machines, in P. W. Gaffney and E. N. Houstis (eds.), Pro-expansions of (I � L)�1, polynomial preconditioners, etc.], (3)
gramming Environments for High-Level Scientific Problem Solv-domain decomposition (e.g., Schwartz splitting), and (4) mul- ing, New York: North-Holland, 1992, pp. 229–241.

tilevel techniques. Most of the iterative packages mentioned
9. S. Kim, Parallel numerical methods for partial differential equa-

above provide at least one (usually Block Jacobi) precondi- tions, Ph.D. thesis, Tech. Rep. CSD-TR-94-090, Comput. Sci.,
tioner. Purdue Univ., 1993.

There exist two software systems that construct and apply 10. P. Wu and E. N. Houstis, Parallel mesh generation and decompo-
preconditioners in parallel. Both are fully algebraic in the sition, Comput. Syst. Eng., 1994.
sense that they only need the partitioned matrix and its con- 11. S. Baase, Computer Algorithms: Introduction to Design and Analy-
nectivity information. SPAI provides an approximation L of sis, Reading, MA: Addison-Wesley, 1988, pp. 145–207.
A�1 by considering the minimization problem min�LA � I�. 12. P. Sadayappan and F. Ercal, Nearest-neighbor mapping of finite
The parallelism is due to the fact that this minimization prob- element graphs onto processor meshes, IEEE Trans. Comput., C-
lem is reduced to a set of independent subproblems. Another 36: 1408–1424, 1987.
similar library is ParPre. It focuses on parallel precondi- 13. A. George and J. W. H. Liu, An implementation of a pseudope-

ripheral node finder, ACM Trans. Math. Softw., 5: 284–295, 1979.tioning based on multilevel (algebraic multigrid) and domain

632 PARALLEL NUMERICAL ALGORITHMS AND SOFTWARE

14. M. Al-Nasra and D. T. Nguyen, An algorithm for domain decom- 39. P. Swarztrauber, Multiprocessor FFTs, Parallel Comput., 5 (1–2):
197–210, 1987.position in finite element analysis, Comput. Struct., 39 (3–4):

227–289, 1991. 40. B. Buzbee, G. Golub, and C. Nielson, On direct methods for solv-
ing Poisson’s equation, SIAM J. Numer. Anal., 7: 627–656, 1970.15. M. Fiedler, A property of eigenvectors of nonnegative symmetric

matrices and its application to graph theory, Czech. Math. J., 25: 41. R. A. Sweet, A cyclic reduction algorithm for solving block tridia-
619–633, 1975. gonal systems of arbitrary dimension, SIAM J. Numer. Anal., 14:

1977, pp. 707–720.16. H. D. Simon, Partitioning of unstructured problems for parallel
42. P. N. Swarztrauber, A direct method for the discrete solution ofprocessing, Comput. Syst. Eng., 2 (2–3): 135–148, 1991.

separable elliptic equations, SIAM J. Numer. Anal., 11: 1136–17. B. Hendrickson and R. Leland, An improved spectral load balanc-
1150, 1974.ing method, in Sixth SIAM Conf. Parallel Proc. Sci. Comput., 1993,

43. P. N. Swarztrauber and R. A. Sweet, Algorithm 541: Efficient For-pp. 953–961.
tran subprograms for the solution of separable elliptic partial dif-18. S. T. Barnard and H. D. Simon, A fast multilevel implementation
ferential equations, ACM Trans. Math. Softw., 5: 352–364, 1979.of recursive spectral bisection for partitioning unstructured prob-

44. O. Buneman, A compact non-iterative Poisson solver, Tech. Rep.lems, Sixth SIAM Conf. Parallel Process. Sci. Comput., 1993,
294, Stanford Univ. Inst. Plasma Res., Stanford, CA, 1969.pp. 711–718.

45. E. Gallopoulos and Y. Saad, Parallel block cyclic reduction algo-19. M. Loriot and L. Fezoui, Mesh-splitting preprocessor, Tech. Rep.,
rithm for the fast solution of elliptic equations, Parallel Comput.,Simulog Inc, 1989.
10 (2): 143–160, 1989.

20. R. D. Williams, Performance of dynamic load balancing algo-
46. E. Gallopoulos and A. H. Sameh, Solving elliptic equations on the

rithms for unstructured mesh calculations, Concurrency: Practice Cedar multiprocessor, in M. H. Wright (ed.), Aspects of Computa-
and Experience, 3 (5): 457–481, 1991. tion on Asynchronous Parallel Processors, Amsterdam: Elsevier/

21. N. P. Chrisochoides, E. N. Houstis, and J. R. Rice, Mapping algo- North-Holland, 1989, pp. 1–12.
rithms and software environments for data parallel PDE itera- 47. G. N. Frank, Experiments on the Cedar multicluster with paral-
tive solvers, J. Distrib. Parallel Comput., 21: 75–95, 1994. lel block cyclic reduction and an application to domain decomposi-

22. H. Byun, E. N. Houstis, and S. Kortesis, A workload partitioning tion methods, Master’s thesis, Dept. Comput. Sci., Univ. Illinois
strategy for PDE computations by a generalized neural network, at Urbana-Champaign, 1990.
Neural, Parallel and Sci. Comput., 1 (2): 209–226, 1993. 48. E. Gallopoulos and Y. Saad, Some fast elliptic solvers for parallel

architectures and their complexities, Int. J. High Speed Comput.,23. V. Verykios and E. N. Houstis, Parallel ELLPACK 3-D problem
1: 113–141, 1989.solving environment, Tech. Rep. TR-97-028, Dept. Comput. Sci.,

Purdue Univ., 1997. 49. R. Sweet, Vectorization and Parallelization of FISHPAK, in J.
Dongarra et al. (eds.), Proc. 5th SIAM Conf. Parallel Proc. Sci.24. J. J. Dongarra et al., An extended set of basic linear algebra sub-
Comput., Philadelphia: SIAM, 1992, pp. 637–642.programs: Model implementation and test programs, ACM Trans.

50. R. Hockney, A fast direct solution of Poisson’s equation usingMath. Softw., 14: 18–32, 1988.
Fourier analysis, J. Assoc. Comput. Mach., 12: 95–113, 1965.25. J. J. Dongarra et al., A set of level 3 basic linear algebra subpro-

51. R. W. Hockney, Characterizing computers and optimizing thegrams, ACM Trans. Math. Softw., 16: 1–17, 1990.
facr(l) Poisson solver on parallel unicomputers, IEEE Trans.26. K. Gallivan, R. Plemmons, and A. Sameh, Parallel algorithms for
Comput., C-32: 933–941, 1983.dense linear algebra computations, SIAM Rev., 32: 54–135, 1990.

52. R. W. Hockney, The n1/2 Method of Algorithm Analysis, in B.
27. G. Birkhoff and R. Lynch, Numerical Solution of Elliptic Prob- Engquist and T. Smedsaas (eds.), PDE Software: Modules, Inter-

lems, Philadelphia: SIAM, 1984. faces and Systems, Amsterdam: Elsevier/North-Holland, 1984,
28. P. Henrici, Discrete Variable Methods in Ordinary Differential pp. 429–445.

Equations, New York: Wiley, 1962. 53. P. N. Swarztrauber, The methods of cyclic reduction, Fourier
29. M. Vajteršic, Algorithms for Elliptic Problems: Efficient Sequential analysis and the facr algorithm for the discrete solution of Pois-

and Parallel Solvers, Dordrecht: Kluwer, 1993. son’s equation on a rectangle, SIAM Rev., 19: 490–501, 1977.
54. C. Temperton, On the facr(l) algorithm for the discrete Poisson30. R. Lynch, J. Rice, and D. Thomas, Direct solution of partial differ-

equation, J. Comput. Phys., 34: 314–329, 1980.ence equations by tensor product methods, Numer. Math., 6: 185–
199, 1964. 55. M. T. Heath, Parallel Direct Methods for Sparse Linear Systems,

in A. S. D. E. Keyes and V. Venkatakrishnan (eds.), Parallel Nu-31. C. Van Loan, Computational Frameworks for the Fast Fourier
merical Algorithms, Boston: Kluwer, 1997, pp. 55–90.Transform, Philadelphia: SIAM, 1992.

56. I. S. Duff, Sparse numerical linear algebra: Direct methods and32. J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using
preconditioning, Tech. Rep. RAL-TR-96-047, Rutherford AppletonELLPACK, Berlin: Springer-Verlag, 1985.
Laboratory, Oxon, UK, 1996.

33. R. Hockney, (r�, n1/2, s1/2) measurements on the 2-CPU Cray X-
57. C. Fu, X. Jiao, and T. Yang, Efficient sparse LU factorization

MP, Parallel Comput., 2 (1): 1–14, 1985. with partial pivoting on distributed memory architectures, IEEE
34. B. Buzbee, A fast Poisson solver amenable to parallel computa- Trans. Parallel Distrib. Comput., 9: 109–125, 1998.

tion, IEEE Trans. Comput., C-22: 793–796, 1973. 58. V. Eijkhout, Overview of iterative linear system solver packages,
35. O. McBryan and E. Van De Velde, Hypercube algorithms and [Online] 1997. Available: ftp://math.ucla.edu/pub/eijhout/papers/

implementations, SIAM J. Sci. Stat. Comput., 8: s227–s287, 1987. packages.ps
36. U. Schumann, Comments on ‘‘A fast computer method for matrix

transposing’’ and application to the solution of Poisson’s equation, E. N. HOUSTIS

IEEE Trans. Comput., C-22: 542–544, 1973. A. SAMEH

E. VAVALIS37. D. Gannon and J. V. Rosendale, On the impact of communication
Purdue Universitycomplexity on the design of parallel numerical algorithms, IEEE

Trans. Comput., C-33: 1180–1194, 1984. E. GALLOPOULOS

38. R. Hockney and C. Jesshope, Parallel Computers, Bristol, En- T. S. PAPATHEODOROU

University of Patrasgland: Hilger, 1983.

