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PARALLEL DATABASE SYSTEMS

Database systems are computer systems designed specifically
to manage large volumes of information. Since their inception
in the 1960s, these systems have evolved into a diverse collec-
tion of architectures designed for different purposes and opti-
mized along different metrics. The profound impact of techno-
logical advancement coupled with the diverse optimization
strategies have yielded quite an array of database systems.

This article presents a survey of research that has been
done in the area of parallel database systems. It provides a
method of classifying database systems by architecture and
presents the reader with a brief introduction to database sys-
tems in general, with emphasis on parallel database systems
in particular.

A database machine is a computer system dedicated and
tailored to carrying out the functionality of a database man-
agement system. Database machines run the gamut from
small, single microcomputer conventional database systems
to architectures with tens (or hundreds) of microprocessors
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operating on a single database, on the order of gigabytes, to systems are further subdivided into those that have a strong
hardware orientation and those which are software oriented.multisite systems composed of high-end servers connected by

extensive communication networks. It can be a highly special- Conventional database systems are the common, mono-
lithic architectures. Distributed database systems are thosepurpose processor used to perform specific database opera-

tions. In addition, a database machine can be a single or featuring a collection of autonomous, geographically dis-
persed systems which communicate via wide area communi-multicomputer system designed to perform a variety of data-

base operations. cation network. The proposals of hardware database ma-
chines throughout the database management systemThe architecture of database machines is broken down into

the two main areas: hardware database machines that exploit literature were an attempt to provide high-performance oper-
ations by taking advantage of parallelism at the hardwarecustom processors and software database machines that run

on a collection of off-the-shelf processing elements. The cate- level. The proponents of software database machines ap-
proach the performance problem of database managementgorization of software database machines excludes the class

of distributed database management systems, which are built systems is to use off-the-shelf commodity processing elements
and vendor-provided operating systems coupled with data-as a distinct layer of software that interfaces to some existing

homogeneous or heterogeneous conventional database man- base software to design high-performance database systems.
agement system. The optimizing of software database ma-
chines is essentially an exercise in exploiting parallelism in

CONVENTIONAL DATABASE SYSTEMSthese configurations. Hence, in recent years, the design of
parallel database systems has been centered around conven-

A conventional database system consists of database manage-tional multiprocessor architectures. These architectures allow
ment system (DBMS) software running on a conventional Vonthe designer of software database systems to harness parallel-
Neumann type computer system called a host. Figure 2 de-ism in a seemingly natural way.
picts a conventional database management system. The
DBMS software runs on the host and is managed by the host’s
operating system. The database is stored on the secondaryCLASSIFYING DATABASE SYSTEMS
storage devices dedicated to the host processor. The architec-
ture of the conventional computer does not match well withDatabase systems can be categorized according to the taxon-

omy of Fig. 1. First, all database systems can be classified the requirements of a database management system. It re-
sults in a number of serious limitations and bottlenecks. Lim-as either conventional, distributed, or parallel. The parallel
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Figure 1. Taxonomy of database systems. This taxonomy classifies all database systems along
the three main categories of conventional, distributed, or parallel database systems. The parallel
systems are further subdivided into those that have a strong hardware orientation and those
that are software oriented.
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nature of these devices. Quantitative performance data of
computing equipment gathered over the last couple of decades
has indicated that it is much more difficult to improve the
performance of mechanical devices in comparison to improv-
ing the performance of electronic devices such as processor,
which is related to improvements in the underlying silicon-
based technology. The speed of secondary storage will always
be a factor in determining performance in this architecture.
Additional limitations result from the fact that data transmis-
sion can only be done one physical block at a time, through a
single read/write head, and that data are stored and accessed
by address rather than by content. The last issue limits the
ability of storage devices to freely move data in order to max-
imize the usage of the storage space, without paying the high
cost of maintaining address references (which from the data-
base user’s perspective is strictly an overhead).

DISTRIBUTED DATABASE SYSTEMS

A distributed database is one which is not stored in its en-
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Figure 2. Conventional database system. Conventional database sy- a network of geographically dispersed locations and connected
tems are the common monolithic database architectures that consist via communication links (28,33). In general, a distributed da-
of database management system software running on a conventional tabase system (DDBS) consists of a collection of sites, or
computer system called a host. The DBMS software runs on the host nodes, connected together via a communication network, andcomputer and is managed by the host’s operating system. The physi-

each site, in turn, has an autonomous database system, i.e.,cal database (or data repository) is stored on the secondary storage
there is no central controller component. Figure 3 illustratesdevices dedicated to the host processor.
this approach. Each site has its own database, and a pro-
cessor running its own local database management system. A
distributed database system may be either heterogeneous oritations of this architecture include reduced capacity, less re-
homogeneous, and the database may be replicated, parti-liability and availability, and the fact that the DBMS must

contend with other applications for the host resources. Perfor-
mance upgrades in conventional database systems can be
costly and disruptive, requiring replacement of expensive
hardware or modification of software. In short, such systems
are not extensible, where extensibility of a database manage-
ment system is defined as the capability of the system for
upgrade with (1) no modification of existing software, (2) no
additional programming, (3) no modification of existing hard-
ware, and (4) no major disruption of system activity when ad-
ditional hardware is being added. Examples of conventional
database management systems are INGRES (1), Oracle
(2,31), and Sybase (3).

Limitations of the Conventional Computer Architecture

Conventional computers execute programs by moving both in-
structions and data from the secondary storage devices to the
central processing unit (CPU) via main memory and the asso-
ciated controllers. This mode of operation results in limita-
tions in secondary storage, main memory, and the processor.
In addition, this architecture has potential bottlenecks due to
the secondary storage to main memory and main memory to
processor interfaces.
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The conventional secondary storage devices are limited by Figure 3. Distributed database system. Distributed database sys-
their inability to process data locally. The read/write mecha- tems feature a collection of autonomous, geographically dispersed sys-
nisms of these devices are used exclusively for data transmis- tems which communicate via a wide area communication network.
sion. Secondary storage devices are also limited by their Each site has its own database and a processor running its own local

database management system.speed. This is a direct consequence of the electromechanical
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tioned, or a combination of the two. Often the expense of large
data transfers and the need to locate data where they are
actually needed require duplicate databases.

The advantages of this approach include local autonomy,
capacity and incremental growth, increased reliability and
availability, and flexibility. Disadvantages include the need
to duplicate databases, and complex concurrency control and
security algorithms, which require large number of expensive
control messages to be passed across the communication net-
work (39). Examples of distributed database systems include
Distributed INGRES (4), R* (5), and Distributed Sybase (3).

PARALLEL DATABASE SYSTEMS

The third main class of database systems shown in Fig. 1 con-
tains those systems known as parallel database systems. The
limitations of the conventional database systems and the
sheer size of today’s databases led to the notion of creating
special-purpose computers to address the DBMS performance
concerns. These architectures are further divided into those
based on hardware approaches and those based on software
approaches.
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Figure 4. The context-addressed segment-sequential memory sys-HARDWARE DATABASE MACHINES
tem architecture. The context-addressed segment sequential memory
system architecture is an example of the processor-per-track or cellu-Hardware database machines subscribe to the general theme
lar logic device architecture. The database is stored on a fixed-head

of relying on special-purpose hardware to achieve the desired disk with a processing element dedicated to each read/write head.
performance goals. These consist of some number of the fol- The controller is responsible for communication with the host, query
lowing set of criteria in some desired order. The criteria in- distribution, and collation and processing of intermediate and final
clude (1) low response time, (2) high data availability, (3) abil- results.
ity to store very large volume of data, order of tens of
gigabytes, and (4) almost unlimited scaleability. The earliest
of these approaches focused on architectures that were based can also be carried out by these devices, but they would in-
on building associative disks, which basically fall into three volve more memory revolutions.
main categories, namely: processor-per-track (PPT), pro- The context addressed segment sequential memory
cessor-per-head (PPH), and Off-The-Disk (OTD). (CASSM) (6), shown in Fig. 4, is an example of this type of

The general idea behind these systems is to eliminate the architecture. It was designed to support the network, hierar-
limitations of the conventional secondary storage devices for chical, and relational data models. The database is stored on
database applications, by building more intelligence into the a fixed-head disk with a simple processing element dedicated
secondary storage device (37). This serves to increase the pro- to each read/write head. The entire system is supervised by a
cessing capabilities of the read/write mechanism. Hence, data controller processor responsible for communications with the
stored on these devices can be directly searched and manipu- host, query distribution, and collation and processing of inter-
lated. The objective is to make the secondary storage devices mediate and final results. Data items in CASSM are stored
intelligent enough so that they can select only the relevant as ordered pairs (�attribute, value�), and selections, performed
portion of the data and then transfer them to the main mem- on-the-fly by the cell processors, can be accomplished in three
ory for further processing. Thus, these systems process the or four revolutions of the disk.
data ‘‘on-the-fly’’ while they are read from the disks. Special- Other processor per track systems include the relational
purpose processors, which are associated with the secondary associative processor (RAP) (7), RARES (8), and Chang’s
storage devices, are utilized to perform this processing. Major/Minor Loop Machine (9), a magnetic bubble memory

implementation.
Processor-Per-Track Systems

Processor Per Head Systems
The processor-per-track devices, also referred to as cellular
logic devices, may be regarded as an upgrade from fixed-head The cellular-logic systems offer tremendous parallel pro-

cessing capability since each dedicated processor can processdisk. This approach seeks to overcome the limitations by as-
signing a dedicated processor to each track of a rotating mem- a portion of the database. The database segments are nor-

mally a full track of data. Unfortunately, the cost of buildingory device. All the processors can perform the same search
operation in parallel, enabling the entire disk to be searched such a device can be quite high. We can reduce the number

of special-purpose processors required for a large database byin one revolution. If the whole database is stored on a number
of such storage devices, then the entire database can be extending the size of the memory element. For example, a

single track can be extended to the entire surface of a disk.searched in one revolution. More complex database operations
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Figure 5. The mass memory architecture
of the database computer. The mass mem-
ory architecture is an example of the pro-
cessor-per-head approach. The database
computer uses the mass memory unit to
store its database. The mass memory uses
several moving-head disks modified with
parallel readout capability and connected
by a switch to a number of processors
which perform search operations on-the-
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fly.

This would change the configuration of the storage device to another data stream. Then, it performs bit-by-bit comparisons
of the two streams. The track information processors thenbecome an intelligent moving-head disk in which the pro-

cessing element (read/write heads) can be dynamically moved compare the value portion of the attribute–value pairs to de-
termine if the query predicate is satisfied. Another processor-to a selected track. The tracks under the processing elements

form a cylinder, the contents of which can be processed in per-head architecture is the SURE search processor devel-
oped at the University of Braunschweig (11).parallel. This is an alternative approach to the general princi-

ple of intelligent secondary storage, the so-called processor-
per-head systems. Off-the-Disk Systems

The processor-per-head systems employ one processor per
The off-the-disk category (also called processor per disk) em-surface of the disk, hence the amount of data that can be pro-
ploys conventional moving-head disks with a conventionalcessed on-the-fly during one revolution is one track per sur-
disk controller, but interposes a filtering processor betweenface, or one cylinder. Moving the processors between cylinders
the disk controller and the channel. This filtering processorrequires a seek operation. The processor per head approach
applies search logic on-the-fly, eliminating unnecessary data.may be viewed as an upgraded form of the moving head disk.
The off-the-disk approach provides the functionality of theAn example of an architecture incorporating processor-per-
processor-per-track and processor-per-head systems at ahead technology is the database computer (DBC) (10), devel-
lower cost because there is less custom hardware. However,oped at Ohio State University. A functionally organized
the performance of the off-the-disk systems is less than themultiprocessor system, the database computer employs the
performance of the processor-per-track or processor-per-headprocessor per head approach as the basis for its mass memory
systems.unit, where the database is stored. Figure 5 depicts the mass

Figure 6 shows the architecture of the content-addressablememory architecture of the database computer. The mass
file store (CAFS) (12), which is an example of the off-the-diskmemory uses several moving-head disks modified with paral-
design. In CAFS a special processor and random-access bit-lel readout capability and connected by a switch to a number
addressable memory are positioned between the rotatingof processors which perform search operations on-the-fly. This
storage device and the host. Records are read from the con-type of operation is possible because every track of a cylinder
ventional disk devices into the key register area in theis actually processed by a separate processing unit, called a
content-addressable file store. These registers can comparetrack information processor (TIP), with dedicated buffer space
query predicates with attribute values in parallel. Results are(10). Based on the attribute model, the database computer
forwarded to the search evaluation unit, where qualifying rec-stores a database as a collection of records, each containing a
ords are selected. Projections on the applicable records arerecord body and a set of variable-length attribute–value
then performed by the retrieval unit and forwarded to thepairs.
user at the host.In addition, groups of records forming likely response sets

Other systems classified as off-the-disk architectures areare clustered on the disk devices. Query conjunctions are
many and varied. They include the Britton-Lee IDM-500 (13),broadcast by the mass memory controller and stored in each
Delta Machine (14), SM3 (15), and VERSO (16).of the track information processors. The track information

The literature of database management systems has nu-processors simultaneously evaluate the query against their
merous references to the so-called back-end machine architec-corresponding incoming record streams being read off the
ture. Back-end machines attempt to solve the database man-disks. This is accomplished in the following manner: First,
agement system problem by off-loading the databaseeach track information processor reads a record from the

track as part of one data stream and the query conjunction as management system functionality onto a back-end machine.
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Taxonomy of Parallel Architectures

In this section a taxonomy is presented to lend some credence
to the breadth of design alternatives for multiprocessors and
the context that has led to the development of the dominant
form of multiprocessors. The alternative and rationale behind
them will be briefly described.

The idea of using multiple processors both to increase per-
formance and to improve reliability dates back to the very
inception of the electronic computers when Flynn proposed a
simple model for categorizing all computers (17). This model
is still useful today. He looked at parallelism in the instruc-
tions and data streams called for by the instructions, and
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placed all computers in one of four categories:

Figure 6. The context-addressable file store system architecture.
The context-addressable file store system architecture is an example

1. Single instruction stream, single data stream (SISD).of the off-the-disk design. In this configuration a special processor
This is the conventional uniprocessor architecture.and random-access bit-addressable memory are positioned between

the rotating storage device and the host. The key registers perform 2. Single instruction stream, multiple data stream
parallel evaluation of query predicates against data read from the (SIMD). In this architecture the same instruction is exe-
disk devices, before forwarding results to the search evaluation unit, cuted by multiple processors using different datawhere qualifying records are selected.

streams. Each processor has its own data memory
(hence multiple data), but there is a single instruction
and memory and control processor, which fetches and

This approach results in excessive message traffic when try- dispatches instructions. The processors are typically
ing to off-load a record-at-a-time language. It has been shown special purpose, since full generality is not required.
that only relational systems can be successfully off-loaded. 3. Multiple instruction streams, single data stream

The rapidly declining price of off-the-shelf commodity gen- (MISD). No commercial machine of this type has been
eral-purpose processing units makes custom hardware unat- built to date.
tractive. Also, a database designer would prefer an architec-

4. Multiple instruction streams, multiple data streamsture in which multiple processors could be used to provide
(MIMD). In this architecture each processor fetches itsany needed degree of performance on a user application. Both
own instruction and operates on its own data. The pro-of these have contributed toward the trend of developing soft-
cessors are normally off-the-shelf microprocessors.ware database systems using standard hardware components.

Hence, the best approach for the design of high-performance
This is a coarse model, as some machines are hybrids ofdatabase systems should be based on conventional multipro-

these categories. However, it serves the purpose of putting acessor techniques.
framework on the design space. Many of the early multipro-
cessors were SIMD, and the SIMD model received renewed
attention in the 1980s. SIMD works best in dealing withSOFTWARE DATABASE MACHINES
arrays in for-loops. Hence, to have the opportunity for mas-
sive parallelism in SIMD there must be massive amounts ofSoftware database systems are those which do not employ a

significant amount of special-purpose hardware and where data parallelism. The SIMD model is once again suffering
from waning interests as a general-purpose multiprocessormost of the functions of database management are done in

software. There are three possible architectures to exploit architecture, for two main reasons. First, it is too inflexible.
A number of important problems cannot use this style of ma-multiprocessor parallelism: (1) shared memory, (2) shared

disk, and (3) shared nothing. In the shared memory configu- chine, and the architecture does not scale down in a competi-
tive fashion; that is, small-scale SIMD machines often haveration, a number of processors are attached to the memory

bus and each has access to a common memory. This architec- worse cost/performance compared with that of the alterna-
tive. Second, SIMD cannot take advantage of the tremendousture is very pervasive throughout the UNIX server market.

In the shared disk architecture, a number of processors with performance and cost advantages of microprocessor technol-
ogy. Instead of leveraging this low-cost technology, designerslocal memory can access a shared disk system. This architec-

ture has been very popular in the recent collection of mas- of SIMD machines must build custom processors for their ma-
chines.sively parallel systems from Thinking Machines Corporation,

Intel, and N-cube. The VAXcluster, by Digital Equipment In recent years MIMD has clearly emerged as the architec-
ture of choice for general purpose multiprocessors. Two fac-Corporation, is a more conventional shared disk architecture.

In the shared nothing architecture, a collection of processors tors are primarily responsible for the rise of the MIMD ma-
chines: (1) they offer flexibility, and (2) MIMD can build onwith private memory and disks are connected together via an

interconnection network. The interconnection network varies the cost performance of off-the-shelf microprocessors. MIMD
machines fall into two classes, depending on the number ofbased on the proximity of the processors and fall into the fol-

lowing generic categories: (1) massively parallel processor processors, which in turn dictate the memory organization
and interconnection strategy. The two classes are centralized(MPP) network, (2) local area network, and (3) wide area

network. shared-memory and distributed-memory.
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of the larger number of processors required that the memory
be distributed among the processors, otherwise the memory
system would be saturated by the memory demands of the
processors (17,36). Not having a centrally shared memory for
information exchange, the distributed-memory organization
requires a high bandwidth interconnection network. Figure 8
illustrates the architecture for these machines.

The distribution of memory among the nodes of the distrib-
uted-memory architecture has two major advantages: (1) it
provides a low-cost method to scale the memory bandwidth,
and (2) the latency for access to the local memory is reduced.
These advantages play a key role in making distributed mem-
ory architecture attractive at smaller processor count as pro-
cessors get faster and require more memory bandwidth and
lower memory latency. The major disadvantage of this archi-
tecture is that interprocessor communication is more
complex.
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Figure 7. Centralized shared-memory multiprocessor architecture. machines partitions this class into two major architecturalThe centralized shared-memory multiprocessor architectures have at

types. In the first category, the physically separate memoriesmost a collection of a few dozen processors that are interconnected
can be addressed as one logically shared address space, i.e., aand share a single centralized memory via a bus. This architecture
memory reference can be made by any processor on any mem-offers excellent performance because the memory demands of the pro-
ory location. These machines are called distributed sharedcessors can be satisfied with large caches connected to the individ-

ual processors. memory or scaleable shared-memory architectures (17,35).
The BBN GP1000 (18,26), by BBN Butterfly and Monarch, is
an example of this architecture.Shared Memory

Alternatively, the address space can consist of multiple
The centralized shared-memory architectures, Fig. 7, have at private address spaces that are logically disjoint and cannot
most a collection of a few dozen processors that are intercon- be accessed by a remote processor (17,35). Each processor-
nected and share a single centralized memory via a bus. memory module is essentially a separate computer, forming
Multiprocessors with a small number of processors are able the so-called shared nothing configuration with the intercon-
to share a single centralized memory in this manner and get nection network determining the degree of coupling. These
excellent performance, primarily because the memory de- machines are also referred to as message-passing multicom-
mands of the processor can be satisfied with large caches con- puters. The Intel iPSC 860 (17), a hypercube-connected collec-
nected to the individual processors (17,36). The single main tion of i860s, is based on this architecture. More recent ma-
memory in this architecture provides uniform access times to chines such as Intel Paragon (17) have used networks with
all of the processors. This type of shared-memory architecture lower dimensionality and higher individual links. The Think-is currently the most popular architecture by far for general-

ing Machines CM-5 (19,32,38) makes use of off-the-shelf mi-purpose computing.
croprocessors and a fat tree interconnect. It provides user-The ability to separate process allocation from the parallel
level access to the communication channel, thus significantlyexecution of selection operations is an issue of significant im-
improving communication latency. In 1995, these were theportance in the parallel execution model of queries. A shared-
state of the art in message-passing multicomputers. In thememory architecture has the distinct advantage of uncou-
next section we describe the Gamma database machine run-pling the implementation of the parallel execution model of
ning on an Intel iPSC/2 hyper-cube which is a shared-noth-queries from the process allocation strategy (30,34). Each op-
ing machine.erator in a query tree of a selection operation can be assigned

one or more processes to perform execution of the activities
associated with the operator. A scheduler process is used to Gamma Database Machine
assign processes to available processors that can provide the

The Gamma database machine (20) is a relational databaserequired service. The coordination and synchronization of the
system operating on an Intel iPSC/2 hyper-cube with 32 pro-activities and interaction of the processes is done through the
cessors. Each processor is configured with a 386 CPU, 8 mega-centralized shared memory. The typical consumer–producer
bytes of RAM, and a 330 megabyte MAXTOR SCSI disk drive.operation of inter-operator interaction is coordinated through
The nodes are interconnected via custom VLSI routing mod-shared memory. This is also true of the intra-operator inter-
ules forming a hyper-cube. Gamma is built on top of theaction associated with parallelism within an operator (27),
NOSE operating system (20) which is designed specifically fordue primarily to horizontal partitioning of the relation. Paral-
supporting database management systems. NOSE uses non-lel accessed structures are protected using mutual exclusion

semaphore, an operating system construct that is also a con- preemptive scheduling to prevent convoys. In addition, NOSE
sequence of the shared-memory architecture. provides lightweight processes and an interprocess communi-

cation mechanism based on the reliable message passing
Shared Nothing hardware of the Intel iPSC/2 hyper-cube. NOSE provides file

services based on the Wisconsin Storage System (WiSS)The second class of MIMD computers consists of machines
with physically distributed memory. The bandwidth demands (21,40).
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Figure 8. Distributed-memory multipro-
cessor architecture. The distributed-mem-
ory multiprocessor architecture is an ex-
ample of the MIMD computers in which
memory is physically distributed among
the processors. Information exchange is
facilitated by way of a high-bandwidth in-
terconnection network.
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The relations in Gamma are horizontally partitioned coordinate execution of multioperator queries. The use of
these techniques facilitates the execution of very complexacross the disk drives enabling the database software to ex-

ploit the available system I/O bandwidth. The declustering of queries with little or no coordination. This feature is neces-
sary for machine configurations with large processor counts.a relation makes the task of parallelizing a selection operator

easier. This is because the selection is reduced to that of start-
ing a copy of the operator on each processor. During query

OTHER SOFTWARE DATABASE SYSTEMS AND CONCEPTS
optimization, partition information for the source relation is
incorporated into the query plan and is used by the query

Volcano Query Processing System
scheduler to determine the set of processors to be involved
in the execution of the selection query. For range partitioned The Volcano Query Processing System (22) is a dataflow

query processing system that is extensible by adding new op-relations, the scheduler restricts the execution to those pro-
cessors whose range overlaps the range of the selection pred- erators. The system was designed to parallelize single

threaded query processing algorithms without modifyingicate.
The Gamma software database machine is organized their implementations. This was done using the operator

model (this form of parallelizing a query is described subse-around a number of processes. The Catalog Manager acts as
a central repository of all conceptual and internal schema in- quently).

The bracket model of parallelism has a generic templateformation for individual databases. The schema information
is loaded whenever a database is first opened. A Query Man- that can send and receive data and execute one operator at

a time. The Gamma database machine uses this model. Theager is associated with each active Gamma user. A Scheduler
process is responsible for the management of a multisite template code invokes the operator which then controls execu-

tion. A major disadvantage of this model is that each locus ofquery. The scheduler process activates the operator processes
used to execute the nodes of a compiled query tree. Operator control has to be created. This is done using a scheduler pro-

cess and requires additional software development beyond theprocesses correspond to operators in a query tree. One or
more operator processes are executed at each processor par- operator functionality, for each operator in the set of query

processing algorithms (22). Thus, this model is not well suitedticipating in the execution of the operator.
The Gamma database machine uses conventional rela- for system extensibility.

The operator model of parallelizing a query evaluation en-tional techniques for query parsing, optimization, and code
generation. The complexity of the query optimization process gine is focused around the reuse of single-threaded query pro-

cessing code, resulting in self-scheduling parallel processing.is reduced because Gamma only utilizes hash-based parallel
algorithms for joins and other complex operations. In addi- Execution control is localized in an operator that provides a

standard iterator interface to operators above and below ittion, queries are compiled into a left-deep tree of operators
with each operator being executed by one or more operator in a query tree. The exchange iterator module encapsulates

parallelism and thus reduces the complexity of implementingprocesses at each participating node.
The Gamma database machine architecture utilizes three parallel database algorithms. The iterator has open, next, and

close procedures and therefore can be inserted in multiplemain concepts which allows it to scale to hundreds of proces-
sors: (1) relations are horizontally partitioned across multiple places in a complex query tree. Figure 9 shows a complex

query execution plan that includes data processing operators.disk drives attached to separate processors, allowing relations
to be scanned in parallel, (2) hash-based parallel algorithms The exchange iterator provides the necessary support for

vertical and horizontal parallelism in Volcano. The open callare used to process complex relational operators such as joins
and aggregate functions, and (3) dataflow scheduling tech- creates a child process which enters into a producer–

consumer relationship with the parent process. The pro-niques, based on the bracket operator model (22), are used to
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can scale almost arbitrarily to contain as many processors as
deemed necessary to perform the task. A shared-disk system
offers neither the cheapness of a shared-memory configura-
tion nor the scalability of a shared-nothing system. This im-
plies that the shared disk is the least attractive of the three
alternatives.

SUMMARY AND CONCLUSIONS

This article presented a detailed discussion of parallel data-
base systems. A taxonomy consisting of three major catego-
ries of systems (conventional, distributed, and parallel data-
base systems) was presented. The parallel systems were
further categorized into hardware-oriented and software-ori-
ented architectures.

The early parallel systems were the hardware database
machines that exploited custom hardware to improve perfor-

Print

Join

Exchange

Exchange

Scan

Join Exchange

ScanExchange

Scan

mance. The more recent systems are primarily software data-Figure 9. Operator model of parallelization. The operator model of
base machines using standard multiprocessor technology;parallelizing of a query evaluation engine is focused around the reuse
most of which fall into the multiple instruction streams, mul-of single-threaded query processing code. Execution control is local-
tiple data streams architecture. The MIMD configurationized in an operator that provides a standard iterator interface to oper-
seems to be the architecture of choice primarily because itators above and below it in the query tree, called the exchange opera-

tor. The exchange iterator encapsulates parallelism and thus reduces allows for almost unlimited scalability, a property that is
the complexity of implementing parallel database algorithms. deemed necessary for very large databases.

The current research efforts in software database ma-
chines include the design and development of efficient execu-

ducer–consumer relationship of exchange uses the data- tion strategies for parallel evaluation of selection queries.
driven dataflow paradigm and uses standard UNIX operating This is crucial to maximizing performance in the shared-noth-
system interprocess communication mechanisms for synchro- ing architecture that uses message passing for interprocess
nization. communication. The research and commercial multiprocessor

database systems and the availability of low-cost processors
Active Areas of Research in Software Database Systems

have made supporting very large databases a reality.
One of the primary areas of current interest in software data-
base systems seems to be the design and development of effi-
cient execution strategies for parallel evaluation of multi-join BIBLIOGRAPHY
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