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REAL-TIME OBJECT-ORIENTED DISTRIBUTED COMPUTING

Real-time (RT) object-oriented (OO) distributed computing is a form of RT distributed computing realized with
a distributed computer system (DCS) structured in the form of an object network. During the last two decades
of the twentieth century, OO design approaches became a common practice in the development of non-real-
time business data processing software owing to the modularity, reusability, and natural abstraction benefits
offered by the OO approaches. On the other hand, OO structuring started to have a recognizable impact in RT
computing near the end of the twentieth century. This is because the conventional OO structuring technology
used in engineering of non-real-time business data processing software needed to be extended in major ways
in order to be effective in RT software engineering. In other words, RT OO structuring is a major extension of
conventional OO structuring.

RT OO structuring has the following important goals:

(1) General-form design of RT computer systems. It is highly desirable to realize RT computing in the form
of a generalization of non-real-time computing, rather than as an esoteric specialization. With a properly
established RT computer system design methodology, it should be possible to realize every practically useful
non-RT computer system by simply filling the time-constraint specification part with unconstrained default
values. Such a design becomes a reality only when a powerful structuring scheme capable of dealing with
all practically useful RT and non-real-time computing requirements is established. RT OO structuring is
an approach for meeting such requirements. Therefore, it is aimed at facilitating uniform structuring of
hard RT computation, soft RT computation, and non-RT computation. Here, hard RT computation refers
to computation that is subject to stringent timing constraints. The timing constraints are stringent in two
respects. First, if they are violated, then the resulting damage to the application environment or customer
is intolerably high. Second, the required timing precision of critical computing actions (e.g., sending braking
commands to an automobile brake system or launch commands to a defense missile launcher) is very high
(e.g., millisecond-level precision). On the other hand, the timing constraints imposed on soft RT computation
are loose.

(2) Design-time guarantee of timely service capabilities of subsystems. To meet the demands of the general pub-
lic for assured reliability of complex RT computer systems in safety-critical applications, there is currently
no adequate way but to require the system engineer to produce design-time guarantees for timely service
capabilities of various subsystems (which will take the form of objects in OO system designs). Experience of
practicing engineers indicates that testing alone is not sufficient to ensure the level of reliability of complex
RT computer systems that customers are demanding. Even if verifying the full logical behavior of a sizable
RT software may be impractical, verification of the important timing behavior can be practical and must
be pursued especially when hard RT applications are dealt with. This approach is further supported by the
fact that it is the timing behavior that presents the biggest difficulties to the system engineer relying on
testing for assuring proper system behavior to a reasonable degree. The ease or difficulty of verifying the
timing behavior can also be viewed as a measure of the timing behavior predictability of the given system
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design. RT OO structuring is a major design approach aimed at enabling design-time guarantees of timely
service capabilities of software subsystems structured as objects.

While designed to meet the fundamental goals just mentioned, RT OO structuring solves or at least
reduces the following practical problems that existed in RT computing for decades through the end of the
twentieth century.

(1) Inefficient design and implementation. As mentioned before, the conventional OO structuring technology
had minimal impact on RT computer system engineering in contrast to its pervasive use in non-RT computer
system engineering. This means that much of the capabilities existing in the vast business data processing
software field has not been greatly utilized in the development of RT computer systems. It also means
that the RT computer system engineering process used and the RT application software developed before
the emergence of the RT OO structuring approaches took by and large peculiar forms unfamiliar to the
vast mainstream software engineering community. The consequence was the poor economy of scale in RT
computer system development and the relatively low reliability of the software products except in cases of
small-scale simplistic phase-lock loop control types of applications. The general-form design style facilitated
by RT OO structuring should solve this problem in major ways.

(2) Low reliability of large-scale RT computer systems. Various representation schemes, analysis and synthesis
techniques, and tools have been developed for use in each phase of RT computer system engineering, such
as specification, design, implementation, validation, and maintenance. By and large, these techniques have
not evolved in sufficiently integrated forms up to near the end of the twentieth century. As a result, RT
computer system engineering practices suffered from the following problems: (a) weak traceability among
various system models used, (b) lack of rigor in requirements specification, and (c) lack of integration in
design techniques. Moreover, experience has shown that RT distributed computing software is notoriously
difficult to test. All these lead to the fact that the reliability of the large-scale RT software produced before
the emergence of RT OO structuring approaches is not sufficiently high.

Fundamental Issues in RT OO Distributed Computing

Several fundamental issues in establishing RT OO distributed computing technology in a sound form are
discussed in the following. One common underlying theme is that desirable types of RT distributed objects
should not only facilitate modular and economic design of distributed systems and high-precision RT application
systems but also be easily interconnected and integrated into an easily analyzable high-level function system.
That is, a desirable technology should yield a high degree of composability.

Specification of Timing Constraints. Clear specification of timing constraints is a fundamental
requirement in rigorous engineering of RT computer systems. Major issues in this area are

(1) Global time base
(2) Time-triggered (TT) action
(3) Separation of the absolute time domain from the relative time domain

Each of these issues will be discussed in some detail. In the rest of this article, an object that contains
specification of timing constraints is called a real-time (RT) object.

Global Time Base. In order to effect cooperative distributed RT computing in an efficient manner, a
global time base that supplies the time-of-the-day information to distributed processing nodes and distributed
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objects in a DCS must be established. Quite a few ways for establishing global time bases of varying precision
are known.

In any practical RT system design or programming language, the following features must be included:

(1) Specification of time bases. This includes specifying UTC (universal time coordinated), SST (the time elapsed
since the system started), etc.

(2) Global-time reference function. This includes now, which returns the current time obtained from the global
time base; forever, which is a time constant representing a practically infinite time interval; etc.

Time-Triggered (TT) Action. Specification of TT computations is a fundemental feature of RT program-
ming that distinguishes RT programming from non-RT programming. The computation unit can be any one of
the following:

(1) A simple statement such as an assignment statement with the right-side expression restricted to an arith-
metic logical expression type involving neither a control flow expression nor a function call, an input/output
(I/O) command statement, etc.

(2) Compound statement such as if–then–else statement, while–do statement, case statement, etc.
(3) Statement block
(4) Function and procedure
(5) Object method

Time-triggered actions associated with a computation unit may include a timely start of the computation
unit, timely completion of the computation unit, and periodic execution. Therefore, in any practical RT system
design or programming language, it is desirable to have the following type of a construct:

For example, consider the following case:

This specifies: “The associated computation unit must be executed every 30 min starting at 10 A.M. until
10:50 A.M., and each execution must start at any time within the 5 min time window (t, t + 5 min) and must be
completed by t + 10 min.” So, it has the same effect as
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Fig. 1. Example RT-object structure: TMO (time-triggered message-triggered object).

Also, it is good to have the construct after time-const do S ” in a RT programming language although the
same effect can be achieved by using the above for–start–finish construct.

Of the five types of computation units mentioned before, the object method is the most frequently used unit
for TT start and timely completion. A representative example of RT OO structuring approaches that support
the design of TT methods is the Time-Triggered Message-triggered Object (TMO) structuring scheme. Figure
1 depicts the basic structure of the TMO. In this scheme, TT methods are also called spontaneous methods
and they are “clearly separated” from the conventional methods that are invoked by object clients and called
service methods. The reason for a clear separation of the two groups of methods will become clear later. Timing
specifications associated with TT methods are called autonomous activation conditions (AACs).

In the TMO structuring scheme, there is also a provision for making the AAC section of a TT method
contain only candidate triggering times, not actual triggering times, so that a subset of the candidate triggering
times indicated in the AAC section may be dynamically chosen for actual triggering. Such a dynamic selection
occurs when a service method within the same TMO requests future executions of a specific TT method with
the parameters that indicate the times selected from the candidate triggering times.

Separation of the Absolute Time Domain from the Relative Time Domain. From the viewpoint of
obtaining easily understandable and analyzable RT programs, it is also good to clearly separate the specification
of the computation dealing with the absolute time domain, that is, the computation dependent on the time-of-day
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information available from the global time base, from the specification of the computation dealing with the
relative time domain only. In the case of the TMO structuring scheme depicted in Fig. 1, service methods deal
with the relative time domain only, that is, they use only the elapsed intervals, since the method was started
by an invocation message from an object client. This is natural, since the arrival time of a service request
(that is, a message invoking a service method) from an object client cannot be predicted by the designer of the
service method in general, especially when that designer is not the designer of the client object. Therefore,
any use of the time-of-day information can be used within TT methods only. This means that computations of
the type “ at constant-global-time-value do S ” or the type “ after constant-global-time-value” can appear only
in TT methods. The only exception is that an arithmetic logical expression consisting of now and global time
constants may be used in a server method for the purpose of selecting candidate triggering times associated
with TT methods. In fact, the rule adopted in the TMO scheme can be stated as: “actions to be taken at real
times that can be determined at the design time can appear only in TT methods.”

The discussion of the specification of TT actions, that is, computation dealing with the absolute time
domain, was given in the preceding subsection. For specifying the computation dealing with the relative time
domain only, the following language features are useful:

Concurrency Control. A real-time object may contain various types of concurrency. For example, in
the case of the TMO depicted in Fig. 1, the following major types of concurrency may be found:

(1) Concurrency among TT method executions, that is, the concurrency specified in an implicit but natural
manner (e.g., two TT methods designed to be triggered at 10 A.M. )

(2) Concurrency among service method executions
(3) Concurrency between TT method executions and service method executions

In order to maintain a high degree of timing behavior predictability in an RT object, concurrency within
the object must be clearly understood and controlled.

A highly useful principle here is to first use the basic concurrency constraint (BCC) adopted in the TMO
scheme. BCC prevents conflicts between TT methods and service methods in accessing a common part of the
object data store (ODS). It contributes in an important way to reducing the designer’s efforts in guaranteeing
timely service capabilities of TMOs. Basically, activation of a service method triggered by a message from an
external client is allowed only when potentially conflicting TT method executions are not in place. To be exact,
when a message-triggered service method is not free of conflict with a TT method in accessing the same portion
of the ODS, execution of the service method must not be allowed in a time zone earmarked for a TT execution
of the latter method. Therefore, TT methods are given higher priorities for execution over the service methods.
Executions of TT methods are not disturbed by service method executions, and triggering times of TT methods
are fixed at the design time. If a statement of the type “ at 10am do S ” appears in a TT method, its timely
execution can be easily assured.

Another concurrency control approach useful, though not as essential as the BCC, in easing the design-
time guaranteeing of timely services is to follow the ordered isolation rule. In order to describe this rule, the
TMO structure will be considered again. The term initiation time stamp or I–time stamp is defined as follows.
In the case of a service method execution, the I–time stamp is defined as the record of the time instant at which
the execution engine initiated the service method execution after receiving the client request and ensuring
that the service method execution can be initiated without violating the BCC and other execution rules. In the
case of a TT method execution, the I–time stamp is defined as the record of the time instant at which the TT
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method execution was initiated according to the timing specification of the TT method. Also, a segment of the
ODS, called an ODS segment (ODSS), is a basic unit of data storage that can be reserved for exclusive access
by a method of a TMO. The ordered isolation rule can be stated as follows:

(1) A method execution with an older I–time stamp must not be waiting for the release of an ODSS held by a
method execution with a younger I–time stamp.

(2) A method execution must not be rolled back because of an ODSS conflict.

The ordered isolation rule can be illustrated by considering two service methods, SVM1 and SVM2, that
need to access the same ODSS, ODSS7, mutually exclusively during their execution. Assume that a client
request arrived first for SVM1 and another client request arrived later for SVM2. The execution engine will
initiate SVM1 first with an older I–time stamp and SVM2 later with a younger I–time stamp. Both SVM1
and SVM2 executions may proceed concurrently. Then under the ordered isolation rule, the SVM1 execution
should never have to wait for entering ODSS7 due to the SVM2 execution accessing ODSS7 at the same time.
Moreover, meeting such a condition by forcing the SVM2 execution out of ODSS7 and rolling it back to its
beginning (i.e., by “wounding” the SVM2 execution) is not allowed. Approaches that are less restrictive than
the ordered isolation rule and yet ease the design-time guaranteeing of timely service capabilities of RT objects
are certainly desirable but such approaches have not been established yet.

Note also that the approach of pipelined execution of service methods can be incorporated. When the
service request rate for a service method becomes high, multiple instances of the same service method may
be executed concurrently in a pipelined fashion to speed up the processing of client requests. The RT object
designer must specify explicitly when such a pipelined execution of service methods should be performed.

Interaction among RT Objects and RT Message Communication.
Nonblocking Call. An underlying design philosophy of the RT OO distributed computing approaches is

that every RT DCS will be designed in the form of a network of RT objects. RT objects interact via calls by
client objects for service methods in server objects. The caller may be a TT method or a service method in
the client object. In order to facilitate highly concurrent operations of client and server objects, nonblocking
(sometimes called asynchronous) types of calls (i.e., service requests) in addition to the conventional blocking
type of calls can be made to service methods. Therefore, the following two basic types of calls can be made to
service methods in the server TMO.

(1) Blocking call. After calling a service method, the client waits until a result message is returned from
the service method. The syntactic structure may be in the form of Obj-name. SvM-name(parameter-1,
parameter-2, . . ., by deadline). Since the client and the server object may be resident in two different
processing nodes, this call is in general implemented in the form of a remote procedure call. Even if there is
no result parameter in the service method, the execution completion signal is returned to the client. If the
result message or the execution completion signal from the server method does not arrive by the specified
deadline, the execution engine for the client object invokes an appropriate exception handling function as
it would when an arithmetic overflow occurs.

(2) Nonblocking call. After calling a service method, the client can proceed to follow-on steps (i.e., statements
or instructions) and then at some point wait for a result message from the service method. The syntactic
structure may be in the form of
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The mode specification NWFR, which is an abbreviation of “no wait for return” indicates that this is a
nonblocking call. When the client calls the service method, the client records a time stamp into a variable, say
TS. The time stamp uniquely identifies this particular call for the service method as distinct from other (past
or future) calls for the same service method from this client. Therefore, later when the client needs to ensure
by execution of the “get-result” statement the arrival of the results returned from the earlier nonblocking call
for the service method, not only the service method name but also the variable TS containing the time stamp
associated with the subject call must be indicated. When a client makes multiple nonblocking calls for service
methods before executing a “get-result” statement, the time stamp unambiguously indicates to the execution
engine which nonblocking call is referred to. If the results have not been returned at the time of executing
the “get-result” statement, the client waits until the execution engine recognizes the arrival of the results.
A nonblocking call thus creates concurrency between a client method (TT method or service method) and a
service method in a server object and the concurrency lasts until the execution of the corresponding “get-result”
statement. In some situations, a client does not need any result from a non-blocking call for a service method.
Such a client does not use a “get-result” statement.

RT Message Communication and Programmable Multicast Channels. Whether a service request is a
blocking call or a nonblocking call, the request message and the result return message must be communicated
with predictable delay bounds. Many protocols suitable for RT message communication over local area net-
works and wide area networks exist, for example, time-division multiplexed access (TDMA), token ring access,
deterministic CSMA/CD, ATM, etc.

In addition to the interaction mode based on remote method invocations, distributed RT objects can use
another interaction mode where messages may be exchanged over message channels explicitly specified as
data members of involved objects. For example, logical multicast channels, LMC1 and LMC2, can be declared
as data members of each of the three remotely cooperating RT objects, TMO1, TMO2, and TMO3, during the
design time. The compiler and the object execution engines running the three RT objects must then together
facilitate the two channels and guarantee timely transmission of messages over those channels. Once TMO1
sends a message over LMC1, the message will be delivered to the ODS of each of the three RT objects. Certain
methods in TMO2 and TMO3 can pick up the messages that came over LMC1 into the ODSs of their host
objects. In many applications, this interaction mode leads to better efficiency than the interaction mode based
on remote method invocations does.

Transparency of RT-Object Locations. In most cases, the RT-object designer does not want to be
burdened with the chore of learning and utilizing the information on the physical locations where other
cooperative RT objects will be running. Therefore, the compiler and the object execution engine together must
relieve such a designer of the concern about the physical locations of cooperating RT objects. Several approaches
exist.

In 1990s, an industry consortium led by Object Management Group launched a movement to establish
common object request broker architecture (CORBA), a common architectural framework for distributed com-
puting across heterogeneous hardware platforms, operating systems, and internode communication protocols.
CORBA is also a location-transparent language-independent interobject communication architecture. The core
of CORBA is the object request broker (ORB), a mechanism that supports remote object method invocation
and interobject communication. The ORB provides a high-level location-transparent abstraction for facilities
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for communication among objects residing in different hosts. Another approach is to make object execution
engines fully cooperate in searching for RT objects in a network domain.

Deadline Specification and Service Time Guarantee. The designer of each RT object provides
a guarantee of timely service capabilities of the object by indicating the guaranteed time-window for every
output produced by each service method in the specification of the service method advertised to the designers
of potential client objects. Actually the guaranteed time-window associated with every output from every TT
method also a part of the guarantee. Before determining the guaranteed time-window specification, the server
object designer must convince himself or herself that with the object execution engine (hardware plus operating
system) available, the server object can be implemented to always execute the service method such that the
output action is performed within the time-window. Again, the BCC contributes to major reduction of these
burdens imposed on the designer.

An output action of a service method may be one of the following:

(1) An updating of a portion of the ODS
(2) Sending a message to either another RT object (which may or may not be the client) or a device shared by

multiple objects
(3) Placing a reservation into the reservation queue for a certain TT method that will in turn take its own

output actions

The specification of each service method that is provided to the designers of potential client RT objects
must contain at least the following:

(1) An input specification that consists of (a) the types of input parameters that the server object can accept
and (b) the maximum request acceptance rate, that is, the maximum rate at which the server object can
receive service requests from client objects

(2) An output specification that indicates the output time-window and the nature of the output value for every
output produced by the service method

If service requests from client objects arrive at a server object at a rate exceeding the maximum acceptance
rate indicated in the input specification for the server object, the server may return exception signals to the
client objects. The system designer who checks an interconnection of RT objects can prevent such overflow
occurrences through a careful analysis. The designer should ensure that the aggregate arrival rate of service
requests at each server object does not exceed the maximum acceptance rate during any period of system
operation. In order to satisfy greater service demands presented by the client objects, the system designer can
increase the number of server objects or use more powerful execution engines in running server objects.

Before determining the output time-window specification, the server object designer must consider the
following.

(1) The worst-case delay from the arrival of a service request from a client object to the initiation of the
corresponding service method by the server object

(2) The worst-case execution time for the service method from its initiation to each of its output actions

On the other hand, a client RT object imposes a deadline on the server RT object for creation of all
the intended computational effects (i.e., all intended output actions). The deadline imposed by a client must
not be earlier than the maximum delay guaranteed by the designer of the server object for completion of the
corresponding service method.
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The specifications of the TT methods that may be executed on requests from the service method must also
be provided to the designers of the client objects that may call the service method. The specification of such
a TT method must contain at least the time triggering specification and the output specification. There is no
input specification. The output specification indicates, for every output expected from the execution of the TT
method, the time-window during which it will be produced and the nature of every value carried in the output
action.

Inheritance. Inheritance is one of the major features of the OO design approach. Once a class that
contains capabilities commonly required by a group of applications is created, each application in the group
can be efficiently constructed in the form of a derived class that inherits all the capabilities of the base class
and incorporates additional newly designed capabilities.

The inheritance aspect of the RT object has one more dimension than the conventional object, namely
dealing with timing attributes. For example, when an RT class is derived from a base RT class, the TT
initiations, deadlines, and other specifications of action timings inside the base RT class can all be inherited. If
some of the timing specifications are not acceptable in a new application situation, then those can be replaced
by new specifications in the derived class.

Design and Execution Tools

Execution Support Middleware. To facilitate RT OO structuring in the most cost-effective manner,
it is essential to provide execution support mechanisms in well-established commercial software–hardware
platforms compliant with industry standards. Execution support mechanisms for RT objects have been built
as middleware running on popular commercial operating system kernels. Any operating system kernel with
the following capabilities can support middleware supporting RT objects.

(1) High-precision time base.
(2) RT threads possessing the following characteristics: (a) the delay an RT thread experiences in accessing

a resource should not exceed a predetermined tight bound, (b) it can enter a nonpreemptible mode at any
time, and (c) when a kernel service call is issued inside a RT thread, the kernel service inherits the RT
characteristics of the issuer thread.

(3) Efficient control of support processes, that is, long-life background support processes (often called daemons)
for performing day-to-day management and housekeeping activities

Programming Language Tools. Language tools for RT-object programming need not take the form
of completely new languages. Well-established basic OO programming languages such as C++ and JAVA can
be used as a base language and by adding an appropriate library, a cost-effective language tool can be obtained.
A few such tools have been constructed.

Aids for Analysis of the Worst-Case Service Time. The most urgently needed among various
software engineering tools desired but unavailable at the time of writing are those for assisting the RT-object
designer in the process of determining the response time (i.e., maximum delay for each output) to be guaranteed.
Such tools must be capable of making good estimates for worst-case execution times of various segments of
object methods. Such tools can also be useful in checking the execution feasibility of RT objects, for example,
checking if a group of RT objects can be loaded onto a DCS node without introducing the possibility of any
violation of the timing constraints associated with the RT objects.
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Fig. 2. Steel rolling and pressing mill environment.

Basic Design Style: Multilevel Multistep Design

The attractive basic design style facilitated by RT object structuring is to produce a network of RT objects
meeting the application requirements in a top-down multistep fashion. This will be explained through a simple
case study. The RT object structuring scheme used in this case study is the TMO scheme.

The RT DCS to be designed here is a simple manufacturing control system for use in a steel factory. The
control system is called an automatic gauge control (AGC) system and it controls a steel rolling and pressing
process (RPP). The steel factory application environment considered is shown in Fig. 2. A roll of steel sheet of
nonuniform thickness is first loaded onto a cylinder called the pay-off reel (POR). This POR is rotated by an
attached POR motor drive as shown in Fig. 2. When the POR is rotated in a clockwise manner by the attached
motor drive, the steel sheet wrapped around the reel advances forward and to the right along a guiding rail
(not shown in the figure) and goes between two solid cylinders, known as the work roll (WR). The WR cylinders
can not only be rotated by an attached WR motor drive but also be pressed together by a hydraulic actuator.
Such pressure will be transferred to the steel sheet that passes between the WR cylinders. The net effect is
to make the thickness of the steel sheet more uniform than before. When the WR motor drive rotates the WR
cylinders, this causes the steel sheet that comes between the cylinders to advance further to the right (away
from the WR). Finally, the steel sheet follows the guiding rails (not shown in the figure) and wraps around
a cylinder called the tension reel (TR). As in the case of the POR and the WR, the TR is also rotated by an
attached motor drive, thereby causing the steel sheet to coil around it.

Figure 2 shows just one RPP in detail. In general, the steel mill can have n different RPPs, all arranged
in a series and working concurrently. In this case, a roll of raw steel is first loaded on the POR of the first RPP.
After being processed in the first RPP, the steel is loaded on the POR of the next RPP, and so on. The steel
sheet thus moves from one RPP to the next in a pipeline fashion until it gets processed by the nth RPP and
comes out refined from the pipeline.
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Fig. 3. Steel Pressing Factory TMO.

In each RPP, the speeds of all three motor drives as well as the load applied by the hydraulic actuator need
to be carefully controlled. For instance, if the WR does not have a velocity sufficient enough to keep the sheet
between the POR and the WR taut always, then the material between POR and WR could bend, resulting in an
undesirable situation. On the other hand, if the speeds of the three motor drives are too much off the balance,
the steel sheet may be torn apart. The speed controller (SCT) shown in Fig. 2, which is to be designed by a
computer engineer (team), should control the three motor speeds while the automatic gauge controller (AGCT)
to be designed should control the load applied to the hydraulic actuator. The three speedometers shown in the
figure supply the SCT with the current speeds of the motor drives, the two radius meters supply the SCT with
both the current radius of the POR and the radius of the TR, and the two tensiometers supply the SCT with
the steel tension just before and after the WR. The SCT can use these sensor readings to calculate the new
speeds of the three motors. The AGCT receives the current load applied to the hydraulic actuator and the entry
thickness measure of the steel sheet as the input and can use these sensor readings to calculate the new load
to be applied to the hydraulic actuator.

Initially the high-level requirement is given by the customer who places an order for the AGC system: A
rectangular sheet of raw steel of nonuniform thickness, length l m (meter), width w m, and material physical
attribute set S, should be refined into a rectangular sheet of steel with at least l m in length, at least w m in
width, and thickness in the range of t mm ± k µm . The minimum thickness of the raw steel is greater than or
equal to t mm − k µm.

Step 1: High-Level Specification of the Application Environment of the AGC as a TMO and its
Real-Time Simulation. Initially, computer-based controllers do not exist and neither do sensors such as
speedometers and tensiometers, and actuators such as hydraulic actuators and motor drives because the
system engineer (team) has not decided which types to use. As the first step, the system engineer may describe
the application environment of the AGC system (i.e., steel pressing factory) as a TMO as depicted in Fig. 3.
This TMO is called the steel pressing factory TMO. As we mentioned before, the steel factory consists of up to n
RPPs. Hence, the ODS of the steel pressing factory TMO consists of the state descriptors for (0 to n ) RPPs. The
information kept in all these state descriptors constitutes the information kept in the steel pressing factory
TMO.

The RPP state descriptors are periodically updated by a spontaneous method (SpM), that is, a TT method.
Conceptually, this SpM in the steel pressing factory TMO is activated continuously and each of its executions
is completed instantly. The SpM thus represents the continuous state changes that occur naturally in the
real RPPs. The service method (SvM) in the steel pressing factory TMO functions as an interface to “external
clients.” The only conceivable client here is the mechanism that inputs the material (i.e., raw steel sheet of
nonuniform thickness) to (the POR of) the first RPP.

So far, the steel pressing factory TMO in Fig. 3 was interpreted as a mere description of the application
environment. However, if the activation frequency of each SpM is chosen such that it can be supported by an
object execution engine, then the resulting TMO becomes a simulation model. The behavior of the application
environment is represented by this simulation model somewhat less accurately than by the aforementioned
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Fig. 4. Rolling and pressing process (RPP) TMO.

description model based on continuous activation of SpMs. In general, the accuracy of a TMO structured
simulation is a function of the chosen activation frequencies of SpMs. Note that this style of simulation is
real-time simulation in which the simulation objects are designed to show the same timing behavior that the
simulation targets do.

Therefore, the TMO structuring is effective not only in the multiple-level abstraction of RT (computer)
control systems under design but also in the accurate representation and simulation of the application envi-
ronments. This means considerable benefits to the system engineers.

Step 2: High-Level Design of an RPP as a TMO. After creating the high-level specification of the
application environment, the system engineer (team) now decides to produce a high-level design of each RPP.
For this, the engineer first decomposes the steel factory TMO into multiple RPP TMOs. Such a decomposition
would also involve the introduction of one or more SvMs in each RPP TMO to establish some connections
among the TMOs and between the TMOs and the clients outside the factory.

Next, the engineer decides on the types of sensors and actuators to be used. Once those devices are chosen,
then the control algorithms for operating the devices and controlling the RPP will be determined. Figure 2
already showed all the sensors and actuators chosen. The RPP augmented with chosen sensors and actuators
and an imaginery controller can be described as a TMO shown in Fig. 4. The ODS of this TMO contains
state descriptors for the pressing mill and the controller that performs the automatic gauge control and the
motor speed control. The sensors and actuators are treated as a part of the pressing mill instead of separating
them out since their functionality is simple. Therefore, the requirements to be imposed on the computer-based
controller have been specified in a concrete form, that is, RPP TMO in Fig. 4.

The “update the state of pressing mill” SpM keeps track of the rotary motions of the POR, WR, and TR,
and the linear motion of the steel sheet through the guiding rails between the POR and the TR. It also keeps
track of the action of the hydraulic actuator aimed for setting the roll gap between the WR cylinders to the
target value ordered by the controller. The “update the state of controller” SpM keeps track of the action of
the controller and thus it can be viewed as a core part of the requirement specification for the computer-based
controller at this state of the controller development.

Again, the RPP TMO contains an SvM representing the operation controlled by an external client of
loading material on to the POR. Also, if an RPP has the mechanism for sending processed steel rolls to another
RPP, then the TMO representing the former RPP should contain the capability for making service calls (i.e., calls
for “load material” SvM) to the TMO representing the latter RPP. This is the reason for including “NextRPP”
in the access capability section of the RPP TMO in Fig. 4.
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Step 3: Decomposition of the RPP TMO into a Pressing Mill TMO and a Computer-Based Controller
TMO. As the system engineer decomposes the single TMO representation of the RPP TMO in Fig. 4 as a part
of more detailed design, a component of the ODS becomes a new TMO. When these new TMOs are created, the
SvMs that serve as the front-end interfaces of these new TMOs should also be created. After the decomposition,
the RPP may be composed of a network of two TMOs: the pressing mill TMO and the controller TMO, which
represents the desired actions of both SCT and AGCT.

In this process, the requirement specifications associated with the controller may be refined. The pressing
mill TMO may now describe or simulate the actions of the sensors and actuators, the rotary motions of the
POR, WR, and the TR, and the linear motion of the steel sheet between the POR and the TR more accurately
than the RPP TMO did. Similarly, the controller TMO can describe or simulate the desired gauge control
and motor speed control actions more accurately than the RPP TMO did. Now, the pressing mill TMO can
be viewed as a description or a real-time simulator of the application environment and the controller TMO
as an abstract design or requirement specification of the computer-based controller to be implemented by the
computer engineer (team).

The full specification of the two TMO networks (preferably in the style illustrated later in Fig. 6) plus the
following statement can form such a requirements specification: The distance between the highest point on the
steel sheet and the lowest point on the steel sheet located either between the POR and the WR or between the
WR and TR should not exceed h mm.

This requirement is imposed to prevent the undesirable situation of the steel sheet bending in between
the POR and the WR or in between the WR and the TR.

Step 4: Further Decomposition of the Pressing Mill TMO and Detailed Design of the Computer-Based
Controller. Further decomposition of the pressing mill TMO may produce a network of three different TMOs:
the POR TMO, the WR TMO, and the TR TMO as shown in Fig. 5. Now, these three TMOs can be hosted
on three different nodes if a high-frequency simulation is desired. Here, the WR TMO describes or simulates
the rotary motion of the WR, the pressing action of the cylinders, the linear motion of steel through the gap
between the WR cylinders, and the operations of the sensors and actuators located in the vicinity of the WR.
The POR TMO and the TR TMO describe or simulate their corresponding facilities in similar fashions. Each
of these environment TMOs should have SvMs that interface not only with the computer-based controller but
also with other environment TMOs.

During this step the computer engineer (team) may produce a more detailed design specification of the
computer-based controller by expanding the single TMO design into a network of two TMOs as shown in Fig.
5: the automatic gauge controller (AGCT) TMO and the speed controller (SCT) TMO. These two TMOs may be
hosted on two different computer nodes or on the same computer node. The detailed design specification of the
SCT TMO is shown in Fig. 6.

The SCT TMO receives from the POR TMO the sensor readings, namely, the current POR velocity, the
current POR radius, and the current steel tension in the measurement point between the POR and the WR.
It also receives the current WR velocity from the WR TMO. In addition, it receives from the TR TMO some
sensor readings such as the current TR velocity, the current TR radius, and the current steel tension in the
measurement point between the WR and the TR. The SCT then calculates the velocity required for the POR
motor drive, the velocity for the WR motor drive, and the velocity for the TR motor drive that satisfy the
requirement specification and outputs these values to appropriate motor drives.

The AGCT TMO receives from the WR TMO some sensor readings such as the current value of load
applied to the WR cylinders and the thickness of the steel sheet measured in the entry point of the WR. This
TMO then calculates the desired load to be applied to the cylinders.

The AGC system in Fig. 5 thus consists of five interconnected TMOs. The upper portion depicts the
three TMOs that compose the RT simulator of the application environment. The lower portion depicts the two
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Fig. 5. Network of TMOs: The AGC system.

TMOs that compose the computer-based controller. The AGC system implemented can be easily expanded with
functions such as handling of various alarm conditions including a safe shutdown of the pressing mill.

Advantages of the RT-Object-Based Multilevel Multistep Design. Under the multilevel multistep
design approach illustrated above, both the computer engineer (team) who produces control computer systems
and the system engineer (team) who interfaces with the customers of the computer-embedded application
systems and produces precise specifications of requirements to be met by the computer engineer, use the same
structuring approach during their systematic construction of specifications.

The computer engineer receives a RT-object-structured requirement specification. The computer engineer
initially produces an abstract single RT-object design and then proceeds to refine it into a more detailed design
which has the structure of an RT-object network (e.g., Fig. 5).
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Fig. 6. Speed controller TMO.

On the other hand, the system engineer first starts with a single RT-object representation of the applica-
tion environment (the RPP) (e.g., Fig. 3) in which sensors, actuators, and control computer systems are to be
embedded. The system engineer gradually refines this single RT-object representation into an RT-object net-
work representation (e.g., Fig. 4), which can be given to the computer engineer as a requirement specification.

Thereafter, the system engineer (or another team) can optionally refine the environment portion of the
RT-object network representation into a RT simulator of the application environment, for example, simulator
depicted in (the upper half of) Fig. 5. The environment simulator can then be used for testing the control
computer system produced. The environment simulator is a real-time simulator that produces sensor data in
real time, takes real-time commands for actuators, and simulates the subsequent operations of actuators in real
time. Obviously, this kind of testing yields better coverage than the testing based on non-real-time simulation
of the application environment.
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