
POWER FLOW FUNDAMENTALS

INTRODUCTORY COMMENTS AND BACKGROUND

Introduction

The loading of the transmission components of an electric
power system comprises the “power flow” of the network.
The term “load flow” was coined before the use of computers
when the load was actually moved from the demand site
to the generation sites. Originally, a small physical model
of the power system was built with equivalent resistors,
inductors, and capacitors. Then the “solution” of the flows
was achieved by measuring the current in each wire as a
model was built for a segment of the system. The segments
were then added using the superposition theorem of circuit
theory to provide a complete solution. This procedure was
tedious. It was also quite tricky as 120 V was normally the
source because it was available “at the wall.” As demand
was added, the equivalent method was to find the impact
of each new load (demand) on the generation. As load is
added to the system, only the impact of the new load had
to be emulated. Thus, the load was “flowed” from the load
location back to each generator.

Generally, a power flow study assumes knowledge of bus
loading and generation schedule at all buses except one.
An example one-line diagram is shown in Fig. 1. The major
substations, the power plants, and the transmission lines
connecting the substations are often shown on a geographic
map. All system interconnections are modeled with equiva-
lents, if not calculated directly. Knowledge of all equipment
model parameters, such as impedances or admittances,
is required. A power flow uses the knowledge of load at
each bus, the parameters for each piece of equipment (de-
pendent current sources, dependent voltage sources, ideal
transformers, resistances, reactances, and capacitances),
and the power capability of each piece of equipment or de-
vice to determine a solution to the power flow equations.
The power flow equations are an alternative statement of
conservation of energy.

The transmission network includes all equipment that
is interconnected to allow flow in both directions. The
transmission network usually includes an equivalent
model of the power system interconnections too remote to

Figure 1. One-line diagram.

be of direct concern. Given the cost of computer capabili-
ties, it is very common to study networks in excess of 30,000
buses. The nodes of the equivalent circuit are termed buses
and are shown as dark bold lines in the above diagram. The
branches between the buses are the transmission lines, the
most common element, and are shown as light lines in the
above diagram. Other devices, such as transformers, use
alternative symbols as shown below.

Generally, three-phase (3�) alternating current (AC)
grids are used for electric power transmission, and power
flow studies rely on a single-phase equivalent circuit rep-
resentation. Such a model is only valid when the system
is operating in a balanced mode where the other phases
have the same voltages and currents are shifted by +/−120
degrees. The other phases may be obtained by simple addi-
tion or subtraction depending on the transformation used
to obtain the per-phase equivalent. As the system is in a
balanced mode, only the positive sequence network is in-
cluded. Per unit equations are used throughout this sec-
tion. The sum of the power flowing into a bus (node) must
be zero. Alternatively, the power flowing out of a bus has to
be zero, which is commonly referred to as “Tellegen’s theo-
rem.”

When power conversion devices are used, such as di-
rect current (DC) links or flexible alternating current (AC)
transmission equipment, the power flow study solution
methods must be modified to accommodate the rectifiers,
inverters, and any series device such as a DC line. Some
auxiliary equipment such as reactors, line filters, and in-
terphase transformers may also be included as needed to
provide an accurate solution.

Power conversion devices are now used for many trans-
mission and distribution control applications based on ad-
vances in electronics. Power electronic devices originally
included A/DC conversion equipment as used for DC links.
However, more interesting devices control the flow on the
transmission or distribution network. Such devices are
referred to as flexible alternating current transmission
(FACT) devices. These devices are based on technology sim-
ilar to the A/DC converters. FACT devices can be catego-
rized as series or shunt devices. Series devices are con-
nected such that the power flow through the device is con-
trolled. One example is to use series devices to control the
real and/or reactive power through the transmission sys-
tem to maintain the stability of the system or to limit flows
between areas. Shunt devices are connected to ground to
vary the equivalent demand at critical points of the net-
work. Shunt devices are used to compensate customer
loads that place unusual power demands on the transmis-
sion system.

Power flow studies are twofold: First, the high-voltage
equipment is modeled and a solution is found; and second,
the studies are extended to determine control settings to
achieve the desired operating state. Studies in an opera-
tional setting determine what the control settings should
be for the given equipment. Studies in a planning environ-
ment determine which equipment should be added to pro-
vide more secure and reliable operation for various future
conditions.

Operational planning is given a specified system condi-
tion. The basic questions sought from a power flow study
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2 Power Flow Fundamentals

are as follows:

� What are the line and transformer loads throughout
the system?

� What are the voltages throughout the system?
� What are the options to unload overloaded equip-

ment?
� What are the options to provide continued service as

equipment fails unexpectedly?

Planning engineers are particularly interested in an-
swering these questions as they evaluate proposed changes
to an existing system, which are required as the demand
increases as cities and industry expand or renovate:

� Which new generation sites provide the best operating
solution on average and under adverse conditions?

� Which new transmission line locations provide the
best operating solution on average and under adverse
conditions?

� Which new DC links provide the best energy flows
between areas?

� Which new FACTS devices will provide the necessary
control to maintain the system in a secure operating
system?

� Where can new load locations be added given the cur-
rent system design?

Electrical networks of R, L, and C elements model most
power system equipment. It is thus very tempting to use
either conventional loop or nodal analysis methods to solve
for voltages and currents. Indeed, the basic circuit element
analysis by phasor representation is applicable. However,
this direct approach is not applicable because the demands
are known as complex powers. This special case is of a de-
pendent current source where the independent variable is
the voltage being solved.The generators should not be mod-
eled as “voltage sources.”They behave like “power sources.”
The generator will provide the real power independent of
the voltage or current required and will provide the reac-
tive power needed to sustain the voltage desired within
capability limits of the voltage control at the generator.
The problem is to solve 2n nonlinear algebraic equations
in 2n unknowns for an n bus system, which requires ad-
vanced numerical analysis techniques as optimal ordering
of the equations for numerical stability and scarcity pro-
gramming for efficient matrix manipulation.

The primary model of interest is the high-voltage alter-
nating current transmission line and transformer. These
systems can carry and convert large amounts of electric
power. The high-voltage alternating current transmission
line is modeled as four ideal circuit elements (capacitor, re-
sistor, inductor, and capacitor). This model is shown in Fig.
7. The model for a transformer is composed of three ideal
circuit elements (resistor, inductor, and ideal transformer).
This model is shown in Fig. 8.

The secondary model of interest is the high-voltage elec-
tronic device that can convert and carry a large amount of
electric power by synchronous switching of the three-phase

Figure 2. One-line diagram for a single bus.

Figure 3. Converter system.

Figure 4. Single-line bipolar model.

Figure 5. Monopole model.
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Figure 6. HVDC converter control characteristics; (a) constant ignition angle, (b) constant current, and (c) constant extinction.

Figure 7. Transmission model.

Figure 8. Transformer model.

voltage input. Most original converters were mercury arc
tubes devices, but all new equipment is based on solid-state
thyristors (1).

High-voltage direct current static converters have been
commercially used for over 50 years. Various techniques for
simulating high-voltage direct current (HVDC) systems on
transient network analyzers,analog and hybrid computers,
and digital computers have been documented in the litera-
ture. Transient network analyzers (TNAs) have tradition-
ally been a popular means of studying interconnected AC–
DC systems. Two common approaches exist: Either model
the total converter system or model the converter system
as an equivalent power source(s) plus load(s) of the sys-
tem to be simulated. Many advances have been achieved
to simulate all aspects of FACT devices. One of the first
total solutions of composite AC/DC system simultaneously
was in 1974 (1).

Earlier approaches solved the systems independently.
Erich Uhlmann presented such an approach (2). The
method essentially is to calculate the equivalent current
sources and loads that the DC system could require of the
AC system. The equivalent current sources and loads could
be simulated on the TNA, because digital computer models
were not available.

HVDC systems have been modeled in detail (3). The
method is to design model components that are the minia-
ture equivalents of actual equipment. Silicon controlled

rectifiers in the normal bridge or Graetz circuit modeled
the converters. Analog and hybrid computers had been
used extensively to study HVDC systems because of the
fast time response of the control equipment and the valves
themselves. The wide-band hybrid computer enables the
solution of the differential equations of the converter and
control system approximately 300 times faster than digi-
tal computer software (4) available in the early 1970s. The
hybrid computer and the transient network analyzer have
a major drawback in the limitation on the size of the sys-
tem that may be studied. Thus, extensive research, design,
and implementation have been expended on modeling all
equipment with digital computer models.

Digital computer programs now exist for the solution
of the steady-state power flow of systems containing up
to 100,000 buses. The installation of HVDC systems has
increased significantly on the North American continent
over the last four decades. The operating experience of the
original Pacific DC Intertie, a bipolar ± 400 kV, 1440 MW
system, has shown such systems to be very economic and
reliable (5). Many similar HVDC links have been added
around the world. HVDC links are often selected to provide
service in underwater high-power cables (Sweden, New
Zealand) and long-distance heavily loaded lines (Canada,
United States, West Africa, Sweden, and Soviet Union).

The economy and reliability of HVDC systems has
encouraged the consideration of FACT devices. Several
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FACTs devices have been installed for experimental fact
finding. The benefits of such systems are numerous. The
costs of these systems are approaching the economic
breakeven point to provide more reliable service based on
the added flexibility (optionality) of this equipment. Thus,
it is evident that computer power flow programs should be
extended to handle all such equipment as FACT devices.

Conservation of Energy (Tellegen’s Theorem)

The basic building block is the notion of conservation of
energy (COE) at a bus and for the system as a whole. The
starting equation is the conservation of energy at a bus as
written by the summation of the complex power:

l∑

j=k

Si j = 0

where the complex power is the summation of the real and
the reactive power:

S = P + Q
√−1

Alternatively, the conservation of energy can be written as
two summations, one for the real power and one for the
reactive power:

l∑

j=k

Pi j = 0

l∑

j=k

Qi j = 0

Figure 2 shows the analysis at one bus to show conser-
vation of energy at one bus.

The complex form for this bus follows:

Sgen,i − Sdemand,i − Sik − Sil = 0

The real forms are found from the application of the defini-
tion for complex (apparent), real, and reactive power. Thus,
COE in the real forms follow:

Pgen,i − Pdemand,i − Pik − Pil = 0
Qgen,i − Qdemand,i − Qik − Qil = 0

The power flow on any branch connecting any two buses is
found as the series flow and the shunt flow as found from
the π equivalent circuit of a transmission line as shown in
the model development section. The conservation at each
bus, except for the slack bus, is the key equation for the
power flow formulation. The slack bus is also known as the
swing bus.

Existing Techniques

Several techniques enable the study of electric systems and
interconnections on digital computers. The various tech-
niques have a common basis: the separation of the system
solution into two sets of linear equations. The most widely
used technique divides the real and reactive equations into
two independent sets of equations. The first set is the real
power equations. The second is the reactive power equa-
tions. Some techniques are in fact variants of the methods
used to solve sets of simultaneous linear algebraic equa-
tions. A popular variant is the Gauss–Seidel technique that

is related to relaxation techniques for simultaneous equa-
tion solution. The normal procedure is to solve the power
system with the embedded control systems represented.
Embedded controls traditionally included automatic con-
trol of voltage magnitude or of reactive flow by tap changing
under load transformers. Other traditional embedded con-
trols include real power flow control by quadrature phase-
shifting transformers. Real and reactive power flow con-
trol by HVDC links is also solved as an embedded system
within the last decade. Other FACT device controllers are
currently included as embedded. Once the power system
network is solved, then the extended control systems are
solved and new values are calculated for the power flow-
ing through each piece of equipment in a suboptimal man-
ner. More recent power flow programs use optimizing al-
gorithms to find the optimal control according to a desired
performance index. Extended control systems include re-
gional economic dispatch of generation to minimize produc-
tion costs, regional shifting of generation to reduce power
losses, and regional shifting of generation to reduce power
flowing through overloaded equipment.

NEWTON–RAPHSON METHOD USING THE
AUGMENTED JACOBIAN MATRIX

Power Flow Statement

Consider the ith bus of an n bus system. Tellegen’s theorem
requires that the energy at the bus must sum to zero:

SGi = SLi + STi (1)

where:

SGi complex generated power flowing into the bus.
SLi complex demand power flowing out of the bus.
STi complex transmitted power flowing out of the bus
through network equipment over all connected links to ad-
jacent buses.

(Bold letters represent complex variables.)
As the complex power can be separated into the real and

the reactive components:

SGi = PGi + jQGi (2a)

SLi = PLi + jQLi (2b)

STi = PTi + jQTi (2c)

Then, it follows that the real and reactive equations may
be solved independently:

PGi = PLi +PTi (3a)

QGi = QLi +QTi (3b)

Note that both real and reactive powers are represented.
Thus, six variables per bus exist whose relationship is dic-
tated by two independent equations (10and 11). The sys-
tem size grows dramatically! An n bus system will yield
2n equations involving 6n variables. The power flow solu-
tion is made at specified demand conditions. Therefore, PLi

and QLi are known. Four variables per bus exist: PGi, QGi,
PTi, and QTi. The generation and demand terms are simple
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constants for most buses. However, the transmission terms
represent the real and reactive flow on equipment (trans-
mission lines, transformers, inductors, capacitors, FACT
devices, etc.) that are unique modeling problems. Note that
generation and demand are external to the power flow re-
lationships of the transmission network. The power system
network is passive. It is treated as an n port network.

Many authors use either the impedance or the admit-
tance matrix approach. Of these, the admittance method
proves more suited. However, it is not necessary to use ei-
ther the admittance or the impedance matrix explicitly. We
will formulate our problem directly from the power flow re-
lationship of each piece of equipment. The bus admittance
matrix is not used in the following. Instead the branch ad-
mittance matrix is used. We will use the generic term link
for any network element (transmission line, transformer,
etc.). Tellegen’s theorem (conservation of energy) for each
bus can be rewritten to separate the known injections from
the unknown flows:

PGi −PLi = PTi (4a)

QGi −QLi = QTi (4b)

Consider a bus with m link connections in a power system:

STi =
m∑

j=1

Si j (5)

The complex equipment flow in each piece of equipment is
composed of a real and a reactive term:

Sij = Pij + jQij (6)

The complex equipment flow is a function of the voltage at
the bus and the complex conjugate of the current leaving
the bus:

Sij = ViI
∗
ij (7)

The current is a function of the admittance between this
bus and all other buses and the current to ground through
the shunt impedance:

Iij = YiiVi +Yij(Vi −Vj) (8)

We use the normal admittance notation relating the com-
plex admittance to the real variables of conductance and
susceptance: Y = g + jb. Yii gives the admittance repre-
senting the equipment connected only to the node and Yij
gives the admittance between the buses.

Sij = ViY∗
ijV

∗
i + ViViY∗

ii − ViV∗
j Y∗

ij (9)

Note that this includes the “self” term of the bus admit-
tance matrix:

Pij = V2
i Yijcos(−γij) − ViVjYijcos(δi − δj − γij) (10a)

Qij = V2
i Yijsin(−γij) − ViVjYijsin(δi − δj − γij) − V2

i Yii (10b)

where Vi and Vj are the voltage magnitudes at bus i and bus
j, Yij is the admittance magnitude of the link between bus i
and bus j, δi and δj are the voltage angles at bus i and bus j,
and γ ij is the admittance angle of the link between bus i and
bus j. Note that the summation of all admittances to a bus
still constitutes the diagonal entry of the bus admittance
matrix as is required of nodal analysis.

Note that we substitute the flow variables (PTi, QTi) with
the potential variables (Vi, δi). The complexity of the power
flow problem should now be apparent. The transmitted real
and reactive power at a given bus will be a function of the
voltage magnitude and angle at all other buses.

Six variables at each bus exist: PGi, QGi, PLi, QLi, Vi, and
δi. The demand is specified and is not normally altered.
Such a model is based on the obligation to serve the prin-
ciple of the traditionally regulated environment. However,
note that it is the net real and reactive power injection at
each bus that is balanced by the transmitted flows, which
leaves four variables and two equations. Thus, two more
variables need to be specified. Mathematically, any two
variables may be selected.When each bus is examined, only
variables that are known should be specified. The choice
is dictated by the device(s) connected to a particular bus.
Several options are summarized in Table 1. These options
define bus types to signify the variables that are known.

The first type (Vδ) is referred to as the swing or slack
bus. It is normally a generator bus to satisfy the balance of
demand and losses with generation. Thus, no constraints
exist on the real or reactive power generated. One pha-
sor quantity is selected as phase reference in any AC cir-
cuit. The generation required is determined by, setting the
phase angle of the voltage to zero at the reference bus.
It is also common to set the voltage magnitude to 1.0 per
unit, because a generator normally has control of the volt-
age through the exciter. However, this is not necessary. The
voltage magnitude may be solved if the reactive power is
fixed. It is common practice to select a “tie” bus as the swing
bus in some studies. A “tie” bus has no generation or de-
mand attached. Thus, any real or reactive generation found
after solution shows that the generation was not equal to
the demand and losses. Then it would be necessary to redis-
patch the generation economically. Only one slack should
be chosen per system island.

The type PQ bus would identify any bus for which PGi

and QGi are known. This type includes any bus with no
generation. Type PQ busses are the most common. Solve
for the unknown Vi, δi variables at such buses.

The last bus type PV (“voltage controlled”) is separated
into two classifications because of control differences. The
voltage can be controlled by an exciter at a generator bus,
by a transformer, or by a FACT device. Different emula-
tion calculations are used at these buses. The type PV bus
is typically a bus with a generator connected to it. The two
main control actions available at a generator plant enable
control of Pi, and Vi. As these values are controlled, they
should be specified as known. Generator operating charac-
teristics require that the operation stay within the capa-
bility of the generator. Alternatively, other reactive power
equipment may provide such control.

The limits on QGi are unusual in that the reactive power
to support a given voltage is not solved within the matrix
calculations. Instead, it is calculated based on the latest
update to the voltage magnitudes and angles. After this
calculation, check to see whether the required reactive gen-
eration is within limits. If it is not within limits, set it at
the appropriate limit and release the constraint that Vi is
fixed. That is, Vi and QGi exchange roles, which changes
the type of the bus from PV to PQ. During subsequent it-
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Table 1. Bus types for power flow formulation

Bus Type Code Knowns Unknowns

Slack generator Vδ Vi, δi PGi, QGi
Slack demand or tie Qδ QGi, δi PGi, Vi
Demand PQ PGi, QGi Vi, δi
Generator PV PGi, Vi QGi, δi
Controlled voltage magnitude CV PGi, Vi δi,α

Table 2. Power Flow Procedure

Step Input Process Output

1 Equipment data Merge into tables Tabular data
2 Equipment data:

Initial solution or
latest solution

Build Jacobian ma-
trix

Jacobian matrix

3 Equipment data:
Initial solution or
latest solution

Calculate residual
mismatch at each
bus

Net power injection
at all buses, all
power flows, and all
control statuses

4 Maximum mis-
match

Compare maxi-
mum mismatch
with acceptable
tolerance, check
iteration count

Decision to con-
tinue with next
iteration

5 Jacobian matrix as
well as real and re-
active power mis-
matches

Solve augmented
Jacobian matrix

Updates to voltage
magnitude and
angle as well as
control variable
updates

6 Repeat Steps 2
through 6

Table 3. Bus Data

Bus Number |V| Magnitude δ Angle P Real Demand Q Reactive Demand Bgr Shunt Capacitance

1 1.05 0.00 0.952 0.436 0.033898
2 1.10 − 3.36 0.500 0.185 0.000000
3 1.00 −12.79 −0.550 −0.130 0.000000
4 0.93 − 9.84 0.000 0.000 0.029326
5 0.92 −12.34 −0.300 −0.180 0.000000
6 0.92 −12.24 −0.500 −0.050 0.035088

Table 4. Line Data

From Bus To Bus G Series admittance B Series Susceptance Tap Ratio

1 4 0.558269 −2.581996 0.0
1 6 0.433934 −1.827463 0.0
2 3 0.444860 −0.646063 0.0
2 5 0.576541 −1.308462 0.0
3 4 0.0 −7.518797 1.100
4 6 0.554102 −2.324944 0.0
5 6 0.0 −3.333333 1.025

erations, continue to check the reactive power needed to
support the voltage desired. Whenever the required reac-
tive power falls within acceptable limits, change the bus
type to PV. Note that this process may occur more than
once during a solution.

The second type of voltage control is a “CV” bus using
a tap changing under load (TCUL) transformer. The real
and reactive power at the bus is fixed, but the setting of
the tap controls the voltage, which does change the bus
type at the controlled bus to a CV. The bus is modeled as
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Table 5. Line Power Flows

Bus To Bus P Q

1 4 0.5091 0.2705
4 1 −0.4849 −0.1590
1 6 0.4431 0.2025
6 1 −0.4166 −0.0910
2 3 0.1718 −0.0001
3 2 −0.1541 0.0257
2 5 0.3283 0.1851
5 2 −0.2951 −0.1100
3 4 −0.3957 −0.1557
4 3 0.3957 0.1815
4 6 0.0891 0.0047
6 4 −0.0882 −0.0010
5 6 −0.0048 −0.0700
6 5 0.0048 0.0743

Table 6. HVDC Link Data

Bus To Bus XK Firing Angle (α) Commutation ngle (γ) G(series)

6 7 1.000 10◦ 20◦ −
2 8 1.000 150◦ 20◦ −
7 8 − − − 5.000

Table 7. Adjusted Bus Data

Bus Number |E| δ P Q Bgr

1 1.05 0.0 0.849 0.577 0.033898
2 0.89 −7.80 0.600 0.650 0.000000
3 0.95 −13.99 0.550 0.130 0.000000
4 0.90 −9.80 0.000 0.000 0.029326
5 0.86 −12.98 0.300 0.180 0.000000
6 0.90 −8.82 0.500 0.650 0.035088
7 0.99 − 0.000 − −
8 0.89 − 0.000 − −

Table 8. HVDC Convert and HVDC Link Power Flows

Bus To Bus P Q

28 82 0.4460−0.4460 0.7064−
67 76 −0.40500.4050 0.6415−
78 87 0.4460−0.4050 −−

normally done for the real power equation. However, the
reactive equation is replaced by an equation relating the
dependency between the voltage magnitude and the trans-
former tap ratio magnitude (α). Note that only one device
should be controlling the voltage magnitude at a bus each
iteration of the solution process. Such models are extended
to FACT devices that provide similar control.

Mathematical Overview

The widely used method of solving AC power flow problems
is the Newton–Raphson (Newton’s point form) method (6,
7). The method relies on the solution of a vector-matrix

nonlinear equation:

F (X) = 0 (11)

where F is a vector-valued nonlinear function of a vector-
valued argument X An initial guess X(O) gives the vector-
matrix Taylor expansion of F(X) about X as:

F (X) = 0 = F (X(O)) + J�X + higher order term

(J)i j = ∂Fi

∂Xj

(12)

where J is the system Jacobian matrix, Fi is the ith com-
ponent of F, and Xj is the jth component of X. In addition,
�X is a first-order correction to X(O).
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Table 9. AC Power Flows with HVDC Link

Bus To Bus P Q

1 4 0.5115 0.3650
4 1 −0.4828 −0.2325
1 6 0.3385 0.2490
6 1 −0.3187 −0.1660
2 3 0.0398 0.0699
3 2 −0.0340 0.0783
2 5 0.1143 0.0135
5 2 −0.1096 −0.0030
3 4 −0.5160 −0.2083
4 3 0.5160 0.2066
4 6 −0.0332 0.0024
6 4 0.0333 −0.0019
5 6 −0.1904 −0.1771
6 5 0.1904 0.1481

Excluding the slack bus (node), there are usually two
equations for each node of the form:

� Pi = �
∂Pi j

∂δ j

�δj + �Vj

∂Pi j

∂Vj

� Vj

Vj

� Qi = �
∂Qi j

∂δ j

�δj + �Vj

∂Qi j

∂Vj

� Vj

Vj

(13)

� Pi = Pi(specified) − Pi(calculated)
� Qi = Qi(specified) − Qi(calculated)

where the summations are over all connections to adjacent
buses j for the mismatch at bus i. The Pi (specified), Qi

(specified) is the net real and net reactive power at bus
i. Thus, the procedure is to calculate the partials for each
bus, calculate the �Pi and �Qi for each bus by the above
equations, and test for convergence (each residual less than
a prespecified tolerance). This assembles a matrix of the
general form (Eq. 29), where (o)T signifies transposition
and At signifies a submatrix of matrix A. Note that (A)
denotes an element of matrix A.

Ax = b

x = A−1b (14)

b = [�P2, �P3, . . . , �Pn �Q2, �Q3, . . . , �Qn]T

x = [�δ2, �δ3, . . . , �δn,
�V2

V2
,

�V3

V3
, . . . , ,

�Vn

Vn

]
T

A = [
Aii Ai j

Aji Aj j

] (15)

Aii = [

∂Pii

∂δi

Vi

∂Pii

∂Vi

∂Qii

∂δi

Vi

∂Qii

∂Vi

]Ai j = [

∂Pi j

∂δ j

Vj

∂Pi j

∂Vj

∂Qi j

∂δ j

Vj

∂Qi j

∂Vj

]

The next step is to solve the augmented matrix [A | b]
by Gaussian elimination. The equations are processed one
bus (one �Pi and �Qi equation) at a time. Using chain-
linked data structures optimizes efficiency and speed. A
well-known method for the rapid solution of these equa-
tions requires the back substitution of an augmented ma-

trix (8–11), which completes the solution to find x (the volt-
age magnitude and angle for each bus).

AC System Control Modeling

The Newton–Raphson method has been expanded to di-
rectly simulate the steady-state effect of power system con-
trols. The original work of Britton, Peterson, and Meyer
provided an expanded view of the Newton–Raphson pro-
cedure as proposed by VanNess (12–14). The Britton pa-
per presented a thorough development of over 12 control
models for the power flow algorithm. Typical controls that
are simulated include local and remote voltage control by
reactive generation, line flow control by generation, local
and remote voltage control by tap changing under load
(TCUL) transformers, reactive line flow control by TCUL
transformers, and real line flow control by phase-shifting
transformers.

Local Voltage Control. The control model for local volt-
age control simulates a generating station’s capability to
maintain a specified voltage magnitude at the system bus
to which it is connected. Thus there is only a real power
equation �P with the partial derivative with respect to
the voltage magnitude ∂P/∂V deleted because the voltage
magnitude is constant:

� Pi = ∂ Pii

∂δi

� δi + partials for adjacent buses (16)

Remote Voltage Control. There are cases in which a gen-
erator may control a system bus voltage magnitude even
when that bus is not the terminal bus for that generator.
A terminal bus is the system bus that has the generation
represented as an injected power or current flow. The con-
trol and controlled system buses are sometimes referred
to as a remote control pair. This option is one of the more
complex ones to implement. The voltage magnitude at the
controlled bus j is constant, and the real power equation
has the partial derivatives with respect to the constant
voltage magnitude deleted,

� Pj = ∂ Pj j

∂δ j

� δj + partials for adjacent buses (17)
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� Qj = ∂ Qj j

∂δ j

� δj + partials for adjacent buses

The control bus has only the real equation present because
the reactive power constraint �Q is replaced by the load
constraint for the controlled bus j above:

� Pi = Vi

∂Pii

∂Vi

� Vi

Vi

+ ∂ Pii

∂δi

� δi + partials for adjacent buses

(18)

Implementation was facilitated if the reactive power equa-
tion is processed as a “control equation” and not as an equa-
tion involving the parameters of the control node. This was
the case because of the nature of the logic required in a dig-
ital implementation in order to accommodate active and
reactive bus power constraints in an efficient manner.

Line and Area Interchange Power Flow. Line power flow
control is obtained by letting a generator terminal bus vary
its real and reactive generation. The nominal equation, for
a generator terminal bus i, controlling a line from system
bus j, to system bus k, is replaced by the equations:

�Pjk = Vj

∂Pjk

∂Vj

�Vj

Vj

+ ∂Pjk

∂δ j

�δj + Vk

∂Pjk

∂Vk

�Vk

Vk

+ ∂Pjk

∂δk

�δk

�Qjk = Vj

∂Qjk

∂Vj

�Vj

Vj

+ ∂Qjk

∂δ j

�δj + Vk

∂Qjk

∂Vk

�Vk

Vk

+ ∂Qjk

∂δk

�δk

(19)

These equations are the conventional expansions of the
quantities �Pik and �Qik in terms of all their arguments.
Note that �Pij and �Qij represent the difference between
the scheduled and the calculated real and reactive power
flow. The first use of this control model was the solution
of the area interchange problem. The problem is to control
the power flows in the transmission lines connecting power
company A (area A) to power company B (area B). The so-
lution is found by selecting a generator terminal bus either
in area A or in area B to control the power flows between
the two areas. Such a formulation is an area–area inter-
change model in which interchange at specific boundaries
is constrained to a given schedule. An alternative formula-
tion involves the control of the power flows from area A to
all other areas. In this formulation, constraints on the total
net interchange rather than the individual, inter-area in-
terchange is scheduled. Note that net interchange implies
the consideration of power flow into and out of an area.
In this net interchange formulation, the solution is found
by the selection of a generator terminal bus to control all
tie lines of area A. The equations for the area interchange
problems would be of the form:

�Pab = �Vj

∂Pjk

∂Vj

�Vj

Vj

+�
∂Pjk

∂δ j

�δj + �Vk

∂Pjk

∂Vk

�Vk

Vk

+�
∂Pjk

∂δk

�δk

�Qab = �Vj

∂Qjk

∂Vj

�Vj

Vj

+�
∂Qjk

∂δ j

�δj + �Vk

∂Qjk

∂Vk

�Vk

Vk

+�
∂Qjk

∂δk

�δk

(20)

where the summations are over all tie lines to be controlled.
�Pab and �Qab are the mismatch of the scheduled area in-
terchanges. Traditionally, only the real power flow is con-
trolled between areas.

Voltage Magnitude-Controlled Bus. TCUL transformers
can control the voltage magnitude at a system node. Thus,
the bus voltage magnitude is a constant, whereas the turns
ratio α is variable. The equations of a system node k con-
trolled by a TCUL between system nodes i and j are as
follows:

� Pk = αi j

∂Pi j

∂αi j

� αi j

αi j

+ ∂ Pk j

∂δi

� δi

+ partials for adjacent buses

� Qk = αi j

∂Qi j

∂αi j

� αi j

αi j

+ ∂ Qk j

∂δi

� δi

+ partials for adjacent buses (21)

This is only the replacement of the voltage-sensitive
terms with the tap angle-sensitive terms. This result arises
because �Q and �P are no longer functions of variable
V, but instead they are functions of the variable α. Note
that the controlled node does not have to be a terminal bus
of the TCUL transformer. Then it would be necessary to
know which terminal of the TCUL transformer is “closer
electrically” to the controlled bus. Then the controlled bus
equations would delete the partial derivative with respect
to voltage magnitude and the equations for the terminal
buses would have the above partial term in addition to
their normal terms.

Line Power Flow by Transformer. Simulation of line power
flow control, either by TCUL transformers or quadrature
phase-shifting (QPS) transformers, requires that control
equations be generated, which describe the line power flow
in addition to the node parameters, AP, AQ. Note that a
QPS transformer controls active power flow and that a
TCUL transformer controls reactive power flow. The equa-
tion for a QPS at terminal nodes i and j, controlling a line
between terminals i and j (therefore controlling itself), is
of the form:

�Pi j = VJ

∂Pi j

∂Vj

�Vj

Vj

+ ∂Pi j

∂δ j

�δj + Vi

∂Pi j

∂Vi

�Vi

Vi

+ ∂Pi j

∂δi

�δi

+ ∂Pi j

∂θi j

�θi j (22)

where the partial derivative of the flow with respect to
the quadrature phase-shift angle is the last term. A TCUL
transformer at terminal nodes i and j, controlling a line
between terminals i and j (therefore controlling itself), is
of the form:

�Qi j = VJ

∂Qi j

∂Vj

�Vj

Vj

+ ∂Pi j

∂δ j

�δj + Vi

∂Pi j

∂Vi

�Vi

Vi

+ ∂Pi j

∂δi

�δi

+ αi j

∂Pi j

∂αi j

� αi j

αi j

(23)

These control schemes can be expanded such that a QPS
or a TCUL transformer can control a line other than itself
and such that a set of lines can be controlled instead of a
single line.

It is interesting to note that the QPS is almost entirely
confined to use in the United States, almost entirely to the
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Midwest and East. Its function is usually to control inter-
change power flow near heavy load centers.

Optimal Power Flow. An optimal power flow solves the
COE equations while minimizing the economic cost of op-
eration. The original approach was to use equations simi-
lar to the area interchange control (14). Other techniques
use linear programming, quadratic programming, or inte-
rior point programming to optimize the objective function
while maintaining the feasibility of the power flow equa-
tions.

HVDC Converter Model

The HVDC converter can be represented as a black box
with a 3� AC line entering one side and one or two DC
lines entering the other side (see Fig. 2) (15–17).

The black box represents either a 6π or a 12-pole con-
verter that is capable of rectification or inversion. The ac-
tual converter system might be more accurately displayed
as in Fig. 3. This example shows a bipolar, eight-bridge sys-
tem. Steady-state operation can reduce the above diagram
to a single line bipolar model shown in Fig. 4. Note that
this representation is symmetric with respect to an axis
drawn through the ground return, which suggests that a
monopolar model, Fig. 5, could be adopted if the user ac-
cepted the task of reducing the system data to this model.
One proposal is to use two monopolar models in Fig. 5 to
represent the bipolar model in Fig. 4, which assumes that
the ground return will not be a represented node in the
power flow model. The equations for an AC bus i connected
to a DC bus k are as follows:

�Pi = �
∂Pi j

∂δ j

�δj + �Vj

∂Pi j

∂Vj

� Vj

Vj

+ Vk

∂Pi j

∂Vk

� Vk

Vk

+ partials for adjacent buses

�Qi = �
∂Qi j

∂δ j

�δj + �Vj

∂Qi j

∂Vj

� Vj

Vj

+ Vk

∂Qi j

∂Vk

� Vk

Vk

+ partials for adjacent buses (24)

The Vk is the average DC voltage measured with respect
to ground. Compared with the general equations presented
in the mathematical overview, the only change is the term
corresponding to the phase-angle at bus k is missing. No re-
active power is associated with any HVDC node in steady-
state operation with ripple-free HVDC current. The equa-
tion for a DC node k, connected to an AC node i, and to
another DC node j, by an HVDC transmission line is

�Pk = Vi

∂Pki

∂Vi

�Vi

Vi

+ ∂Pki

∂δi

�δi + Vk

∂Pkk

∂Vk

�Vk

Vk

+ Vk

∂Pk j

∂Vj

�Vj

Vj

(25)

The DC node is solved only for the voltage magnitude as
for any direct current circuit.

DC Control

Many alternatives may be used to control HVDC convert-
ers. The control schemes that may be employed are con-

stant DC current (CC), constant DC power (CP), constant
power factor at the AC system bus (CPF), constant DC volt-
age (CV), constant ignition angle (CIA), and constant ex-
tinction angle (CEA).

Most applications require that an HVDC converter be
capable of both rectification and inversion. The control that
makes this possible is shown in Fig. 6. Note that CIA and
CEA are actually limits on CC control. Thus, these two
control methods actually occur when the control demand
forces the firing angle beyond its specified limits.

CC control can be simulated in a similar fashion as the
tap changing under load control of reactive power flow. CC
control is the capability of an HVDC converter to control
the DC current flow through itself, another converter, or an
HVDC line. The control equation would be of the form:

�Ipk = ∂Ipk

∂δp

�δp + Vp

∂Ipk

∂Vp

�Vp

Vp

+ Vk

∂Ipk

∂Vk

�Vk

Vk

+ αpk

∂Ipk

∂αpk

� αpk

αpk

(26)

where α is the firing angle, p is the AC bus, and k is the DC
bus of an HVDC converter controlling its own current. The
firing angle is the start of conduction. The commutation
angle is the completion of firing. Firing is the term used
for conduction. If the control were implemented on a DC
transmission line, the first term would not be present.

An HVDC converter controlling its own real power flow
or that in another DC line is simulated by the following
equation when bus p is the AC bus and k is the DC bus of
the HVDC converter:

�Ppk = ∂Ppk

∂δp

�δp + Vp

∂Ppk

∂Vp

�Vp

Vp

+ Vk

∂Ppk

∂Vk

�Vk

Vk

+ αpk

∂Ppk

∂αpk

� αpk

αpk

(27)

Note that if the HVDC converter were to be controlling a
DC transmission line from bus p to bus k, the first term
would not be present.

CPF control where a converter is controlling the AC sys-
tem bus to which it is connected would be similar to the
above control modes. If p is the AC bus and k the DC bus,
because the power factor is related to the firing angle and
the commutation angle (γ), then the control equation would
be

�PFp = αpk

∂PFp

∂αpk

�αpk

αpk

+ γpk

∂PFp

∂γpk

�γpk

γpk

(28)

Note that the commutation angle has not been used previ-
ously as an independent variable, which will be discussed
later. If the commutation angle or the firing angle were
constant, then the respective term would not be present.

It is worthwhile to note that, for small power factor an-
gles and commutation angles, equation 46may be simpli-
fied by using only the cosine of the firing angle. As both
are generally small, equation 46arises because the funda-
mental of the square wave-like current waveform is ap-
proximately in phase with the current waveform. As the
current waveform is displaced from the voltage waveform
by approximately angle a, this angle becomes the power
factor angle.
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CV control of a DC bus can be simulated by a control
equation that is a variation of the control equation of a
TCUL transformer controlling the voltage magnitude of
an AC bus. The partial derivative with respect to the DC
bus voltage would be replaced by a partial derivative with
respect to the firing angle. The bus equation of a DC bus
k, connected to an AC bus p, and another DC bus q, would
now be

�Pk = ∂Ppk

∂δp

�δp + Vp

∂Ppk

∂Vp

�Vp

Vp

+ Vq

∂Pkq

∂Vq

�Vq

Vq

+ αpk

∂Ppk

∂αpk

� αpk

αpk

(29)

Note that the DC bus to be controlled does not have to be
the DC bus to which the converter is connected.

The above equations had only the firing angle as an in-
dependent variable. The commutation angle can also be an
independent variable if another equation can be added to
the augmented Jacobian matrix. One method would be to
find a unique relationship between the two angles. Another
method would be to always constrain the current through
a converter. If the current through a converter were con-
strained when real power flow control is in effect, then the
two control equations would be

� Ipk = αpk

∂Ipk

∂αpk

�αpk

αpk

+ γpk

∂ Ipk

∂γpk

�γpk

γpk

+ additional partial derivatives

� Ppk = αpk

∂Ppk

∂αpk

�αpk

αpk

+ γpk

∂ Ppk

∂γpk

�γpk

γpk

+ additional partial derivatives (30)

Note that only the partial derivatives that relate the two
equations are shown here and not the partial derivatives
that relate these control equations to the bus equations.
The latter have been given previously. It is only a direct
copy of the above scheme to include CC control with CPF
or CV control.

The relationship between the firing and commutation
angles for the controlled cases is a more difficult matter
and is omitted here. The recent text by Arrillaga is the
classic reference for HVDC modeling [x].

Modeling of Transmission Lines and Transformers

Transmission Line Flow Equations. Transmission lines are
modeled as shown in Fig. 7. The flow as measured at each
end of each transmission line is given in the following equa-
tions.

Given the voltage at each end of the transmission line:

Voltage at bus i : Vi = |Vi|〈δi

Voltage at bus j : Vj = |Vj|〈δ j

Given the series and the shunt impedance of the line:

Series impedance : yi j = |yi j|〈γi j

Shunt impedance : yi j = |yi j|〈90
◦

Then the current from bus i to bus j measured at bus i is

Ii j = Viyi j + (Vi − Vj)yi j

= Vi(yii + yi j) − Vjyi j

(31)

The power flowing from bus i to bus j measured at bus i is

Si j = ViI
∗
i j (32)

Substituting the current relationship:

Si j = |Vi|2y∗
ii + |Vi|2y∗

i j − ViV
∗
j y

∗
i j (33)

It simplifies to

Pi j = |Vi|2|yii|cos(γi j) − |Vi||Vj||yii|cos(δi − δ j − γi j) (34)

Qi j = −|Vi|2|yi j| − |Vi|2|yii|sin(γi j)

− |Vi||Vj||yii|sin(δi − δ j − γi j) (35)

These equations are used as the starting point for all par-
tial derivatives.

Transformer Flow Equations. Transformers are modeled
as shown in Fig. 8. The flow as measured at each end of the
transformer is given in the following equations.

Given the voltage at each end of the transformer:

Vk = Vm(1〈θ)

Vm = αVj (36)

Given the series impedance and tap of the transformer:

Series impedance : yi j = |yi j|〈γi j

Tap ratio : αi j = |αi j|〈0◦

Then the current from bus i to bus j measured at bus i is

Ii j = (Vi − Vk)Yi j

Ii j = ViYi j − VkYi j

Ii j = ViYi j − Vm(1〈θ)Yi j

Ii j = ViYi j − αi jVj(1〈θ)Yi j

(37)

Note that α is a real number in this model. It may also
include an angle for a phase-shifting transformer (QPS).

Correspondingly for the other bus:

Pji = −α|Vi||Vj ||Yi j |cos(θi − θ j − θ + θi j) + α2|Vj |2|Yi j |cosθi j

Qji = α|Vi||Vj ||Yi j |sin(θi − θ j − θ + θi j) − α2|Vj |2|Yi j |sinθi j
(38)

Other models are also used depending on how the trans-
former was built, what variable tap positions are available,
and how the transformer is connected into the transmis-
sion grid. Transformers are used to control voltages, real
power flows, and (rarely) reactive flows.

Note that the flow equations are the normal starting
point to find the partial derivatives necessary for the Jaco-
bian matrix within industrial programs.

Modeling of HVDC Converters and FACT Devices

The limitations of current technology require that a con-
verter draw substantial amounts of reactive power from
the AC system to which it is connected. Significant
amounts of reactive power are supplied by capacitors. Ad-
ditionally, passive and active filters are added to remove
unwanted harmonic interaction. Such device modeling is
found in the literature [x].
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Definition of Angular Relationships. The primary concept
is to find a relationship between the real and the reactive
flows with respect to the system voltage magnitudes and
angles and any controlling parameters, such as firing angle
and commutation angle. It is necessary to be able to find
the first partial derivatives of these flows with respect to
the voltages and the control variables. The same is true for
many FACT device because most such devices are back-to-
back A/D/AC converters.

The complete, steady-state internal operation of a con-
verter can largely be described by two quantities: the firing
angle α and the commutation angle γ. Figure 9 shows the
relationships between the commonly defined angles for the
six-pole converter equivalent circuit shown. This descrip-
tion uses the firing angle α to describe the converter mode
of operation: rectification or inversion.

Power Equations for a Six-Pole HVDC Converter. Repre-
sentative Jacobian entries for an HVDC converter are pre-
sented. The analysis is significantly simplified if the follow-
ing assumptions are used. The firing voltage and the arc-
drop voltage are negligible, (i.e., ideal diodes). The opera-
tion of an adjacent bridge has no effect on any other bridge.
This comment is applicable when several bridges are con-
nected in series to make up the total installation.The direct
current is constant and ripple-free. The power system is a
balanced three-phase sinusoidal voltage of constant mag-
nitude and frequency (infinite bus). The source impedance
may be lumped with the converter transformer. The mag-
netizing and eddy current components of the transformer
are negligible. The converter has minimal active power loss
(the commutating resistance Rk is negligible).

The power for the AC side of the converter is written as

S3� = √
3VLLI∗ = P3� + jQ3�

P3� = |VLL|VDCX′
kφ1

Q3� = 1
2

|VLL|VDCX′
kφ2

(39)

|VLL| = � VLLsin(δ)2 + VLLcos(δ)2 � 1/2
φ1 = cos(α) − cos(α + γ)

φ2 =
γ − sin(γ)cos 2(α + γ

2
)

cos(
γ

2
)cos(α + γ

2
)

X′
k = (

√
2Xk)

−1

(40)

Note that P3φ and Q3φ do not depend on the bus voltage
angle with respect to the swing bus. At the DC side,

PDC = VDCIDC = −P3φ (41)

Thus, the following partial derivatives are easily derived.
The terms for the AC bus are:

|VLL| ∂P3φ

∂|VLL| = P3φ,
∂P3φ

∂ δ
= 0.0

|VLL| ∂Q3φ

∂|VLL| = Q3φ,
∂Q3φ

∂ δ
= 0.0

Vdc

∂P3φ

∂VDC

= P3φ, VDC

∂Q3φ

∂δ
= Q3φ

(42)

The terms for the DC bus are

VDC

∂ PDC

∂ VDC

= PDC

|VLL| ∂ PDC

∂ |VLL| = PDC ,
∂ PDC

∂ δ
= 0.0

(43)

These derivatives are needed for the Jacobian matrix.

Brief Comments on Jacobian Matrix Processing

The full details of the manipulation of the Jacobian will not
be given here because these details are well documented in
the literature (8–11). A brief procedure is shown in Table
2.

The elementary form of the correction to the bus voltage
vector is simply the factorization of the Jacobian matrix,
augmented with the real and reactive residuals. After the
factorization, the updates to the voltage magnitudes and
angles are found in the column where the residuals were
located.

The inclusion of DC links causes the voltage magnitude
update vector to increase in dimension without increasing
the dimensionality of the vector �δ. Similarly, the �P vec-
tor increases in dimension, but the �Q vector does not.
Hence, the Jacobian remains square, but the dimensions
of the submatrices differ.

The digital computer solution is divided into the follow-
ing functions:

1. Form the Jacobian matrix.
2. Augment the Jacobian with the column vector.
3. Solve the augmented Jacobian matrix for the correction

vector.
4. Update the solution vector.

Three functions are typically used: SETUP J, SOLVE J,
and NEWVAR.

Setup J.
This function has two major functions:

1. Build the augmented Jacobian matrix (AJM).
2. Check each equation for solution within a specified tol-

erance.

SETUP J builds the augmented Jacobian matrix bus-
by-bus. All partial derivatives for a bus are calculated si-
multaneously with the flow calculations to determine the
mismatch. The mismatch is actually the error for the equa-
tions. A chain-linked data structure is used to conserve
space used.

Solve J.
This function performs Gaussian elimination and back-

substitution on the AJM using sparcity programming and
chain-linked data techniques. An unusual feature is the
limit status, which contains a code that is used to de-
termine whether one, two, or no equations are associated
with each bus. The corrections are left in memory for the
variable updating routine. Note that, as control variables
hit limits, the control may be relaxed and afterward rein-
stated.
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Figure 9. (a) HVDC converter basic circuit. (b) HVDC converter angle relationships.

Newvar.
This function updates the independent variables (volt-

age magnitude and angle) by applying the corrections cal-
culated by the solution subroutine. The corrected variables
are left in core for the building subroutine.

Decoupled Power Flow (Stott)

The decoupled power flow is the most popular technique
and is from the research of Brian Stott [x]. If one is aware
that the node/bus volt magnitudes are approximately unity,
that the bus angles are nearly the same, and that the sus-
ceptance is much larger than the per-unitized reacitve flow,
then the following simplifications result:

B′ = ∂Pi

∂δi

(44)

B′′ = ∂Qi

∂Vi

(45)

The net result is that the Jacobian is now decoupled be-
tween the real equations and the reactive equations:

�P = B′�δ

�Q = B′′�V
(46)

Additionally, the Jacobian elements do not have to be recal-
culated each iteration. The computational savings is enor-
mous for practical size systems.

DC Power Flow

The DC power flow is a suitable planning technique. If one
is aware that the node/bus volt magnitudes may be treated
as approximately unity, then the reactive equations may be

ignored or solved later when the reactive demand is known:

B′ = ∂Pi

∂δi

(47)

The net result is that the Jacobian is now a single relation-
ship between the real power and the voltage angle:

�P = B′�δ (48)

Additionally, the Jacobian elements do not have to be recal-
culated each iteration. The computational savings is enor-
mous for practical size systems.

Element Compensation Theorem

One interesting breakthrough was based on the need to
not alter the Jacobian matrix or to resolve for the table of
factors for the Jacobian matrix as the system parameters or
configuration changed as devices were removed, added, or
the control parameters altered. The basis of the technique
is most easily shown by the following figures as shown in
Wood and Wollenberg and Carpentier [xx, yy]. Figure 10a
shows the original configuration with the solved real and
reactive power flows shown as P(i,j) and Q(i,j).

Figure 10b shows the new configuration with the circuit
breakers (switches) open at both ends of the line as it is
removed from service. Now the flows from bus m to bus n
should be zero.

Figure 10c shows the equivalent network with the ad-
dition of artificial injections to remove the flows from the
solution. The theory is that the line flows [P(m,n), Q(m,n)]
are matched by the equivalent injection at bus m and the
line flows [P(n,m), Q(n,m)] are matched by the equivalent
injection at bus n. Thus, the equivalent injections have
effectively removed the line flows from the solution. The
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Figure 10. (a) One line diagram for branch compensation algorithm–original configuration. (b) One line diagram for branch compensation
algorithm–open line. (c) One line diagram for branch compensation algorithm–equivalent model.

same idea may be applied to any series device if the pa-
rameters change is associated with that device, such as
TCUL transformers. This saves the computational effort
to reform the Jacobian matrix and to refactor that matrix.

The key assumption to applying this technique is that
both buses are still part of the same power system. Essen-
tially, one has to check that the system has not been split
into two power systems by the removal of a critical compo-
nent.

EXAMPLE SYSTEM

Introduction

In this section, a small power system is used to exemplify
the effect of the addition of alternative link devices. The
six-bus AC Ward and Hale system [x5] is augmented with
a single monopolar HVDC line. All values are given in per-
unit.

Ward and Hale System

The single line diagram for the Ward and Hale six-bus sys-
tem is shown in Fig. 11. The reference bus is bus number
one with the specified values given in Table 3. Note that
all values are given as per-unit quantities. The line data
and the line power flows are contained in Tables 4 and 5,
respectively. The TCUL transformers were represented by
equivalent pi parameters.

The structure of the corresponding Jacobian matrix is
shown in Fig. 12. Note that the first row and column are not
present because Bus 1 is the slack bus. As discussed below,

the Jacobian matrix is the first partial derivative of the line
flows with respect to the voltage magnitude or angle. The
following notation is used. �P is the real mismatch. �Q is
the reactive power mismatch, �d is the angular update to
voltage. �V is the magnitude update to voltage. H (∂P/∂d)
is the partial derivative of the real power to the angular up-
date. N (∂P/∂V) is the partial derivative of the real power
to the voltage magnitude update. M (∂Q/∂d) is the partial
derivative of the reactive power to the voltage update. L
(∂Q/∂V) is the partial derivative of the reactive power to
the voltage magnitude update. Note that many zero en-
tries exist. Large systems of 2500 to 5000 buses have a
large percentage of nonzero entries. It is typical for the Ja-
cobian matrix to have 80% to 90% zero entries. Such a for-
tunate structure has been exploited through sparcity pro-
gramming to significantly reduce the computer resources
needed for solution.

The addition of a DC monopolar line from Bus 2 to Bus
6 would appear as in Fig. 14. Note that the submatrix J’ is
the original matrix shown in Fig. 11. The system of partial
differential equations (SPDE) of Fig. 12 would be enlarged
with the addition of the partial derivatives shown in Fig.
14. The line data for the DC link is given in Table 6. It is
also necessary to add reactive capability at Bus 2 and at
Bus 5. These increases are shown in Table 7. The resulting
flows are shown in Tables 8 and 9.

The previous system is only an academic utilization of
the model developed herein. Actual system studies would
include a transformer between the system AC bus and the
converterAC bus.Then the DC system would be more of the
form shown in Fig. 15. Filters and reactive power supplies
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Figure 11. Ward–Hale six-bus power system.

Figure 12. Jacobian matrix.

Figure 13. Ward–Hale power system with HVDC link.

can be added as injected powers, currents, or impedance
loads at the bus (AC or DC) to which it is connected.

EXTENSIONS

Many extensions to the above basic power flow description
are used in industrial solutions on a daily basis.

Visualizations

Visualization of the power system data refers to presen-
tation of the data to help users create a mental picture

of the system. Such presentations assist users to analyze
the results and extract desired information much more ef-
ficiently. Today, engineering models of electrical network
consist of thousands of buses and line. This high dimen-
sionality of the power network makes the task of visual-
ization even mere important and challenging.

The most common form of an electrical network repre-
sentation has been one-line diagrams. The man–machine
interface (MMI) of a traditional energy management sys-
tem (EMS) depicts the network connections using one-line
diagrams. The MMI pictures have two kinds of compo-
nents: static and dynamic. The static components consist
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Figure 14. Jacobian matrix with HVDC link.

Figure 15. Converter DC system with phase shifters.

of texts and symbols. A text describes the title of a network
parameter, such as bus voltage magnitude and real power
loss. A symbol represents a network component, such as
generator and breaker. The dynamic components consist
of values of network solution parameters to describe sys-
tem conditions and status of breakers and switches. The
numerical values of network solution parameters are writ-
ten next to the associated network components shown in
the one-line diagram. The breaker status is usually color-
coded and is dynamically updated to describe the network
topology. A common additional feature available in an MMI
is that generation of an alarm when a computed or teleme-
tered value exceeds its limit. This alarm is intended to
catch the operator’s immediate attention.

Additional visualizations include spider diagrams,
transmission path coloring by loading level, reactive power
islands by color, and others.

Harmonic Analysis

Extensions to harmonic analysis are required because of
the inclusion of the power electronic devices. The basic
works by Arrillaga, MacGrady, and others have extended
the power flow to frequencies other than 50 or 60 Hz to
include the multiple harmonics generated by power elec-
tronic devices.

A conventional power flow is a method of determining
the line power flows and the system bus voltages in terms
of a given system generation and load configuration. The
conventional power flow is used in power system planning

and design, reliability considerations, system generation
and load evaluation, and other power system applications.
Harmonic power flows that have been applied to terres-
trial systems are being used for system design and relia-
bility considerations. The terrestrial harmonic power flow
then examines what effects these nonlinear loads have on
the power system in terms of producing high-voltage and
current levels, resonant conditions, communication inter-
ferences, and protection relay interferences.

Harmonic power flows in general require the same sys-
tem data that are used by a conventional power flow, which
includes line and transformer parameters, system gener-
ation and load data, and how the system is connected. In
addition, harmonic power flows also require data on the
nonlinear loads, as in equivalent impedance data, power
requirements, and type of nonlinearity that the load gener-
ates. However, harmonic power flows are much more com-
plex than conventional power flows because they do allow
the inclusion of these nonlinear loads and devices. This, in
essence, makes a harmonic power flow a type of generalized
power flow that can, in addition to calculating the system
line flows and bus voltages, analyze the effect nonlinear
loads can have on a power system. This process makes the
harmonic power flow a valuable tool in power system anal-
ysis and design.

Security Boundary Characterization

Transmission networks are operating closer to their limi-
tations as the power industry is restructuring around the
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world. Security assessment through boundary visualiza-
tion provides the knowledge of system security levels in
terms of easily visualized operating parameters. New re-
search is ongoing to find a methodology for on-line secu-
rity boundary visualization using neural networks. Such
methodology models the traditional security assessment
procedures that result in a nomogram for characterizing
the security boundaries.

The power industry is restructuring from regulation to
deregulation. One new challenge is how to appropriately
evaluate the security levels of the current operating condi-
tions when the system is being operated closer to its limita-
tions because of heavy use of the transmission network. In
this new environment, security assessment for the trans-
mission network must be accurate and easily accessed on-
line by system operators.

Security assessment can be divided into two levels: clas-
sification and boundary determination. Classification in-
volves determining whether the system is secure or inse-
cure. Classification does not indicate distance from the cur-
rent condition to the insecure conditions.

Boundary determination, on the other hand, involves
measuring this distance. A boundary is represented by con-
straints imposed on parameters defining precontingency
conditions. These precontingency parameters are called
critical parameters. Once the boundary is identified, se-
curity assessment for any operating point can be given as
the “distance” (in terms of critical parameters) between the
current operating point and the boundary. Assessment in
terms of precontingency operating parameters instead of
the postcontingency performance measure is more mean-
ingful (1, 2). Many North American utilities use the tra-
ditional boundary characterization approach to generate a
two-dimensional graph called a nomogram (3–5). A nomo-
gram has two axes corresponding to two critical parame-
ters.

Voltage Stability in Power Systems—An Overview

There has been an increasing interest and investigation
into voltage instability and collapse. As this interest has
spawned research, the literature has also grown. The first
paper related to voltage instability appeared in 1968 (18).
Venikov (6) proposed the first criteria for detecting the
point of voltage collapse. Voltage instability has been a
known problem for a long time. However, active research
involving voltage stability did not start in earnest until the
1980s.

The references are divided by information content into
groups (5). The most pertinent references are listed here; a
thorough report is in the bibliography by Ajjarapu et al. (5).
The first group includes books (1–4) related to voltage sta-
bility. The second group lists in alphabetic order the papers
(19–42) directly related to voltage stability.

The imbalance between load growth and generation and
transmission expansion grew during the 1970s and 1980s.
The problem of voltage stability and voltage collapse has
been a major area of attention in North America. Voltage
stability is the ability of a power system to maintain steady
acceptable voltages at all buses in the system under normal
operation conditions and after being subjected to a distur-

bance. A system enters a state of voltage instability when a
disturbance, increase in load demand, or change in system
condition caused a progressive and uncontrollable drop in
voltage. The crux of the problem is the voltage drop that
occurs when excessive power flows through the inductive
reactances of the transmission lines and transformers be-
cause of increased loading.

The model for analyzing voltage stability should in-
clude all components that effect voltage. Some believe the
structure-preserving model is the most appropriate for this
analysis, even-though initial research concentrated only
on power flow analysis. Analytically, Venikov proposed one
of the first criteria for detecting the point of voltage col-
lapse as the point where the determinant of the Jacobian
of power flow equations becomes singular. Continuation-
based power flow analysis is a promising approach for ro-
bust static analysis.

Various indices and approaches have been proposed. It
is not just sufficient to understand and analyze the voltage
collapse phenomena; it is essential that effective, econom-
ically justified solutions to the voltage problems be devel-
oped. The challenge for future research is to come up with
preventive and corrective control strategies for on-line pre-
diction and control to mitigate voltage collapse. Another
challenge is to integrate some of these strategies for on-
line ATC calculations as limited by voltage stability.
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