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MULTIPROGRAMMING AND MULTIPROCESSING

Most multiprocessors, and certainly all large-scale multipro-
cessors, represent an enormous capital investment with a
short half-life. As an example of the expense associated with
these machines, in 1996 the United States Department of En-
ergy purchased a 9072-node multiprocessor from Intel Corpo-
ration for roughly $55 million (http://www.sandia.gov/media/
teraflop.htm). Smaller configurations costing between $1 M
and $10 M are often purchased by commercial companies and
universities. This investment in hardware must be amortized
over a short period of time because most multiprocessors be-
come obsolete within a few years. Processor speeds improve
so quickly that a new generation of multiprocessors appears
every three years with faster processors, larger memories and
caches, and improved communication networks. To amortize
the cost, multiprocessors are often purchased by consortiums
of institutions and departments, representing a large number
of end users and applications.

Given the costs of large-scale machines and their relatively
short lifetime, each machine must be utilized fully in order to
recoup the investment. Furthermore, the user community in
a consortium will typically place severe response-time de-
mands on the shared resource. To maximize utilization of the
resource and minimize throughput for users, multiprocessors
must be multiprogrammed, just like the large mainframe
computers of the past.

This expectation of multiprogramming of multiprocessors
is further exacerbated by architectural trends. In particular,
we can expect current and near future multiprocessors to be
constructed using networks of workstations (NOWs) (1),
wherein high-performance workstations are connected by a
high-speed interconnection network. The very nature of the
NOW architecture, which allows an individual workstation to
be used both as a workstation and as a node in a multipro-
cessor, suggests that several applications (sequential, paral-
lel, and distributed) will share a NOW-based multiprocessor
at the same time.

The problem of multiprogramming a single processor
among competing sequential applications is well understood,
having been studied both theoretically and experimentally
since the 1960s. The problem of multiprogramming a multi-
processor among competing applications, which may include
sequential, parallel, and even distributed programs, is a sub-
ject of on-going research. Several new dimensions to the
problem complicate the search for solutions. First, a multipro-
cessor may have thousands of processors, and the multi-
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programming policy must strive to keep them all busy. Thus, Under this policy, all processes have a chance to make for-
ward progress. Furthermore, this policy perfectly balancesa simple extension of traditional multiprogramming ap-
the load since no processor remains idle while there exist pro-proaches (wherein each application uses the machine for a
cesses to be executed. Unfortunately, this policy is not alwaysbrief period of time and then passes it on to another) will
suitable for parallel applications, even though it is effectivenot suffice because many applications cannot fully utilize all
for time-sharing workloads of sequential jobs. The problem isprocessors. Second, parallel applications have multiple pro-
that it doesn’t treat all applications fairly. The policy is faircessess, and these processes interact (via synchronization and
to each individual process in that over a long period of time,communication) during execution. Therefore, the processes
all processes receive roughly the same amount of computingthat make up a single application cannot be scheduled inde-
power. However, not all applications create the same numberpendently since they must be executing simultaneously in or-
of processes, and an application that creates an artificiallyder to interact efficiently. Third, multiprocessors typically
large number of processes receives additional quanta as a re-have complex memory hierarchies that include local and re-
sult. Malicious users could easily monopolize the system bymote memory, multi-level caches, and hardware coherence
creating extra processes. Although this situation exists in tra-protocols. Any scheduling policy designed to maximize
ditional uniprocessor systems too, the complexity of addingthroughput or utilization must take these architectural fea-
processes to a sequential application serves as a barriertures into account since they are important factors in applica-
against malicious behavior. The problem is more acute in ation performance.
multiprocessor environment, where almost every applicationAn appropriate multiprogramming policy must simultane-
already contains some number of processes, and the barrierously address multiple issues: fairness to each application,
to adding more is low.overall system utilization, the underlying architectural fea-

The round-robin job (RRjob) scheduling policy (2) was de-tures, and the differing needs of sequential and parallel appli-
veloped to provide fair treatment to each application. Insteadcations. Different policies stress different aspects of the prob-
of a central ready queue for processes, RRjob keeps a centrallem, depending on the particular features of the system under
queue of applications (or jobs). Scheduling is performed in aconsideration. In this paper, we consider each of these issues
round-robin fashion among the applications. Each time an ap-and describe multiprogramming policies designed to address
plication comes to the front of the queue, it receives P quantathem. We also explain the relative advantages of each policy
of size q, where P is the number of processors, and q is a basicand suggest which policies are most appropriate for each
quantum size on each processor. If the application has N pro-multiprocessor environment.
cesses (where N, � P), it receives N quanta of size P/N � q.
By changing the number and size of quanta assigned to each
application, RRjob ensures that all applications receive theMULTIPROGRAMMING SHARED-MEMORY
same aggregate computing power. Each idle processor takesMULTIPROCESSORS
the first process out of the first application of the central
queue of applications, executes it for one quantum (of size

The first widely available multiprocessors were small-scale P/N � q), then context switches and takes the next process
bus-based cache-coherent shared-memory machines such as in the front of the queue. Since neither all processors context
the Sequent Symmetry and Balance, the Encore MultiMax, switch at the same time, nor all processes receive the same
and the DEC Firefly workstation. In these machines, there quantum, it is not guaranteed that all processes of an applica-
was a single main memory accessed through the shared bus, tion will be scheduled for execution at the same time.
and each processor was equipped with a small cache, so that Both RRjob and the simple UNIX-extension policy impose
the most frequently accessed data could be kept nearby. Since significant overheads on parallel programs because neither
all of the main memory was accessible by all processors for policy respects the constraints imposed by a parallel applica-
roughly the same cost, these machines became known as uni- tion’s need to communicate and synchronize. Neither of these
form-memory-access (UMA) multiprocessors. policies makes an attempt to coordinate the scheduling of pro-

One defining attribute of an UMA multiprocessor is that a cesses that belong to the same application. In particular,
process can be executed on any processor since all processors there is no guarantee that the processes comprising a single
share the same main memory. The cost of moving a process application are scheduled for execution together. If a cur-
from one processor to another is dominated by the cost of re- rently executing process needs to synchronize with another
filling the local cache, but the cache sizes on these early ma- process in the same application, and that other process is cur-
chines (4 kB on the Sequent Balance and 64 kB on the Se- rently suspended, the synchronization operation cannot com-
quent Symmetry) were such that this cost was not significant. plete until the suspended process is scheduled for execution,

These early multiprocessors were often used as central by which time the original process may have been suspended.
servers that had to accommodate multiple users running both If the operating system scheduler decides to preempt a pro-
sequential and parallel applications. The operating systems cess (due to quantum expiration) that is inside a critical sec-
on these early multiprocessors were extensions of UNIX, and tion, then no other process will be able to enter the critical
the multiprogramming policy was a straight-forward exten- section until the preempted process is rescheduled for execu-
sion of the UNIX scheduling policy. There was a single ready tion and exits the critical section. In such cases, the speed at
queue of processes waiting to execute, and idle processors which a process is able to execute depends not on how many
would take the process at the head of the queue and execute processor cycles it receives, but whether the process is able to
it for one quantum. At the end of the quantum, the operating make forward progress when it receives the processor cycles
system would suspend the process and put it back in the cen- (due to synchronization constraints). Both simulation and ex-

perimental results suggest that the possibility of preemptiontral ready queue.
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within a critical section may degrade the performance of an perform a context switch (at the same time) and begin
executing the corresponding process in row 1. This pro-application significantly (3). Any multiprogramming policy

designed to meet the needs of parallel applications must deal cess continues through each row of the matrix, and then
returns to row 0.with these effects.

The reservation matrix for our earlier example (with appli-Coscheduling
cations A1, A2, and A3) would look like this:

The problem of efficiently scheduling cooperating processes
was first addressed experimentally by Ousterhout (4) in the
Medusa multiprocessor operating system. Ousterhout sug-
gested an analogy between scheduling in parallel processors

A1 A1 A1 A1 A2 A2 A2 A2

A3 A3 A3 A3 A3 A3 A3 A3
and disk thrashing in early paging systems. Just as applica-
tions have a working set of memory pages that should be resi- Unfortunately, it is not always easy to fill up the allocation
dent in main memory at the same time (so as to avoid de- matrix as nicely as the above example suggests. In particular,
laying execution while waiting for a page request from disk), if application A2 completes its execution and is removed from
parallel applications have an activity working set that con- the allocation matrix, then the matrix would look like this:
sists of all processes that interact with each other frequently.
Processes that belong to the same activity working set must
be coscheduled (that is, scheduled for simultaneous execution)
in order to ensure efficient communication and synchroniza-

A1 A1 A1 A1

A3 A3 A3 A3 A3 A3 A3 A3
tion. If the scheduler does not coschedule all processes that
belong to the same activity working set, then the system will Under this allocation scheme, A1 will be coscheduled on one
suffer from activity thrashing. In such a case, the progress of half of the machine during its scheduling quantum, while the
the parallel program is limited by the rate at which processes other half of the machine remains idle, thereby wasting pro-
are scheduled for execution, rather than the speed of the pro- cessor cycles. Any attempt to utilize those wasted cycles by
cessors. assigning them to A3 is of limited benefit, since only half of

In coscheduling, all processes of an application (which usu- the processes in A3 could be assigned to the idle processors,
ally comprise an activity working set) are scheduled to run at and those processes would have to suspend execution as soon
the same time. As an example, consider an 8-processor system as they needed to synchronize with any of the processes not
with three applications, A1, A2, and A3, requiring 4, 4, and 8 allocated to an idle processor.
processors, respectively. Under coscheduling, the processes of If application A3 completes its execution and another appli-
applications A1 and A2 can run in parallel during one schedul- cation, A4, requiring five processors enters the system, then
ing quantum, after which all processors context switch at the the matrix would look like this:
same time, and then execute the processes of application A3.
When another quantum expires, the process repeats, so that
all the processes of an application always execute simultane-
ously, and yet all processors are utilized to the fullest extent

A1 A1 A1 A1

A4 A4 A4 A4 A4
possible. As this example makes clear, another goal of
coscheduling is to maximize the number of applications that In this scenario, 7/16 (44%) of the available slots are unused.
are coscheduled, so as to maximize processor utilization. To It is easy to see that in the worst case about half the pro-
achieve both goals simultaneously (minimize the extent of ac- cessors remain idle or execute processes of non-coscheduled
tivity thrashing and maximize utilization), Ousterhout pro- applications. Using simulation, Ousterhout concluded that on
posed three algorithms that allocate processors and schedule average, about 80% of the processors are executing cosched-
processes: the matrix algorithm, the continuous algorithm, uled applications, while the remaining 20% of the processors
and the undivided algorithm. are either idle or executing processes belonging to non-

coscheduled applications.
Matrix Algorithm. Under the matrix algorithm, the multi- Fortunately, pathological cases are uncommon, in part be-

processor is assumed to consist of P processors, each of which cause the number of processors requested by many parallel
can be multiplexed among at most A applications. The algo- applications is a power of two. In that case, more effective
rithm maintains an A � P allocation matrix, representing the allocation algorithms are possible. For example, Feitelson and
process that will be run by each processor at each quantum. Rudolph (5) suggest a hierarchical scheduler that is reminis-
The algorithm works as follows: cent of the buddy system for memory allocation. In this

scheme, all processors are organized as leaves in a binary
• Allocation:. To accommodate a new application with p tree, where the inner nodes of the tree are called controllers.

processes, the rows of the matrix are scanned (starting A request for 2n processors is passed to the appropriate level
from row 0), until a row with at least p empty slots is in the tree, where the peer controllers cooperate to assign the
found (success), or all A rows have been examined (fail- application to the least loaded controller. The result of this
ure). policy is coscheduled applications and a balanced workload

• Scheduling:. The scheduler multiplexes the machine across processors.
among the different rows of the matrix. During quantum
0, each processor executes the corresponding process as- Continuous Algorithm. Most of the drawbacks of the matrix

algorithm arise because all processes of an application are al-signed to row 0. At the end of the quantum, all processors
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located within the same row of the matrix, thus leaving sev- Demand-based coscheduling requires some mechanism to
identify processes that actively interact and, therefore, shoulderal ‘‘holes’’ in the allocation matrix. The continuous algo-

rithm was designed to overcome this problem by allocating be coscheduled. A trace of the messages in a message-passing
system would identify the sender and recipient of a message,processes in a linear array of scheduling slots, instead of a

two-dimensional matrix of scheduling slots. In the linear who would then become candidates for coscheduling. In
shared-memory multiprocessors, a trace of cache invalida-array, the Nth slot is the (N div P)th slot of processor (N mod

P). Thus, the linear array is simply a row-major allocation of tions may be enough to identify processes that actively share
data. There is also lots of hardware state that can be exam-the matrix described in the previous algorithm. For example,

if N equals 80, and P equals 8, then slot 1 is the first slot of ined to identify communicating processes. For example, if a
page is actively shared by two processes, then the virtual-to-processor 1, slot 2 is the first slot of processor 2, slot 3 is the

first slot of processor 3, etc. Slot 9 is the second slot of pro- physical address translation of the page will be in the TLBs
(translation lookaside buffers) of the two processors on top ofcessor 1; slot 10 is the second slot of processor 2, etc.

The continuous algorithm works as follows: which the two processes execute; communicating processes
can be identified by examining TLB contents regularly.

Once communicating processes are identified, the demand-• Allocation. In a machine with P processors, initialize a
based coscheduling policy makes every effort to coschedulewindow of width P, such that the leftmost slot in the win-
them. Under demand-based coscheduling, messages arrivingdow is the leftmost empty slot in the linear array. If
at a node, if addressed to a process other than the one cur-there are enough empty slots in the window to accommo-
rently executing, may cause preemption of the running pro-date the needs of the application, assign those slots to
cess in favor of the process to which the message is addressed,the application (success). If not, slide the window to the
effectively achieving simultaneous execution of communicat-right, repeating the process until either a window posi-
ing processes.tion that can contain the entire applications is found

(success), or the end of the linear array is reached (fail-
ure). Operating System Issues. Although coscheduling is a gen-

eral-purpose scheduling method that avoids activity thrash-• Scheduling. Initialize a scheduling window of width P at
ing, it has not been implemented in many operating systems.the leftmost end of the linear array. At the beginning of
Two problems arise in any practical implementation ofeach quantum, move the window one or more slots to the
coscheduling:right, until the leftmost activity in the window is the left-

most activity of an application that was not coscheduled
in the previous quanta. • Processor Synchronization. Under coscheduling, all pro-

cessors must switch context at the same time. Some
small-scale, bus-based multiprocessors have a commonThe continuous algorithm is superior to the matrix algo-
interrupt line that can be used for this purpose. Unfortu-rithm, since it can pack activity working sets more nicely
nately, medium-scale and large-scale systems rarelywithin the available slots. In fact, the matrix algorithm can
have such hardware support. In these systems, anotherbe viewed as a special case of the continuous algorithm, in
mechanism, presumably implemented in software, iswhich the window always moves P slots to the right. The con-
needed. To make matters worse, context switching alltinuous algorithm can still suffer unused slots; however, as
processors at the same time in modern NOW-basedapplications complete execution and free up their slots, the
multiprocessors is increasingly difficult due to the dis-continuous algorithm may end up with lots of small sequences
tributed nature of the system.of empty slots, a phenomenon similar to external fragmenta-

tion of memory. In such a scenario, there are several empty • Single processes–daemons. In most multiprocessor sys-
slots to accommodate new applications, but these slots are tems, there exist sequential applications and operating
widespead over the linear space of slots and, thus, cannot be system daemons that are not parallel applications, and
used. thus do not need coscheduling. In fact, these processes

(especially operating system daemons) tend to steal pro-
cessor cycles from coscheduled processes, underminingUndivided Algorithm. The undivided algorithm is an at-
the coscheduling policy.tempt to reduce the fragmentation that arises in the continu-

ous algorithm. The undivided algorithm is identical to the
continuous algorithm in every aspect, except that during allo- The first implementation of coscheduling was by Oust-
cation, all the processes of each new application are required erhout; he used the matrix algorithm in the Medusa op-
to be contiguous in the linear array. erating system (4). Twelve years later, coscheduling was im-

plemented in the Psyche multiprocessor operating system
(7,8), primarily for the purpose of comparing alternativeDemand-Based Coscheduling. All of the coscheduling algo-

rithms proposed by Ousterhout were static, in that once an scheduling policies experimentally. In Psyche, each processor
has its own ready queue of processes; the matrix algorithm isapplication was given some activity slots, it could not change

them, even if the needs of the application changed. Thus, used to determine when to run a process. All processors
switch context at the same time, using a scalable barrier (9)none of these algorithms can adapt to changes in communica-

tion and synchronization behavior. Demand-based coschedu- embedded in the clock handler on each processor. The experi-
mental results obtained from the Psyche implementation con-ling (6) was designed to make coscheduling work more like

demand paging, in that only those processes that communi- firmed expectations: coscheduling processes that communi-
cate frequently provide significant performance advantagescate or synchronize frequently need to be coscheduled.



MULTIPROGRAMMING AND MULTIPROCESSING 29

over asynchronous time-sharing of processes among pro- basis) among processes that belong to different applications.
Time-sharing policies tend to increase the cache miss ratescessors.

Despite these positive results, coscheduling is still rarely since each scheduling quantum involves a new process which
must load the cache with its own data. Modern caches areused. One reason may be the assumption that any implemen-

tation will be at best 80% effective as predicted in Oust- very large, consisting of several Mbytes of data, and a process
can spend a significant portion of its quantum just to reloaderhout’s simulations (4). Another reason may be the modifi-

cations to the operating system kernel that are often difficult its working set into the processor’s cache. In doing so, a pro-
cess creates an affinity for a processor, but that affinity isto implement. Another contributing factor has been the devel-

opment of simpler mechanisms that, if exploited appropri- destroyed if the process is moved to another processor. Pre-
serving affinity by always running a process on the same pro-ately by user applications, can also reduce the synchroniza-

tion overheads imposed on parallel applications by naive cessor improves cache hit rates, but may lead to load imbal-
ance. That is, if processes are statically assigned to processorsscheduling policies. Each of these mechanisms is based on the

sharing of information between the operating system kernel, and never migrate, as jobs enter and leave the system, some
processors may become overloaded while others become idle.which is responsible for process scheduling, and the thread

library, which is responsible for creating user-level processes A hierarchical structure of ready queues can be used to
remedy this form of load imbalance while preserving affinity.and providing the appropriate communication and synchroni-

zation operations. In such a scheme, each processor has its own ready queue,
but there is also a single system ready queue where newlyThe Psyche operating system incorporates a mechanism

called the two-minute warning (10). When a process is about created processes are placed. Each processor takes processes
to execute from its own ready queue. When those processesto be preempted due to quantum expiration, the kernel initi-

ates an upcall (the so-called two-minute warning) to the pro- complete and the queue empties, the processor takes pro-
cesses from the single system ready queue and places themcess. This upcall is nothing more than an asynchronous noti-

fication that the process is about to be preempted, in which in its own ready queue. In the rather rare case where the
single system queue is empty as well, a processor takes pro-case, the process should refrain from engaging in any syn-

chronization activity that could delay other processes from cesses from another processor (destroying affinity, but utiliz-
ing what would otherwise be an idle processor). Simulationmaking forward progress. In particular, if a process is about

to be preempted, it should avoid entering a critical section. results show that affinity-preserving policies such as this out-
perform other scheduling policies in shared-memory multipro-Experimental results suggest that the two-minute warning

can improve performance by a factor of three or more by en- cessor systems (14).
Space-sharing policies are a general class of schedulingsuring that no process is blocked while attempting to enter a

critical section occupied by a process that is not running (10). policy that preserve affinity. In this class of policy, processors
are allocated among the applications so that no two applica-In the Symunix operating system (11), each process shares

a do-not-preempt-me bit with the kernel. When a process is tions share a processor. The operating system is responsible
for processor allocation; the compiler and run-time system areabout to enter a critical section, it sets the do-not-preempt-

me bit and resets it when it exits the critical section. When responsible for scheduling the application’s processes (or
threads) on those processors. The allocation of processors tothe scheduler is about to preempt a process due to quantum

expiration, it checks the do-not-preempt-me bit first. If the bit applications may be static, semistatic (reevaluated when a
new application arrives or an application completes execu-is set, the scheduler does not preempt the process and allows

it to execute for another quantum. Of course, a malicious user tion), or fully dynamic (reevaluated as an application’s paral-
lelism changes).might leave the do-not-preempt-me bit set forever in order to

monopolize the processor. To avoid this possibility, the sched- Static policies are the easiest to implement. Their main
advantage is that they provide applications with a depend-uler abides by the do-not-preempt-me bit a limited number

of times. able computing environment that is guaranteed not to change
for the duration of the execution. Given such a guarantee,Scheduler activations (12) are another mechanism de-

signed to avoid the overhead associated with preemption in- applications can optimize the granularity of parallelism, com-
munication pattern, and synchronization behavior to matchside a critical section. Unlike Psyche and Symunix, scheduler

activations allow processes to be preempted inside a critical the set of processors that are available. Unfortunately, static
policies tend to underutilize the machine since (for example)section. Whenever a process requests a lock that is held by a

preempted process, the preempted process is resumed for as any application that completes its execution frees up pro-
cessors, but those processors cannot be assigned to any otherlong as it needs to exit the critical section. Then it gets sus-
currently executing application. To improve system utiliza-pended, and the process that requested the lock resumes exe-
tion, semi-static space-sharing scheduling policies have beencution and enters the critical section.
proposed. These policies re-evaluate the allocation of pro-Kontothanassis et al. (13) propose novel synchronization
cessors to applications when an application arrives or de-primitives that interact with the operating system scheduler
parts. When a new application arrives, the scheduler mustto reduce the overheads associated with synchronization in
take processors from the other applications in order to runthe presence of multiprogramming.
the new application; when an application completes, its pro-
cessors are re-distributed to the other running applications.Space-Sharing Policies

Crovella et al. (7) implemented a semi-dynamic space-
All of the previously described policies (including RRjob and sharing policy on a BBN Butterfly Plus parallel processor and
coscheduling) are time-sharing policies because they allow compared it to coscheduling and naive time-sharing. Their re-

sults suggest that semi-static space-sharing outperforms alleach individual processor to be time-shared (on a quantum
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time-sharing policies, including coscheduling. One major ad- plication. This simple policy is used by most space-sharing
systems; however, it may result in underutilization of the pro-vantage of space-sharing stems from the fact that parallel ap-

plications have sublinear speedup. As a consequence, an ap- cessors since some applications may not have enough parallel-
ism to exploit their assigned partition. More elaborate alloca-plication can use a small number of dedicated processors

more efficiently than a larger number of shared processors. tion methods require that some information about the
performance characteristics of the parallel application beGiven a 100-node machine and two applications, it is better

to give each application 50 dedicated nodes for as long as is made available. Such performance characteristics include the
speedup of the application (as a function of the number ofnecessary, rather than require the two applications to alter-

nate their use of all 100 nodes. In the latter case, the over- processors it is given) and the maximum degree of parallelism
in the application. If no other information is known, an appli-head of communication and synchronization on 100 nodes

does not offset the benefits of having 100 nodes available half cation should be given a number of processors equal to its
average parallelism, ensuring that both its speedup and itsthe time.

Having observed this same effect, Tucker and Gupta (15) efficiency will be reasonable (at most a factor of two away
from the optimal) (18).argued that run-time systems should cooperate with the op-

erating system to make sure that no application employs If the range of parallelism (maximum–minimum) is
known, it can be used in conjunction with average parallelismmore processes than processors. In their scheme, the op-

erating system informs the run-time system of the number of to improve the allocation policy. When the load is low, each
application should receive a number of processors equal to itsprocessors available to an application; the run-time system

adjusts the parallelism of the application to match the num- maximum parallelism; when the load is high, each applica-
tion should receive a number of processors equal to its mini-ber of processors available. This adjustment can be done eas-

ily for parallel applications that use their task model, wherein mum parallelism (19). If the amount of work of each applica-
tion is also known, then an optimal processor partitioningthe work of an application is broken into small tasks and

placed in a central task queue. Each processor executes the allocates processors in proportion to the square root of the
amount of work each application executes. If more applicationnext available task from the queue until there are no more

tasks. Adding processors to such an application is easy: the characteristics are known (e.g., the variance of parallelism),
then even better allocation heuristics can be used (20).processor starts executing the next available task. Removing

a processor from such an application is also easy: once the The performance advantages of most of these heuristics
have been demonstrated through analytical evaluation and(short) task that the processor executes completes, the pro-

cessor can be assigned to a different application. This sched- simulation. However, several studies agree that these heuris-
tics are not robust. That is, if the application and the systemuling method was implemented on an Encore shared-memory

multiprocessor and was shown to outperform other time-shar- characteristics are only approximately known, then the sched-
uling policy may perform even worse than policies that do noting approaches (15).

Space-sharing was also implemented in the Mach op- take application characteristics into consideration (21).
erating system (16). In this implementation, each application

Discussionis guaranteed a number of processors for a long period of time
(several minutes). After that interval, an application must be Many different scheduling algorithms have been imple-
prepared to give the processors back, or else it will be sched- mented on multiprocessors, while an even larger number of
uled in a processor pool along with several other applications. algorithms have been simulated or analyzed theoretically.

Although better than static scheduling, semi-static sched- Some of these algorithms have contradictory goals. The need
uling may still underutilize the multiprocessor, especially for a wide variety of algorithms and the rationale for (seem-
when applications have varying levels of parallelism. In such ingly) contradictory approaches lies in the assumptions made
cases, allocating a fixed number of processors to each applica- about parallel applications. The following categories of paral-
tion results in significant load imbalance because applications lel applications have been defined (22):
whose parallelism decreases over time will underutilize their
allocation, while applications whose parallelism increases The number of processors used by a 	/em rigid
 application
over time would need additional processors. Thus, if applica- is determined at compile time.
tions have a varying degree of parallelism, dynamic space-

The number of processors used by a 	/em moldable
 appli-sharing policies should be employed (17).
cation is determined at load time. Once the applicationUnfortunately, semistatic and dynamic space sharing
begins execution, it cannot vary the number of pro-place a significant burden on the application programmer. In
cessors in use.such environments, applications must be written so as to cope

An 	/em evolving
 application can change the number ofwith a varying number of processors. Although applications
processors it uses during execution time at predefinedbased on a central task queue can easily adapt to a change in
times, usually the beginning of a new computationthe number of processors, many applications create a fixed
phase.amount of parellelism (defined at execution start-up time)

Evolving applications can adapt to the number of availableand never change it. If an application receives fewer pro-
processors but only at the start of a phase.cessors than it expects, it will incur significant overhead. For

this reason, very few multiprocessors today use dynamic or A 	/em malleable
 application can change the number of
semi-static space sharing. processors it uses anytime during its execution.

In any space-sharing policy, we must decide how many
processors will be assigned to each application. The equiparti- Different scheduling policies are needed for different cate-

gories of applications. For example, the process control policytion policy assigns the same number of processors to each ap-
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described in Ref. (15) is based on the assumption that applica-
tions are practically malleable; that is, they can increase or
decrease the number of processors they use instantly (or
within a very short amount of time). For those applications,
process control has been demonstrated to be the best schedul-
ing policy. On the other hand, parallel applications based on
a message-passing programming model like PVM or MPI are
moldable; once they start execution, they do not change the
number of processors in use, since such a change would re-
quire data reallocation, which is an expensive operation. For
these applications a static or semidynamic space-sharing pol-
icy like the one proposed in Ref. (16) usually results in best
performance.

Figure 1. A hypercube of dimension 4 contains several hypercubes
of dimension 3, some of which are highlighted in the figure. It is very

MULTIPROGRAMMING DISTRIBUTED-MEMORY difficult to recognize small subcubes within a larger cube.
MULTIPROCESSORS

We use the term distributed-memory multiprocessor or multi-
a square; a 3-D cube is a regular cube. Figure 1 shows a 4-Dcomputer to describe loosely-coupled multiprocessors, like the
hypercube and highlights some of its 3-D subcubes.Intel Paragon and the CM-5 from Thinking Machines Inc. Be-

Assuming that message latency increases with the lengthcause the processors are only loosely coupled, multicomputers
of the path through the hypercube, two processes that com-can easily scale to hundreds or even thousands of processors.
municate frequently should be allocated processors that areIn these machines, each processor typically executes its own
directly connected within the cube. If an application is allo-copy of the operating system and manages its own local re-
cated a random set of processors, it may incur unnecessarilysources, such as memory and disks. Access to non-local re-
high communication overhead. For this reason, most sched-sources requires cooperation between processors, which is im-
ulers for hypercube multicomputers allocate, manage, andplemented via message-passing software.
free hypercubes of various sizes. The processor allocationMultiprogramming of applications on multicomputers is
problem in a hypercube can be defined as follows:usually based on static space sharing. That is, each applica-

tion receives a dedicated set of processors for the duration of
Definition. There are m users in a p processor hypercubeits execution, or least for a relatively long time interval. Time

system. Each of the m users requests a subcube of dimen-sharing was avoided in most early multicomputer systems be-
sions k1, k2, . . ., km. The scheduler is to allocate these sub-cause they employed low-level operating systems that did not
cubes and return to each user the address of a subcube withinallow multiple processes per processor. Even now, multicom-
the larger hypercube.puters often have many more processors than any single ap-

plication can effectively use; thus, there is no point in requir-
ing applications to share processors when there are idle This scheduling problem is similar to the memory manage-
processors available for allocation. ment problem where users request memory, and the op-

Since multicomputers scale to thousands of processors, ap- erating system must satisfy their requests. Memory allocation
plications can usually be allocated as many processors as is a one-dimension problem, however, since memory is simply
needed. In order to use such a large number of processors a linear sequence of bytes. Subcube allocation is a multi-di-
effectively, programs designed to run on multicomputers try mensional problem, and in large systems, it can be very diffi-
to exploit the underlying architecture (including the commu- cult to identify and manage all of the subcubes. For example,
nication network) as much as possible. For example, pro- Fig. 1 shows a 4-D cube and four of the 3-D subcubes it con-
cesses that communicate frequently may be scheduled for exe- tains (drawn in bold lines). As can be seen in this figure, most
cution on neighboring processors, so as to minimize the of the 3-D subcubes cannot be easily recognized when looking
latency of communication between them. Applications may at the 4-D cube. The problem is even more complex in the

general case, since a hypercube of dimension N haseven structure their communication pattern to match the un-
derlying architecture in order to avoid long communication
delays. Thus, scheduling algorithms for multicomputers have
focused on sophisticated partitioning policies that give each

(
N
k

)
2N−k

application some number of processors arranged in a specific
communication topology.

subcubes of dimension k.
Since there are an exponential number of subcubes con-Processor Allocation in Hypercubes

tained within the larger cube, an optimal algorithm to recog-
The most popular architecture for multicomputers has been nize and manage the subcubes takes exponential time. To
the hypercube. A hyercube (or cube) of dimension N is a set avoid the run-time overhead of an exponential algorithm,
of 2N processors, where two processors are connected if their practical implementations resort to heuristics for approxi-

mate solutions. One approach uses a data structure called thebinary representations differ in exactly one bit. A 2-D cube is
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two, 2-D submesh allocation is limited to square submeshes,
where the side is a power of two (27).

Another approach is to use the buddy system, to keep track
of the allocated submatrices, but not to allocate square sub-
meshes (where the side is a power of two) to incoming re-
quests. Instead, each incoming request may be allocated more
than one square submesh (28). Unfortunately, this allocation
system may result in noncontiguous submeshes being allo-

0*** 1***

10** 01** 10**
100* 101* 110* 111*

1111 Level 4
  Level 3

Level 2

Level 1

Level 0

1110

11**

****

cated to a single request. Although allocating noncontiguousFigure 2. The buddy tree for a 4-D cube. At level i, 2i subcubes of
submeshes to a single request seems to contradict the originaldimension 4 
 i can be recognized.
goal of mesh allocation, sometimes noncontiguous submeshes
are unavoidable in order to isolate faulty processors within a
mesh (29). Other algorithms for submesh allocation include

buddy tree. (Figure 2 shows the buddy tree for a 4-D cube.) the interval set algorithm (30) and the coverage set (31).
The subcube allocation algorithm based on the buddy tree
works as follows:

MULTIPROGRAMMING NETWORKS OF WORKSTATIONS
• To see if a free subcube of dimension i exists, go to level

i and look at all the nodes in that level. If any node is As large-scale multicomputers and multiprocessors became
marked free, mark it (and all its descendants) as allo- prohibitively expensive, networks of workstations (NOWs)
cated and return its address. Otherwise, return failure. emerged as a viable solution to the need for more computing

cycles (1). The network-of-workstations architecture is simply• When an application completes its execution, release its
a set of commodity workstations connected via a high-speedcube by marking the corresponding node in the buddy
interconnection network. In contrast to multiprocessor fami-tree (and all its descendants) as free.
lies that employed custom-made interconnection networks
and processors (introducing a lag time of 1 to 2 years in theThis buddy allocation algorithm is simple and fast, but it
product development cycle), the NOW architecture employsalso fails in some cases to allocate subcubes that are avail-
low-cost, high-performance commodity components, whichable. For example, if a 3-D cube is needed, the algorithm will
makes them more than competitive (both in terms of perfor-only examine the cubes 0*** and 1***. If one of them is free,
mance and cost) with other parallel computer architectures.the algorithm will allocate it. However, there are several
NOWs also have the advantage that they can be easily up-other 3-D subcubes (including ***0, ***1, *0**, and **0*)
graded, often adding linear performance improvements for athat are not examined by the algorithm, even though they
linear increase in cost.may be free.

To the extent that the processors in a NOW architectureSeveral extensions to this basic algorithm have been pro-
are truly workstations, they may be used to execute parallelposed to overcome the limitations of the buddy tree (23–25).
applications, sequential applications (e.g., word processing,Most of these extensions extend the buddy tree data structure
compiling), and distributed applications (e.g., e-mail, www,into more than one dimension, so as to be able to recognize
file systems). Multiprogramming the processors in a NOWmore subcubes.
among all these different applications is a challenging task.
The responsibility for this task is usually delegated to job

Processor Allocation in Mesh-Connected Computers
scheduling and placement software which makes every effort
to meet the competing goals of all scheduled applications.Another popular architecture for multicomputers is the mesh:

a grid of processors, where each processor is connected only Condor is one of the first load balancing systems imple-
mented for a network of workstations (32). Its main objectiveto its neighbors. Meshes can be two-dimensional (where each

processor is connected to four neighbors) or three-dimensional is to take advantage of idle workstations. Each workstation is
assumed to have an owner. When the workstation is idle (be-(where each processor is connected to six neighbors). Much

like in the hypercube, programs designed to run on mesh-con- cause the owner is not currently using it), processes belonging
to other applications in the system are allowed to use it. Con-nected multicomputers exploit the mesh connectivity and

adapt their communication patterns to exploit the underlying dor allocates the idle processors to processes in its job mix.
When the owner returns and starts using the workstation,interconnection network. If an application written for a mesh-

connected multicomputer is allocated a non-mesh partition Condor suspends its processes on the workstation and mi-
grates them to another idle workstation. Suspension and re-(e.g., a non-rectangular area), it will suffer unnecessary com-

munication overhead and may also affect the execution of start are implemented using checkpoints; when a process
must be migrated, it is restarted from the last checkpoint.other neighboring applications. For this reason, schedulers

for mesh-connected computers attempt to allocate rectangular Because of the expense of process management and migra-
tion, Condor is most effective for coarse-grain CPU-intensive(or cubic) areas to applications. Partitioning the mesh into

rectangular (or cubic) areas in order to satisfy user requests parallel applications, such as large-scale simulations. The
success of Condor lead to the development of commercial jobis an NP-complete optimization problem (26), so once again,

practical algorithms need to employ heuristics. scheduling products, like LSF (Load Sharing Facility; Plat-
form Computing, Canada) (33) and CODINE (Computing inOne of the most popular heuristics for submesh allocation

is the 2-D version of the buddy allocation scheme. However, Distributed Networked Environments; GENIAS, GmbH, Ger-
many) (34).since buddy always manages quantities that are powers of
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Condor and similar tools were initially designed to support only the information needed to create a new process control
block on the designation workstation is transferred. When thethe transparent, non-local execution of sequential applica-

tions. With the evolution of parallel processing, however, process starts running on the new workstation and begins ac-
cessing its memory, it will page fault and copy only the pagesscheduling and load balancing tools for NOWs are presented

with a mixture of parallel and sequential applications, often it needs. Sprite uses a similar method: when a process is mi-
grated, all its dirty pages are flushed to the disk where itswith differing needs. Sequential applications need fast re-

sponse, while parallel applications need computing cycles and swap space is stored. When the process is restarted on the
new workstation, it will cause a page fault and bring from thesupport for efficient communication and synchronization.

The needs of parallel and sequential applications are ac- file server (one page at a time) all the pages it needs.
In addition to the runtime overhead of copying addresscommodated best when they are given separate partitions of

a NOW, so that no sequential application shares a processor spaces, migration involves substantial changes to traditional
operating systems, since most operating systems are not de-with a parallel application. Recent research results suggest

that in an environment with 60 workstations, 32 of them are signed to support migration. Some of the problems relate to
naming conventions used by current operating systems. Foridle most of the time (35). These idle workstations could be

allocated to the execution of parallel applications. Thus, par- example, each process has a name (process ID) that is a small
integer, which is valid only within the workstation on whichallel applications could be confined to their own partition,

where all the previously described scheduling algorithms it was created. If the process migrates to another processor,
then its name may have already been allocated to anothercould be used. Unfortunately, it is not always the same 32

processors that are idle at the same time. Experimental ob- process, and thus there will be two processes with the same
name on the same machine. Similar naming problems existservations suggest that when a workstation goes from idle to

active, another idle workstation is likely to be available with process control blocks, open files, and communication
ports.within the same NOW. Under these conditions, parallel appli-

cations run in the idle machines that form a separate parti- To accommodate migration, several operating system calls
may have to be rewritten to use the state of migrated pro-tion. When a machine becomes idle, it joins the partition for

parallel applications. When a machine goes from idle to ac- cesses. To avoid major kernel modifications, some systems
choose to forward the location-dependent system calls of thetive, a parallel process is migrated to another (preferably idle)

machine. Parallel applications within a partition may use a migrated processes to the workstation where the process was
originally created. In message-based systems like V andstandard UNIX scheduler, or coscheduling if they synchronize

very frequently (36–38). DEMOS/MP, system call forwarding is easy because a system
call is nothing more than a message sent from the user pro-
cess to the kernel. When the process moves on a new worksta-Process Migration
tion, its messages are just forwarded to the appropriate

Multiprogramming a NOW among several applications usu- kernel.
ally involves process migration among participating worksta-
tions. Process migration requires significant changes to the
operating system and may incur large run-time overhead. De-

SUMMARYspite these drawbacks, several operating systems, including
Sprite (39), MOSIX (40), LOCUS (41), the V system (42,43),

Multiprocessors represent an expensive investment in hard-Accent (44), DEMOS/MP (45), Charoltte (46), and AMOEBA
ware than must be amortized over a relatively short period of(47), have experimentally implemented process migration.
time. Multiprogramming is one way to most efficiently utilizeThere are several difficulties that arise in implementing
these machines. In this paper, we described several differentprocess migration, such as virtual memory copy, migration of
scheduling policies for multiprogramming a multiprocessoropen files, and migration of communication channels. The
among competing applications in a fair and efficient way. Al-most expensive aspect of migration is usually the transfer of
though each of the policies we described has particular advan-the virtual memory of the migrating process (39). Charlotte
tages within a certain domain of applications, the space-shar-and LOCUS transfer the process’s entire address space to the
ing policies are the simplest and most effective overall. Space-destination machine at migration time. Although simple, this
sharing policies employ two-level scheduling. At one level, themethod introduces unnecessary overhead if the process will
operating system dedicates a number of processors to eachnot access its entire address space during the remainder of
application for a reasonably long period of time. At anotherits execution. Moreover, since the transfer of an address space
level, the user software deals with scheduling threads (or pro-(several tens of Mbytes) may take several seconds (even over
cesses) on top of its dedicated processors so as to preservea Fast Ethernet or an ATM interconnection network), the pro-
synchronization, communication, and load balancing con-cess will be idle for a long period of time. To avoid this idle
straints.time, the V system allows a process to continue execution on

the workstations it was using, while its address space is
transferred to the new workstation. After the whole address
space is transferred, the process is suspended, the pages that ACKNOWLEDGMENTS
have been modified since the transfer started are transferred
again, and the process is restarted at the new workstation. This work was supported by GSRT through the PENED proj-

To avoid the overhead of copying the entire address space ect 2041 2270/1-2-95, and the National Science Foundation
of the migrated process, Accent uses a copy-on-reference ap- (grants no. CDA-9401142 and CCR-9510173). The authors

gratefully acknowledge this support.proach. When a process is migrated, its pages are not copied;
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