
PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS 633

PARALLEL PROCESSING, SUPERSCALAR
AND VLIW PROCESSORS

All modern central processing units and most embedded pro-
cessing units execute multiple instructions per cycle in paral-
lel, by exploiting the implicit parallelism available in ordinary
programs. Such instruction-level parallelism is regulated by
many factors, including the algorithm, the implementation of
the algorithm, and the efforts of the compiler. It is then the
job of the processor to correctly execute the program to pre-
serve the original program meaning. In general, parallel exe-
cution of instructions may be specified in the algorithm by
employing explicit parallel directives to the hardware, in the

Loop : R1 ← R2 + R3
R5 ← R4 + R3

branch to Label if R5 > 0

Label : R6 ← R2 * R3
R7 ← R1 * R3

Branch
A

37
9

3

A

B
1d R4 ← X

branch to Label 2

C

D

C B

D

Branch

Branch
Label 2 : St X ← R7

R8 ← R4 + R3
R9 ← R9 – 1

branch to Loop if R9 > 0
program by employing parallel language constructs, in the

Figure 2. An illustration of a control flow graph for an if-then-elsecompiler by employing parallelization techniques, or in the
embedded in a loop.hardware by employing automated parallelization mecha-

nisms. The latter two approaches—relegating the task to the
compiler or the hardware—are termed very long instruction D that are independent of results from B’s or C’s instructions
word (VLIW) and superscalar processing, respectively. This can execute alongside A’s instructions. Although it is tempt-
article will review these techniques, highlighting the key sim- ing to ignore this level of analysis and only execute code in
ilarities and differences between these two approaches. First, parallel until branches (i.e., the branch at the end of A) are
superscalar processors are reviewed, followed by VLIW pro- resolved, such a conservative decision reduces the benefits of
cessors. The article concludes with comparisons between ILP considerably. For nonscientific code (i.e., for so-called ‘‘in-
both processors. teger’’ code), ILP has been measured at a high of approxi-

mately 2 to 3 instructions per cycle between branches. When
control dependencies are resolved and ILP is searched forINSTRUCTION-LEVEL PARALLELISM
across branches, this empirical figure grows by an order of
magnitude. Thus control dependencies must be dealt with inInstruction-level parallelism, or ILP, is a phenomenon that
the hardware or software.exists in nearly all programs to varying degrees. An example

is shown in Fig. 1. Here a pseudo machine language has been
used to clarify the illustration. The instructions on the left VLIW AND SUPERSCALAR PROCESSORS
side of Fig. 1 can be rearranged from their sequential order
into a partial order without change. This issue is shown on Both VLIW and superscalar processors are designed as in-

struction assembly lines or pipelines of stages. Stages are sep-the right side of Fig. 1 which shows a graph connecting with
arc operations that must execute in sequence. Any pair of in- arated from each other by latches or flip-flops, which pass

their contents onto the next stage based on the cycle of thestructions not connected by an arc are free to execute in par-
allel without affecting the outcome of the program. The arcs processor’s clock. (There are more complex pipelining tech-

niques that compose multiple stages between latches, butin this case are termed data dependencies.
The ILP property of instruction streams can be determined that is an advanced topic for interested readers and is not

covered here.) The responsibilities of the stages are what dis-before program execution by the programmer, by the com-
piler, by the assembler, or by other software in the system. If tinguish the two processors, and this is what this article fo-

cuses on. The following section describes the superscalar pipe-this is not done before run time, then it may be done during
run time by the hardware. In either approach, the fact that line. Since a VLIW pipeline is relatively simple, it is described

in terms of its associated compiler passes.the program is executing in parallel at the instruction level is
entirely hidden from the user.

In addition to data dependencies, control dependencies can OVERVIEW OF SUPERSCALAR IMPLEMENTATION
also force sequential execution of programs. This issue is
shown in Fig. 2, where a simple control flow of an if-then-else A basic superscalar processor is depicted in Fig. 3. It is com-
statement has been converted to a directed graph. In this posed of the following stages:
code, block B or C must wait until the decision in block A is
determined. However, it is interesting to note that block D is 1. Instruction Fetch. In this stage or stages, instructions

are fetched from memory and decoded for future ease ofindependent of A’s decision. In this case, any instructions in

Figure 1. An example of instructions and
their partial order that allows for instruc-

A : R1 ← R2 + R3
B : 1d R4 ← X
C : R5 ← R4 + R3
D : R6 ← R2 * R3
E : R7 ← R1 * R3
F : St X ← R7
G : R8 ← R4 + R3
H : R9 ← R6 + R10

A R1 ← R2 R3

E R7 ← R1 R3

F ← R7

D R6 ← R2 R3

H R9 ← R6 R10

B R4 ←

C R5 ← R4 R3
G R8 ← R4 R3

tion-level parallelism.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



634 PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS

branch was executed (in the case of return instructions, a
small hardware stack is often used). This article focuses on
the prediction process itself. Branches that transfer control
are said to be taken branches, whereas branches that do not
transfer control are not taken branches. The prediction prob-
lem restated is, given a location in memory holding an in-
struction (which may or may not be a branch), predict
whether the instruction is a taken branch or a not taken
branch.

One-Level Branch Prediction. These schemes use the in-
struction address to index into a buffer that contains a small
state machine. An example of such a machine is the Smith
counter, which uses a small, saturating up/down counter (2).

. . .

. . .

. . .

. . .

. . .

. . .

Branch
handling

Register file

Instructional fetch

Instructional decode

Instructional schedule

Execute

State update

FU FU FU

ICache

DCache

Fire

Complete

Retire

Issue

Fetch

This counter is incremented when the branch is actually
Figure 3. The anatomy of a simple superscalar processor pipeline. taken and decremented when it is not taken. If the counter is

greater than or equal to half its range, the branch is predicted
taken, otherwise it is predicted not taken. The counter satu-execution. Branches are predicted at this point in the
rates at each extreme, so that a three-bit counter value of 7hardware (explained further below).
remains at 7 if a branch is actually taken. Empirically, the

2. Instruction Decode. This stage reads register values, Smith counter performs fairly well, with a 85% to 90% accu-
determines the hardware inside the processor that will racy for nonnumeric code (nonnumeric code is not heavily
be required to execute the instruction, and reserves this loop-based, and loop closing branches are relatively easy to
hardware when necessary. predict).

3. Instruction Scheduling. Instruction scheduling is an
important stage in a superscalar processor. It deter- Two-Level Branch Prediction. This uses additional informa-
mines which instructions can execute in parallel and tion to access a predictor. The Yeh/Patt ‘‘PAs’’ scheme is a
which must wait for later cycles. good example of this idea. The instruction address is used to

4. Execution. The execution unit is actually a pool of sev- index into a buffer that contains an N-bit shift register. This
eral units, typically an ALU and an interface to the register is a history of what occurred at this address. A ‘‘0’’
data cache, plus floating-point units (i.e., FP add, FP indicates a branch was not taken, whereas a ‘‘1’’ indicates it
multiply) and special-purpose units (e.g., shifters, mul- was taken. The history register is used to index into a 2N
tiply-accumulate units, motion estimation for decoding table of Smith counters (other state machines are possible).
digital video). There is relatively little novel in the de- These counters are then used to predict the branch. The inter-
sign of these units that is specific to superscalar pro- esting feature is that the counters ‘‘learn’’ to predict all
cessors. The data cache may be multiported and allow branches with the same history, as opposed to learning about
nonblocking accesses while misses are repaired (1). The a branch at a particular address in memory. The accuracy for
execution unit will be omitted from the detailed discus- this scheme is higher than the one-level predictor described
sion below. above—empirically 96% to 98% accurate.

5. State Update. The state update unit has the responsi-
bility of maintaining consistent sequential state so that Instruction Fetch Issues. The mechanics of how branch pre-
interrupts (either internal or external) can be handled. diction is integrated into the instruction cache for a combined
A detailed example to illustrate the need for this unit is instruction fetch mechanism is beyond the scope of this arti-
presented below. There are several techniques that cle, since its proper treatment requires understanding of
have been developed to handle state update. The most cache memory design. However, it is possible to explain the
common are explained here. periphery of the instruction cache. Each cache holds multiple

bytes for a given address range in a fixed-sized cache block.
Superscalar Instruction Fetch An instruction address is used to index into the cache block,

which delivers multiple potential instructions. If instructionsInstruction fetch for a superscalar is a difficult task. The pro-
are fixed-length (as in most RISC architectures), then thecessor must acquire a parallel stream of instructions from
number of instructions in each cache block is known. Notememory in order to support the parallel core of the supersca-
that each block contains a sequential list of instructions aslar. The alignment of instructions in memory, memory hierar-
they appear in memory. Branch prediction can be used tochy (cache) performance, and the presence of branches com-
fetch multiple cache blocks from the instruction cache in or-plicate this.
der to circumvent this sequential limitation. The predicted in-
structions must then be pulled from these multiple blocks, asBranch Prediction. This uses hardware to predict if instruc-

tions at a given location in memory are branch instructions described in Ref. 3. An alternative is to store instructions in
the cache in groupings according to their prediction, whichthat will transfer program control, preventing execution of

the next instruction in program memory (2). Branch predic- has been called a trace cache (4). Since the predicted group-
ings are not known until the branch predictor has observedtion hardware must also predict where program control will

be transferred. This is often done by maintaining a record of branch behavior, a trace cache is often combined with a tradi-
tional instruction cache as a backup.where program control was transferred the last time the



PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS 635

Superscalar Instruction Decode write this same tag into the register file, setting the
ready bit to false. Copy the destination register number

In terms of program execution, the decoder not only deter-
from the instruction format into the reservation buffer

mines the meaning of the bit encodings of the instructions,
(the purpose of this is explained below).

but in a superscalar it also determines the meaning of a se-
3. Mark the destination functional unit (FU) type in thequence of instructions. It is the last unit in the processor’s

reservation buffer (the scheduler uses this to select apipeline before instructions are allowed to go out of order. The
functional unit from the pool of FUs in the executionfunction of the decoder is, therefore, to interpret this sequen-
unit).tial order and derive the partial order that the hardware

must obey. Recall that superscalars execute several instruc- Once these steps have been followed, the instruction is said
tions at once, in parallel. Consider the situation shown in Fig. to be issued to the functional unit. The rate at which instruc-
4. In this figure, several instructions are generating values tions can be issued is a figure of merit for superscalar pro-
for register R3 (A, C, and E). Several instructions use these cessors since it limits how many instructions can execute in
values (B, D, F). However, the value needed by F is different parallel. A typical value is an issue rate of four instructions
from that needed by D, which is, in turn, different from that per cycle.
needed by B. This implies that the register number (i.e., 3) is
not sufficient for identifying the value when instructions are Superscalar Instruction Scheduling
executed in parallel. Now consider Fig. 4(b). Here R3 has been

The instruction-scheduling unit of a superscalar processorreplaced by a new numbering scheme, shown as Tx, where x
manages the reservation buffer, guaranteeing that instruc-is referred to as a tag. Now there is no ambiguity about value
tions execute in the partial order dictated by their dependen-identities when instructions are executed in parallel.
cies. This work happens in two phases: before instructionsThe register file is modified to help with the renaming
begin execution and after they complete execution. Any in-task. A traditional register file is indexed by the register num-
struction for which all of its source registers are marked asber from the decoded instruction format, and it holds the reg-
ready in the reservation buffer is ready to execute. It mayister value. The modified register file also holds a ready bit
still have to await an available functional unit in the execu-and a tag (or unique name) for each register in addition to the
tion unit’s pool of FUs. However, once a unit is free, the in-register’s value. The ready bit is a flag that, if true, indicates
struction can proceed with no fear of violating program de-the value stored is the correct value and should be used in
pendencies. This action is termed firing an instruction forthe computation. However, if the ready bit is set to false, then
execution. This first phase is, therefore,this means the value field is no longer valid. In this case, the

instruction must wait for the valid register value. It uses the
Phase I (Before Instruction Execution). For all instructionstag field in the register file to know the identity of the register

in the reservation buffer, if any entry has all of itsto wait on. It is also the decoder’s responsibility to assign
source registers marked as ready and its associated FUunique tag values for all destination registers and store this
is not busy, then begin executing the instruction (fireassignment into the register file. Once this is done, the desti-
the instruction).nation register is marked as not ready by assigning false to

its ready bit.
It is important to note that the instruction is not deleted from

Instructions are decoded into register values, register
the reservation buffer when it is fired. This is because the

numbers, tags, and destination functional units. The decoded
reservation buffer holds the destination tag, which is needed

instruction is then written into a buffer for the scheduler.
when the instruction completes. This is explained further

This buffer is called the reservation buffer and is discussed
below.

further below when the scheduler is presented.
Firing instructions have hardware complications. Instruc-

In accordance with the Tomasulo algorithm (5) of the IBM
tions must be shipped to their destination functional units. If

360 model 91, the decoder performs these tasks: For each in-
there are M entries in the reservation buffer and N FUs, then

struction from the instruction fetch unit, examine the instruc-
this operation requires an M � N crossbar interconnect. In-

tions in program order and:
terconnect is inherently slow and may result in a pipeline
stage worth of communication time between the reservation1. Examine the source registers in the register file and,
buffer and the destination FUs. The original IBM 360 modelif the ready bit is true, copy the register value to the
91 removed this constraint by placing the M � N crossbarreservation buffer, otherwise copy the tag to the reser-
interconnect between the decode unit and the reservationvation buffer.
buffer, then subdividing the reservation buffer into N subbuf-

2. Assign a unique tag to the destination register of the fers, one per each FU. Tomasulo’s original name for these
instruction and copy it to the reservation buffer. Also, buffers was a reservation station, and this notation is pre-

served here (5). The notion of one, unified reservation buffer
will be preserved for the remainder of this discussion, without
loss of generality.

As instructions complete from their respective FUs, the
scheduling unit in phase II must check their tags against all
of the tags of the source registers, of all instructions in the
reservation buffer. If there are any matches, the reservation
buffer entry for those registers are marked as completed. The

A: R3 � R1 � R2 A: T1 � R1 � R2
B: R4 � R3 � R2 B: R4 � T1 � R2
C: R3 � R5 � R6 C: T2 � R5 � R6
D: R7 � R3 � R8 D: R7 � T2 � R8
E: R3 � R9 � R10 E: T3 � R9 � R10
F: R11 � R3 � R12 F: R11 � T3 � R12

(a) (b)
tag of the destination register of the completing instruction is
taken from its own reservation buffer entry. Thus, the reser-Figure 4. The effects of renaming registers to enhance ILP.



636 PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS

vation buffer is searched in a fully associative manner (i.e., tion against the contents of the register file. To avoid the
problem of Fig. 4, each tag must have a unique entry in theas a content addressable memory), using the completing in-

struction’s tag as the name of the item being searched for and register file. This changes the meaning of tags slightly: in this
scheme they are commonly referred to as virtual registers orthe set of tags of source registers of waiting instructions as

the names being compared against. One method to reduce the rename registers. Thus the tag is no longer a phantom name
for the value being produced by an instruction. Rather, it is acomplexity of this search is discussed below.

As a hardware consideration, it is important to note that physical location in the register file. It is not, however, a loca-
tion that the program/programmer can access directly, and asthe FUs and the reservation buffer are often in separate parts

of the processor’s layout. Thus a bus is needed to broadcast such they are often also referred to as nonarchitected regis-
ters. It is important to note that this variation is not neededthe completing instruction to the reservation buffer. This bus

must hold the tag of the destination register. It is convenient for correct execution of the Tomasulo algorithm, rather it en-
hances the ease of implementation of the algorithm (5).for it to also hold the result of the computation, so that the

register file does not need to be examined in phase I for every
ready instruction. If this extra information is added, then the Superscalar Interrupt Precision and Speculation
register file may watch this bus as well as the reservation

Superscalar processors suffer from a problem with exceptionsbuffer. The register file can thereby use the broadcast of the
and interrupts. Consider the example instruction sequence invalue on the bus to update the register’s contents. Thus the
Fig. 5(a). This sequence is shown executing on a superscalarbus must also hold the number of the destination register. To
processor in Fig. 5(b). A load instruction causes a page fault.avoid problems with the scenario of Fig. 4, the register file
But when this fault occurs, instructions I1, I3, and I4 haveshould ignore any broadcast for a register whose tag value
completed and written back their results to the register file.does not match the tag value stored in the register file by the
For the load instruction to be reexecuted (after the page faultdecode unit. To summarize, this bus [called the common data
is repaired by the operating system), the original values ofbus in Tomasulo’s description of the IBM 360 model 91 (5)] is
registers R3 and R4 need to be restored. In the original IBMwritten to by the completing instruction as it exits the FU,
360 model 91, this problem was referred to as the impreciseand read by the reservation buffer and the register file.
interrupt problem, since it was sometimes impossible to findA summary for phase II is:
a PC value to resume to when an interrupt (or program error)
occurred. As such, it retains that name today.Phase II (After Instruction Completion)

The state update unit in a superscalar processor repairs
1. For each entry in the reservation buffer, if the tag of the the imprecise interrupt problem. One technique is to provide

completing instruction’s destination register matches a a reorder buffer, which preserves the sequential state of oper-
source register tag, then copy the value (i.e., the result ations and writes back these operations in program order. In
of the completing instruction’s computation) from the order for operations to still execute out-of-order, two copies of
common data bus and set the source register’s ready bit the register file are kept—the normal Tomasulo copy and a
to true. future file, which holds a known sequential state (6). A varia-

2. Look up the destination register in the register file. If tion on this technique uses the reorder buffer itself as a mech-
the tag stored in the register file matches the tag from anism for renaming and avoids the second register file (7).
the common data bus, then copy the value from the bus Another alternative technique, which has been implemented
into the register file and set the register’s ready bit to in some commercial processors, uses three copies of the regis-
true. ter file—one current copy and two backups. The backup cop-

ies are periodically built from the current state of the com-3. Delete the completed instruction from the reservation
buffer. pleting instructions (8).

Branch speculation can be implemented using the logic
that the state update unit employs to handle exceptions.It is important to note that the rate of instructions completing

is limited by the bandwidth of the common data bus. In most Whenever a branch is predicted by the instruction fetch unit,
the state update unit can make note of this and allow the codemodern processors, this bus is replaced by a set of identical

buses, often referred to as result buses. They serve the same after the branch to execute speculatively until the outcome of
the branch is known. When the outcome is known, the statefunction as the common data bus, but the scheduling unit

must check all of these buses in parallel. update unit either commits the results of the branch to the
archival state (i.e., in the future file or in a backup copy ofAs noted above, the reservation buffer must be searched

for every completing instruction’s destination tag value. One the execution), or flushes the incorrectly speculated results
from the machine and resumes execution down the correctmethod to avoid this search is to update the register file only

and then periodically (i.e., once per cycle) update the reserva- path through the program. In this way, incorrectly predicted
branches can be treated as small exceptions. Depending ontion buffer by checking every source register of every instruc-

Figure 5. An example instruction se-
quence (a); and the problem of imprecise
interrupts when it is executed out-of-or-
der in (b).

I1 R1 ← R4 – R5
I2 Load R2 from M[R3 + R4]
I3 R3 ← R1 + R5
I4 R4 ← R3 + R1

I2 I2 I2

I1 I3 I4

I2 I2Load

Page fault

(b)(a)

Load latency = 5 cycles

+



PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS 637

the accuracy of the branch prediction, the speculative work ations are never violated. This shift in emphasis from hard-
ware to software is the main advantage of VLIW processorscan turn into nonspeculative work and enhance ILP.
over superscalar processors. This section discusses the archi-
tecture of VLIW processors by focusing on the compiler tech-

OVERVIEW OF VLIW IMPLEMENTATION niques developed for their use.

VLIW Compiler ConsiderationsThe difference between superscalar and VLIW approaches to
exploiting ILP is illustrated in Fig. 6. Superscalar assumes A traditional compiler is composed of three phases: (1) parse
that the code is initially unscheduled (not parallel). It then the source language into an intermediate representation, (2)
forms a parallel schedule in hardware, using methods such optimize the intermediate language, and (3) generate code of
as the Tomasulo algorithm, as explained above. However, the the target architecture from the intermediate language. The
parallelism in Fig. 1 is relatively simple for software to ana- scheduling of resources is implicit in the code-generation
lyze. Although a programmer could do this work when the phase. For a VLIW architecture, scheduling becomes a pri-
code is written, it is tedious. The compiler is the most often mary function and is often merged with optimization.
employed software used to determine parallel execution. This A compiler views a program in a way that is distinct. For
is shown in Fig. 6(b). Here the compiler has expressed the example, the program is represented as intermediate code,
parallel nature of the code to the processor as a set of opera- which is typically an instruction set of a very simple architec-
tions to execute in each cycle. Because the instruction now ture. The operation repertoire includes rudimentary arithme-
contains multiple operations, the instruction format is itself tic and logical operations, floating-point operations, control
very long. Hence this is termed a very long instruction word flow, and memory load/store operations. Each intermediate-
or VLIW processor (9). language operation has one destination register and several

The instructions of Fig. 1, shown in Fig. 7, are scheduled source registers. An exception to this is control transfers (e.g.,
for a VLIW machine (with a 2-cycle load pipeline, a 3-cycle branches), which specify a destination address but no destina-
multiplier, and all other units are single cycle). Empty spaces tion register. The only access to memory is through load and
in the figure represent cycles in which no operations are exe- store operations. There is also an unlimited supply of regis-
cuted. These spaces do not need to be explicitly encoded in ters available. These registers are often termed virtual regis-
the instructions, as described in Ref. 10. Because the term ters for this reason.
instruction is ambiguous in a VLIW (i.e., does it refer to the In addition to the intermediate language, a compiler also
entire row or one entry in that row?), the term MultiOp will maintains two primary data structures that describe the pro-
be used for a row in the schedule and the term Op will be gram. They are the control flow and data flow graphs, pre-
used for a single operation scheduled on a unit in a particular sented at the beginning of this article. As the names imply,
MultiOp. [This terminology is derived from the Cydra 5 (11).] these graphs describe the flow of control and data in the pro-

In a strict VLIW processor design, hardware performs no gram. They do not completely characterize the program. That
interlocking whatsoever. Instead, it is the responsibility of the is to say, that these two graphs do not contain enough infor-
compiler to schedule code so that dependencies between oper- mation to describe the computation without the addition of

the intermediate-language operations.
Figure 2(a) shows a short example list of intermediate-lan-

guage operations. These operations can be partitioned into
blocks of guaranteed-sequential operations. These groupings
are known as basic blocks. To form basic blocks, the following
procedure is used: the code is scanned and a new basic block
is started immediately after a branch or a code label. Opera-
tions are added to the block until another branch or code label
is reached. Basic blocks are typically numbered sequentially,
starting from the beginning of the source file or function being
compiled. If destinations of branches at the bottom of basic
blocks are connected to their target blocks by arcs, a basic
block graph or control flow graph is formed [see Fig. 2(b) for
an example].

A data flow graph is formed as described above (see the
section titled ‘‘Instruction-level parallelism’’). Recall that the
Tomasulo algorithm removed false dependencies of Fig. 4 us-
ing hardware renaming via tags. The principal goal of renam-
ing is to decouple the register names from their values so that
register reuse in the program does not enforce a sequential
execution order on the operations. For the compiler, the un-
limited number of virtual registers accomplishes the same
task, since each operation defines the value of a new virtual
register name.

(Assumed)
Unscheduled code

Before run time At run time

Before run time At run time

(a)

(b)

Parallel execution

Dynamically
schedule in
hardware

Parallel execution

Statically
schedule in

software
Unscheduled code

Compiler-Based Scheduling
Figure 6. A perspective on the differences between superscalar (a)

Algorithms for VLIW scheduling are heuristic based. This isand VLIW (b) methods for exploiting ILP. (a) a view of superscalar;
(b) a view of VLIW. because the resource-constrained scheduling problem is NP-



638 PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS

Figure 7. A VLIW schedule for the in-
structions of Fig. 4. Operation (Op)

MultiOp

dest src src dest src src dest src src dest s addr addr src

A:R1 R2 R3 D:R6 R2 R3 B:R4

E:R7 R1 R3

C:R5 R4 R3 G:R8 R4 R3

H:R9 R6 R10

s X

s

s

s

s F: X R7

1 cycle latency 1 cycle latency 3 cycle latency 2 cycle latency 1 cycle latency
ALU ALU MUL

VLIW MultiOp Format
Load Store

complete (i.e., requiring exponential time in the number of builds larger blocks for scheduling out of basic blocks, then
invokes a sometimes modified version of list scheduling oninputs) when the optimal schedule is sought. A very common

heuristic algorithm is list scheduling (12). When the algo- this larger scheduling scope. Since operations may be moved
above a branch (i.e., between basic blocks), it is the VLIWrithm is applied to a single basic-block, it is termed local

scheduling (its converse, global scheduling, is discussed be- analogue of branch prediction for speculative execution in a
superscalar.low). In list scheduling, the dependence graph is first sorted

into a list using a heuristic priority function. An example Global scheduling can be broadly classified into acyclic and
cyclic scheduling. Acyclic scheduling deals with sequentialfunction might be the depth of the intermediate-language op-

eration in the dependence graph. An empty schedule is cre- lists of blocks with control flow containing no loops. When
loops occur, acyclic techniques can still be used by breakingated and the first operation is scheduled in the first cycle of

the schedule. The scheduler then tries to schedule all addi- one of the arcs and scheduling the loop body as a sequential
code. However, better results are often obtained when cyclictional operations in the list subject to available functional

units (i.e., fields in the VLIW MultiOp) and dependencies im- scheduling techniques are employed. The following section re-
views several techniques for acyclic and cyclic scheduling.posed by the dependence graph. Any successfully scheduled

operation is deleted from the list. After the entire list has
been searched, the cycle pointer is incremented to the next Acyclic Global Scheduling
cycle and the process repeats itself for the remaining opera-

The first step in many acyclic scheduling techniques is to formtions on the list. Once the list is empty, the scheduling pro-
larger groups of blocks out of basic blocks. There are manycess is complete. In one variation of the list scheduling algo-
techniques for performing this grouping, including Trace se-rithm, the list is reordered based on the priority function at
lection (13), superblock formation (14), hyperblock formationthe end of each cycle. This is sometimes referred to as using
(15), and treegion formation (16).a dynamic priority function, since the value of the operations’

Trace selection was first used by pioneer VLIW researcherspriorities depend on the current cycle pointer.
at Yale University in the Bulldog compiler (17), then laterIt is possible for the compiler to schedule operations such
extended for inclusion in the commercial compilers ofthat there would be no difference in timing between execution
Multiflow (18), one of the early VLIW processor vendors. Su-of the operations of Fig. 1 on a superscalar employing the
perblock formation is an evolution of trace selection, used inTomasulo algorithm and the execution of the equivalent
the Illinois IMPACT project (19). The algorithms are similar.VLIW MultiOps. In essence, the very long instruction words
Superblock formation is described here, and then contrastedare entire scripts for the functional units to follow in each
with trace selection, hyperblock formation, and treegion for-cycle of execution. The dynamic responsibilities of the hard-
mation.ware have been reduced to obeying the dictates of the instruc-

Figure 8(a) shows a control flow graph composed of basiction format, without any hardware support to enforce depend-
blocks. The numbers or weights beside the blocks and arcs areencies. Nonetheless, the VLIW architecture can achieve the
execution counts for each arc. Obtaining the weights can besame or greater performance as a superscalar architecture.
performed using information from profiled runs of the pro-There are many reasons for this, including the cycle time ad-
gram, via software estimates, or by use of specially designedvantage of simpler hardware, and the compiler’s ability to
performance monitoring hardware. A control flow graph anno-find more parallelism before execution than hardware can
tated in this way is often referred to as a weighted controlfind during execution.
flow graph.The above discussion illustrates local scheduling. Unfortu-

Superblocks are formed first by grouping blocks togethernately, the size of basic blocks is typically only four to six
that tend to execute sequentially. Such groupings wereoperations long. This limits the amount of parallelism a
termed traces by Fisher (13). The result of trace selection isVLIW can extract in much the same way as branches limit
shown in Fig. 8(b). The traces are represented as dashed rect-the parallelism of superscalar processors. To extract more

parallelism, global scheduling is used. This technique first angles in the figure. A superblock is a trace that has only one



PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS 639

Figure 8. Superblock formation from a
control flow graph. Note that D� is a copy
of all instructions inside basic-block D. (a)
original control flow graph; (b) after trace
selection; (c) after code duplication to re-
move side entrance B to D. (Numbers are
execution frequencies along arcs of control

37

7

9

3

A

C B

D

C

D

C

D D’

B

A

B

A

(a) (b) (c) flow graph.)

entrance at the top, but any number of multiple exits. No side to begin execution. If the register holds the value false, the
operation is abandoned, otherwise it is executed normally. Inentrance into a superblock is allowed. Notice that the larger

trace in Fig. 8(b) is not a superblock because B transfers con- the second technique, the specified predicate register is
checked when the corresponding operation completes execu-trol into the middle of the trace. To solve this problem, tail

duplication is performed. Specifically, D is duplicated. The tion on its functional unit. If the predicate holds the value
false, the results of the operation are discarded instead ofoverall result is shown in Fig. 8(c). Here notice that D has

been duplicated so that execution after B now flows to D�. [An being written back. Some proposed VLIW architectures sup-
port the former technique, others support the latter.excellent description of the complete superblock algorithm by

its inventors is presented in Ref. 14.] Predicated execution is a mechanism for removing condi-
tional, acyclic branches entirely from code sequences. To seeThe interesting property of superblocks is that operations

can be moved upwards in a superblock across the boundaries this, consider the example of Fig. 2(a). Figure 9 shows a predi-
cated version. The predicate specifier is represented by theof basic blocks. This is a direct consequence of the no-side-

entrances rule for superblock formation. It allows code motion keyword ‘‘if P2’’ in the intermediate language. Note the opera-
tion ‘‘P2 � cmpp(R1 � 0)’’: This is a predicate-define opera-that can extend the scope of local scheduling. This motion is

limited by data dependencies. Consider a branch and an oper- tion. It tests the condition (e.g., R1 equals zero) and, if the
condition is true, sets the predicate register P2 to true, elseation, X, from the fall-through path to be moved above this

branch. For the purpose of the example, say the operation sets P2 to false. Note how the inner loop branch has now
been converted into a data dependence on the predicate regis-writes its results to register R1. If any operations along the

taken path of the branch use R1, then X cannot be moved ter P2. This observation is the reason that conversion of code
from branch-based control flow to predicated form is termedabove the branch unless its destination register is changed

from R1 to another register. Another alternative is for the if-conversion.
Hyperblock formation uses if-conversion and predicatedcompiler to insert patch-up code into basic blocks not in the

superblock (i.e., on the taken path of the branch) to undo the execution to remove short forward branches and create larger
blocks of sequential code. Consider again the example of Fig.effects of X’s speculation.

Some additional hardware modifications are also required 8, where D had to be duplicated. If instead a predicate were
used to merge B into the superblock, the resulting hyperblockto enable speculative execution of potentially excepting opera-

tions. An extra bit is used in the VLIW encoding of each oper- would not require any code duplication. In addition, the
scheduler can move operations in a hyperblock in any direc-ation, to indicate the operation is being executed specula-

tively. If the speculative operation generates an exception, an tion, as long as the dependencies are obeyed. As mentioned
above, the control flow arc in the control flow graph is con-imprecise interrupt problem exists in much the same way as

it does for superscalar processors. This is solved via slight verted into a dependence arc in the data flow graph by if-
modifications to the register file to signal an exception when
the result of an excepting operation is used. This modification
to handle interrupts is referred to as sentinel scheduling (20).

Work has been done on scheduling algorithms that avoid
code duplication and allow for code motion in both directions.
The most notable of these techniques is the hyperblock sched-
uling technique of the Illinois IMPACT project (15). This tech-
nique relies on the use of if-conversion (21) and predicated
execution (11).

Predicates are one-bit registers that control whether the
results of an operation are retired or discarded. Support for

Loop : R1 ← R2 + R3
R5 ← R4 + R3

pr2 = cmpp(R5 > 0)
1d R4 ← X if not pr2
R6 ← R2 * R3 if pr2
R7 ← R1 * R3 if pr2

St X ← R7
R8 ← R4 + R3

R9 ← R9 –1
pr3 = cmpp(R9 > 0)

branch to Loop if pr3predicated execution requires the addition of a predicate reg-
ister field to all operations in the VLIW MultiOp encoding. Figure 9. The example of Fig. 2(a) if-converted using predicates. (Af-
There are two ways to use these registers. In one technique, fected region is shown in the rectangle.) The entire loop may now be

considered as a hyperblock.the predicate register is checked when an operation is about



640 PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS

step in most cyclic scheduling algorithms is to unroll the loop.
An unrolled version of the loop is shown in Fig. 11(b). Here
the body of the loop has been replicated four times. It can
then be scheduled using any of the acyclic scheduling algo-
rithms described above. However, any operations at the bot-
tom of the loop cannot be overlapped with operations at the
top of the loop. This can only be resolved by completely unroll-
ing the loop (which is not always possible, depending on the
conditions for looping).

If the loop is unrolled completely, as shown in Fig. 12, a
pattern emerges. This pattern is evident in the boxed itera-
tions between the heavy lines. This repeating pattern is
termed the kernel of the loop. The loop can be rewritten using
the kernel. This is shown in Fig. 13, where each line corre-

R9 ← R9 – 1 R9 ← R9 – 1

A

B

D

C

D′

sponds to operations that may be executed in the same cycle
(specifics of the VLIW encoding have been omitted for clarity).Figure 10. A treegion scheduling decision wherein an operation for

D and D� (the decrement of register R9) can be combined into one op- The boxed region is the kernel of the loop. Figure 13 shows
eration. the loop rewritten in a compact form. Note that when this

loop is scheduled in this way then executed, the effect is as
conversion. One drawback of hyperblock scheduling is visible though the loop was unrolled completely. The boxed central
from the example. Scheduled code that executes when p2 is region of the loop is identical to that of Fig. 12. The MultiOps
false competes for resources with code that executes when p2 above the kernel are termed the prologue, and those after the
is true. Thus, although the resulting schedule may appear kernel are termed the epilogue. If each iteration of the loop
dense, this may not be the case when the code is executed. is viewed as a single macro instruction, this kind of cyclic
But predication does serve an important role in removing scheduling is equivalent to a pipelined execution of these
hard-to-predict branches, thereby allowing speculation when macroinstructions. In this case, the pipeline is composed of
otherwise none could have been performed (22). three stages: stage one performs a load operation, stage two

One very recent technique for global code scheduling uses performs the multiplication, and stage three performs the
a tree-shaped region, referred to as a treegion (16). In this store of the results. The prologue loads the pipeline with the
technique, code is grouped into trees, then code motion is per- macroinstructions; they are then performed in an overlapped
formed. Code duplication is used to enhance the number of fashion. When the end of the loop is near, the pipeline is
trees in the control flow graph. One advantage of treegion drained by the epilogue. Because the pipeline does not exist
scheduling is illustrated in Fig. 10. Here an operation is in hardware, but rather is a construct of the compiler, this
moved both from block D to block A, and its copy is moved kind of cyclic scheduling is sometimes termed software pipe-from block D� into A. The copy can be deleted as a result of

lining. Because multiple iterations are executed at once, it isthe control independence discussed at the beginning of the
also referred to as polycyclic scheduling.chapter. This is not possible in superblock scheduling. It is

There were several conditions that make polycyclic sched-possible in hyperblock scheduling, but only if the code is com-
uling of the above example quite simple. These included thepletely if-converted. Thus treegion scheduling can achieve lev-
constant upper bound of 100 iterations, the lack of conditionalels of speculation similar to hyperblock scheduling without
code in the loop, and the well-behaved register usage patternsthe need for predication.
and functional unit requirements. When any of these condi-

Cyclic Scheduling tions is not present, polycyclic scheduling can become ex-
tremely complicated. In many cases, nonconstant upperCyclic scheduling efficiently schedules loops to achieve high
bound on the number of iterations and conditional code in theparallelism. An example loop is shown in Fig. 11(a). The first
loop body can be handled using predicated execution via if-
conversion (similar to hyperblock formation, see above). De-
coupling cross-iteration dependencies in a loop can be done
either by using additional registers or by hardware support,
as in the Cydra 5 (11).

An excellent summary of how to implement polycyclic
scheduling in a compiler is presented by Rau (23).

Compatibility Between Generations

Although VLIW processors have simplified hardware, their
implementations have commercial problems. Because the bi-
nary executable file is written in such a way that it can be
executed without dependency checking, the executable file
can only execute on one generation of the hardware. Any
changes in operation latency or the number of functional

Loop: Load R1 � M[R2��]
R3 � R1 * 2

Store M[R4��] � R3
exit loop if R4 � 100
Load R1 � M[R2��]

R3 � R1 * 2
Loop: Load R1 � M[R2��] Store M[R4��] � R3

R3 � R1 * 2 exit loop if R4 � 100
Store M[R4��] � R3 Load R1 � M[R2��]

branch to Loop if R4 � 100 R3 � R1 * 2
Store M[R4��] � R3
exit loop if R4 � 100
Load R1 � M[R2��]

R3 � R1 * 2
Store M[R4��] � R3

branch to Loop if R4 � 100
units would require new scheduling of the operations. Rau
proposed performing this scheduling in hardware via a su-Figure 11. An example-to-illustrate cyclic scheduling. (a) original

loop; (b) loop unrolled four times for scheduling. perscalar-like mechanism in a technique he termed split issue



PARALLEL PROCESSING, SUPERSCALAR AND VLIW PROCESSORS 641

Loop : Load R1 ← M[R2 ++]
R3 ← R1 * 2

Store M[R4 ++] ← R3

Load R1 ← M[R2 ++]
R3 ← R1 * 2

Store M[R4 ++] ← R3

Load R1 ← M[R2 ++]

R3 ← R1 * 2
Store M[R4 ++] ← R3

Loop R1 ← M[R2 ++]

R3 ← R1 * 2

Store M[R4 ++] ← R3

...

Figure 12. An example of how polycyclic scheduling is derived from unrolling a loop. The region
enclosed in heavy lines is the kernel of the loop.

(24). However, Conte and Sathaye (25) proposed a less hard- Which is better, then, a VLIW or a superscalar processor?
Compiler-based scheduling is superior to hardware schedul-ware-centric technique that moves the scheduler from the

compiler into the page fault handler of the operating system. ing techniques alone, since it can consider the entire program
rather than the contents of the reservation buffer. However,This technique (called dynamic rescheduling) reschedules

code originally scheduled for a different generation of VLIW often old executables cannot be recompiled to take advantage
of new compiler scheduling techniques. In such situations,processor. The scheduler is only invoked on first-time page

faults, not when a page is replaced and faulted back into hardware scheduling has an advantage. In addition, the
scheduling techniques used for VLIWs are not limited tomemory. Methods to cache rescheduled pages between pro-

gram runs can reduce the overhead to near-zero for most code VLIWs. A superscalar with simple interlocking can be viewed
as a ‘‘forgiving VLIW,’’ where it correctly executes unsched-(26). Dynamic rescheduling appears to solve the VLIW com-

patibility problem in the spirit of VLIW—by employing soft- uled code, but can achieve more substantial speedups for
scheduled code. What separates VLIW from superscalar is theware to schedule for the hardware.
programmer’s view of the processor. The latencies of func-
tional units in a superscalar processor are not part of the in-

COMPARISONS AND CONCLUSIONS
struction set architecture. For a VLIW, a programmer or com-
piler must know the latencies to correctly schedule code. This

Superscalar and VLIW designs both exploit instruction-level
turns into an advantage for a VLIW, since known latencies

parallelism to achieve high performance from a single stream
result in accurate and highly parallel code schedules.

of execution. The techniques each architecture uses to do this
In 1997, Hewlett-Packard and Intel announced details of

however, are vastly different. Superscalar designs handle the
their new EPIC instruction set. From the descriptions, it ap-

challenge of register reuse via methods such as the Tomasulo
pears that EPIC is VLIW-like. Each ‘‘bundle’’ in EPIC holds

algorithm. For VLIWs, this same problem is solved by use of a
three operations. Bundles can be connected into larger group-

large number of registers, thereby approximating the virtual
ings of independent operations. Although no details of the

registers of the compiler’s intermediate code. Once registers
first implementation were given, the announcement is seen

are renamed, superscalar uses hardware constructs such as
by many to forecast the introduction of another commercial

the reservation buffer, the scoreboard, the common data bus,
VLIW processor by the end of the century. It may be too early

and multiple instruction issue to execute instructions out of
to declare that VLIW is the clear winner over superscalar.

program order. The VLIW approach uses compiler-based local
Industry is likely to mix both ideas into a hybrid that sup-

and global scheduling techniques, the latter including both
ports a degree of code compatibility in hardware, with a very

acyclic (trace-, superblock-, hyperblock- and treegion-schedul-
wide instruction word interface for the compiler to exploit.

ing), and cyclic (software pipelining/polycyclic scheduling)
Today, the majority of all processors used in systems rang-

techniques. As with dependencies, where superscalar uses a
ing from personal-computer uniprocessors to massively paral-

purely hardware-based solution, the VLIW solution is to rely
lel multiprocessors exploit instruction-level parallelism. It is

on the compiler. As for speculative execution, superscalars
clear is that instruction-level parallelism will continue to be

use hardware-based branch predictors. VLIW processors use
the most common and most general form of parallel pro-

profile information to construct a weighted control flow graph,
cessing in use.

which is then scheduled. The analog of superscalar state up-
date hardware (e.g., the reorder buffer, future file, or check-

To Probe Further
point-repair) is the VLIW sentinel scheduling technique. Both
aid in speculative execution. VLIWs also take advantage of The design of superscalar and VLIW processor architectures

is an active research topic and most of the ideas are first pre-predicated execution via if-conversion.

Loop : Load R1 ← M[R2 ++]

R3 ← R1 * 2

Store M[R4 ++] ← R3

Prologue

Epilogue

Kernel
Load R1 ← M[R2 ++]

R3 ← R1 * 2

Store M[R4 ++] ← R3

Load R1 ← M[R2 ++]

R3 ← R1 * 2

Store M[R4 ++] ← R3

Branch to loop if R4 < 98

Figure 13. An illustration of the final polycyclic (software pipeline) scheduled loop.



642 PARALLEL PROGRAMMING TOOLS

18. P. G. Lowney et al., The Multiflow Trace scheduling compiler, J.sented at annual conferences. A leading conference is the In-
Supercomput., 7: 51–142, 1993.ternational Symposium on Microarchitecture, which is held ev-

19. P. P. Chang et al., IMPACT: An architectural framework for mul-ery year and organized by the Association for Computing
tiple-instruction-issue processors, Proc. 18th Annu. Int. Symp.Machinery SIGMICRO special interest group and the IEEE
Comput. Archit., 1991, pp. 266–275.TC-MICRO technical committee. Many of the ideas discussed

20. S. A. Mahlke et al., Sentinel scheduling: A model for compiler-in this chapter were first presented at this conference. Other
controlled speculative execution, ACM Trans. Comput. Syst., 11:conferences include the International Symposium on Com-
376–408, 1993.puter Architecture and the International Conference on Archi-

21. J. R. Allen et al., Conversion of control dependence to data depen-tectural Support for Programming Languages and Operating
dence, Proc. 10th Annu. ACM Symp. Principles Programming Lan-Systems, both organized by the ACM SIGARCH special inter-
guages, 1983, pp. 177–189.est group and the IEEE Computer Architecture Technical Com-

22. S. A. Mahlke et al., A comparison of full and partial predicatedmittee. In addition, readers interested in VLIW should also
execution support for ILP processors, Proc. 22nd Annu. Int. Symp.examine the journal Software Practice & Experience, and the
Comput. Archit., 1995, pp. 138–150.Conference on Programming Language Design and Implemen-

23. B. R. Rau, Iterative modulo scheduling: An algorithm for soft-tation (organized by the ACM SIGPLAN special interest
ware pipelining loops, Proc. 27th Annu. Int. Symp. Microarchit.,group). The proceedings of the above conferences are pub-
1994, pp. 63–74.lished by the IEEE and the ACM.

24. B. R. Rau, Dynamically scheduled VLIW processors, Proc. 26th
Annu. Int. Symp. Microarchit., 1993, pp. 80–90.

BIBLIOGRAPHY 25. T. M. Conte and S. W. Sathaye, Dynamic rescheduling: A tech-
nique for object code compatibility in VLIW architectures, Proc.

1. D. Kroft, Lockup-free instruction fetch/prefetch cache organiza- 28th Annu. Int. Symp. Microarchit., 1995, pp. 208–218.
tion, Proc. 8th Annu. Int. Symp. Comput. Archit., 1981, pp. 81–87.

26. T. M. Conte, S. W. Sathaye, and S. Banerjia, A persistent re-
2. J. E. Smith, A study of branch prediction strategies, Proc. 8th scheduled-page cache for low-overhead object-code compatibility

Annu. Int. Symp. Comput. Archit., 1981, pp. 135–148. in VLIW architectures, Proc. 29th Annu. Int. Symp. Microarchit.,
3. T. M. Conte et al., Optimization of instruction fetch mechanisms 1996, pp. 4–14.

for high issue rates, Proc. 22nd Annu. Int. Symp. Comput. Archit.,
1995, pp. 333–344. THOMAS M. CONTE

4. E. Rotenberg et al., A low latency approach to high bandwidth North Carolina State University
instruction fetching, Proc. 29th Annu. Int. Symp. Microarchit.,
1996, pp. 24–34.

5. R. M. Tomasulo, An efficient algorithm for exploiting multiple
arithmetic units, IBM J. Res. Develop., 11: 34–53, 1967.

6. J. E. Smith and A. Pleszkun, Implementation of precise inter-
rupts in pipelined processors, Proc. 12th Annu. Int. Symp. Com-
put. Archit., 1985.

7. M. Johnson, Superscalar Microprocessor Design, Englewood
Cliffs, NJ: Prentice-Hall, 1991.

8. W. W. Hwu and Y. N. Patt, Checkpoint repair for high-perfor-
mance out-of-order execution machines, IEEE Trans. Comput., C-
36: 1496–1514, 1987.

9. J. A. Fisher et al., Parallel processing: A smart compiler and a
dumb machine, Proc. 1984 SIGPLAN Symp. Compiler Construct.,
1984, pp. 37–47.

10. T. M. Conte et al., Instruction fetch mechanisms for VLIW archi-
tectures with compressed encodings, Proc. 29th Annu. Int. Symp.
Microarchit., 1996, pp. 201–211.

11. B. R. Rau et al., The Cydra 5 departmental supercomputer, Com-
puter, 22: 12–35, 1989.

12. E. G. Coffman, Computer and Job-Shop Scheduling Theory, New
York: Wiley, 1976.

13. J. A. Fisher, Trace scheduling: A technique for global microcode
compaction, IEEE Trans. Comput., C-30: 478–490, 1981.

14. W. W. Hwu et al., The Superblock: An effective structure for
VLIW and superscalar compilation, J. Supercomput., 7: 229–
248, 1993.

15. S. A. Mahlke, Exploiting instruction level parallelism in the pres-
ence of branches, Ph.D. dissertation, Depart. Electri. Comput.
Eng., Univ. Illinois, Urbana-Champaign, Urbana, IL, 1996.

16. W. A. Havanki, S. Banerjia, and T. M. Conte, Treegion schedul-
ing for wide-issue processors, Proc. 4th Int. Symp. High-Perfor-
mance Comput. Archit. (HPCA-4), Las Vegas, 1998.

17. J. R. Ellis, Bulldog: A Compiler for VLIW Architectures, Cam-
bridge, MA: MIT Press, 1986.


