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EXCITATION CONTROL IN POWER SYSTEMS

An electric power system contains thousands of intercon-
nected electric elements. Many elements are highly nonlinear
and some of them are combinations of electrical and mechani-
cal parts. Power systems have thus developed into complex
operating and control systems with various kinds of unstable
characteristics (1). Because these systems are spread over
vast geographical areas, some of which span over entire conti-
nents, they are subject to many different types of distur-
bances. With the advent of interconnection of large electric
power systems, many new problems have emerged. Two ex-
amples are the oscillations of the subsystems of a large inter-
connected power system against each other and the subsynch-
ronous tortional oscillations of turbines in a steam power
plant with capacitor-compensated transmission lines (2).

A sample five machine power system configuration is
shown in Fig. 1. When this system is disturbed, multimode
oscillations arise because of the different sizes of the genera-
tors and the network configuration. These oscillations are
generally analyzed in three main oscillation modes (i.e., local,
interarea, and intermachine modes). Depending upon their lo-
cation in the system, some generators participate in only one
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Figure 1. A five-machine power system configuration.
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level, whereas other methods (such as resistor braking
and capacitor switching) need a much higher power level.

Synchronous machine excitation control and its role in im-
proving power system stability have been an important topic
of investigation since the 1960s. Effectiveness of damping pro-
duced by the excitation control has been demonstrated both
by simulation and field tests (9,10). The main objective is to
achieve an acceptable voltage profile at the consumer termi-
nal. High gain, short time constant, and high ceiling voltage
excitation control are among the characteristics of this control
loop. An AVR and exciter model from IEEE standard is given
in the appendix. Although these result in increasing both the
steady state and transient stability limits of the system (11),
they can also introduce a detrimental impact upon the dy-
namic stability of the power system. Oscillations of small
magnitude and low frequency often persist for long periods of
time and in some cases present limitations on power trans-
fer capability.

To overcome this problem, a supplementary stabilizing sig-
nal has been proposed to enhance the dynamic performance
of the power system. To date, many of the major electric
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power plants in large interconnected systems are equipped
Figure 2. Multimode oscillations of the five-machine power system. with this supplementary excitation control, commonly re-

ferred to as Power System Stabilizer (PSS). The purpose of
the supplementary stabilizing signal is to enhance system
damping by producing a torque in phase with the speed. Inoscillation mode, whereas others participate in more than one
the conventional arrangement, the stabilizing signal is usu-mode (3). The multimode oscillations can be clearly observed
ally derived by processing any one of a number of possiblein Fig. 2.
signals (e.g., speed, acceleration, power, frequency). The out-The definition of stability, as applied to power systems
put of the PSS (i.e., the stabilizing signal) is introduced intomay be stated as follows (4):
the excitation system at the input to the AVR/exciter along
with the voltage error. To improve the power system perfor-If the oscillatory response of a power system during the transient
mance and stability, various approaches based on linear opti-period following a disturbance is damped and the system settles
mal, H-infinity, variable structure, rule-based, fuzzy logic,in a finite time to a new steady state operating condition, the sys-

tem is stable. Otherwise, it is considered unstable. neural network and adaptive control have been proposed in
the literature to design a PSS. This article provides an over-
view of these techniques. To obtain further information, oneA small signal perturbation model around an equilibrium
should refer to the corresponding references.point can be considered for dynamic stability studies, and the

system can be described by linear differential equations. How-
ever, for transient stability analysis and control design, the FIXED PARAMETER CONTROLLERS
power system must be described by nonlinear differential
equations. A set of seventh-order equations for a synchronous The most commonly used PSS, referred to as the Conven-
alternator is given in the appendix. tional PSS (CPSS), is a fixed parameter analog-type device

Over the years, considerable efforts have been devoted to with the following linear transfer function:
improving power system stability in various ways (5–8).
These attempts can be divided into three broad groups:

Upss(s) = Ks
1 + sT1

1 + sT2

1 + sT3

1 + sT4

sT5

1 + sT5
�Pe(s) (1)

• Generator excitation control,
The CPSS is based on the use of a transfer function de-• Generator input power control, and

signed by the linear control theory (12) to the system model• System operating condition and configuration control.
linearized at a preassigned operating point. It contains a
phase compensation network for the phase difference from

For a particular problem, any one or more of these three
the excitation controller input to the damping torque output

methods can be employed. Among these methods, excitation
(i.e., the gain and phase characteristics of the excitation sys-

control is preferred for the following reasons:
tem, the generator and the power system, which collectively
determine the open-loop transfer function). By appropriately

• Generally electrical systems have much smaller time tuning the phase and gain characteristics of the compensation
constants than mechanical systems, network during the simulation studies at the design stage

• Electrical control systems are more economical and eas- and further during commissioning, it is possible to set the
ier to implement than mechanical control systems, desired damping ratio. Various tuning techniques have been

introduced to tune the CPSS parameters effectively (13).• Additional equipment required operates at low power
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CPSSs are widely used in the power system these days,
and they have improved power system dynamic stability. The
CPSS is designed for a particular operating point for which
the linearized transfer function model is obtained. The char-
acteristics of the plant are nonlinear. For example, the gain
of the plant increases with generator load. Also, the phsae lag
of the plant increases as the power system becomes stronger.
Because of the high nonlinearity, the wide operating condi-

Inference mechanism

Knowledge base

Fuzzification Defuzzification
OutputInput

(crisp) (crisp)

(fuzzy) (fuzzy)

tions, and the unpredictability of perturbations in a power
Figure 3. Basic structure of fuzzy logic controller.system, the CPSS, a linear controller, generally cannot main-

tain the same quality of performance under all conditions of
operation. The parameter settings of a CPSS are a compro-

Some of the major features of the FLC follow:mise that provides acceptable, though not optimal, perfor-
mance over the full range of operating conditions. The linear

• This method does not require the exact mathematicaloptimal control (14) and H
 (15,16) based PSSs also fall in the
model of the system.fixed parameter controller category. The design of these con-

• It offers ways to implement simple but robust solutionstrollers is done off-line on a linearized model of the power
that cover a wide range of system parameters and thatsystem. Using the state and/or output feedback, gains that
cope with major disturbances.minimize a certain performance index are determined. The

H
 control design differs from the linear optimal control de- • The simplicity of the concept makes it easy to implement
sign in that it provides for uncertainties over a prespecified and requires less software code to write.
range in the system parameters and disturbances. However, • Because the control strategy mimics the human way of
because of the fixed feedback gains, variations in the system thinking, the experience of a human operator can be im-
structure and/or characteristics cannot be tracked. It is thus plemented through an automatic control method.
not possible to provide optimal performance over the entire
operating range. To solve the parameter tracking problem, de- Satisfactory results have been obtained with PSSs de-
sign of a CPSS based on the variable structure control theory signed based on FLC (20,21). Although the FLC introduces a
has been proposed (17). Although it is an elegant design tech- good tool to deal with complicated nonlinear and ill-defined
nique, its design procedures share some commonality with systems, it suffers from the drawback of parameter tuning for
that of linear optimal control. Because of the absence of any the controller. Proper decision rules cannot easily be derived
formal procedures, the weights in the performance index of by human expertise for too complex systems, making fine-tun-
the linear optimal control and the weights of the switching ing or achieving the optimal FLC not a trivial task. Some sig-
vector for the variable structure algorithm have to be deter- nificant operating conditions (i.e., disturbances or parameter
mined by trial and error. changes) may be outside the expert’s experience. Design and

tuning of an FLC for a multiinput multioutput system is ex-
tremely tedious. Often the approach adopted is to define
membership functions and decision rules subjectively byRULE BASED AND FUZZY LOGIC CONTROLLERS
studying an operating system or an existing controller. Ge-
netic algorithm, a global optimization method, can be used toUnlike the conventional control techniques, which require
help in the optimization and tuning of an FLC. However, itcomplicated mathematical models derived from a deep under-
also has its limitations because it can fall into a local optimalstanding of a system, exact equations and precise numeric
point if the parameters are not properly selected.values, fuzzy logic control techniques are rule-based systems.

In these systems, a set of fuzzy rules represents a control de-
cision mechanism to adjust the effects of certain causes com- NEURAL NETWORK-BASED CONTROLLERS
ing from the controlled system (18,19). The basic feature of
the fuzzy logic control is that a process can be controlled with- Artificial neural networks (ANNs) attempt to achieve good
out the knowledge of its underlying dynamics. The operator performance by interconnecting simple computational ele-
can simply express the control strategy, learned through ex- ments. They offer many advantages by virtue of their charac-
perience, by a set of rules. These rules describe the behavior teristics, which are the capability to synthesize complex and
of the controller using linguistic terms. The controller then transparent mappings, increased speed resulting from the
infers the proper control action from this rule base, thus play- parallel mechanism, robustness and fault tolerance, and
ing the role of the human operator. The theme of the fuzzy adaptive adjustability to the new environment. The success of
logic is to relate the numeric variables to linguistic variables, ANNs to control unknown systems under significant uncer-
where dealing with the linguistic variables is closer to the tainties makes them very attractive. Among the many proper-
human spirit. Each linguistic variable represents a fuzzy sub- ties of a neural network, the property that is of primary sig-
set. Each fuzzy subset has a membership function that de- nificance is the ability of the network to learn from training
fines how far this measurement belongs to this linguistic vari- data and to improve its performance through learning. Basic
able. Figure 3 shows the basic configuration of a fuzzy logic classes of learning paradigms are the supervised learning, re-
controller (FLC), which is composed of four principal compo- inforced learning, and unsupervised learning. There are dif-
nents: fuzzification module, knowledge, base, inference mech- ferent control schemes to train a neural network to control a

plant that is too complex, or about which very little is known.anism and a defuzzification module.
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Figure 4. Copying an existing controller with a network.
Figure 6. Backpropagating through a forward model of the plant.

In a typical control problem, the desired plant output may be ADAPTIVE CONTROLLERS
known but not the desired controller output (i.e., the control
signal). Three basic ways in which the training information The adaptive control theory provides a possible way to solve
required for supervised learning can be obtained follow: many of the problems associated with the CPSS. Two distinct

approaches—direct adaptive control and indirect adaptive
control—can be used to control a plant adaptively. In the di-• Copying an existing controller (22). This approach, as
rect control, the parameters of the controller are directly ad-shown in Fig. 4, is very useful where the desired control-
justed to reduce some norm of the output error. In the indirectler may be a device that is impractical to use or one that
control, the parameters of the plant are estimated as the ele-uses very complicated algorithms to calculate the control
ments of a vector at any instant k, and the parameters vectorsignal.
of the controller is adapted based on the estimated plant pa-• Identifying the system inverse (23,24). Figure 5 shows
rameter vector. At each sampling instant, the input and out-how a neural network can be used to identify the inverse
put of the generating unit are sampled, and a plant model isof a plant. This approach, of course, requires that an in-
obtained by some on-line identification algorithm to representverse of the plant be feasible.
the dynamic behavior of the generating unit at that instant in

• Differentiating a model. The application of this idea re- time. It is expected that the model obtained at each sampling
quires that a plant model be available in a form that can instant can track the system operating conditions. The re-
be differentiated. The plant model is in the form of a lay- quired control signal for the generating unit is computed
ered network. This approach is illustrated in Fig. 6 and based on the identified model. Various control techniques can
will be discussed in more detail later. be used to compute the control. All control algorithms assume

that the identified model is the true mathematical description
Some drawbacks to the use of conventional ANNs follow: of the controlled system.

Mathematical-Algorithm-Based Adaptive PSS• It is difficult for an outside observer to understand or
modify the network decision making process. In this case, sampled data design techniques are used to com-

pute control in the following way:• Conventional ANNs may require a long training time to
get the desired performance.

• Select a sampling frequency f , about ten times the nor-• Although a number of applications of ANN-based control-
mal frequency of oscillation to be damped.lers as PSSs have been reported in this article, most of

• At each sampling interval (T � 1/f ), update the systemthese are the supervised learning algorithms that re-
model parameters. A number of identification algorithmsquire a desired controller as reference for training pur-
have been developed using the discrete domain mathe-poses.
matics. Least squares or extended least squares tech-• The selection of the number of neurons and the number
nique, in recursive form, are usually used to identify theof layers in multilayer networks is not a trivial task. It
system (i.e., the discrete transfer function of the con-is, to a large extent, a process of trial and error.
trolled plant).

• Use the updated estimates of the parameters to compute
the control based on the control strategy chosen. Various
control strategies, among them the minimum variance,
pole-zero assignment pole assignment, pole shift have
been proposed.

Extensive amount of work has been done to develop and im-
plement a pole-shift-based adaptive PSS as reported in Refs.
25–28. Such a PSS can adjust its parameters on-line ac-
cording to the environment in which it works and can provide

+

–

Controller

Plant

good damping over a wide range of operating conditions of the
power system. To keep the sampling period small enough forFigure 5. Inverse plant modeling using a network.
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on-line control, there must be a compromise between the or- • Recurrent-network-based controller (32). In this case, a
recurrent network is employed in each of the two subnet-der of the identified model and the computation time for pa-
works to build the adaptive neural network. The mainrameter identification and optimization. Thus the identified
difference with respect to the feedforward network ismodel is generally a low-order discrete model. Because the
that a recurrent network has at least one feedback loop.power system is a high-order nonlinear continuous system,
Feedback has a profound impact on the learning abilitycare must be taken to ensure that the low-order discrete iden-
of the network and on its performance. The feedback looptified model can properly describe the dynamic behavior of
involves the use of a unit delay element, which results inthe power system. Thus, there must be a compromise between
a nonlinear dynamic behavior of the network. In all otherthe order of the discrete model and the computation time for
respects, the two versions are similar. The errors used inparameter identification and optimization. With the present
training are scalar, and the learning is done only once inhigh-speed microprocessors, this is not a large constraint.
each sampling period for each of the two subnetworks.

Adaptive Neural-Network-Based PSS
Adaptive-Fuzzy-Logic-Based PSS

The success of ANNs to control unknown systems under sig- Obtaining the rules for a fuzzy logic controller, known as
nificant uncertainties makes them very attractive. Using the knowledge elicitation, is a major bottleneck in the develop-
on-line learning features of neural networks, the time-varying ment of FLC. This can be overcome by using adaptive fuzzy
power plant can be tracked, and the control signal can be systems, which automatically find an appropriate set of rules
computed accordingly. Because of their inherent features, and membership functions (33,34). An adaptive fuzzy system
ANNs do appear to be able to implement many functions es- is implemented in the framework of an adaptive network
sential to control systems with a high degree of autonomy structure and equipped with a training (adaptation) algo-
(29). Identification of the power plant model using an on-line rithm. The architecture of the adaptive fuzzy controller is
recursive identification technique is a computationally exten- shown in Fig. 7.
sive task. Neural networks offer the alternative of a model- Training data are presented to the network, and the net-
free method. An ANN-based controller using indirect adaptive work computes its output. Error between the system output
control method has been developed. It combines the advan- and the desired output is back-propagated through the whole
tages of neural networks with the good performance of the network to adjust the network parameters such that the out-
adaptive control. This controller employs the learning ability put error is reduced at each step. Similar to ANN, there are
of neural networks in adaptation process and is trained in different approaches to train an adaptive fuzzy controller.
each sampling period. The controller consists of two subnet- The most straightforward approach is to train the control-
works. The first one is an adaptive neuroidentifier (ANI), ler using another desired controller (35). To avoid the use of
which identifies the power plant in terms of its internal another controller for training, a self-learning approach (36)
weights and predicts the dynamic characteristics of the plant. can be used to train an adaptive fuzzy controller. In this ap-
The identifier is based on the inputs and outputs of the plant proach, a separate adaptive fuzzy identifier is trained to be-
and does not need the states of the plant. The second subnet- have like the plant. Thus a self-learning adaptive fuzzy logic
work is an adaptive neurocontroller (ANC), which provides controller has two adaptive fuzzy systems, one acting as the
the necessary control action to damp the oscillations of the controller and the other acting as the plant identifier (37).
power plant. This identification is similar to plant identification in the

The success of the control algorithm depends upon the ac- mathematical-algorithm-based adaptive controller, except
curacy of the identifier in tracking the dynamic plant. For this that the plant identification is done by an adaptive fuzzy sys-
reason, the ANI is initially trained off-line before being tem capable of modeling nonlinearities. The utility of the
hooked up in the final configuration. The training is per-
formed over a wide range of operating conditions and a wide
spectrum of possible disturbances for the generating unit.
After the off-line training stage, the ANI is hooked up in the
system. Further training of the ANI and ANC is done on-line
every sampling period. On-line training enables the controller
to track the plant variations as they occur and to provide a
control signal accordingly. It also considers the nonlinear na-
ture of the plant. Two versions of this controller have been
developed and studied.

• Multilayer-network-based controller (30). In this case, the
feedforward multilayer network is employed in each of
the two subnetworks to build the adaptive neural net-
work PSS. It is trained in each sampling period using an
on-line version (31) of the back-propagation algorithm.
The errors used to train the ANI and ANC are both sca-
lar, and the learning is done only once in each sampling
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period for each of the two subnetworks. This simplifies
the training algorithm in terms of computation time. Figure 7. Architecture of ANF PSS.
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Figure 8. AVR and exciter model Type ST1A, IEEE standard P421.5,1992.

plant identification is that it can compute the derivative of infinite-bus system in the laboratory with very encouraging
results. The mathematical-algorithm-based adaptive PSS hasthe plant’s output with respect to the plant’s input by means

of the back-propagation process. The final output error of the also been tested on a multimachine physical model (39) and
on a 400 MW thermal machine under fully loaded conditionsplant is back-propagated through the adaptive fuzzy identi-

fier to obtain the equivalent error for the controller output. connected to the system (40). These studies have shown quite
clearly the advantages of the advanced control techniques andThis is then back-propagated through the adaptive fuzzy con-

troller that uses it to learn the control rule. intelligent systems.
Although adaptive fuzzy systems offer the potential solu-

tion to the knowledge elicitation problem, they still suffer
APPENDIXfrom the problem of setting the structure of the fuzzy system

in advance. The structure, expressed in terms of the number
The generating unit is modeled by the following seven first-of membership functions and the number of inference rules,
order differential equations:is usually derived by trial and error. When the number of

inference rules is small, the inference rules cannot describe
the input/output relationship of given data precisely. On the δ̇ = ω0ω (2)
contrary, when the number of inference rules is large, the
generalization capability of the inference rules is sacrificed ω̇ = 1

2H
(Tm + g + Kd δ̇ − Te ) (3)

because of the overfitting problem. Therefore, the number of
inference rules must be determined from the standpoint of λ̇d = ed + raid + ω0(ω + 1)λq (4)
overall learning capability and generalization capability. This

λ̇q = eq + raiq + ω0(ω + 1)λd (5)problem can be resolved by employing a genetic algorithm to
determine the structure of the adaptive fuzzy controller (38). λ̇ f = e f − r f i f (6)
By employing both genetic algorithm and adaptive fuzzy con-
troller, the inference rules parameters of the inference rules λ̇kd = −rkdikd (7)
can be tuned, and the number of membership functions can
be optimized at the same time. This optimization contains two λ̇kq = −rkqikq (8)

major processes:
An AVR and exciter model from the IEEE standard

• Search for the optimum number of rules and shape of P421.5,1992, Type ST1A is shown in Fig. 8.
membership functions by using genetic algorithm.

• Train the network to determine the consequent parts of
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