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HETEROGENEOUS DISTRIBUTED COMPUTING

One of the biggest challenges in high-performance computing
is that as machine architectures become more advanced to
obtain increased peak performance, only a small fraction of
this performance is achieved on many real application sets
because a typical application may have various subtasks with
different architectural requirements. When such an applica-
tion is executed on a given machine, the machine spends most
of its time executing subtasks for which it is unsuited. With
the recent advances in high-speed digital communications, it
has become possible to use collections of different high-perfor-
mance machines in concert to solve computationally intensive
application tasks. This article describes the issues involved in
using such a heterogeneous computing (HC) suite of machines
to solve application tasks.

A hypothetical example of an application that has various
subtasks that are best suited for different machine architec-
tures is shown in Fig. 1 (based on Ref. 1). The example exe-
cutes for 100 time units on a baseline serial machine. The
application consists of four subtasks: the first is best suited
for execution on a single instruction stream, multiple data
streams (SIMD) parallel machine, the second is best suited
for a distributed-memory multiple instruction streams, multi-
ple data streams (MIMD) parallel machine, the third is best
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Figure 1. Hypothetical example of the advan-
tage of using a heterogeneous suite of machines,
where the heterogeneous suite time includes in-
termachine communication overhead (based on
Ref. 1). Not drawn to scale.

��� ��
���� ���

40
Large, distributed-

memory MIMD

Execution on
SIMD machine

Execution on
heterogeneous suite

100 units of time on baseline serial machine

10
Small, shared-
memory MIMD

25
SIMD

0.01 10 5
Almost five times faster

than serial baseline

5 0.01 0.4 1
More than 50 times faster

than serial baseline

0.3

25
Vector

suited for a shared-memory MIMD machine, and the fourth completion time of the overall metatask consisting of all the
tasks in the application.is best suited for execution on a vector (pipelined) machine.

Executing the whole application on an SIMD machine may This article summarizes information from various projects
that cover different aspects of HC research. This is not animprove the execution time of the SIMD subtask from 25 to

0.01 time units and the other subtasks to varying extents. exhaustive survey of the literature. Each section of this arti-
cle illustrates the concepts involved by describing a few repre-The overall improvement in execution time may only be about

a factor of 5 because other subtasks may not be well suited sentative techniques or systems.
In the next section, some HC application case studies arefor an SIMD machine. Using four different machines that

match the computational requirements for each of the indi- described. The section on example HC environments and tools
discusses various software systems that are available to man-vidual subtasks can result in an overall execution time that

is better than the baseline serial execution time by more than age an HC suite of machines. Different ways of categorizing
HC systems are presented in the taxonomies section. The con-a factor of 50. If the subtasks depend on any shared data,

then intermachine data transfers need to be performed when ceptual model section provides a block diagram that illus-
trates what is involved in automatically mapping an applica-multiple machines are used. Hence, data transfer overhead

has to be considered as part of the overall execution time on tion onto an HC system. Techniques for characterizing
applications and representing machine performance arethe HC suite. For example, in Fig. 1 the time for executing on

the vector machine must include any time needed to get data briefly examined in the section on task profiling and analyti-
cal benchmarking. Methods for using these characterizationsfrom the other machines.

There are many types of HC systems. This article focuses to obtain an assignment of the subtasks to machines and to
order the subtasks assigned to each machine is explored inon mixed-machine HC systems (2), where a heterogeneous

suite of independent machines is interconnected by high- the section on matching and scheduling.
speed links to function as a metacomputer (3). Mixed-mode
HC refers to a single parallel processing system, whose pro-

EXAMPLES OF HC APPLICATION STUDIES
cessors are capable of executing in either the synchronous
SIMD or asynchronous MIMD mode of parallelism, and can

Simulation of Mixing in Turbulent Convection
switch between modes at the instructional level with negligi-
ble overhead (4). PASM, TRAC, OPSILA, Triton, and EXE- An HC system at the Minnesota Supercomputer Center dem-

onstrated the usefulness of HC through an application involv-CUBE are examples of mixed-mode HC systems that have
been prototyped (4). ing the three-dimensional simulation of mixing and turbulent

convection (6). The system developed for this HC applicationOne way to exploit a mixed-machine HC environment is
to decompose an application task into subtasks, where each consists of a Thinking Machines Corporation (TMC) SIMD

CM-200 and MIMD CM-5, a vector CRAY 2, and a Siliconsubtask is computationally well suited to single-machine ar-
chitecture, but different subtasks may have different compu- Graphics Inc. (SGI) VGX workstation, all communicating over

a high-speed high-performance parallel interface (HiPPI)tational needs. The subtask may have data dependencies
among them. Once the subtasks are obtained, each subtask network.

The necessary simulation calculations were divided intois assigned to a machine (matching). Then the subtasks and
intermachine data transfers are ordered (scheduling). It is three phases: (1) calculation of velocity and temperature

fields, (2) calculation of particle traces, and (3) calculation ofwell known that finding a matching and scheduling (map-
ping) that minimizes the overall completion time of the appli- particle distribution statistics with refinement of the temper-

ature field. The calculation of velocity and temperature fieldscation is generally, NP-complete (5). Currently, programmers
must manually specify the task decomposition and the assign- associated with phase 1 is governed by two second-order par-

tial differential equations. To approximate the field compo-ment of subtasks to machines. One long-term pursuit in the
field of heterogeneous computing is to automate this process. nents in these equations, three-dimensional cubic splines

(over a grid of size 128 � 128 � 64) were used. The resultIn some cases, an application is a collection of independent
tasks, instead of the precedence-constrained set of subtasks was a linear system of equations representing the unknown

spline coefficients. The system of equations for the spline coef-considered in the previous discussion. For such cases, the
matching and scheduling problem considers minimizing the ficients was solved by applying a conjugate gradient method.



HETEROGENEOUS DISTRIBUTED COMPUTING 681

These conjugate gradient computations were performed on The PPM code was executed in parallel on an IBM SP2
machine in single program, multiple data streams (SPMD)the CM-5. At each time interval, the grid of 128 � 128 � 64

spline coefficients was then sent to the CRAY 2, where phase mode. The PPM algorithm was computationally intensive and
has a high computation-to-communication ratio. This code ob-2 was performed.

The calculation of particle traces (phase 2) involved solving tains nearly 21.2 MFLOP/s per node on the IBM SP2.
a set of ordinary differential equations based on the velocity
field solution from phase 1. This calculation was performed

EXAMPLES OF HC ENVIRONMENTS AND TOOLS
by using a vectorized Lagrangian approach on the CRAY 2.
Once they were computed, the coordinates of the particles and

This section overviews examples of software environments
the spline coefficients of the temperature field were trans-

and tools that exist or are being developed for HC systems.
ferred from the CRAY 2 to the CM-200.

These examples are implemented at several different levels
Phase 3 used the CM-200 to calculate statistics of the par-

from the high-level management framework of SmartNet to
ticle distribution and to assemble a three-dimensional tem-

the low-level Globus Toolkit. The functionalities described
perature field, based on the spline coefficients received from

here evolve and change rapidly; the descriptions here are
phase 2. The 128 � 128 � 64 grid of splines was used to

based on the references given. Other tools include Fafner (8),
generate a file containing a 256 � 256 � 128 point tempera-

Legion (9), Linda (10), Mentat (11), Ninf (12), and p4 (13).
ture field, representing a volume of eight million voxels (a
voxel is a three-dimensional element.) Then the voxels and

SmartNet
the coordinates of the particles (one million particles were
used) were sent to the SGI VGX workstation. The SGI VGX SmartNet is a mapping framework that is employed for man-

aging jobs and resources in a heterogeneous computationalworkstation visualized the results by using an interactive vol-
ume renderer. Although the simulation successfully demon- environment (14,15). SmartNet enables users to execute jobs

on a network of different machines as if the network were astrated the benefits of HC, Klietz et al. (6) noted that much
work is still required to improve the environment for devel- single machine. SmartNet supports a resource management

system (RMS) that accepts requests for mapping a job or aoping more HC applications.
sequence of jobs. The jobs are assigned to the machines in the
suite by the mapping algorithms built into SmartNet. Tradi-Collision of Galaxies on the I-Way
tionally, RMSs use opportunistic load-balancing schemes in

A metacomputer consisting of a TMC MIMD CM-5, Cray which a job is assigned to the machine that becomes available
MIMD T3D, IBM MIMD SP-2, and SGI Power Challenge was first. However, SmartNet uses a multitude of more sophisti-
used to carry out a very large simulation of colliding galaxies cated algorithms to assign jobs to machines. SmartNet’s goal
(7). The objective of this grand challenge was to harness the is to optimize the mapping criteria in an HC environment,
power of a collection of parallel machines to address the fol- but these criteria are flexible, allowing SmartNet to adapt to
lowing questions: (a) What is the origin of the large-scale many different situations and environments.
structure of the universe, and (b) How do galaxies form? The SmartNet exploits a variety of information resources to
simulation was performed by solving an n-body dynamics map and manage the applications within its heterogeneous
problem and a gas dynamics problem. The n-body problem environment. It considers (1) how well the computational
was solved using the self-consistent field (SCF) method. The capabilities of each machine match the computational needs
gas dynamics problem was solved by the piecewise parabolic of each application; (2) machine loading and availability; and
method (PPM). (3) time for any needed intermachine data transfers.

The SCF code was parallelized so that if the entire calcula- SmartNet also considers the current state of other resources,
tion contains N particles and the computer has P processors, such as the intermachine communication network, before the
each processor evolves N/P particles. Each processor com- mapping algorithms assign jobs to machines to account for
putes the contribution of its particles to the global gravita- the shared usage of all resources.
tional field. These partial results were summed through a SmartNet uses a variety of optimization criteria to perform
parallel reduction operation. After summing, the expansion its mapping. Two currently implemented optimization criteria
coefficients were computed and broadcast to the processors. are (1) maximizing throughput by minimizing the expected
Then the processors use this information to reconstruct the completion time of the last job and (2) minimizing the average
global gravitational field and evaluate the gravitational accel- expected run time for each job. The mapping engine built into
eration of the particles. SmartNet uses a set of different heuristics for searching the

The computation for each time step in the SCF requires space of possible maps to find the best one, as defined by the
36,280 FLOP/s per particle. The particles were distributed so optimization criteria. Several heuristics have been imple-
that the computation time per time step was approximately mented. They include algorithms based on greedy strategies
equivalent across machines. For example, 40,960 particles per with varying execution time complexities and algorithms
processor on the CM-5 and 57,600 particles per processor on based on evolutionary programming strategies. The mapper
the T3D yielded a well-balanced load. A speed of 2.5 GFLOP/ is modular and is designed to implement any algorithm that
s was obtained for the CM-5 and T3D suite with 6,307,840 satisfies relatively simple interfacing requirements. The
particles and the machines executing concurrently. The re- SmartNet mapping engine considers the heterogeneity pres-
sults obtained through the distributed simulation were ent in both the network of machines and the user tasks.
viewed by using a distributed visualization system. The SGI One of the advantages of SmartNet is that it does not con-
Power Challenge was also used for solving the n-body prob- strain the user to a particular programming language or re-

quire a special wrapper code for legacy programs. SmartNetlem by using the SCF code.
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only requires the user to provide a description of the time PVM AND HeNCE
complexity of each program. SmartNet demonstrates that the
performance of a metacomputer is enhanced by considering Parallel Virtual Machine (PVM) is a software environment

that enables utilizing an HC system as a single, connected,both the machine loading and heterogeneity in coordinating
the execution of user programs. Thus, SmartNet provides a flexible, and concurrent computational resource (17,18). The

PVM software package consists of system-level daemons,global, general-purpose, scalable, and tunable resource man-
agement framework for HC systems. SmartNet was designed called pvmds, which reside on each machine in the HC sys-

tem, and a library of PVM interface routines.and developed at a Naval laboratory (NRaD) and is opera-
tional at several research laboratories. The pvmds are responsible for providing services to both

local processes and remote processes executing on other ma-Ideas and lessons learned from SmartNet are used in de-
signing and implementing the DARPA/ITO Quorum Program chines in the HC system. By considering the entire set of

pvmds collectively, a virtual machine is formed. This virtualproject called Management System for Heterogeneous Networks
(MSHN). MSHN is a collaborative research effort among Na- machine allows viewing the HC system as a single metacom-

puter. The pvmds provide three major services: process andval Postgraduate School (NPS), NOEMIX, Purdue University,
and University of Southern California (USC). The technical virtual machine management, communication, and synchro-

nization. Process and virtual machine management issues in-objective of the MSHN project is to design, prototype, and re-
fine a distributed resource management system that lever- clude computational unit scheduling and placement, configu-

ration and inclusion of remote computers into the virtualages the heterogeneity of resources and tasks to deliver the
requested qualities of service. machine, and naming and addressing of resources. Communi-

cation is performed with asynchronous message passing,
allowing a sending process to continue execution withoutNetSolve
waiting for a receive acknowledgment. The synchronization

NetSolve is a client-server-based application designed to pro- among processes provided by the pvmds is accomplished with
vide network access to remote computational resources for barriers or other techniques. Multiple processes can be syn-
solving computationally intense scientific problems (16). The chronized, including synchronization of processes that are ex-
machines participating in a NetSolve system can be on a local ecuting on a local machine and processes that are executing
or geographically distributed HC network. remotely.

For a given problem, a NetSolve client (i.e., an application The PVM system also provides a library of interface rou-
task) sends a request to a NetSolve agent (residing in the tines. Applications access platforms in the HC system via li-
same or different machine). Then the NetSolve agent selects brary calls embedded within imperative procedural lan-
a resource for the problem based on the size and nature of guages, such as C or FORTRAN. The library routines and the
the problem. There can be several instantiations of NetSolve pvmds (resident on each machine) interact to provide commu-
agents and clients. Every machine in a NetSolve system runs nication, synchronization, and process management services.
a NetSolve computational server for access to the machine’s A single pvmd provides the requested service, or the service
scientific packages. The NetSolve system can be accessed is provided by a group of pvmds in the HC system working
from a variety of interfaces, including MATLAB, Java, shell in concert.
scripts, C, and FORTRAN. NetSolve can also be called in a The heterogeneous network computing environment
blocking or nonblocking fashion, so that computations can be (HeNCE) is a tool that aids users of PVM in decomposing
performed concurrently on the client system, thus improving their application into subtasks and deciding how to distribute
performance. these subtasks to the machines currently available in the HC

NetSolve uses load balancing to improve system perfor- system (17). HeNCE allows the programmer to explicitly
mance. For every machine in the NetSolve system, the execu- specify the parallelism for an application by creating a
tion time for a given problem is estimated. This estimate is directed graph, where nodes represent subtasks (written in
used to determine the hypothetical best machine on which to either FORTRAN or C) and arcs represent precedence con-
execute the problem. This execution time estimate is based on straints and flow dependencies. HeNCE also has four types of
several factors, including size of the data, size of the problem, control constructs: conditional, looping, fan out, and pipe-
complexity of the algorithm, network parameters, and ma- lining.
chine characteristics. The cost of executing each subtask on each machine in the

To maintain accurate information on system performance, HC system is represented by a user-specified cost matrix. The
each instance of an agent maintains a value of the workload meaning of the parameters within the cost matrix is defined
from every other server. A new workload value is condition- by the user (e.g., estimated execution times or utilization
ally broadcast at regular intervals, that is, if the value is out- costs in dollars). At execution time, HeNCE uses the cost ma-
side a defined range, then the server broadcasts the value. trix to estimate the most cost-effective machine on which to
This allows maintaining accurate system information, with- execute each subtask.
out needlessly burdening the network with the same work- Once the directed graph and cost matrix are specified,
load value. HeNCE uses PVM constructs to configure a subset of the ma-

NetSolve has capabilities for handling fault tolerance at chines defined in the cost matrix as a virtual machine. Then
several different levels. Servers generally handle failure de- HeNCE initiates execution of the program. Each subtask in
tection. Clients minimize side effects from service failures by the graph is realized by a distinct process on some machine
maintaining lists of computational servers. Future work in- in the HC system. The subtasks communicate by sending
cludes increasing the number of interfaces, improved load bal- parametric values necessary for executing of a given subtask.

These parametric values are specified by the user for eachancing, and allowing user-defined functions.
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subtask. Parametric values needed to begin execution of a tems or mixed-mode HC systems. These two categories were
defined earlier in this article. Mixed-machine HC systems de-subtask are obtained from predecessor subtasks. If the set of

immediate predecessor subtasks does not have all of the re- note spatial heterogeneity, whereas mixed-mode HC systems
denote temporal heterogeneity. Recently, researchers havequired parameters for a subtask to begin execution, earlier

predecessor subtasks are checked until all of the required pa- further refined this classification to obtain different schemes.
In Ekemecic et al. (22), a taxonomy called the EMMM �rameters are located. Once all of the parameters are found,

the subtask is executed, and the appropriate parameters are execution mode, machine model (EM3) is presented for HC
passed onto descendant subtasks. HeNCE traces the execu- systems. In this scheme, HC systems are categorized in two
tion of the application for the display in real time or replay orthogonal directions. One direction is the execution mode of
later. the machine, which is defined by the type of parallelism sup-

ported by the machine. For example, high-performance com-
Globus Metacomputing Infrastructure Tool Kit puting architectures are often specialized to support either

MIMD, SIMD, or vector execution modes. The heterogeneityThe Globus project (19,20) defines a set of low-level mecha-
based on this criterion is temporal or spatial. The second cate-nisms that provide basic HC infrastructure requirements,
gorization is the machine model, which is defined as the ma-such as communication, resource allocation, and data access.
chine architecture and machine performance. For example,These low-level mechanisms are part of the Globus metacom-
Sun Sparc CY7C601 and Intel i860 are considered differentputing infrastructure tool kit, and are used to implement
architectures. In addition, two CPUs of the same type buthigher level HC services (e.g., mappers and parallel program-
driven by different speed clocks provide different machineming tools).
performance and hence are considered different machineEach component in the tool kit defines an interface and an
models. The heterogeneity based on this criterion is alwaysimplementation for any HC environment. The interfaces
spatial in nature.allow higher level services to invoke that component’s mecha-

HC systems are classified by counting the number of execu-nisms. The implementation uses low-level instructions to re-
tion modes (EM) and the number of machine models (MM).alize these mechanisms on the different systems occurring
The four categories proposed in Ref. 22 are (1) single execu-within HC environments. Presently, the Globus tool kit con-
tion mode, single machine model (SESM), (2) single executionsists of six components: (1) The communication component
mode, multiple machine model (SEMM), (3) multiple execu-provides a wide range of communication methods, including
tion mode, single machine model (MESM), and (4) multiplemessage passing, remote procedure call, distributed shared
execution mode, multiple machine model (MEMM). Fully ho-memory, and multicast. (2) The resource location, allocation,
mogeneous systems make up the SESM class. HC systemsand process creation module provides mechanisms for express-
composed of different architectures (or clock speeds) with theing application resource requirements and identifying re-
same execution mode are in the SEMM class. Both the SEMMsources suitable for these requirements; scheduling these re-
and MEMM classes are mixed-machine systems, but only thesources after they have been located; and initiating the
MEMM class includes different execution models and mixed-computation. The process creation includes initialization of
mode machines. The MESM corresponds to mixed-mode sys-executables, starting an executable, passing arguments, inte-
tems, that is, temporal heterogeneity. HC systems composedgrating the new process into the rest of the computation, and
of different architectures, where some of the machines useprocess termination. (3) In the unified resource information
different execution models, fall into the MEMM class.service component, a mechanism is provided for posting and

receiving real-time information about the HC environment. In the classification provided in Eshagian (23), HC systems
(4) The data access module is responsible for providing high- are grouped into (1) system heterogeneous computing (SHC)
speed access to remote data and files. (5) The heartbeat moni- and (2) network heterogeneous computing (NHC). SHC is fur-
tor module performs fault detection. Finally, (6) The authenti- ther divided into multimode SHC and mixed-mode SHC.
cation interface module provides basic authentication mecha- Multimode SHC systems perform computations in both SIMD
nisms for validating the identity of users and resources. and MIMD modes simultaneously and exhibit spatial hetero-

The modules of the Globus tool kit define an abstract HC geneity in a single machine. Mixed-mode SHC systems which
system. The definition of this HC system simplifies develop- switch execution between the SIMD and MIMD modes of par-
ment of higher level applications by allowing HC program- allelism, exhibit temporal in a single machine. The NHC sys-
mers to think of geographically distributed, heterogeneous tems are divided into multimachine NHC and mixed-machine
collections of resources as unified entities. It also allows de- NHC. Multimachine NHC denotes homogeneous distributed
veloping a range of alternative infrastructures, services, and computing systems and mixed-machine NHC indicates hetero-
applications. The stated long-term goal of the Globus project geneous distributed computing systems.
is to address the problems of configuration and performance
optimization in HC environments. To accomplish this goal,
the Globus project is designing and constructing a set of A CONCEPTUAL MODEL OF HETEROGENEOUS COMPUTING
higher level services layered on the Globus tool kit. These
higher level services would form an adaptive wide area re- In the examples featured in the application studies section,
source environment (AWARE). the programmer specified the machine assignment for each

program segment and initial data item. One of the long-term
goals of HC research is to develop software environments thatTAXONOMIES OF HETEROGENEOUS COMPUTING
automatically find a near-optimal mapping for an HC pro-
gram expressed in a machine-independent high-level lan-One of the first classifications of HC systems provided in Wat-

son et al. (21) divides systems into mixed-machine HC sys- guage. Performing the mapping automatically has the follow-
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ing benefits: (1) an increase in portability because the rived results are incorporated with initial values for machine
loading, intermachine network loading, and status parame-programmer need not be concerned with the composition of

the HC suite, (2) easier use of the HC system, and (3) the ters (e.g., machine/network faults) to perform the matching
and scheduling of subtasks to machines. The result is an as-possibility of deriving better mappings than the user can with

ad hoc methods. Although no such environment exists today, signment of subtasks to machines and an execution schedule
based on certain cost metrics (e.g., minimizing the overall exe-many researchers are working toward developing an environ-

ment to automatically and efficiently perform the mapping of cution time for all tasks.) Matching and scheduling in HC sys-
tems is examined in more detail later in this article.subtasks to machines in an HC suite. A conceptual model for

such an environment using a dedicated HC suite of machines Stage 4 is the execution of the given application. If a dy-
namic matching and scheduling system is employed, the sub-is described in Fig. 2 (based on Refs. 24 and 25).

For stage 1, information about the type of each application task completion times and loading/status of the machines/
network are monitored. The monitoring process is necessarytask and each machine in the HC suite is used to generate a

set of parameters relevant to both the computational charac- because the actual computation times and data transfer times
may be input-data-dependent and deviate from the static esti-teristics of the applications and the machine architectural

features of the HC system. Categories for computational re- mates. This information is used to reinvoke the matching and
scheduling of stage 3 to improve the machine assignment andquirements and categories for machine capabilities are de-

rived from this set of parameters. execution schedule. Automatic HC is a relatively new field.
Preliminary frameworks for task profiling, analytical bench-Stage 2 consists of two components, task profiling and ana-

lytical benchmarking. Task profiling decomposes the applica- marking, and mapping have been proposed,. However, further
research is needed to make this conceptual model a realitytion task into subtasks, where each subtask is computation-

ally homogeneous. Usually, different subtasks have different (2,24).
computational needs. The computational requirements of
each subtask are quantified by profiling the code and data.
Analytical benchmarking quantifies how effectively each of TASK PROFILING AND ANALYTICAL BENCHMARKING
the machines available in the suite performs on each of the
types of computations required. The components of stage 2 Task profiling specifies the types of computations present in

the application program by decomposing the source programare discussed further in the next section.
Stage 3 requires the information available from stage 2 to into homogeneous code blocks based on computational re-

quirements (26). The set of code types defined is based onderive the estimated execution time of each subtask on each
machine in the HC suite, along with the associated interma- the features of the machine architectures available and the

processing requirements of the applications considered for ex-chine communication overheads. Then these statically de-

Stage 1

Stage 2 Stage 2

Stage 3

Stage 4

Generation of parameters that are relevant to
both the applications and the machines

Matching (of subtasks to machines)
and scheduling based on cost metric

Execution of the given application on
the heterogeneous suite of machines

Monitor the execution of the subtasks

Task profiling for
given application

Applications written in
machine-independent

language

Categories for
computational requirements

Actual subtask completion times
and actual machine available times Assignment of subtasks to machines

and execution schedule

Information

Action

Initial loading/status
of machines and network

Decomposition into
subtasks and characteristics

of each subtask

Characteristics of each
machine and intermachine
communication overhead

Categories for
machine capabilities

Analytical benchmarking
for machines in suite

Information about
machines in suite

Figure 2. Model for integrating the software support needed for automating the use of heteroge-
neous computing systems (based on Refs. 24 and 25).
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ecution on the HC system (phase 1 of the conceptual mode node’s performance and statistically based execution time es-
timates. The interactive graphical display tool is the user in-described in the previous section). This set of code types is a

function of the application task code and the types and sizes terface for accessing all of the other tools in PAWS.
The DHSMS classifies task profiling and analytical bench-of data sets it is to process. Task profiling is performed in

stage 2 of the conceptual model presented in the previous marking results within a systematic framework (27). First,
section. DHSMS generates a universal set of codes (USC) for task pro-

Analytical benchmarking provides a measure of how well filing. The USC is a standardized set of benchmarking pro-
each of the available machines in the heterogeneous suite per- grams used in analytical benchmarking. Similar to the hard-
forms on each of the given code types (26). In combination, ware organizational information maintained by the
task profiling and analytical benchmarking provide the neces- architectural characterization tool in PAWS, a USC is con-
sary information for the matching and scheduling step (dis- structed by using a hierarchical structure based on the ma-
cussed in the next section). The performance of a particular chines in the HC suite. At the highest level of this hierarchi-
code type on a specific kind of machine is a multivariable cal structure, modes of parallelism are selected to specify the
function. The variables within this performance function in- machine architectures. At the second level, finer architectural
clude the following: the requirements of the application (e.g., characteristics, such as the organization of the memory sys-
data precision), the size of the data set to be processed, the tem, are chosen. This hierarchical structure is organized so
algorithm to be applied, programmer and compiler efforts to that the architectural characteristics at any level are choices
optimize the program, and the operating system and architec- for a given category (e.g., type of interconnection network
ture of the machine that executes the specific code type (27). used). DHSMS assigns a code type (i.e., computational charac-

Selection theory is a collection of mathematical formula- teristic) to each path from the root of the hierarchical struc-
tions proposed for selecting the most appropriate machine for ture to a leaf node. Every such path represents a specific set
each code block. Many formulations (3,28,29) define analytical of architectural features, defined by the nodes within the
benchmarking as a method of measuring the optimal speedup path.
of a particular machine type executing the best matched code The DHSMS approach is extended in Yang et al. (31) to
type to a baseline system. The ratio between the actual include generating a representative set of templates (RST) that
speedup and the optimal speedup defines how well a code characterize the execution behavior of the programs at vari-
block is matched with each machine type. Generally, the ac- ous levels of detail. Many HC methodologies include a mathe-
tual speedup is less than the optimal speedup. matical formulation for task profiling and analytical bench-

The parallel assessment window system (PAWS) and the marking that is similar in concept to that used in DHSMS
distributed heterogeneous supercomputing management system (26,28,29,32).
(DHSMS) are briefly examined here. They represent exam-
ples of preliminary frameworks for implementing task profil-
ing and analytical benchmarking. MATCHING AND SCHEDULING

The PAWS prototype consists of four tools: the application
characterization tool, the architectural characterization tool, Overview
the performance assessment tool, and the interactive graphi-

Matching and scheduling is an important component of thecal display tool (30). First, the application characterization
conceptual model of the automatic HC presented earlier.tool transforms a given program written in a specific subset
Finding an optimal solution for the matching and schedulingof Ada into an acyclic graphical language that illustrates the
problem is NP-complete (5). For example, consider matchingprogram’s data dependencies. The tool groups sets of nodes
and scheduling 30 subtasks onto five machines. This meansand edges into functions and procedures that allow describing
that there are 530 possible mappings. Assuming it takes onlythe execution behavior of a given program at various levels.
1 ns to evaluate the quality of one mapping, an exhaustiveHowever, this tool does not perform task decomposition based
comparison of all possible mappings would require 530 ns �on computational requirements and machine capabilities.
4 � 1010 s � 1000 years! Therefore, it is necessary to haveTo benchmark machines, the architectural characterization
heuristics to find the best mappings rather than to evaluatetool divides the architecture of a specific type of machine into
all possible mapping combinations. Mapping schemes can befour categories: computation, data movement and communi-
either static, where the mapping decisions are made off-linecation, I/O, and control. Each category is repeatedly parti-
before the execution of the subtask (33–38) or dynamic, wheretioned into subsystems until the lowest level subsystems are

described by raw timing information. The performance assess- the mapping decisions are made on-line during the execution
ment tool uses the information from the architectural charac- of the subtasks (39–42).
terization tool to generate timing information for operations
on a given machine. Two sets of performance parameters for A Mathematical Formulation of Matching and Scheduling in HC
an application, parallelism profiles and execution profiles, are

The optimal selection theory (OST) (Fre89) provides the firstgenerated by the performance assessment tool. Parallelism
known mathematical formulation for selecting an optimalprofiles describe the applications’ theoretical upper bounds of
heterogeneous configuration of machines for a given set ofperformance (e.g., the maximal number of operations that can
problems under a fixed cost constraint in HC systems. In thebe parallelized). Execution profiles represent the estimated
OST, it is assumed that the application consists of nonover-performance of the applications after they are partitioned and
lapping code segments that are totally ordered in time. Themapped onto one particular machine. Both parallelism and
overall execution time of the application equals the sum ofexecution profiles are produced by traversing the applications’

task-flow graph and then computing and recording each the execution times of its code segments.
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A code segment is defined to be decomposable if it can be minimized. Polynomial-time algorithms are provided in Ref.
32 for certain types of DAGs.partitioned further into code blocks that are executed in mul-

tiple copies of the best matched machine type. A sufficient
number of machines of the best-matched machine type are Static Matching and Scheduling Heuristics
assumed to be available. For simplicity, linear speedup is as-

The heuristics summarized later are based on the followingsumed for a decomposable code segment. Let the application
assumptions, unless noted otherwise: Each application taskhave S � 1 code segments and M � 1 different types of ma-
is represented by a DAG, whose nodes are the subtasks thatchines to execute the code segments. Let vj be the number of
need to be executed to perform the application and whose arcsmachines of type j and the cost of using a machine of type j
are the data dependencies between subtasks. Each edge isis cj. The estimated execution time of code segment i on ma-
labeled by the global data item that is transferred betweenchine type j is given by ti, j for all 1  i  S, 1  j  M. The
the subtasks connected by the edge. The matching and sched-optimization problem involves minimizing the total execution
uling algorithm controls the HC machine suite (hardwaretime T of the application, defined below, subject to a given
platform). Subtask execution is nonpreemptive. The esti-constraint on the total cost C of the machines used. The cost
mated expected execution time of each subtask on each ma-incurred by using type j machines is given by vjcj. Assume
chine is known. For each pair of machines in the HC suite, anthat code segment i is best suited to machine type j. Because
equation for estimating the time to send data between thosethere are vj number of type j machines, the execution time of
machines as a function of data set size is known.code segment i on this type of machine is given by ti, j/vj. Thus,

the goal is to minimize the total execution time of the applica-
Cluster-M Mapping Heuristic. The HC matching and sched-tion:

uling process can be thought of as mapping a graph that rep-
resents a set of subtasks (task graph) onto a graph that repre-
sents the set of machines in the HC suite (system graph) (23).minimize T =

S∑
i=1

{
ti. j

v j

}
In Cluster-M, the mapping is performed in two stages. In the
first stage, the task graph and system graph are clustered.

given the total cost constraint The task-graph clustering combines the communication inten-
sive subtasks into the same cluster. Similarly, the system-
graph clustering combines the machines that are tightly cou-
pled (i.e., small intermachine communication times) into the

M∑
j=1

vjc j ≤ C

same cluster. The clustering of the task graph does not de-
pend on the clustering of the system graph and vice versa.The augmented optimal selection theory (AOST) (29) is an ex-
Therefore, a task or system graph needs to be clustered onlytension of the OST. The AOST considers the performance of
once. In the second phase, the clustered task graph is mappedthe code segments for all available machine type choices (not
onto a clustered system graph. The clustering reduces thejust the best matched machine type) and a fixed number of
complexity of the mapping problem and improves the qualitymachines of each type. In practice, this extension is useful
of the resulting mapping.because the best matched machine may not be available, and

only a limited number of machines of each type may be avail-
able. Another extension of the OST is provided by the hetero- The Levelized Min-Time Heuristic. The levelized min time

(LMT) heuristic is a static matching and scheduling algo-geneous optimal selection theory (HOST) (28). The HOST ex-
tends AOST by allowing concurrent execution of mutually rithm for subtasks in an HC system (43). It is based on a list-

scheduling class of algorithms. The LMT algorithm uses aindependent code segments on different types of machine and
incorporating the effects of different possible local mappings. two-phase approach. The first phase uses a technique called

level sorting to order the subtasks based on the precedenceConsider an example of a code block for multiplying two ma-
trices onto a distributed memory parallel machine. Many im- constraints. The level sorting is defined as follows: The level

0 contains subtasks with no incident arcs. All predecessorsplementations with varying execution characteristics can be
derived for this code block. The HOST assumes that the best with arcs to a level k subtask are in levels (k � 1) to 0. For

each subtask in level k, at least one incident arc (data depen-mapping choice (minimum execution time) is known for each
code block. dency) exists such that the source subtask is in level (k � 1).

The level-sorting technique clusters subtasks that execute inThe generalized optimal selection theory (GOST) further re-
fines the OST to handle communication delays (32). In the parallel.

The second phase of the LMT algorithm uses a min-timeGOST, the basic code element is called a process, which is
nondecomposable. The application is represented by a di- algorithm to assign the subtasks level by level. The min-time

algorithm is a greedy method that attempts to assign eachrected acyclic graph (DAG), where a node denotes a process
and an arc denotes a dependency between two processes. A subtask to the best machine. If the number of subtasks is

more than the number of machines, then the smallest sub-node has a number of weights attached to it, corresponding
to the execution times of the process on each machine type for tasks are merged until the number of subtasks is equal to

the number of machines. Then the subtasks are ordered ineach known mapping onto that machine. An edge has a num-
ber of weights, one for each communication path between descending order by their average computational time. Each

subtask is assigned to the machine with the minimum com-each possible pair of host machines. In Narahari et al. (32), a
matching and scheduling problem is formulated to assign pletion time. Sorting the subtasks by the average computa-

tional time increases the likelihood that larger subtasks geteach node to a machine type and to find a start time for each
node so that the overall completion time of the application is faster machines.
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One optimization to the LMT algorithm discussed in Iver- phases. In the first phase of the hybrid remapper, performed
before application execution, the subtasks are partitioned intoson et al. (43) involves using information on the amount of

communication between subtasks in different levels. This en- L levels as in the LMT heuristic. Each subtask is assigned a
rank by examining the subtasks from level (L � 1) to level 0.ables the scheduler to map subtasks that share large amounts

of data to the same machine. The rank of each subtask in the (L � 1)th level is set to its
expected computational time on the machine to which it was
assigned by the initial matching. The rank of a subtask si inGenetic Matching and Scheduling Heuristic. In genetic algo-
level k is determined by computing the length of the criticalrithms (GAs), some of the possible solutions are encoded as
path from si to the subtask where the execution terminates.chromosomes, the set of which is called a population. This

The second phase of the hybrid remapper occurs duringpopulation is iteratively operated on by the following steps
the application execution. The hybrid remapper changes theuntil a stopping criterion is met. The first step is the selection
matching and scheduling of the subtasks in level k while thestep, where some chromosomes are removed and others are
subtasks in level (k � 1) or before are running. The subtasksduplicated based on their fitness value (a measure of the qual-
in level k are examined in descending order of static rank andity of the solution represented by a chromosome). This is fol-
each subtask is assigned to a machine with the earliest com-lowed by the crossover step, where some chromosomes are
pletion time for that particular subtask. The hybrid remapperpaired and the corresponding components of the paired chro-
starts scheduling level k subtasks when the first level (k � 1)mosomes are exchanged. Then, the chromosomes are ran-
subtask begins its execution, and must finish the level k re-domly mutated, with the constraint that the resulting chro-
mapping before any level k subtask has the input data andmosomes still represent valid solutions for the physical
machine available it needs to execute. When level k is beingproblem.
scheduled, it is highly likely that actual execution time infor-To apply GAs to the subtask matching and scheduling
mation is used for many subtasks from levels 0 to (k � 2).problem in HC systems by using the approach presented in
There may be some subtasks from levels 0 to (k � 2) that areWang et al. (38), the chromosomes are encoded with two
still running or waiting execution when subtasks from level kparts: the matching string (mat) and the scheduling string
are being considered for remapping. Expected execution times(ss). If mat(i) � j, then subtask si is assigned to machine mj.
are used for such subtasks.The scheduling string is a topological sort of the DAG repre-

Simulation results indicate that the hybrid remapper im-senting the task (i.e., a valid total ordering of the partially
proves the performance of a statically obtained initial match-ordered DAG). If ss(k) � i, then subtask si is the kth subtask
ing and scheduling by as much as 15% in some cases. Initialin the total ordering. Each chromosome is associated with a
mappings for the simulation were generated by using thefitness value, which is the completion time of the solution rep-
baseline heuristic (38). The timings also indicate that the re-resented by this chromosome (i.e., the expected execution
mapping time needed per level of subtasks is on the order oftime of the application task if the mapping specified by this
hundreds of milliseconds for up to 50 machines and 500 sub-chromosome were used).
tasks. In the worst case situation, the computational time forOn small-scale tests with up to ten subtasks, three ma-
the shortest running subtask must be greater than the perchines, and population size of 50, the GA approach found a
level scheduling time to obtain complete overlap between thesolution (mapping) that had the same expected completion
execution of the subtasks and the operation of the hybrid re-time as the optimal solution found by exhaustive search. On
mapper. Ongoing research will examine ways to increase thelarge-scale tests with up to 100 subtasks, 20 machines, and a
performance gain obtained from the use of the hybrid re-population size of 200, the GA approach produced solutions
mapper.(mappings) that were on the average 150% to almost 300%

better than those produced by the (faster) nonevolutionary
Generational Scheduling. Generational scheduling (GS) heu-basic levelized min-time (LMT) heuristic proposed in Iverson

ristic is a dynamic mapping heuristic for subtasks in HC sys-et al. (43).
tems (39). It is a cyclic heuristic with four stages. First, the
GS forms a partial scheduling problem by pruning all of theDynamic Matching and Scheduling Heuristics
subtasks with unsatisfied precedence constraints from the ini-

Static mapping heuristics assume that accurate estimates are tial DAG that represents the application, that is, the initial
available for parameters, such as subtask completion times partial scheduling problem consists of subtasks that are inde-
and data transfer times. However, generally, such estimates pendent or have no incident edges in the DAG. Then the sub-
have a degree of uncertainty in them because subtask compu- tasks in the initial partial scheduling problem are mapped
tational times and data transfer times may depend on input onto the machine by using an auxiliary scheduler. The auxil-
data. Therefore, dynamic mapping heuristics that handle the iary scheduler considers the subtasks for assignment in a first
uncertainty are needed. Researchers have proposed different come, first serve order. A subtask is assigned to a machine
dynamic heuristics for varying HC models (39–41,44). Fur- that minimizes the completion time (but not necessarily the
thermore, in dynamic mapping heuristics, machines come on- execution time) of that particular subtask.
line and go off-line at run time. When a subtask from the initial partial scheduling prob-

lem completes its execution, the GS heuristic performs a re-
mapping. During the remapping, the GS revises the partialHybrid Remapper. The hybrid remapper heuristic described

here is a dynamic algorithm for matching and scheduling sub- scheduling problem by adding and removing subtasks from it.
The completion of the subtask that triggered the remappingtask DAGs onto HC systems (42). An initial, statically ob-

tained matching and scheduling is provided as input to the event may have satisfied the precedence constraints of some
additional subtasks. These subtasks are added to the initialhybrid remapper. The hybrid remapper executes in two
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partial scheduling problem. The subtasks that have already earlier tasks that have not yet started execution. Developing
heuristics for matching and scheduling metatasks in HC sys-started execution are removed from the initial partial sched-

uling problem. Once the revised partial scheduling problem is tems is an active research area.
obtained, the subtasks in it are mapped onto the HC machine
suite by using the auxiliary scheduler. This procedure is cycli-
cally performed until the completion of all subtasks. SUMMARY AND FUTURE DIRECTIONS

This article illustrates the concepts involved in heterogeneousSelf-Adjusting Scheduling for Heterogeneous Systems. The
distributed computing by sampling various research and de-self-adjusting scheduling for heterogeneous systems (SASH)
velopment activities in this area. It is by no means an exhaus-heuristic is a dynamic scheduling algorithm for mapping a set
tive survey of the HC literature. The practical importance ofof independent tasks (metatask) onto an HC suite of ma-
HC is revealed by the application studies summarized in thischines (40). One processor is dedicated to computing the
article. The conceptual model provided in Fig. 2 envisions anschedule, and this scheduling is overlapped with the execu-
automatic HC programming environment. Most componentstion of the tasks. At the end of each scheduling phase, the
of the model require further research to devise practical andscheduling processor loads the tasks in that phase onto the
theoretically sound methodologies (2,3,24). A flavor of theworking processors’ local queues. Then the dedicated pro-
work performed in matching and scheduling is also providedcessor schedules the next subset of tasks while the previously
in this article.scheduled tasks are being executed by the working proces-

An important question that is particularly relevant tosors.
stages 1 and 2 of the conceptual model is, What informationThe duration of the scheduling phase is determined by a
can be obtained automatically and what information shouldlower bound estimate of the load on the working processors.
be provided by the programmer? The following areas shouldThe first working processor to complete executing all of the
be further researched to realize the automatic HC environ-tasks in its local queue signals the scheduling processor, and
ment envisioned in Fig. 2: (1) developing machine-indepen-then the scheduling processor assigns more tasks to all pro-
dent programming languages, (2) designing high-speed net-cessors based on the partial schedule just computed. The
working systems, (3) studying communication protocols forSASH heuristic computes the schedules by using a variation
reliable, low-overhead data transmission with a given qualityof the branch-and-bound algorithm. In this variation, a tree
of service requirements, (4) devising debugging tools, (5) for-is used to represent the space of possible schedules. A node
mulating algorithms for task migration, fault tolerance, andin the tree represents a partial schedule consisting of a set of
load balancing, (6) designing user interfaces and user friendlytasks assigned to a corresponding set of processors. An edge
programming environments, and (7) developing algorithmsfrom a node represents an augmentation of the schedule by
for applications with heterogeneous computing requirements.one more task-to-processor assignment.
Most of these issues pertain to metatasks and applicationsA scheduling phase consists of one or more SASH itera-
decomposed into subtasks.tions. In an iteration, the node with the lowest cost is ex-

Machine-independent programming languages (45) thatpanded by augmenting the partial schedule with another
allow the user to augment the code with compiler directivestask-to-processor assignment. The node expansions terminate
are necessary to program the HC system. The following as-when all the tasks are scheduled or when the time for sched-
pects should be considered in designing the language and di-uling phase i expires.
rectives: (1) the compilation of the program into efficient code
for the machines in the suite, (2) the decomposition of tasks
into subtasks, (3) the determination of the computational re-MATCHING AND SCHEDULING METATASKS
quirements of each subtask, and (4) the use of machine-de-
pendent subroutine libraries.As defined earlier in this article, a metatask is a collection of

independent tasks that need to be mapped onto an HC suite. There is a need for debugging and performance tuning
tools that can be used across an HC suite of machines. ThisSome tasks may have subtasks with data dependencies

among them. Most of the heuristics and environments consid- involves research in the areas of distributed programming en-
vironments and visualization techniques.ered in the previous sections of this article are suitable for

mapping tasks that can be decomposed into subtasks with Another area of research is dynamic task migration be-
tween different parallel machines at execution time. Currentdata dependencies. Exceptions include the environments

SmartNet and NetSolve (which manages metatasks and de- research in this area involves determining how to move an
executing task between different machines (46,47) and how tocomposed tasks) and the mapping heuristic SASH (which is

for metatasks). use dynamic task migration for load rebalancing or fault tol-
erance.Typically, when independent tasks are involved, the tasks

arrive randomly for service at the HC suite. Some machines Ideally, information about the current loading and status
of the machines in the HC suite and the network should bein the suite may also go off-line, or new machines may come

on-line. Therefore, dynamic mapping heuristics are usually incorporated into the mapping decisions. Methods must be de-
veloped for measuring the current loading, determining theemployed to assign the tasks to machines. Furthermore, the

tasks can have deadlines and priorities associated with them. status (e.g., faulty or not faulty), and estimating the subtask
completion times. The uncertainty present in the estimatedTwo types of dynamic approaches are on-line and interval.

The on-line approach assigns each task to a machine when it parametric values, such as subtask completion times, should
also be considered in determining the machine assignmentis submitted. The interval approach waits for a set of new

tasks to arrive and then maps those tasks and remaps any and execution schedule.
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