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which means that an electric cable made out of aluminum can
be quite light in comparison with copper. The main electrical
application of aluminum is in the fabrication of overhead
power transmission cables, which should be made as light as
possible. A few other metals are used for highly specialized
applications. Tin and lead, for example, are poor electrical
conductors, but they are commonly found in solder alloys
since they have a low melting point. Tin alloys are commonly
found in fuses. Tungsten has the highest melting point of all
metals, which makes it attractive for high-temperature appli-
cations such as the filaments in light bulbs and as heating el-
ements.

This article discusses the electrical performance of conduc-
tors. The classical free electron gas model of conductors is pre-
sented in the first section. The second section deals with the
direct current (dc) performance of conductors. The third sec-
tion presents an analysis of circular cross-section conductors
under alternating current (ac) excitation, and the last section
deals with two common transmission line geometries con-
structed using a pair of conductors.

THE FREE ELECTRON GAS MODEL OF CONDUCTORS

Any material that allows the passage of an appreciable cur-
rent density may be called a conductor. Current density isCONDUCTORS, ELECTRIC
understood as being a flow of electric charge in motion per
unit area of conductor. Conductors are generally fabricated

In terms of their basic electrical attributes, materials at room
from metals such as copper, aluminum, or gold since these

temperature fall into three categories: insulators, semicon-
elements, when arranged in a solid, readily give up a valence

ductor, and conductors. Conductors are those materials in
electron. In a metal conductor, the electron is the elemental

which electrons or current can easily flow. They may exist as
charge responsible for the transport of current. The widely

solids (silver, copper), as liquids (salt water, mercury) or in
accepted classical model for a metal conductor is that of a

gaseous form (ionosphere). Simply put, conductors are used
free electron gas where roughly each atom constituting the

to form an electrical connection between two points. For the
conductor donates an electron that is free to move under the

electrical engineer, conductors are generally employed to de-
application of an electric field. This simple model explains

liver power, be it megawatts of hydroelectric power on over-
reasonably well the behavior of conductors that is observed

head lines or faint high-speed signals along metallic traces in
experimentally on a macroscopic scale.

a microchip. Given the wide variety of applications and the
The free-electron gas model of a perfect conductor has in-

many materials with which to make conductors, choosing the
teresting consequences. First, it implies that a perfect conduc-

right one can be challenging.
tor cannot sustain an internal electric field if charges are at

The most common materials encountered in the fabrication
rest. Consider a static electric field applied via a voltage

of electric conductors are metals, and the most popular metals
source to an isolated conducting block having a net charge of

used are silver, copper, gold, and aluminum. These metals
zero, as shown in Fig. 1. The externally applied electric field

have low electrical resistivity at room temperature and addi-
causes the free electrons in the conductor to move about until

tional properties that make them quite attractive for certain
they reach a region where the total perceived electric field

applications. Silver is the best electrical conductor, and it
does not tarnish in pure air or pure water. Silver is expensive,
so it is rarely used to make electrical cables but is commonly
found in solder alloys and electrical connectors or contacts.
Copper is almost as good a conductor as silver but is much
less expensive. Copper is used in most electrical cables, but it
tarnishes easily so that insulators or coatings are used for
protection. Gold is also a good electrical conductor and is un-
affected by air. It is very expensive and not often used to fab-
ricate cables, though it is often used for plating in order to
provide a protective conductive coating on another material.
Common electrical applications that make use of gold include
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connectors and contacts, and at higher frequencies it is used
to fabricate microwave interconnects and integrated circuits. Figure 1. The spatial distribution of electrons in a block of perfectly
Aluminum is substantially more resistive than copper, but it conductive material when the block is placed in a static electric field.
still is considered to be a good electrical conductor. It also has The electrons leave behind ionized atoms such that the total electric

field inside the block is zero.a much smaller volume mass density than the other metals,
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sons, we assign the current direction in the opposite direction,
along the path followed by a hypothetical positive charge car-
rier. This direction is known as the conventional current flow
and is assigned such that it leaves the positive terminal of a
battery or voltage source. The direction of the conventional
current is consistent with the direction of an electric field,
which is set by the motion of a positive test charge placed
within the field.

Macroscopic View of Current Flow in Conductors

In a perfect conductor, the current flowing under the applica-
tion of a voltage source is infinite. In a real conductor, the
current may be quite large but remains finite due to energy

Conventional current

Electronic current

V +
–

losses encountered by the electrons in motion. Furthermore,
Figure 2. The direction of the electronic and conventional currents since the electrons are in motion, an electric field is allowed
in a conductive wire connected to a battery. The conventional current to exist in the conductor and a voltage drop can be measured
is commonly employed in electrical circuit analysis. across the wire. Ohm’s law states that the resistance of a cir-

cuit element is given by the ratio of the voltage drop across
the element to the current flowing through it in the direction

and the force acting upon them is zero. By migrating to the of the drop:
top surface, the free electrons leave behind ionized atoms,
which creates diametrically opposed regions of net positive
and negative charge concentrations. The positive and nega-

R = V
I

(1)

tive charge concentrations, ideally, are evenly distributed on
Resistance is quoted in units of �.the bottom and top surfaces of the conducting block, as shown

The resistance of a conductive element depends on its ge-in Fig. 1, and create an electric field inside the conductor that
ometry as well as its material composition. The resistance ofcancels out exactly with the externally applied electric field.
a conductor having a length L and invariant cross section AThus, the net electric field inside the conductor is zero.
is found experimentally to be proportional to L and inverselyA second implication of the free-electron gas model is that
proportional to A:an electric field tangential to a perfectly conducting surface

must vanish on the surface while an electric field normal to a
conducting surface may be nonvanishing. Referring to Fig. 1, R = ρ

L
A

(2)
the external electric field is tangential to the vertical walls of
the block and must vanish on these walls while the field is

The constant of proportionality is the resistivity 
 which isnormal to the top and bottom surfaces of the block and is
material- and temperature-dependent and has units of � � m.allowed to exist on these surfaces. Furthermore, in the re-
The conductivity � is the reciprocal of the resistivity and hasgions outside the conducting block, the electric field remains
units of siemens per meter (S/m). The simple equation givenundisturbed by the introduction of the block; that is, the field
above for the resistance of a conductive element holds as longin those regions is the same whether the block is present or
as the cross section of the element remains invariant alongnot.
its length. In such a case, the dc current density flowing inFinally, the free-electron gas model implies that an iso-
the element can be assumed to be constant over its crosslated negatively charged conductor will see its net charge mi-
section.grate toward the exterior surfaces of the conductor where the

The resistivity of a material can be determined experimen-charge carriers will distribute themselves evenly. Since elec-
tally by measuring (1) the voltage drop Vc across a cube of thetrons repel each other, we can imagine that they will tend to
material 1 m on a side and (2) the current Ic flowing throughmove as far away from one another as possible. At equilib-
the cube. The cube is clamped as shown in Fig. 3 in order torium, the distribution of net electric charge must be such that
ensure a uniform distribution of current density in the cross-the sum of all forces perceived by individual electrons is zero.
section of the material. According to Eqs. (1) and (2), the re-The application of an external electric field to a charged con-
sistivity of the material comprising the unit cube is obtainedductor will modify the charge distribution in the same way as
directly as the ratio Vc/Ic.in an uncharged conductor.

The resistivity of metals generally increases with tempera-
ture. For a small range of temperature near 20 �C, 
 can be

CONDUCTORS UNDER DC EXCITATION assumed to vary in a linear fashion according to

When a conducting wire is connected to a battery to form a ρT = ρ0[1 + α(T − T0)] (3)
closed loop, a current carried by free electrons in motion flows
in the wire. As shown in Fig. 2, the path followed by the nega- where 
T is the resistivity at the temperature T, 
0 is the

known resistivity of the material at a standard temperaturetive charge carriers in the wire is out of the negative terminal
of the battery, through the wire and into the positive terminal T0, and � is the temperature coefficient of resistivity for the

particular metal. The temperatures in Eq. (3) are usually inof the battery. The flow of current along this path is com-
monly referred to as the electronic current. For historical rea- �C and � is usually quoted in �C�1. Table 1 gives values for
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Figure 3. A typical experimental setup used to measure the resistiv-
ity of a unit cube of material, shown as the hatched region. The block
is clamped and a known dc voltage source V is applied; the current
Ic is then measured and the resistivity 
 is deduced via Eqs. (1) and
(2). The lumped resistance R models the resistance of the setup with-
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Figure 4. A conductive cylinder of length �z and radius R connected
to a voltage source V. The voltage source generates the current den-

the resistivity and for the temperature coefficient of resistiv- sity J and the electric field E inside the conductor. The magnetic field
H is generated by the current flowing in the cylinder and loopsity for the metals most commonly encountered in the fabrica-
around the conductor, as shown. The cylindrical coordinate system istion of conductors. Most of the values quoted in this table
also given for reference.have been obtained from Ref. 1. To be considered an electric

conductor, a material must have a resistivity less than
10�5 � � m.

over the surface of integration and perpendicular to it, then
the current flowing through is simply I � JS.Microscopic View of Current Flow in Conductors

It can easily be shown that Ohm’s law, given by Eq. (1),
The current density J is a vector function that describes the holds for microscopic quantities (2). The microscopic version
magnitude and direction of the current flow per unit area at of Ohm’s law is called Ohm’s law at a point, and it relates the
a point inside a conductor; its units are A/m2. The current I electric field to the current density at any point inside a lin-
is a macroscopic scalar quantity and is obtained from J via ear, homogeneous, and isotropic conductive material via
integration:

ρ = E
J

(5)
I =

∫ ∫
S

J · dS (4)

The units of the electric field intensity E are V/m. A conduc-
tive material is linear if its resistivity does not depend on Ewhere dS is a surface element of the area S through which

the current I flows, as shown in Fig. 4. The positive direction or J, is homogeneous if its resistivity is the same everywhere,
and is isotropic if its resistivity is independent of the orienta-of J at any point is taken as the direction of a positive test

charge placed at that point and is generally in the direction tion of E.
In a real conductor, electrons move under the applicationof the local electric field; this direction is consistent with that

of the conventional current. If the current density is constant of an electric field, since a force proportional to E acts upon

Table 1. Resistivity � and Temperature Coefficient of Resistivity � at 20 �C
for the Metals Most Commonly Used for the Fabrication of Conductorsa


 � Range of Validity
Metal (� · m) (�C�1) (�C)

Silver (high purity) 1.586 	 10�8 0.0061 0–100
Copper (high purity) 1.678 	 10�8 0.0068 0–500
Gold (high purity) 2.24 	 10�8 0.0083 0–100
Aluminum (99.996%) 2.6548 	 10�8 0.00429
Magnesium 4.45 	 10�8 0.0165
Tungsten 5.6 	 10�8 0.0045
Zinc 5.916 	 10�8 0.00419 0–100
Nickel 6.84 	 10�8 0.0069 0–100
Iron (99.99%) 9.71 	 10�8 0.00651
Platinum (99.85%) 10.6 	 10�8 0.003927 0–100
Tin 12.034 	 10�8 0.0047 0–100
Lead 20.648 	 10�8 0.00336 20–40

a The temperature range of validity for � is given if it is known.
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them. This force does not lead to an infinite velocity since the quoted in this table have been obtained from a number of ref-
erences.electrons collide repeatedly with other particles in the mate-

rial. The collisions cause the electrons to lose energy and to
change their direction of motion in a random manner. How- CONDUCTORS UNDER AC EXCITATION
ever, if E is constant and the material is linear and homoge-
neous, the electrons will drift at a constant average velocity Many applications make use of conductors to transmit time
in the direction opposite to the electric field. The drift velocity varying electrical signals. Most time-varying signals are si-
vd is proportional to the electric field and is given by nusoidal in form or can be decomposed into a linear combina-

tion of sinusoidal signals at different frequencies. The analy-vd = µE (6)
sis of circuit elements, including conductors, can therefore be
made assuming a sinusoidal or ac excitation without any losswhere constant of proportionality � is defined as the mobility
of generality.of the electrons in the conductive material; the mobility has

The behavior of conductors under ac excitation may be sig-units of m2/(V � s). The drift velocity points along the direction
nificantly different from their dc behavior depending on theof the electric field which is also in the direction of the conven-
frequency of the signal. The frequency-dependent electricaltional current density; vd has units of m/s.
parameters of an isolated conductor are its resistance and itsThe current density at a point in the conductor may be
inductive reactance. Both of these parameters generally in-related to vd via
crease with frequency and cause the ac impedance of a con-
ductor to be larger than its dc resistance.J = qvd (7)

Current Density and the Skin Effect in a Conductorwhere q is the volume charge density in C/m3 at the same
point in the conductor. From Eqs. (5)–(7), we observe that the The current density is uniformly distributed over the cross-
conductivity of a material is related to its mobility through section of a conductor under dc excitation only. Under ac exci-

tation, the current density is nonuniform. In a circular cross-
section conductor, the current density is usually greatestσ = 1

ρ
= qµ (8)

around the outside perimeter and decreases toward the cen-
ter. This effect is referred to as the skin effect, and it becomes

The volume charge density q is defined as the number of more pronounced as the frequency of excitation increases. The
free electrons per unit volume times the elementary unit of expression for the ac current density J in a conductor is ob-
charge: tained by deriving from Maxwell’s equations the governing

differential equation for J and finding the appropriate solu-
q = Ne (9) tions (3).

Consider the conducting wire of length �Z and radius R
where e � 1.6021892 	 10�19 C and N has units of m�3. If we shown in Fig. 4, across which a time-harmonic voltage V is
assume that every atom of the conductor makes available one applied and through which the current density phasor J
valence electron for conduction, then the number of free elec- flows. For a conductor having a finite conductivity �, a time-
trons per unit volume of conductor is given by varying electric field E in the longitudinal direction shown is

present. In general, a time-varying electric field induces a
time-varying magnetic field and vice versa. The relationshipN = NAD

Wa
(10)

between these fields in our conductor is formulated mathe-
matically as Maxwell’s equations which read in the frequencywhere NA � 6.022045 	 1023 mol�1 is Avogadro’s number, D is
domain and in differential form:the metal’s volume mass density in kg/m3, and Wa is the

atomic weight of the metal in kg/mol. The conductivity is ∇ × H = σE + jωεE (12)
therefore related to fundamental material quantities via

∇ × E = − jωµH (13)

∇ · E = 0 (14)σ = NAD
Wa

eµ (11)

∇ · H = 0 (15)
Table 2 gives the atomic weight, volume mass density, mobil-
ity and volume charge density of electrons for some of the where � � 2�f is the angular frequency of excitation in rad/

s, � is the conductivity in S/m of the material comprising themost popular metals used to fabricate conductors. The values

Table 2. Atomic Weight, Volume Mass Density, Mobility,
and Volume Charge Density of Some Metals at 20 �C

Wa D � q
Metal (g/mol) (kg/m3) (m2/(V · s)) (C/m3)

Silver (high purity) 107.86815 10.5 	 103 0.00671 9.39 	 109

Copper (high purity) 63.546 8.92 	 103 0.00440 1.35 	 1010

Gold (high purity) 196.9665 19.32 	 103 0.00472 9.464 	 109

Aluminum (high purity) 26.98154 2.7 	 103 0.0039 9.7 	 109
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conductor,  is its electrical permittivity in F/m, � is its mag- yields
netic permeability in H/m, not to be confused with the mobil-
ity of charge carriers, and H is the magnetic field intensity in
A/m. Since our conductor has a net electric charge of zero,

r2 d2

dr2 Jz + r
d
dr

Jz + (Tr)2Jz = 0 (24)

Maxwell’s equation from Gauss’ law for electric fields, stated
which is recognized as Bessel’s equation of order zero. Theas Eq. (14), must equal zero.
parameter T simplifies toThe differential equation governing the conduction current

density in our conductor is derived as follows. Taking the curl
of Eq. (13) T = 1 − j

δ
(25)

∇ × ∇ × E = − jωµ∇ × H (16) where we have introduced �, which is known as the skin
depth of the material. For a good conductor (� � �), the skin

and substituting into Eq. (12) yields depth is given by

−1
jωµ

∇ × ∇ × E = σE + jωεE (17)
δ =

√
2

ωµσ
(26)

Substituting the vector identity
and has units of m. The parameter T is thus seen to have
units of m�1.∇ × ∇ × E = ∇(∇ · E) − ∇2E (18)

The solution to Bessel’s equation [Eq. (24)] is found in a
number of advanced applied mathematics or electromagneticsinto Eq. (17)
textbooks (4,5). A general solution is the following linear com-
bination of Bessel functions:−1

jωµ
[∇(∇ · E) − ∇2E] = σE + jωεE (19)

Jz(r) = AJ0(Tr) + BY0(Tr) (27)

and making use of Eq. (14) yields where A and B are constants, J0 is Bessel’s function of the
first kind of order zero, not to be confused with current den-
sity, and Y0 is Bessel’s function of the second kind of order1

jωµ
∇2E = σE + jωεE (20)

zero. These functions are defined, tabulated, and graphed in
a number of mathematical textbooks and handbooks (6). A

The permittivity  of a metal is usually near that of free glance at the graph of Y0 reveals that this function has a pole
space:  � 0 � 8.85418782 	 10�12 F/m. It is quite clear from at the origin, where Tr � 0. Since our current must be finite
the above and Eq. (12) that the displacement current density at that point, we must impose B � 0. The remaining constant
j�E is negligible in a good conductor compared to the conduc- A can be determined by imposing a boundary condition at
tion current density �E since usually � � �. Neglecting the r � R. According to Eq. (5), the current density at r � R must
displacement current density, substituting Ohm’s law at a satisfy Jz(R) � �Ez(R), where Ez(R) is the longitudinal electric
point, stated as Eq. (5), and rearranging the above yields the field, tangential to the surface of the conductor. Applying this
differential equation governing the vector current density in condition and B � 0 to Eq. (27) and solving for A yields
our conductor:

∇2J − jωµσJ = 0 (21) A = σEz(R)

J0(TR)
(28)

Substituting the above into Eq. (27) yields the expression forThe main current component of J is directed along z, as
the current density in the conductor:shown in Fig. 4, such that the radial and angular components

may be neglected without much loss of accuracy; thus Jr �
J� � 0. Furthermore, since the structure is circular symmetric
about the z axis, we may simplify the functional dependence

Jz(r) = σEz(R)
J0(Tr)
J0(TR)

A
m2

(29)

of Jz on � by setting �Jz/�� � 0. Finally, since the structure is
where J0(u) is expressed as the infinite sum:invariant along z and �Z is very small compared to the wave-

length, we may also set �Jz/�z � 0. Applying these simplifica-
tions to the above equation and expanding �2Jz in cylindrical
coordinates yields the scalar ordinary differential equation

J0(u) = 1 − u2

22 + u4

22 · 42 − u6

22 · 42 · 62 + u8

22 · 42 · 62 · 82 − · · ·
(30)

that governs Jz:

The arguments of the Bessel functions in Eq. (29) are com-
plex; and based on the above expression, if u is complex, thend2

dr2 Jz + 1
r

d
dr

Jz − jωµσJz = 0 (22)
so is the Bessel function.

The magnitude of the current density in a circular cross-
where r is the radial dimension in m. Multiplying the above section conductor is often taken as
by r2 and introducing the notation

T2 = − jωµσ (23) |Jz(r)| = σ |Ez(R)|e−(R−r)/δ A
m2

(31)



CONDUCTORS, ELECTRIC 177

Table 3. Skin Depth of Some Metals at 20 �C for Three Frequencies

� at 60 Hz � t 1 MHz � at 30 GHz
Metal (m) (m) (m)

Silver (high purity) 8.183 	 10�3 6.338 	 10�5 3.659 	 10�7

Copper (high purity) 8.417 	 10�3 6.520 	 10�5 3.764 	 10�7

Gold (high purity) 9.73 	 10�3 7.53 	 10�5 4.35 	 10�7

Aluminum (high purity) 1.0587 	 10�2 8.2004 	 10�5 4.7345 	 10�7

which is the current density in a flat conductive medium due curves are computed using the exact expression stated as Eq.
(29), and the dashed curves are computed via the exponentialto an infinite plane wave, normally incident at r � R. The

above is a simple expression that provides some physical in- approximation given by Eq. (31). The skin effect is evident at
higher frequencies since the current density decreases dra-sight and is a good approximation to Eq. (29) as long as the

ratio R/� is large. From the above, the skin depth is seen as matically with decreasing r, from its maximum value at the
conductor perimeter. We note also that the approximate ex-being the radial distance � from the outside surface of the

conductor where the current density is reduced to 1/e or about pression agrees reasonably well with the exact expression as
long as R/� is large, at least greater than 8.36.8% of its maximum value at r � R. Hence � is also known

as the depth of penetration. As can be seen from Eq. (26), the When � � R, the products TR and Tr are very small, and
according to Eq. (30) the Bessel functions tend toward unity.skin depth depends on the inverse square root of the conduc-

tivity and of the frequency. Table 3 gives � at a few frequen- In this case the current density may be assumed uniform over
the cross section of the conductor, and the skin effect is negli-cies for the most popular metals used to fabricate conductors.

As can be seen from these data, the depth of current penetra- gible; this is also shown in Fig. 5. When � is of the same order
of magnitude as the conductor radius, � � R, then the skintion at low frequencies is of the order of a centimeter and

is about four orders of magnitude larger than the depth of effect is non-negligible and the current density must be com-
puted using Eq. (29). When � � R, then again the skin effectpenetration at millimeter-wave frequencies, which is of the

order of half a micrometer. It is also noteworthy that the is non-negligible and the current density may be computed
using Eq. (29) or is well approximated by Eq. (31), as showndepth of penetration increases as the conductivity of a mate-

rial decreases. in Fig. 5.
Figure 5 shows the variation of the normalized current

density with radial position in a copper conductor having a Impedance of a Conductor
radius R � 0.5 mm for a number of frequencies. The solid

The impedance of a circuit element is defined as

Z = V
I

(32)

where V and I are phasors. The above is consistent with
Ohm’s law for dc quantities stated as Eq. (1). For our conduct-
ing cylinder shown in Fig. 4, the current I can be obtained
either from the current density J using Eq. (4) or through
Maxwell’s equation from Ampere’s law, given by Eq. (12). Us-
ing the latter approach provides a direct route to the expres-
sion for the impedance of a conductive cylinder.

Maxwell’s equation from Ampere’s law, rewritten in the
frequency domain and in integral form, reads∮

H · dl =
∫ ∫

S
(σE + jωεE) · dS (33)

Again, neglecting the displacement current density j�E com-
pared to the conduction current density �E, substituting
Ohm’s law at a point given by Eq. (5), and integrating the
remainder of the right-hand side over the area S defined in
Fig. 4, yields Ampere’s law in the familiar form:
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f = 1 kHz
R/   = 0.2δ
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f = 100 kHz
R/   = 2.4δ

f = 1 MHz
R/   = 7.7δ

f = 10 MHz
R/   = 24.3δ

× 10–4 ∮
H · dl = I (34)

Figure 5. The skin effect. The normalized magnitude of the current
density is plotted versus radial position in a copper circular cross-

where H and I are phasors.section conductor of radius R � 0.5 mm. The solid curves are com-
The path of integration is chosen to trace out a circle ofputed via the exact expression, given by Eq. (29), and the dashed

radius R from the z axis. The line element dl is thus given bycurves are computed using the exponential approximation, given by
Eq. (31). the elemental arc length, Rd�, where � is the angle measured
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up from the horizontal plane passing through the page and unit length of our circular cross-section conductor:
the center axis of the conductor, as shown in Fig. 4. Since the
assigned current is flowing along the z axis, the associated
magnetic field coincides exactly with the chosen path of inte-

Zl = jωµ

2πR
J0(TR)

TJ′
0(TR)

�

m
(44)

gration. Ampere’s law thus becomes
where the subscript l is used to differentiate between per unit
length quantities and total quantities.

∫ 2π

0
Hθ (R)(Rdθ ) = I (35)

Low-Frequency Approximation. When � � R, which occurs
which upon integration yields at low frequencies for a conductor having a small radius, the

argument TR in Eq. (44) is small: �TR� � 1. Neglecting terms
that are second order and higher in u, in Eqs. (30) and (40),I = 2πRHθ (R) (36)
yields the following approximation:

where H�(R) is the � directed component of the magnetic field
on the outside surface of the conductor.

Again neglecting the radial and angular components of the
J0(TR)

TJ′
0(TR)

= 2
−T2R

(45)

current density and electric field, as well as angular depen-
dencies, Eq. (13) is expanded as Substituting the above into Eq. (44), introducing Eq. (23), and

working out the algebra yields
− ∂

∂r
Ez(r) = − jωµHθ (r) (37)

Zl = 1
σ (πR2)

�

m
(46)

Ez is related to Jz via Ohm’s law at a point, given by Eq. (5),
and Jz has been obtained in the previous section and is given By comparison with Eq. (2), the above is recognized as being
by Eq. (29). Substituting these relations into the above, evalu- the dc resistance per unit length of our conductive cylinder
ating the derivative with respect to r, and isolating for H�(r) and may be used to approximate the ac impedance of the con-
yields ductor as long as � � R.

High-Frequency Approximation. Figure 6 shows that the ra-Hθ (r) = Ez(R)

jωµ

TJ′
0(Tr)

J0(TR)
(38)

tio J0(TR)/J�0(TR) tends toward �j as the frequency and the
argument TR tend toward infinity. Substituting this approxi-

where mation into Eq. (44) and working out the algebra yields the
high-frequency approximation for the impedance per unit
length of our conductive cylinder:J′

0(Tr) = d
d(Tr)

J0(Tr) (39)

and J�0(u) is easily obtained by deriving Eq. (30): Zl = 1
σ (2πR · δ)

(1 + j)
�

m
(47)

The above holds as long as � � R, which holds at high fre-
quencies. The above shows that the impedance of a conductor
is inductive since the imaginary part is positive. Further-

J′
0(u) = d

du
J0(u) = −u

2
+ u3

22 · 4

− u5

22 · 42 · 6
+ u7

22 · 42 · 62 · 8
− · · ·

(40)

more, the ac resistance is as though the current density were
distributed uniformly over an area of 2�R times �, which is

Evaluating Eq. (38) at R and substituting into Eq. (36) the product of the conductor’s circumference with the depth
yields the desired expression for the current I: of penetration.

Other Conductor Geometries. The geometry of a conductor’sI = 2πR
Ez(R)

jωµ

TJ′
0(TR)

J0(TR)
(41)

cross-section has a direct impact on the level of ac power
transmitted through the conductor and the impact is greater

By definition, the voltage V across the conductive cylinder at higher frequencies. Square or triangular cross-section
is related to the electric field on the surface of the cylinder wires, for example, have corners where the current density is
according to higher compared to other regions near the edges. These types

of wires will thus have greater ac losses compared to a circu-
lar cross-section wire of identical area.V =

∫
E(R) · dl (42)

Inductive Reactance of an Isolated Conductor
Evaluating the above line integral yields

The expression for the internal impedance of a conductor,
given by Eq. (44), is rigorous and can be used whenever anV = Ez(R)�z (43)
accurate value is required. Though accurate, this equation
does not account for the material surrounding the conductor.Substituting the above and Eq. (41) into Eq. (32) and divid-

ing through by �z yields the expression for the impedance per Since a magnetic field is associated with the current flowing
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rection shown is present. Furthermore, Ampere’s law states
that the current I has an associated magnetic field H and
magnetic flux density B � �H in Wb/m2 looping around the
conductor in the direction shown in Fig. 7.

The magnetic flux phasor � through the area A is de-
fined as

� =
∫ ∫

A
B · dA (48)

If the magnetic flux density B is uniform over A and normal
to it, then the above simplifies to � � BA. The magnetic flux
has units of Wb.

The magnetic flux linkage phasor � is related to � by

� = N� (49)

where N is the number of times that the flux lines link the
conductor carrying the current I. The magnetic flux linkage
has units of Wbt for Weber-turns.

According to Faraday’s law, a time-domain voltage v with
the polarity shown in Fig. 7 will be induced over the length
of the wire. This voltage is equal to the time derivative of the
total flux linking the conductor:

v = dψ

dt
(50)

where � is the total time domain flux linkage.
Since the total flux linkage is directly proportional to the

current i flowing in the conductor, the induced voltage must
also be proportional to the time derivative of the current. The
constant of proportionality is defined as the inductance L:

v = L
di
dt

(51)

Based on the above, it is quite clear that a voltage drop over
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the length of the conductor is induced only for time-varying
Figure 6. The convergence of J0(TR)/J�0(TR) to �j as the frequency currents. Equating the above two equations:
tends toward infinity. (a) Real part. (b) Imaginary part.

through a conductor, and this magnetic field permeates the
dψ

dt
= L

di
dt

(52)

space surrounding the conductor, we expect that the dielectric
and isolating for L yieldsmaterial filling this space will affect the reactance of the con-

ductor. It is therefore desirable to obtain a simple expresson
for the self-inductance per unit length of an isolated conduc- L = dψ

dt
dt
di

(53)
tor as a function of its physical features and those of the me-
dium surrounding it.

The self-inductive reactance of a conductor is perceived by
all time-varying signals. For a time harmonic signal, the in-
ductive reactance increases linearly with frequency and adds
in series with the ac resistance of the conductor, causing an
increase in impedance. The self-inductance of an isolated con-
ductor can be decomposed into internal and external induc-
tances due to the time varying magnetic fields that exist in-
side and outside of the conductor. The derivation of
expressions for these inductances is presented in this section.

H, B

E

A

I

V+ –

Our derivation is based on magnetic flux linkage consider-
ations (7,8). Figure 7. A long length of wire carrying the current I and across

Consider the long length of wire shown in Fig. 7 through which the voltage drop V exists. The electric field E is present inside
which a current phasor I flows. For a conductor having a fi- the conductor and the current I induces the magnetic field H and the

magnetic flux density B, as shown.nite conductivity �, an electric field E in the longitudinal di-
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where �e is the magnetic permeability of the region external
to the conductor. Usually this region is filled with air or a
dielectric material such that the magnetic permeability is
that of free space: �e � �0 � 4� 	 10�7 H/m.

The magnetic flux per unit length of conductor is obtained
by applying Eq. (48), where the area A is the rectangle
bounded by a 1 m length of conductor along the z axis, which
points out of the page, and the width D � R, as shown in Fig.
8. The magnetic flux density is everywhere normal to the area
A such that the surface integral simplifies to

R

I

A

D

r

dl

dθ

Figure 8. The cross-section of a cylindrical conductor of radius R
through which a current I is flowing (out of the page). The associated � =

∫ 1

0

∫ D

R

µeI
2πr

dr dz (58)
geometry is used to help compute the external inductance of the wire
Lext.

which upon integration yields the expression for the flux per
unit length of conductor in the region R � r � D:

For a sinusoidal time variation, the time derivatives in the
above equations are replaced with j� and the above becomes, �l = µeI

2π
ln

(
D
R

)
(59)

in the phasor domain,

The flux links the total current I exactly once so that N �
1 in Eq. (49) and the magnetic flux linkage per unit length isL = �

I
(54)

According to the above, the inductance of a conductor can be �l = µeI
2π

ln
(

D
R

)
(60)

computed by finding the ratio of � to I for the geometry of in-
terest.

The external inductance per unit length of conductor due
to the flux in the region R � r � D is obtained by applying

External Inductance of an Isolated Conductor. The self-induc- Eq. (54) to the above:
tance due to the magnetic flux linkage permeating the region
R � r � D as defined in Fig. 8 is referred to as the external
inductance Lext. The external inductance depends on the ra- Lext,l = µe

2π
ln

(
D
R

)
H
m

(61)
dius of the conductor, on the magnetic permeability of the
region outside of the conductor, and on the width D � R of It is clear from the above that the external inductance de-
the region considered. pends on the medium surrounding the conductor and the ge-

Our starting point in deriving an expression for Lext is Am- ometry of the configuration. If the relative permeability of the
pere’s law stated as Eq. (34). As shown in Fig. 8, the path of medium is unity, then the external inductance simplifies to
integration is chosen to trace out a counterclockwise circle at
a radial distance of r from the center. The line element dl is
given by the elemental arc length r d�, where � is the angle Lext,l = 2 × 10−7 ln

(
D
R

)
H
m

(62)

measured up from the horizontal axis. Since the assigned cur-
rent is flowing out of the page, the associated magnetic field

Internal Inductance of an Isolated Conductor. The time-vary-loops around the conductor in the counterclockwise direction
ing flux linkage inside the isolated conductor shown in Fig. 9and coincides exactly with the chosen path of integration. Am-
also contributes to the total self-inductance. This componentpere’s law is thus written:
is referred to as the internal inductance, Lint.

Again our starting point in deriving an expression for Lint

is Ampere’s law. Recall that Ampere’s law relates the mag-
∫ 2π

0
Hθ (r)(r dθ ) = I (55)

netic field intensity to the current flowing through an en-
closed area. The magnetic field intensity associated with the

which upon integration yields the magnitude of the magnetic current I(r) confined within the circle of radius r, as shown in
field at a radial distance r from the center of the conductor: Fig. 9, is given by

Hθ (r) = I
2πr

(56)
∮

H · dl = I(r) (63)

The above expression holds for the region outside of the con- Integrating counterclockwise along this circle yields
ductor r � R.

The magnitude of the magnetic flux density associated
with the magnetic field at r is Hθ (r) = I(r)

2πr
(64)

Assuming that the skin effect is negligible, we take the
current density as being uniform over the cross section of the

Bθ (r) = µeI
2πr

(57)
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where N(r) is the fraction of current linked by the flux at posi-
tion r. Clearly, N(r) must be less than or equal to 1 and at
position r is given by

N(r) = I(r)
I

= πr2

πR2 (71)

The total flux linkage per unit length of conductor is ob-
tained by integrating d� over the area A, which is the rectan-
gle bounded by a 1 m length of conductor and its radius R:

� =
∫ 1

0

∫ R

0

(
πr2

πR2

)(
µirI

2πR2

)
dr dz (72)

Working out the above integration yields

�l = µiI
8π

(73)

I

A

R

r
dl

dθ

According to Eq. (54), the internal inductance per unit
Figure 9. The enlarged cross-sectional view of a cylindrical conduc- length of conductor is
tor of radius R through which a current I is flowing (out of the page).
The associated geometry is used to help compute the internal induc-
tance of the wire Lint. Lint,l = µi

8π

H
m

(74)

From the above, we note that the internal inductance depends
conductor: on the magnetic properties of the material. For the most pop-

ular metals used to fabricate conductors, the magnetic perme-
ability is near that of free space: �i � �0. In such a case, theJz = I

πR2 (65)
above simplifies to

where I is the total current flowing through the conductor.
The current flowing within the circle of radius r is therefore Lint,l = 1

2
× 10−7 H

m
(75)

Total Inductance of an Isolated Conductor. The total self-I(r) = πr2Jz = πr2

πR2 I (66)
inductance per unit length of our isolated conductor is given
by the sum of the external and internal inductances:Substituting the above into Eq. (64) yields the expression

for the magnitude of the magnetic field intensity within the
conductor: Ll = Lext,l + Lint,l (76)

which, upon substitution, yields
Hθ (r) = rI

2πR2 (67)

which holds for the region r � R.
Ll = µe

2π
ln

(
D
R

)
+ µi

8π

H
m

(77)

The magnitude of the magnetic flux density associated
It is quite clear from the above that the external compo-with the magnetic field at r is

nent can dominate the total inductance. If the ratio D/R is
greater than e and the permeabilities of the conductor and
material surrounding it are similar, �e � �i, then the external

Bθ (r) = µirI
2πR2 (68)

inductance is at least four times greater than the internal in-
where �i is the magnetic permeability of the conductor. ductance.

The magnetic flux density is everywhere normal to the
rectangular area A which is bounded by the center axis of the

COMMON TRANSMISSION LINE GEOMETRIESconductor and its radius as shown in Fig. 9. The differential
magnetic flux through A at any position r is given by

When conductors are arranged in such a way as to carry
power efficiently from one point to another, we refer to the
resulting structure as a transmission line. Generally speak-d� = µirI

2πR2 dr dz (69)

ing, transmission lines consist of two or more conductors in
The differential flux linkage associated with this differen- parallel and connect a source to a load. The source might be

tial magnetic flux is from Eq. (49): a hydroelectric generator and the load might be a steel fac-
tory, in which case the transmission line would carry mega-

d� = N(r) d� (70) watts of power at a low frequency; however, the source could
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are common and simple geometries. Other transmission line
structures can be treated using the same approach.

(a) (b) (c) (d) (e)
Parallel-Plate Transmission Line

Figure 10. The cross-section of some commonly used transmission
Figure 12 depicts a short length �z of parallel-plate transmis-lines. (a) Coaxial line; (b) two-wire line; (c) parallel-plate line; (d) wire
sion line, consisting of two parallel conducting plates of thick-above ground plane; (e) microstrip line.
ness t and width w, and separated by a homogeneous dielec-
tric material of thickness d. The conductors are characterized
by their conductivity �c and are assumed to have the perme-

also be an antenna and the load a radio receiver, and then ability and permittivity of free-space �0 and 0; the sur-
the transmission line would carry microwatt power levels at rounding lossy isotropic homogeneous dielectric is character-
very high frequencies. Several different transmission line ized by �d, �d, and d. Since we are assuming a TEM mode of
structures, primarily defined by their conductor geometries, operation for the line, a quasistatic analysis provides the most
exist to fulfill a wide variety of power delivery applications. straightforward route to values of the equivalent circuit (2,3).
Common types include the coaxial line, two-wire line, paral-
lel-plate line, wire above a ground plane, and microstrip line, Distributed Resistance. The series resistance of the trans-
as shown in cross-sectional view in Fig. 10. mission line structure accounts for ohmic losses in both con-

Here the term transmission line will refer to a pair of con- ductors encountered by the currents flowing in opposite direc-
ductors of constant cross-section and spacing throughout their tions in the top and bottom plates. The dc resistance of a
length, operating in the transverse electromagnetic mode
(TEM). Other types of conductor geometries and operating
modes exist and are discussed at length in the literature on
electromagnetics (5) and power systems analysis (8). In the
remainder of this section we will focus on obtaining the equiv-
alent model of a transmission line based on its conductor ge-
ometry and material properties. Such a model is useful to de-
termine how the line will behave under transient or
sinusoidal steady-state excitation, and it leads to an under-
standing of the many transmission line effects, including sig-
nal delay, attenuation, reflections, standing waves, and
pulse dispersion.

Equivalent Model of a Transmission Line

In general a transmission line may be a considerable fraction
of the operating wavelength or even several wavelengths long.
Hence, unlike ordinary circuit theory where a model consists
of lumped elements, the transmission line model contains dis-
tributed parameters, in the form of resistance per unit length
Rl in �/m, inductance per unit length Ll in H/m, capacitance
per unit length Cl in F/m, and conductance per unit length
Gl in S/m.

Consider an infinitesimal length �z of a two-wire transmis-
sion line, as shown in Fig. 11(a), in which the applied voltage
gives rise to the current flow I and associated electric and
magnetic fields E and H. Intuitively we can arrive at the
equivalent model given in Fig. 11(b) or the more commonly
found equivalent circuit shown in Fig. 11(c). Rl�z represents
the conductor losses in the metal, Ll�z and Cl�z account for
the magnetic and electric fields, respectively, which exist be-
tween the two conductors, and Gl�z represents the losses in
the dielectric medium separating the conductors. Such a
model may represent any of the two-conductor transmission
lines of Fig. 10, as long as we keep �z much smaller than a
wavelength, less than �/10. To completely model a longer line
would require placing several of the �z equivalent circuits in
cascade.

(a)

(b)

(c)

Rl∆z Ll∆z

Cl∆z

∆z

Gl∆z

I

I

V

+

–

H E

We now proceed to derive expressions for the elements of Figure 11. Illustration of how a two-wire transmission line can be
the equivalent circuit shown in Fig. 11(c). By so doing, a gen- modeled as a network of electrical elements. (a) Fields and currents
eral methodology will be presented which can be applied to along a two-wire transmission line excited by a generator. (b) Distrib-
the modeling of an arbitrary transmission line. The parallel- uted parameter equivalent circuit. (c) Equivalent circuit of an infini-

tesimal length �z of transmission line.plate and two-wire lines are purposely chosen here since they
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where Q is the charge in C stored on the plates and V is the
potential difference applied to them.

Gauss’s law states that the electric flux density integrated
over a closed surface is equal to the total charge enclosed.
Gauss’s law written for the top conductor is

Q = εd

∫ ∫
S

E · dS (82)

where S and dS are as defined in Fig. 13. S is taken as the
open surface shown instead of a closed surface as required by

∆z

w

d

t

Gauss’s law. This approximation is well-justified in this case,
Figure 12. Parallel-plate transmission line of length �z, width w, since the electric field is concentrated between the plates, it
and height d. The thickness of the conducting plates is t. A dielectric is everywhere uniform and normal to the conductors, and for
material fills the space between the plates. small d/w the external and fringing electric fields can be ne-

glected.
The potential difference V is related to the electric field by

single plate is easily obtained using Eq. (2): definition:

Rdc = �z
σcwt

(78) V =
∫

E · dl (83)

The dc series resistance per unit length for both conductors is where dl is as shown in Fig. 13.
therefore Substituting the above two relations into the definition of

capacitance:
Rdc,l = 2Rdc

�z
= 2

σcwt
�

m
(79)

C = εd

∫ ∫
S E · dS∫

E · dl
(84)

Due to the skin effect at high frequencies, the current is
confined to a thin layer of thickness � at the surface of the and working out the surface and line integrals yields
conductors. As a result, the expression for the ac resistance
per unit length is

C = εdEw�z
Ed

(85)

Rac,l = 2
σcwδ

�

m
(80)

The capacitance per unit length of line is therefore

where � is given by Eq. (26). The above holds for � � t.
Cl = εdw

d
F
m

(86)
Distributed Capacitance. The capacitance per unit length

models the coupling between lines due to the electric field cre- Neglecting the external and fringing fields which extend be-
ated by the potential difference V, as shown in Fig. 13. Capac- yond the edges of the plate limits the validity of the above
itance in F is defined in general as expression to small d/w.

Distributed External Inductance. The external inductance ofC = Q
V

(81)
the conductors, defined as the ratio of flux linkage to enclosed
current, can be obtained by applying Eq. (54). The current I
flows into the page in the top conductor and out of the page
in the bottom, as shown in Fig. 14. The associated magnetic
field H is concentrated predominantly between the conduc-
tors, as illustrated, where the contributions from the top and
bottom plates add constructively. Furthermore, for small
d/w, H is oriented along the width of the plates and is essen-
tially uniform between them. The magnetic field is relatively
weak above the top and below the bottom plates since the
contributions due to these conductors add destructively in
those regions.

The magnetic flux between the plates is given by Eq. (48),

∆z

–Q

dSE

+Q

V

w

d

+
–

S
dl

where the area A is shown in Fig. 14. Since H is everywhere
Figure 13. Parallel-plate transmission line connected to the dc volt- normal to A and uniform along d and �z, integration is
age source V. The charge �Q has accumulated onto the top plate straightforward and yieldswhile the charge �Q has accumulated onto the bottom plate. The
electric field E exists in the dielectric region between the plates, as
shown. � = µdHd�z (87)
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which is identical to the expression for capacitance given by
Eq. (84) with �d and d interchanged. Consequently, we can
write by analogy with Eq. (86) the conductance per unit
length of our parallel plate transmission line:

Gl = σdw
d

S
m

(94)

TEM Transmission Line Relationships. By combining the
equations for the distributed parameters of our parallel-plate
transmission line, we can derive very useful relationships
that hold for the TEM mode supported by any TEM transmis-
sion line structure. Multiplying Eqs. (86) and (90) yields

∆z
⋅ I

A
× I

H

w

d

LlCl = µdεd (95)
Figure 14. Parallel-plate transmission line with the current I flow-
ing into the page in the top conductor and out of the page in the while Eq. (94) divided by Eq. (86) leads to
bottom conductor. The associated magnetic field H is concentrated
predominantly between the conductors, as shown.

Gl

Cl
= σd

εd
(96)

Since the flux links a conductor exactly once, we write the
flux linkage according to Eq. (49) as The above are very important results for transmission lines.

Indeed, complicated derivations for inductance and conduc-
tance, for example, are avoided once the capacitance per unit� = µdHd�z (88)

length of a line is known.
The relationship between current and magnetic field is

given by Ampere’s law, stated as Eq. (34). Integrating H Two-Wire Line
around the top conductor while neglecting the thickness t of

The two-wire structure shown in Fig. 15 is a commonly en-the latter and the magnetic field above the conductor yields
countered implementation of a transmission line. The conduc-
tors of diameter 2a are separated by a center-to-center dis-I = Hw (89)
tance d and surrounded by a homogeneous dielectric

Substituting the above and Eq. (88) into Eq. (54) and divid- characterized by �d, �d, and d. The conductors are again as-
ing through by �Z yields the inductance per unit length of sumed to be characterized by �c, �0, and 0. Like the parallel-
parallel-plate transmission line: plate transmission line, the two-wire structure supports a

TEM mode; thus a quasistatic analysis again provides the
most straightforward route to the expressions for the equiva-Ll = µdd

w
H
m

(90)
lent circuit.

This result is again most accurate for small d/w.
Distributed Resistance. At dc or very low frequencies the re-

sistance of a single wire is given by Eq. (2), which for thisDistributed Conductance. The conductance due to losses in
geometry becomesthe dielectric medium separating the two conductors can be

derived from
Rdc = �z

σcπa2
(97)

G = Id

V
(91)

where Id is the current flowing through the dielectric between
the top and bottom plates, and V is the potential difference
applied to them, as shown in Fig. 13. Introducing Eq. (4) and
the definition for V into the above yields

G =
∫ ∫

S Jd · dS∫
E · dl

(92)

where Jd is the current density flowing between the plates.
Jd is normal to S and uniform over w and �Z.

∆z

dA
A

II

d

2a

Substituting Ohm’s law at a point, given by Eq. (5), into
Figure 15. Geometry of a two-wire transmission line of length �z.the above yields
The conductors of radius a are separated by a center-to-center dis-
tance d. A dielectric material fills the entire space surrounding the
conductors. The current I is flowing into the page in the right conduc-
tor and out of the page in the left conductor.

G = σd

∫ ∫
S E · dS∫

E · dl
(93)
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The total magnetic flux density in the region between the
wires is given by the sum of B1 and B2. Adding the magni-
tudes yields

B = µdI
2π

(
1
x

+ 1
d − x

)
(103)

or

1
H,B

2

d

x

I

A
aa

I

d – x

B = µdI
2π

d
x(d − x)

(104)
Figure 16. Cross-sectional view of a two-wire transmission line. The
cylindrical conductors of radius a, through which a current I is flow-

The flux through the area A is given by Eq. (48). Since Bing (out of the page in the left conductor, into the page in the right
conductor), are separated by a center-to-center distance d. The in- is everywhere normal to the surface A, the integration is writ-
duced magnetic field H and magnetic flux density B are as shown. ten
The associated geometry is used to help compute the external induc-
tance of the transmission line.

Hence the resistance per unit length due to both wires is
� =

∫ d−a

a

∫ �Z

0

µdI
2π

d
x(d − x)

dz dx (105)

given by
Carrying out the above yields

Rdc,l = 2
σcπa2

�

m
(98)

� = µdI�Z
π

ln
(

d − a
a

)
(106)

At high frequencies, the resistance of a single conductor is
given by the real part of Eq. (47) times the length of our lines: Since the number of times the flux links the current I in

this structure is 1, Eq. (49) states that � � � such that the
inductance is given by substituting the above into Eq. (54)
and simplifying:

Rac = �Z
σc(2πa · δ)

(99)

where � is the skin depth given by Eq. (26). The ac resistance
per unit length due to both conductors is therefore L = µd�Z

π
ln

(
d − a

a

)
(107)

Given that d � a, the inductance per unit length of two-wireRac,l = 1
σc(πaδ)

�

m
(100)

line is

Distributed External Inductance. The external self-induc-
tance of a short length �Z of two-wire line can be computed Ll = µd

π
ln

(
d
a

)
H
m

(108)

using Eq. (54), where the flux linkage � is computed through
the surface A between the conductors as shown in Fig. 15.

Distributed Capacitance. The distributed capacitance of ourThe current I is assumed to flow in the conductors as shown
two-wire transmission line is easily obtained by substitutingso that the associated magnetic fields add constructively be-
Eq. (108) into Eq. (95), which holds in general for TEM trans-tween the wires and destructively to the left of the left con-
mission lines, and solving for Cl:ductor and to the right of the right conductor. If d is small,

we can neglect the flux in these regions compared to the flux
between the wires. Also, we suppose that the wires are thin Cl = πεd

ln(d/a)

F
m

(109)
compared to the separation distance a � d, which allows us
to ignore the flux passing through the wires themselves.

Distributed Conductance. Similarly, the distributed conduc-Referring to Fig. 16, the magnitude of the magnetic flux
tance is obtained by substituting Eq. (109) into Eq. (96) anddensity B1 at a position x due to wire 1 is given by analogy
solving for Gl:with Eq. (57):

B1 = µdI
2πx

(101) Gl = πσd

ln(d/a)

S
m

(110)

B1 is oriented in the direction shown along the center axis
between both wires. Since the current flowing in wire 2 is in BIBLIOGRAPHY
the opposite direction to the current in wire 1, the magnetic
field due to wire 2 at position x is in the same direction as 1. R. C. Weast (ed.), CRC Handbook of Chemistry and Physics, 64th
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