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PSYCHOACOUSTICS

In this article we apply signal detection theory to qualitatively unify the intensity just-noticeable difference
(JND) and masking data of Wegel and Lane (1), Fletcher and Munson (2,3,25,31), Miller (4), and Egan and
Hake (5). We do this by treating the loudness as the first moment, and the intensity JND as the second moment,
of the random variable we call the single-trial loudness. From these definitions we define a loudness signal-
to-noise ratio (SNRL), which is the unifying factor. This theory relies heavily on Fletcher and Munson’s 1933
theory of loudness (2). The purpose of this article is to create a model of masking that may be used for speech
and music coding.

Introduction

The Problem of Perceptual Coding. When quantizing signals one necessarily, by design, introduces
noise into the representation. The art of perceptual coding is to control this noise so that it has the smallest
perceptual effect. Given a complete description of the signal-dependent internal noise of the auditory system,
it is assumed that it is possible to quantize the signals with a similar noise. Given such a coder, the quantizing
error would be perceptually masked by the internal noise of the auditory system.

When the quantizing error is large enough that the error is above the perceptual threshold, we would
like the system to degrade gracefully. How can we meet these difficult goals? The short answer is: only with a
model of masking.

What is masking and where does it come from? How do we measure it experimentally? How may we
predict it for an arbitrary signal? To understand the answers to these questions, we need models of loudness,
masking, the intensity just-noticeable difference (JNDI), critical bands, and the listening condition. This article
is about modeling masking and is an attempt to describe masking to the designer of a coder. It is not about
how to engineer a speech or music coder.

When dealing with human perceptions we must carefully distinguish the external physical variables,
which we call � variables, from the internal psychophysical variables, which we call � variables (note that
� and � sound like the initial syllable of the words physical and psychological, respectively). The model we
seek is a transformation from the � domain to the � domain. Examples of � variables are pressure, frequency,
intensity, and neural rate. Neural rate is an important example because it is an internal variable, yet it is
physical; thus the terms internal and � are not synonymous. Example of � variables are loudness, pitch,
heaviness, brightness, tightness, and timbre.

To represent an acoustic signal, many � variables (e.g., intensity, frequency, duration modulation) must
be specified. In a similar manner, to understand and model masking, many internal � variables must be
determined. There is a natural but unfortunate tendency (everybody does it, all the time), to confuse the
external physical (�) variables with the internal psychophysical (�) variables (for example: heaviness and
weight, pitch and frequency). Such confusions, in a scientific context, lead to serious misinterpretations of
experimental results.
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While the physical variables may be either deterministic or stochastic, it is essential to treat � variables as
stochastic. In fact, it is the stochastic character of the � variables that is responsible for masking. Furthermore,
to understand masking completely, it is important to describe it in both domains. Given these models, the �-
domain noise may be reflected back to the external � domain, into the acoustic domain of the speech or music
signal. For example, in a coder design application, we must first completely characterize the auditory �-domain
signal-to-noise ratio (e.g., the ratio of loudness to loudness noise), and then describe it in terms of the �-domain
signal-to-noise ratio (e.g., the ratio of the ear canal pressure or intensity to JNDI).

It is highly recommended that the serious reader carefully study Chaps. 10, 11, and 13 and Appendix D
of Yost (6). Other important general sources are Gelfand (7) and the excellent book of Littler (8), which, along
with Fletcher (9), was a primary source of information for the author.

Some History. By 1918 AT&T had decided that if they were going to transmit speech across the country
by wire, it was essential that they understand the physical processes behind auditory communication. This
was clearly articulated in an internal report written in 1920 by J. Q. Stewart of the AT&T Development and
Research (D&R) Department, which oversaw the funding for the Western Electric Engineering group:

The desirability of making direct studies of the physics and psychology of hearing in the quality
investigation is becoming increasingly more evident. Research on the physical nature of speech
alone will not be sufficient to establish the physical basis for the prediction of articulation; but it
must be supplemented by studies of hearing. Indeed, the latter seem to be even more important,
because the progress which already has been made toward the formulation of a general philosophy
of articulation has not been dependent to any degree on knowledge of the physical characteristics of
speech, but has been dependent on hypothesis relating to hearing.

This set the tone for the next 27 years of work. By 1922 a research project was in full gear due to the work
of Harvey Fletcher, who had joined AT&T’s Western Electric engineering department in 1916. Fletcher’s Ph.D.
concerned what is now known as the “Millikan oil drop experiment,” and AT&T hired him, based on his basic
understanding of the physics of the electron, to help build a better telephone system. Fletcher quickly became
the leader of this large and important research effort, and by 1924 AT&T was fully committed to funding basic
research on speech perception. This was a true team effort, led by Fletcher.

Fletcher and Wegel (10) accurately measured (for the first time) the threshold of hearing. The year after
their study, Knudsen, a student of Fletcher’s, was the first to measure the pure-tone intensity JND (11). Then
Fletcher (12), with the help of Wegel and Lane (1), provided critical and detailed tone-on-tone masking data.
Fletcher and Steinberg then showed the relation between Wegel and Lane’s masking data and partial loudness
(13). In 1924 Wegel and Lane outlined the physical theory of the cochlear traveling wave (1). Kingsbury
measured isoloudness contours that defined the loudness-level, or phon, scale (14;15, p. 227). Finally, Riesz (16)
conducted an extensive study of tonal masking for probes near the masker frequency (6,8).

This series of theoretical and experimental studies showed that cochlear filtering results from a traveling
wave on the basilar membrane, and the power-law nature of loudness growth in the cochlea was established.
Fletcher summarized this work in the first book to be written on speech and hearing (15), bringing him
worldwide acclaim.

In 1933, based on detailed loudness and masking data of Munson and on a theory worked out by Fletcher,
Fletcher and Munson published the first model of loudness (2). They described how the auditory signal is broken
down into many frequency bands and compressed by the cochlea prior to being neurally coded. They described
partial loudness as the neural rate, provided the functional relationship between masking and partial loudness,
and showed how partial loudness is summed to given the total loudness (17). Unfortunately, while this paper
was highly regarded, the information was not widely digested and accepted by the research community. For
example, the idea that tonal loudness is additive is still controversial (18).
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By 1935, it was proposed that the randomness in the neural representation is what makes the � variables
random variables (19,20). Based on the nature of hearing-loss and loudness recruitment, it became clear by
1937 that the basilar membrane signal is compressed, that this compression is lost when the cochlea is damaged
(21), that this cochlear damage is due to the loss of hair cells (22,23), and that the resulting loss of outer hair
cells causes loudness recruitment (17). At high intensities, all the neurons are stimulated and the loudness is
approximately the same as in the normal ear; however, because of the loss of the nonlinear compressive action
in the recruiting ear of the outer hair cells, the dynamic range of the cochlea is reduced.

By 1947 the similarity between the JND and masking had been clearly articulated and quantified (4).
However, the significance of the neural noise proposal of Montgomery was not appreciated for at least 30 years,
when Siebert (24) applied signal detection theory to various JND data. As will be described below, while neural
noise appears to determine the limits of the pure-tone JND task under many conditions, it may not the limiting
factor in all listening tasks. If another uncertainty (e.g., external noise) dominates the neural uncertainty, then
that factor will limit the JND.

Summary. Fletcher’s 1933 loudness model is basic to our present understanding of loudness coding (2).
With this model Fletcher had clearly described tonal loudness in terms of an additive neural rate code. While
we still need to fill in many details, in my opinion this basic idea (however controversial), is correct. By 1950 it
had been extensively tested (3,9,25,26).

From the loudness model, several predictions are important. These include the auditory threshold, which
is modeled as zero loudness (2), the JND, which provides an inferred measure of the loudness uncertainty (i.e.,
“internal noise”) (4,19,27,28), the masked threshold, which is a generalized JND measure of signal uncertainty
(2,29), signal duration effects (30), and the critical band (25,31). Many other phenomena (e.g., the frequency
JND, beats) appear to be accounted for by these models (9), but the details need to be reevaluated in terms of
the theory of signal detection (TSD).

What is seriously lacking in our present-day understanding of auditory signal processing is a quantitative
model of masking. While Fletcher’s loudness model shows us how to calculate the loudness given the masked
threshold (2,3,25,32) and provides detailed experimental results on the relations between masking and loudness
of tones and noise of various bandwidths (9), he did not (nor did Zwicker) provide us with an accurate method
for the direct calculation of the masking pattern for arbitrary signals. Reasons for this include the lack of a
quantitative understanding (i.e., models) of (a) the highly nonlinear, upward spread of masking (1), (b) the
stochastic nature of masking (19), and (c) beats. [Fletcher was also busy working out his empirical theory of
speech perception (33–34,35).] Thus masking models are the key to understanding hearing, improving speech
coding, and quantifying models of loudness. Masking is one of the most important topics in psychophysics, yet
it is arguably the most poorly understood.

During the 1960s the theory of signal detection (TSD) was identified as an important tool for quantifying
the detection of probe signals. What is missing is detailed models of the decision variables used by the central
nervous system (CNS). For the JND case, where the probe is a copy of the masker, the relevant decision variable
is the change in loudness (17,27,36). In the case of masking, where the probe and masker are different, the
decision variable is unknown and must be experimentally deduced with a model and experimental data for
a multiplicity of maskers and probes. To model the masked threshold (i.e., masking) we need more than a
model of loudness: we need a model of the probe signal-detection task. This model must start with the partial
loudness of the masker plus probe, and describe the detection probability of the probe signal, as a function of
the probe and masker physical parameters.

Overview of this Article. In the next section we will define important concepts such as loudness, the
intensity JND (sometimes called “self-masking”), masking, and critical bands. The discussion in that section is
limited to describing the definitions. Readers familiar with these definitions may move directly to the analysis
and discussion in the subsequent sections on “The Loudness Signal-to-Noise Ratio” and “Narrowband Maskers,”
and use the “Definitions” section as a reference.
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We shall argue that masking is synonymous with the uncertainty of the � representation. In engineering
jargon, masking results from the “quantizing noise” of the loudness representation. Because of this relationship,
and its simplicity, the JND has special significance to the theory of masking. To analyze the problem in more
detail we need to make some distinctions about n-interval force choice (n-IFC) methods, intensity modulation
detection, pure-tone and “frozen-noise” maskers of various bandwidths, and forward masking. Finally we
describe a time-domain nonlinear model of the cochlea and auditory system that explains these data and
discuss how one might model masking by arbitrary signals, such as music and speech.

When representing signals in a computer there are two basic models: fixed-point and floating-point. In
the telephone industry there is a third standard called µ law. In a fixed-point representation the noise is fixed
at one-half the least-significant bit (LSB). Thus the noise is, to a first approximation, independent of the signal
level, and the signal-to-noise ratio (SNR) is proportional to the signal. In a floating-point representation, the
noise is a fixed percentage of the signal level. For example, with an 8 bit mantissa, the noise floor would be
approximately 8 × 6 = 48 dB below the signal. Thus the SNR is roughly independent of the signal level.
In a µ-law signal the noise depends on the signal level. The ideal µ-law device is similar to a logarithmic
compression function and provides a floating-point signal representation, with a 38 dB dynamic range, over
the signal range from −40 dB to 0 dB, and a fixed-point representation with a constant noise level over the
signal range from −80 dB to −40 dB (36a).

We shall see that in the auditory system, the representation noise is a function of the signal level in a
way that is similar to µ-law coding. At low intensities the loudness SNR improves, and at higher intensities it
saturates, with a maximum of 30 to 40. Because of the compression of the loudness, specified by the loudness
power law, the ratio of the loudness SNR to the signal SNR equals the exponent in the loudness power law.
For wideband signals at moderate to high intensities the compression is approximately the square root of the
pressure (fourth root of intensity). This means that a loudness SNR of ≈40, referred to the input signal domain,
is ≈10 (i.e., 10 log10 10 = 10 dB).

Definitions

The definitions in this section are summarized in Table 1.
Loudness. The loudness L is the name of the � intensity corresponding to an acoustic � signal. One

of the major conclusions of modern psychophysics is that � variables are random variables (or processes). We
define the single-trial loudness l̃ as the � random processes that represents the loudness corresponding to each
presentation of the signal (the tilde is used to indicate a random variable; all � variables are represented in
calligraphic font). A trial is defined as a stimulus presentation followed by a subject response. The presentation
can be a single interval, as in loudness scaling methods, or multiple presentations (e.g., an ABX is an example
of a 3-IFC method; signals A and B are first presented, followed by X, which is either A or B) (6). Since the
� variables are random, the subject responses must be random, with a degree of randomness (variance) that
depends on the task.

The expected value of l̃(I),

characterizes the loudness L (I) at intensity I, while the variance
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characterizes the loudness JND �L = d′σL, where the proportionality factor d′ depends on the subject’s criterion
and on the experimental design. Loudness is an important example of an auditory � variable; without a model
of loudness, it is not possible to relate (i.e., model) many different experimental results, because the subject’s
responses are a function of the loudness. A model of the loudness of simple sounds, such as tones and narrow
bands of noise, is critical to the theory of masking because the masking is directly related to the loudness
standard deviation (s.d.) σL.

An Example. Without loudness we cannot make � models of the signals we are processing. An example should
help clarify this point. In 1947 Munson studied the question of the effects of signal duration on tonal loudness
(30). He matched the loudness of a reference tone at frequency f ref = 1 kHz, duration Tref = 1 s, and intensity
I∗

ijk(Ii, f j, Tk), to target tones of intensities Ii = 30 to 90 dB SPL, frequencies f j = 0.25 to 10 kHz, and durations
Tk = 5 to 500 ms. For example, if L (I, f , T) is the loudness of a tone at intensity I, frequency f , and duration
T, then the loudness level I∗

ijk, in phons, is defined by the relation

Munson was able to model these experimental results accurately by first transforming the matched
intensity I∗

ijk to a loudness rate L t(t) per unit time, using the power-law relation of Fletcher and Munson (2),
and then integrating the results with a low-pass filter Es(t), which he called the sensation integral. The form of
Es(t) was determined from the data so as to best fit all his experimental results. He then predicted the loudness
matches to tones having duration of up to 1 min measured previously by von Bekesy. The key to this model is
the nonlinear transformation to the loudness variable, and an integration of the resulting loudness rate over
time. The additivity of loudness between ears and across frequency had previously been demonstrated in Ref.
2, and is a key property of these loudness models.
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Critical Band. The threshold of a pure tone in wideband noise is determined by the loudness standard
deviation σL and the bandwidth of the filters, as measured by the equivalent rectangular bandwidth (ERB), or
critical bandwidth. The critical band is the name Fletcher gave to the band-pass filters of the cochlea. When
a tone centered on the center frequency of a band-pass filter is presented in a wide band of noise, the filter
removes the noise outside of the passband of the filter. Thus the loudness SNR at the output of the filter depends
critically on the bandwidth of the filter. This means that the detectibility of the tone in noise is determined by
the filter’s equivalent power bandwidth (ERB). Since masking is the increase in the threshold of a tone, due to
the presence of noise, the critical bandwidth plays an important role when using wideband maskers.

Modeling Loudness. The basic transformation to loudness is a several-step process. First, the input
signal is filtered by the cochlea. Second, the dynamic range of the signals is compressed by the outer hair
cells on the basilar membrane (17,28,36). Third, the signals are encoded by the inner hair cells and neurons,
and a stochastic neural representation results. Masking and partial loudness are formed from this stochastic
neural representation, and there is extensive evidence that these two quantities are functionally related (9,37).
Finally the neural representation is processed by the nervous system and the total loudness is evaluated. It
was proposed by Fletcher and Munson in 1933, for simple signals such as tones and noise, that this final
processing is a simple sum of the neural rate (2). While this assumption of partial loudness additivity has
been controversial, it has held up amazingly well (18). An analogy that seems appropriate is Newton’s apple.
Newton could never prove that the apple would always fall, but it always did. Only with the discovery of
quantum mechanics were the important limits of Newton’s law F = ma uncovered. It is probably true that
partial loudness does not always add. But under the conditions of these simple experiments with tones, it
always does. Thus it is important to appreciate both the limitations and the power of the additivity of partial
loudness (37).

The two models that have described the above steps are those of Fletcher and Zwicker. Both of these
models are described in the frequency domain. Both models are deterministic. Loudness however is a random
variable. We shall show that after a transformation of tone and noise intensity JND data into the loudness
domain, the JND data are greatly simplified.

The emphasis in this article is on predicting masking for arbitrary signals. To do this we need a time-
domain loudness model. The problem with all loudness models (including the present one) is the lack of
detailed understanding, and therefore specification, of the transformation between the ear canal pressure and
the motion of a point on the basilar membrane. This transformation has two components: a linear filtering
component and a compressive (nonlinear) component. While approximate solutions to this problem have been
proposed, there is presently no accepted model of the compressive transformation. Until such a theory is more
fully developed, we must continue to deal directly with experimental data (38). The greatest simplification and
understanding of these experimental data is found in a description of the data in terms of masking patterns and
partial loudness excitation patterns. As we have refined our understanding of the nonlinear excitation pattern
model, we have been able to account for diverse types of experimental data. However, we cannot consider this
problem solved until the physics of the nonlinear transformation, involving the outer hair cells of the cochlea,
is fully described.

Loudness Growth. � intensity is power per unit area. Loudness, in sones or loudness units (LU; 1 sone
= 975 LU), is the name commonly given to the � intensity. When there are standing waves in the ear canal, the
ear canal pressure is a sum of both inward- and outward-traveling pressure waves. It seems reasonable, but has
not been adequately proven, that the power flow into the ear should be a better measure of hearing performance
than the total pressure. Loudness depends in a complex manner on a number of acoustical variables, such as
intensity, frequency, and spectral bandwidth, and on the temporal properties of the stimulus, as well as on the
mode of listening (in quiet or in noise; binaural or monaural stimulation). Isoloudness contours describe the
relation of equal loudness between tones or between narrow bands of noise at different frequencies.
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In 1924 Fletcher and Steinberg published an important paper on the measurement of the loudness of
speech signals (13). In this paper, when describing the growth of loudness, the authors state

the use of the above formula involved a summation of the cube root of the energy rather than the
energy.

This cube-root dependence was first described by Fletcher the year before (12). Today any power-law rela-
tion between the intensity of the physical stimulus and the psychophysical response is referred to as Stevens’s
law (6,39). Fletcher’s 1923 loudness growth equation established the important special case of loudness for
Stevens’s approximate, but more general, psychological “law.”

Cochlear Nonlinearity: How?. What is the source of Fletcher’s cube-root loudness growth (i.e., Stevens’s
law)? Today we know that the basilar membrane motion is nonlinear, and that cochlear outer hair cells (OHCs)
are the source of the basilar membrane nonlinearity and, as a result, the cube-root loudness growth observed
by Fletcher.

From noise trauma experiments on animals and humans, it is now widely accepted that recruitment
(abnormal loudness growth) occurs in the cochlea (23). In 1937 Lorente de Nó (22) theorized that recruitment
is due to hair cell damage. Animal experiments have confirmed this prediction and have emphasized the
importance of OHC loss (40,41). This loss of OHCs causes a loss of the basilar membrane compression first
described by Rhode in 1971 (6;42;43, p. 291). It follows that the cube-root loudness growth results from the
nonlinear compression of basilar membrane motion due to stimulus-dependent voltage changes within the
OHC.

We still do not know precisely what controls the basilar membrane nonlinearity, although we know that
it is related to outer hair cell length changes which are controlled by the OHC membrane voltage (43a). This
voltage is determined by shearing displacement of the hair cell cilia by the tectorial membrane. We know that
the inner hair cell (IHC) has a limited dynamic range of less than 60 dB, yet it is experimentally observed that
these cells code a dynamic range of about 120 dB (17). Nonlinear compression by cochlear OHCs, prior to IHC
detection, increases the dynamic range of the IHC detectors. When the OHCs are damaged, the compression
becomes linear, and loudness recruitment results (21).

Loudness Additivity. Fletcher and Munson (2) showed, for tonal stimuli, (a) the relation of loudness
to frequency (loudness levels in phons), (b) the dependence of loudness on intensity, (c) a model showing the
relation of masking to loudness, and (d) the basic idea behind the critical band (critical ratio).

Rather than thinking directly in terms of loudness growth, they tried to find a formula describing how the
loudnesses of several stimuli combine. From loudness experiments with low- and high-pass speech and complex
tones (13,15) and from other unpublished experiments over the previous 10 years, they found that loudness
adds. Today this model concept is called loudness additivity. Their hypothesis was that when two equally loud
tones that do not mask each other are presented together, the result is “twice as loud.” They showed that N
tones that are all equally loud, when played together, are N times louder, for N up to 11, as long as they do not
mask each other. Fletcher and Munson found that loudness additivity held for signals between the two ears as
well as for signals in the same ear. When the tones masked each other (namely, when their masking patterns
overlapped), additivity still held, but over an attenuated set of patterns (2), since the overlap region must not
be counted twice. This 1923 model is fundamental to our present understanding of auditory sound processing.

The Argument. Let G(p1, p2) be the nonlinear compression function that maps the ear canal pressures p1
at frequency f 1 and p2 at f 2 into the loudness in sones, under the condition that the tones are far enough apart
in frequency that they do not mask each other. When one tone masks another, the loudness L is always less
than G (i.e., masking always reduces the loudness). When each tone is presented alone, there is no masking,
so L = G. It also follows that L 1 = G(p1, 0) and L 2 = G(0, p2). We assume that G(0, 0) = 0 and G(pref , 0) = 1,
where pref is either 20 µPa or the threshold of hearing at 1 kHz. The problem is to find G(p1, p2).
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Fig. 1. The loudness growth L (I) at 1 kHz (solid line) from Fletcher (9) in LU (975 LU is 1 sone), along with 2L (I) (dashed
line) and 10L (I) (dot–dashed line) for reference. To determine α∗(I) draw a horizontal line that crosses the 2L (I) and L (I)
curves, and note the two intensities. The dB difference is 20 log10(α∗(I)). For example, the total loudness of two 40 dB SL
tones presented to each of the two ears is 2000 LU (2 sones), and is equal to the loudness of a single tone at 49 dB SPL.
Thus α∗ at 40 dB is 9 dB.

• Step 1 The pressure p1 is taken as the reference level for the experiment with f 1 = 1 kHz. The level of
pressure p2, at frequency f 2, is next determined by requiring that its loudness be equal to that of p1. We call
this pressure p∗

2(p1, f 2), since it is a function of both p1 and f 2. In terms of the compression function G, p∗
2

is defined by

• Step 2 Fletcher and Munson scaled the reference pressure p1 by scale factor α and defined α∗ such that the
loudness of α∗p1 is equal to the loudness of p1 and p∗

2 played together. In terms of G this condition is

This equation defines α∗.

Results. For f 1 between 0.8 kHz and 8.0 kHz, and f 2 far enough away from f 1 (above and below) so that
there is no masking, 20 log10 α∗(I) was found to be ≈9 dB for p1 above 40 dB SL. Below 40 dB SL, this value
decreased linearly to about 2 dB for p1 at 0 phons, as shown in Fig. 1. It was found that the loudness G(p1, p∗

2)
does not depend on p∗

2(p1, f 2) as f 2 is varied. Thus we may write α∗(p1, to show its dependence on p1 and
its independence of p∗

2.
Fletcher and Munson found an elegant summary of their data. They tested the assumption that
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namely that the loudnesses of the two tones add. Using Eq. (1), Eq. (3) becomes

Combining Eq. (2) and Eq. (4) gives the nonlinear difference equation

which determines G once α∗(p1) is specified. G(p) may be found by graphical methods or by numerical recursion,
as shown in Fig. 136 of Ref. 9 (p. 190).

From this formulation Fletcher and Munson found that at 1 kHz, and above 40 dB SPL, the pure-tone
loudness G is proportional to the cube root of the signal intensity [G(p) = (p/pref )2/3, since α∗ = 23/2, or 9 dB].
This means that if the pressure is increased by 9 dB, the loudness is doubled. Below 40 dB SPL, loudness was
frequently approximated as being proportional to intensity [G(p) = (p/pref )2, α∗ = 21/2, or 3 dB]. Figure 1 shows
the loudness growth curve. Estimated values of α∗(I) are given in Fletcher (9, Table 31, p. 192).

The Just-Noticeable Difference in Intensity. Basic to psychophysics, more fundamental than mask-
ing, is the concept of a just-noticeable difference (JND), or difference limen (DL). A primary premise of the
auditory theory of signal detection (ATSD) is that the JND is a measure of the � uncertainty (noise) (6). That
is, if we increase the intensity from I to I + �I, so that we can just hear the change in intensity, then �I should
be proportional to the uncertainty of the � representation of I. [�I can also have a component due to the signal
uncertainty, called “external” noise, as when the signal is “roved,” for example (44).] This idea is captured by
the equation (Ref. 44, p. 113) �I = d′σI, where �I is the intensity JND, and σ2

I is the variance of I due to the
internal noise, reflected back to the input of the system. This equation says that the just-noticeable perceptual
change in intensity is proportional to the internal noise, as reflected in the intensity variance. This equation
defines a model for the detection of the change in signal intensity. While this model is widely accepted, it has
not been quantitatively verified (29).

Definition of I(t). The intensity of a sound (in watts per square centimeter) is a physical variable, defined
as the square of the pressure divided by the acoustic impedance I = P2/ρc, where P is the root-mean-square
(rms) pressure, ρ is the density of air, and c is the sound speed. In the time domain when the impedance is
fixed, it is common to define the intensity in terms of the normalized time-integrated squared signal pressure
p(t), namely

These two alternative definitions of intensity differ by the integration over and normalization by a fixed interval
T seconds long. When the signal p(t) is deterministic, as in the case of pure tones, we shall define T to be the
duration of the tone. When the signal is a Gaussian noise, we let p(t) = ñ(t) [i.e., N(0, σn)], and T be the duration
of the noise, leading to I ≡ E [Ĩ(t)] = σ2

n.
Definition of �I. An increment in sound intensity �I(α) may be defined, in terms of a positive pressure

scale factor α ≥ 0 applied to the signal pressure s(t), as

Expanding this relation, we have
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The estimate of the intensity I(t, α) is a function of the time and the signal gain, and I(t, 0) indicates the case
where α = 0.

Definition of an Intensity Detector. In psychophysics the ear is frequently modeled as an intensity
detector. It is useful therefore to introduce this popular model formally and compare its performance with that
of the ear. We define an intensity detector as the intensity I(t) plus the internal noise of the detector,

which is modeled as an independent Gaussian random process ε̃(t), having zero mean and variance σ2
ε [i.e.,

N(0, σε)]. The internal noise limits the JND for nonrandom signals such as pure tones.
Throughout this article, we shall only consider zero-mean signals [e.g., s(t)] when using the above definition

of the intensity detector. One must carefully distinguish I, the observable intensity, and Ĩ, a decision variable
that is not observable. If we think of the energy detector as a crude model of the ear, Ĩ is the decision variable
which represents the � intensity (i.e., the loudness). We will show that the intensity detector is not a good
model of the ear, because both its level dependence and its internal noise are vastly different from those of
the ear [i.e., L (I) �= I (I) and σL(I) �= σI(I)] (29). However, the intensity detector is an important “straw man”
candidate for comparison purposes. It is important to remember that the auditory brain has no access to the
intensity of the stimulus. It only receives auditory information from the auditory nerve.

The mean detector intensity is defined by I ≡ E [Ĩ], and the variance of the detector intensity is defined by
σ2

I(I, T) ≡ E [Ĩ2] − I
2. From this definition, I = I and �I (α) = �I(α). The variance represents the uncertainty

of the internal decision variable and plays a fundamental role in the theory of signal detection. We shall see
that σI is a function of both the mean intensity and the duration, but for deterministic signals is simply equal
to the internal noise of the energy detector [i.e., Ĩ(t, α) is N(I(α), σε)]. For stochastic signals σI(I, T → ∞) = σε,
namely, as the duration of the random signals is increased, σI(I, T) is finally limited by the internal noise. This
means there are conditions (e.g., large T or small I) where the internal noise of the detector will dominate its
performance.

Definition of JNDI. The just-noticeable difference in intensity (JNDI) is determined by finding the value
of α, which we call α∗, such that the subject can correctly identify the decision variable Ĩ(t, α∗) from Ĩ(t, 0) 50%
of the time, adjusted for chance. It is convenient and common to refer to JNDI as simply �I(I) rather than
using the more cumbersome (but more precise) composite-function notation �I(α∗(I)).

For the intensity detector defined above, one may analytically determine JNDI and show that �I(α∗) =
σε. For human subjects we must run an experiment, such as a 2-IFC comparison, and make a model of the
observations. In this case the value of α that satisfies the 50%-above-chance discrimination condition, α∗(I),
depends on I (i.e., �I/I depends on I for tones, but is approximately constant for wideband noise).

Weber’s Law. The intensity JND is frequently expressed as a relative JNDI called the Weber fraction,

defined by J(α∗) ≡ �I/I. Weber’s law J(
Œ
I ), that J is independent of I, was first proposed in 1846 (45).

Weber’s Law and Pure Tones. The Weber fraction J(α∗(I)) is a function of intensity for the most elementary
signal, the pure tone (11,16,46). This observation is referred to as the near miss to Weber’s law (47). The near
miss shows that the ear is not an energy detector, since for an energy detector the detector noise σε is a constant.
For recent discussions of why Weber’s law holds approximately for tones (48;49, p. 721), or why it holds for
wideband noise more than 20 dB above threshold, we refer the reader to the helpful and detailed reviews by
Viemeister (50), Hartmann (51), and Allen and Neely (29).

The JND for an Energy Detector. Next we review the derivation of the JND for the energy detector. Two
independent signals [either s(t) or ñ(t), N(0, σn)] are presented to the energy detector with gains α = 0 and α,
having the decision variable Ĩ(t, α). We would like find α such that the more intense signal is greater than the
less intense signal 75% of the time. This task is equivalent to the following: Find α such that the difference



PSYCHOACOUSTICS 11

�̃I(t, α) ≡ Ĩ(t, α) − Ĩ(t, 0) is greater than zero 75% of the time. It is assumed that �̃I is Gaussian with a variance
of 2σ2

I [the variances σ2
I(0) and σ2

I(α) are assumed to be similar enough to be treated as equal].
When �I (α) ≡ E [�̃I(t, α)] is σI [i.e., when �̃I(t, α) is N(σI, σI)], the probability that �I > 0 is ≈0.76.

This probability is close enough to the definition of 0.75 that it has been adopted as the de facto standard
detection threshold (44). The ratio of �I to σI is an important statistic of the experimental signal uncertainty
called d′:

Using this notation, the definition of α∗ is d′(α∗) ≡ 1.
Thus with the assumption of an intensity detector having Gaussian detection variables of equal variance,

and a detection criterion of 76%, the Weber fraction is

This expression follows from the definition of J and the fact that I = I and σI = σI. The ratio of the intensity
to the intensity variance defines an intensity signal-to-noise ratio SNRI ≡ I /σI, which is more intuitive than
the Weber fraction.

The gain α∗ is then determined from Eq. (9) and Eq. (12):

and since α∗ ≥ 0, we have α∗ = − 1. This last equation allows one to calculate α∗ given SNRI,
or estimate SNRI given a measurement of α∗ from a pure tone intensity JND experiment.

Internal versus External Noise. There are two commonly identified types of masking noise, internal and
external noise. Both of these two types of noise are modeled as � (e.g., loudness) variability, which is synonymous
with masking. Internal noise is due to the stochastic nature of the � representation, while external noise is
due the stochastic nature of the � representation (i.e., variability in the stimulus), which is transformed into
� variability by the auditory system. Internal noise sets the fundamental limit on the representation of the
auditory system. Roving the signal is a technique designed to make the external noise dominate.

For the case of an external noise, it is possible to show (M. M. Sandhi, personal communication) that

where B is an effective bandwidth (that depends on T) defined by

and ρ(t − τ) ≡ E [ñ(t)ñ(τ)]/I is the normalized [i.e., ρ(0) = 1] covariance of the stochastic signal s(t) = ñ(t). Thus
for the intensity detector with a Gaussian input having a variance that dominates the detector noise, Weber’s
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law holds, and J( ) = /TB, or SNRI = TB/ The product TB is called the
degree-of-freedom parameter.

Definition of �L . Any superthreshold increment in the sound intensity must have a corresponding
loudness increment. A loudness increment �L (I) is defined as the change in loudness L (I) corresponding to
an intensity increment �I(I). When �I(I) is JNDI, the corresponding �L defines the loudness just-noticeable
difference JNDL. Just as �I is commonly used to describe JNDI, we shall use �L to describe JNDL.

While it is not possible to measure �L (i.e., JNDL) directly, we assume that we may expand the loudness
function in a Taylor series, giving

where HOT represents higher-order terms that we shall ignore (29). While it is not meaningful to form a Taylor
series expansion of the single trial loudness l̃(t, I), it is meaningful to expand the expected value of this random
process. If we solve for �L , defined as

we find

We call this expression the small-intensity-increment approximation. It shows that the loudness JND �L (I) is
related to the intensity JND �I(I) by the slope of the loudness function evaluated at intensity I.

From the Taylor expansion the internal loudness standard deviation may be related to an external effective
intensity variance by

It follows that d′ = �L /σL and that JNDL is defined by d′ = 1 in a manner identical to the definition of JNDI.
The Loudness SNR. We define the loudness SNR as SNRL ≡ L /σL. From the definitions of SNRL, d′,

and J,

where β ≡ 10 log10(I/Iref ) and L log(β) ≡ 10 log10 L (10β/10). This equation is important because (1) all the terms
are dimensionless, (2) we are used to thinking of the loudness and intensity on a log scale (as in Fig. 1), and (3)
dL log/dβ is constant at large intensities (because, according to Stevens’s law, L (I) is a power law). To estimate
the power-law slope using γ ≡ dL log/dβ it is necessary to treat L as an intensity when defining L log.

A much simpler way to write Eq. (17) is to define SNRI ≡ I/σI, which along with �I = d′σI gives (29)
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This equation says that the loudness SNR and the intensity SNR are related by the exponent γ of the loudness
power-law function.

Masking. Masking is the elevation in threshold due to a masking signal. To define masking we must
first define the masked threshold. The energy of the masker spreads out along the basilar membrane with a
density given by Ix(f m, Im, x), where x(f ) is the characteristic place corresponding to frequency f . To model the
masked threshold we need a model of Ix(f m, Im, x) near the probe place x(f p).

The Masked Threshold. The hearing threshold in the presents of a masking signal is called the masked
threshold. Since it is used in the definition of masking, it is a more fundamental than masking. More formally,
the masked threshold I∗

p(f p, Im) is the threshold intensity of a probe (maskee) I∗
p at frequency f p in the

presence of a masking signal having intensity Im. When the masker intensity is set equal to zero, the masked
threshold is just the probe intensity at the threshold of hearing in quiet, or the unmasked threshold I∗

p(f p) ≡
I∗p(f p, Im = 0). As before, the asterisk indicates that special value of Ip which gives a 75% correct score for the
detection of the probe in a 2-IFC task, due to the loudness uncertainty characterized by σL.

Because the hearing threshold is generally defined statistically as the probe intensity corresponding to
the 50% correct score (corrected for chance) for detecting the probe from some � decision random variable, the
masked threshold is not a random variable. To model masking we must first identify the � decision random
variable and then model the masked threshold I∗

p(f p, Im).
Masking and the Masking Pattern. The masking M is defined as the ratio of the masked to the unmasked

threshold:

The masked threshold is frequently reported in dB SL (i.e., as 10 log M), where SL means that the masked
threshold is referred to the sensation level (i.e., the unmasked threshold). The masking pattern is a description
of the masking as a function of the masker level and the probe frequency. The masker can be any signal, such
as a tone, narrowband noise, wideband noise, or even speech.

The masked threshold I∗
p(f p, Im) is frequently measured with a pure-tone probe signal; however, a narrow

probe band of noise centered on frequency f p is sometimes used to reduce the beating that can take place when
the masker is a pure tone. In this case it seems logical to measure the unmasked threshold I∗

p(f p) with the
same probe signal when computing the masking.

Definition of �I for Masking. We repeat the derivation of the intensity detector developed for JNDI,
but this time using a probe that differs from the masker. As in the derivation of Eq. (8), an increment in the
intensity detector output �I (α) is defined in tems of a pressure scale factor α applied to the probe signal p̃(t):

where ñ(t) is the masker and p̃(t) is the tone probe (maskee). As a natural generalization of Eq. (8), we set the
intensity of the probe equal to that of the masker (i.e., I = σ2

p = σ2
n), and control the intensity of the probe
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with the scale factor α. Expanding Eq. (20) and taking the expected value gives

where

is the normalized correlation coefficient between the masker and probe. When ρnp is nonstationary, it is a
function of time t, and when it is stationary, it is constant over time and can come out of the integral, which
then integrates to 1. To simplify the notation, we define the effective correlation ρe(t) as the integral of ρnp(t)
over the T-second rectangular window,

Equation (21) defines the relative size of the intensity detector’s output �I /I as a function of α. If we
require that �I be at the detection threshold relative to the magnitude of the detector’s internal noise ε̃, then
we may solve for α∗. In terms of the de facto detection measure d′ [Eq. (11)],

Since d′(α∗) = 1 defines α∗,

Because α ≥ 0 by definition, the solution to this equation is α∗ = − ρe(t). The correlation
between ñ(t) and p̃(t) is bounded between −1 ≤ ρnp(t) ≤ 1; thus

This inequality bounds the range of α∗(ρe, SNRI) for the energy detector, for the case of d′ = 1.
Classes of Masking. The most basic classes of masking are simultaneous and nonsimultaneous mask-

ing. In this article we only consider simultaneous masking.
Frozen versus Random Maskers. Noise maskers come in two important forms: so-called frozen-noise and

random-noise maskers. The term frozen noise is an oxymoron because the word noise is synonymous with
stochastic, whereas frozen is synonymous with deterministic. We shall call such signals high-degree-of-freedom
signals, or simply frozen signals, but never “frozen noise.” Live music is an example of a stochastic signal,
whereas recorded music is an example of a high-degree-of-freedom signal.

As described by Eq. (14), the variance of a random masker can increase the masking. This effect has been
called external noise. It is important to determine the relative contribution of the variance of the stimulus and
the internal representation. This may be done by measuring the masked threshold twice: once with the random
masker, and again with it frozen. If the two masked thresholds are the same, the internal noise is greater than
the external noise.
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Wideband Maskers. When the masking signal has a wide bandwidth, the energy is spread out along the
basilar membrane. For wideband signals, the degree of this correlation across frequency can be important in
reducing the external noise. Because of the filtering and the nonlinear properties of the cochlea, it is necessary
to understand narrowband masking before we attempt to analyze wideband maskers.

Narrowband Maskers. When the masking signal has a narrow bandwidth, the spread of the energy along
the basilar membrane is limited by the filtering properties of the cochlea. When the signal is deterministic or
of long duration, the JND is limited by the internal noise.

There are two basic classes of narrowband masking measurements, called masking patterns (MPs) and
psychophysical tuning curves (PTCs). The masking pattern is specified in terms of a fixed masked and a variable
probe, while the psychophysical tuning curve is specified in terms of a fixed low-level (i.e., near-threshold) probe
and a variable masker. Because of the nonlinear compressive properties of the cochlea, the difference between
the MP and PTC, which is quite large, is important, as it gives insight into the nonlinear properties of the
cochlea. We shall only deal with the MP here.

There are three basic regions of a masking pattern, corresponding to the downward spread of masking
(f p < f m), the upward spread of masking (f p > f m), and critical-band masking (f p ≈ f m). Critical-band masking
is the realm of several poorly understood, but important, masking issues, including the linearity of masking
(an extension of Weber’s law to the case of masking), the asymmetry of masking (the dB difference in masking
between a tone and a narrow band of noise of equal intensity), and beats. When the frequency difference
between the masker and the probe (maskee) becomes greater than the cochlear filter bandwidth, the masking
depends on the shape of the cochlear filters and the cochlear nonlinear compression, which determine the
properties of the upward and downward spread of masking.

Critical-Band Masking and Beats. Beating occurs when the masker and probe signals are correlated, as
when two or more tones are within the bandwidth of a single cochlear filter (e.g., critical-band masking). This
was the case for Riesz’s 1928 experiment where the probe and masker were tones separated by 0.2 Hz to 35 Hz
(16). The presence of beats is quantified for the energy detector by ρe(t). Within the cochlear filter bandwidth
(i.e., the critical band) the signal pressure components add in a linear manner. It is frequently said that the
power of the components adds, but this is incorrect; power adds only when ρe = 0, namely when there are no
beats. Even though beat detection only occurs in a small frequency region around the critical band where the
signal envelopes are correlated, it is critical to understand it quantitatively.

As the tones are moved apart in frequency, the signal develops a maximum roughness quality when the
cochlear filter bandwidth is reached. This shows that the temporal integration has a bandwidth that is greater
than the critical bandwidth. When the frequency difference is greater than a critical band, the signals become
independent (ρe = 0), the beating disappears, and the loudnesses of the masker and probe, presented together,
add in magnitude, resulting in a total loudness that is always greater than the loudness of the masker alone.

Modulation Detection. As may be seen from Eq. (21), �I depends on two terms, a correlation term
αρe(t) and a fixed term α2. When max|ρe(t)| > α, the correlation term dominates, and when max|ρe(t)| < α

the quadric term dominates. Thus when f m ≈ f p, �I is time-varying around zero, and the de facto formula
(11) with d′ = 1, derived under the assumption that �I > 0, fails. When the mean loudness does not change
(i.e., critical band masking), the CNS must use a different criterion, which is characterized by the ratio of the
variances, as described by a maximum likelihood analysis (54). This critical-band detection paradigm is called
intensity modulation detection (MDI) to reflect the idea that the mean intensity is zero (or close to zero). Riesz’s
experiment, which is a special case of narrowband masking signals, is a classic example of MDI (50).

The Masked Threshold as an Internal Noise. In 1947 Miller pointed out that Riesz’s “JND” experiment
is formally a masking task, since the probe and the masker are not the same signal. He then demonstrated a
close similarity between Riesz’s modulation detection threshold and the wideband-noise JNDI. But practically
speaking, Riesz’s experiment is measuring a form of JND, because the masker and maskee are close in frequency
(viz., 3 Hz apart). The term “close in frequency” is not well defined, but is related to the region of beats. The
maximum rate of loudness variation is believed to be limited by an internal temporal integrator having a time
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constant between 100 ms and 300 ms, corresponding to a low-pass filter having a 3 dB bandwidth between
0.5 Hz and 1.6 Hz (Ref. 6, section on “Temporal Integration”). For example, Munson (30) found a single-pole
integrator with an integration time constant of 200 ms, and Riesz showed that 3 Hz is the optimum frequency
of modulation for his detection task. However, the 3 dB bandwidth is not a meaningful characterization of the
perceptual bandwidth, since experiments show we can hear beats up to at least 20 Hz or 30 Hz. This implies
that the integrator should have a shallow slope and that perhaps the perceptual bandwidth should be specified
at the −30 dB point rather than the −3 dB point, assuming Munson’s single-pole filter. In summary, Riesz and
MIller provided us with the insight that the masked threshold may be modeled in terms of the same (internal)
noise that limits the JND (8,29).

It follows that the loudness uncertainty σL for Miller’s wideband noise is similar in magnitude to σL

for pure tones as measured by Riesz. Following Miller’s lead, we define the masked threshold in terms of
the � uncertainty (e.g., “loudness noise”). If l̃m=l̃(Im) is the single-trial loudness due to a masker at inten-
sity Im, and l̃(Im,Ip) is the single-trial loudness due to both the masker and a probe of intensity Ip, then
�l(Im,Ip,ρe(t))≡l̃(Im,Ip)−l̃m defines a decision variable for the masked threshold. The effective correlation ρe(t)
is used to account for the correlations between probe and masker corresponding to the critical-band region
and beats. The probe intensity at the masked threshold I∗

p(f p, Im) is defined as that value of Ip such that the
probability of detecting the probe is 50% correct, corrected for chance.

The Loudness Signal-To-Noise Ratio

We have interpreted the pure-tone JND as a measure of the � noise. In this section we complete this interpre-
tation by calculating the loudness SNR required to account for the pure-tone and wideband-noise JNDI. In the
following we directly compare the tonal loudness growth function L (I) of Fletcher and Munson (2) measured by
Munson in 1932 (55) with the tonal intensity JNDs �I(I) from Riesz (16). Both sets of experimental data were
taken in the same laboratory within a few years of each other, and it is likely they used the same methods and
the same equipment, given its cost. This will allow us to estimate the loudness JND �L (L ), and therefore the
loudness signal-to-noise ratio (SNRL ≡ L /σL). JND data are quite sensitive to the experimental measurement
conditions (20, pp. 141–143). The Riesz (16) and Munson (55) data are interesting because they are taken under
conditions similar to the loudness data of Fletcher and Munson, which were continuous (1 s long) pure tones.

A Direct Estimate of JNDL. In Fig. 2 we present a direct estimate of the loudness JNDL [�L (L )]
computed from Eq. (16) at all 11 frequencies Fletcher and Munson used to measure the loudness. The procedure
for doing this is described in Allen and Neely (29). Each of the four displays a different frequency range. As
indicated in the figure legend, we have marked the point on the curve where the slope changes. For the 62
Hz data in the upper left panel we see that �L is constant for levels below about 50 dB SL. Over most of
the frequency range, below 20 dB [L (I) < 100 LU], we find �L ∝ Between 20 dB and 60 dB [100 < L (I)
< 3000], we find �L ∝ L

1/3. Above 60 dB [L (I) > 3000], we find �L ∝ L. Thus the loudness and JNDL are
proportional above 60 dB SL.

In Fig. 2 on the lower left we also show �L (L ) for Miller’s (4) wideband-noise JNDI data. Miller gives the
loudness level as well as the intensity JND measurement. We converted this loudness level to loudness using
Fletcher and Munson’s (2) reference curve (i.e., Fig. 1). The SNRL for the tones and the wideband noise are
almost identical, especially over the frequency region between 0.25 kHz and 8.0 kHz.

Determination of the Loudness SNR. Given the d′ ≡ �L /σL and SNRL ≡ L /σL, it follows that L /�L

= SNRL/d′. From Fig. 3 for levels above 65 dB, the SNRL becomes constant. From Fig. 2, SNRL increases by a
factor of 2 when the loudness increases by a factor of 4, up to about 55 dB.

As an application of Eq. (18), we calculate SNRL for Miller’s wideband masking data. Miller found J =
0.1, which gives SNRI = d′/J = 10. As shown in Fig. 4 on the upper right, the power law has a slope of
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Fig. 2. �L (L , f ) computed directly from Eq. (16) using Riesz’s JND data and the Fletcher–Munson loudness–intensity
curve, for levels between 0 and 120 dB SL. The mark � has been placed on the curves at an intensity of 55 dB SL for 62 Hz
and 125 Hz, 60 dB SL for 0.25 kHz to 1 kHz, 55 dB SL for 2 kHz to 5.65 kHz, and 50 dB SL for 8 kHz to 16 kHz. In the upper
right panel we have added straight lines for reference, having slopes of 1

2 , 1
3 , and 1, for levels between 0 and 20 dB SL,

between 20 dB SL and 60 dB SL, and above 60 dB SL, respectively. From these plots it is clear that �L (L ) is described by
a power law in L having three straight line segments. Between 0 and 20 dB SL, the slope is close to 0.5. Between 20 dB SL

and 60 dB SL the slope is close to 1
3 (�L ∝ L

1/3). Above 60 dB SL, the slope is 1 (�L ∝ L ). Fechner’s hypothesis [�L ( )]
appears to hold only for 62 Hz and 125 Hz below 50 dB SL. One extra curve, labeled with the symbol +, has been added to
the lower left panel, showing �L (L ) for the wideband noise case of Miller (4). This curve has a slope of approximately 0.63
for L less than 103, and then merges with the tone data up to a loudness of 105, the upper limit of Miller’s data.

γ = 1
4 above 40 dB SL. Thus SNRL ≈ 40, and this estimate is in fair agreement with estimates for pure tones

as shown in Fig. 3.
Summary of JNDL Results. The pure-tone and wideband-noise JND results have been summarized in

terms of SNRL(L ). These curves seem similar enough that they may be characterized by one curve, at least for
coding purposes. Between threshold and 60 dB SL, σL ∝ L

p with 1
3 ≤ p ≤ 1

2 for tones and p = 0.63 for noise;
above 60 dB SL, σL ∝ L . Thus it appears that once we know the signal intensity, we know the loudness SNR
for any signal bandwidth. Next we will look at masking data and describe how to use this information.

Narrowband Maskers

Narrowband maskers, which result in a limited region of energy spread along the basilar membrane, hold the
key to understanding masking. The two maskers we shall consider are a pure tone and a subcritical band of
noise.
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Fig. 3. Plot of L (I)/�L = SNRL/d′ against loudness for pure tones having intensities between 0 and 120 dB SL. Each of
the four panels is for a different frequency range. Except at 62 Hz and 125 Hz, and below about 60 dB SL, the loudness
signal-to-noise ratio SNRL(I) is proportional to L

1 − p, where 1
2 ≤ p ≤ 1

3 . Above 60 dB SL the SNRL saturates with a value
between 30 and 50 linear units. For 62 Hz and 125 Hz the SNRL decrease at high levels, between 100 dB SL and 120 dB
SL. In the lower left panel, the solid curve, shown with the +, is SNRL/d′ for the wideband noise signal of Miller (4). Even
though the conditions are very different, it the SNRL is similar for tones and wideband noise.

Tone-on-Tone Masking. When one tone is used to mask another tone, band-pass masking patterns
result, as shown by the dashed curve of Fig. 5 (5), corresponding to an f m = 400 Hz tonal masker at 65 dB SL
(Im = 80 dB SPL), as a function of probe frequency f p. Such patterns, as published by Fletcher (12) and Wegel
and Lane (1), were used by Fletcher and Munson to derive the theory of loudness (2,37). An alternative way
to view these data is as masking level curves as shown in Fig. 6 for a f m = 400 Hz masker. Such data were
first published in Fletcher (12,56) and Wegel and Lane (1) for frequencies f p between 0.25 kHz and 4 kHz and
intensities between 0 and 85 dB SL. In 1922 Fletcher and Wegel published a major study (10) that accurately
measured the threshold of hearing for the first time (37, p. A7), and the masked threshold measurements of
Fig. 6 followed from this 1922 experiment.
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Fig. 4. In 1947 Miller (4) measured JNDI and the loudness level for two subjects using wideband noise (0.15 kHz to 7
kHz) for levels between 3 dB SL and 100 dB SL. The intensity of the noise was modulated with a ramped square wave
that was high for 1.5 s and low for 4.5 s. The loudness, computed from Miller’s phon data using Fletcher and Munson’s (2)
1-kHz-tone loudness growth curve (solid curve) is shown in the upper left panel, along with the Fletcher–Munson tonal
loudness growth function (dashed curve). The upper right panel shows the slope γ(I) ≡ dL log/dβ of Miller’s loudness growth
function (two subjects). For reasons that are not clear, the loudness values at the limits seem to be in error. In the lower
left panel we plot (two subjects) log10 �L (L ) as a function of log10 L . This curve has a slope that is close to 0.63 for 1 < �L

< 100 (i.e., �L ≈ L
0.63). In the bottom right panel we show the average SNRL for the two subjects. As in the upper right

panel, the ends of the range seem to be in error.

It is interesting to compare the 1923 Fletcher data (12) of Fig. 6 with the 1950 data of Fig. 5. For example,
the masked threshold for a 65 dB SL masker is shown in Fig. 5 with ◦ symbols. The largest difference is about
17 dB at 2 kHz. A careful comparison between the two data sets shows that a 58 dB SL masker at 400 Hz from
the 1923 Fletcher data (12) (shown in Fig. 5 as + symbols) is within a few decibels of the 65 dB SL masker
for Egan and Hake’s data (5), for all probe frequencies. Subject variability is one obvious explanation for these
differences. An alternative is that Fletcher, Wegel, and Lane may have compensated for the 2f 1 − f 2 distortion
product in their measurements, as they did for the subjective harmonics.
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Fig. 5. The solid curve is the simultaneous masking pattern for a 90 Hz band of noise centered at 410 Hz having an
rms intensity of 65 dB SL (a spectral level of 45.6 dB, as shown by the short solid line). The dashed curve is the masking
pattern for a 400 Hz pure tone at 65 dB SL (circle). The probe signal (maskee) was a 0.7 s pure tone. Note the large (26
dB) difference in the masked threshold at the masking frequency of 410 Hz. When the probe is near 500 Hz, the distortion
product 2f 1 − f 2 is the limiting factor in detection. The tone masking curve seems to be shifted to higher frequencies by a
ratio of about 1.2 (a ratio of 600 Hz and 500 Hz). The dips at 0.8 kHz and 1.2 kHz are due to subjective harmonics (9). The
masked threshold for a 400 Hz tone as determined from the data of Fig. 6 of 12 is shown by symbols + for 58 dB SL and ◦
for 65 dB SL.

The Spread of Masking. As may be seen from Fig. 6 (solid lines), for the case f p = 2 kHz to 4 kHz, the
onset of masking is abrupt at about 60 dB to 65 dB and has a slope of about 2.4; namely,

This expression is plotted as the short-dashed line superimposed on the 3 kHz curve of Fig. 6. This steep slope
is referred to as the upward spread of masking. For downward spread of masking (f p < f m), the growth of
masking is a compressive power law in intensity (dashed lines).

Critical-Band Masking. For probe frequencies near the masker frequency of 400 Hz the masking is said
to be linear in intensity. For example, at f p = 0.45 kHz (dash–dot line in Fig. 6) the masking curve is well
approximated by the linear relation

for Im greater than about 25 dB SL, as indicated by the dotted line superimposed on the 0.45 Hz masking curve
(1, p. 270). Other examples of this linearity include the masking of tones by narrow bands of noise (2,5,31) and
the masking of tones and narrow bands of nose by wideband noise (3,9,25,31,57).
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Fig. 6. Tone-masking-tone data from Fletcher (12) and Wegel and Lane (1) for a masker at 400 Hz. The dashed lines
correspond to probe frequencies between 0.25 kHz and 0.45 kHz, while the solid lines correspond to probe frequencies of
1 kHz to 4 kHz. The masking at 0.45 kHz is proportional to the masker level (i.e., the slope is close to 1). For 2 kHz, 3
kHz, and 4 kHz there is a threshold effect at about 60 dB SL. For these frequencies the slope is greater than 1. The short
dashed line superimposed on the 3 kHz curve is given by Eq. (25) and has a slope of 2.4. This steep slope is an important
characteristic of the upward spiral of masking.

Equation (26) is an extension of Weber’s law for JNDs to the case of masking. It is just as important
to understand (i.e., model) the linearity of masking as it is to understand why Weber’s JND law holds for
wideband noise, as the explanations are the same.

While the linearity of masking seems to be a trivial experimental observation, it is a surprising result.
When the probe is added to the masker and the two signals are within a critical bandwidth, their basilar
membrane motion adds (e.g., two sine waves beat). However, the response level of the basilar membrane
motion, the neural response, and the resulting loudness are all nonlinear functions of level. Thus it is not
initially obvious why the masking should be proportional to the intensity.

Linearity of Masking and Weber’s Law. If J is approximately constant for f p = f m, then it is reasonable
to expect that it will be approximately constant when f p ≈ f m. If we interpret Ip as the change in intensity due
to the probe, then �I = I∗

p and I∗
p/Im ≡ �I/I. Thus Eq. (26) is an extension of Weber’s JND law to masking, but

is not Weber’s law, becuse that law strictly applies to the JND. Clearly however the two cases are functionally
equivalent. Riesz was the first to recognize this important correspondence. Five years after Fletcher published
the masking level curves, Riesz (16) executed an extensive quantitative study of the critical-band region.

Riesz came to two importnat conclusions. First, he interpreted �I in terms of a short-term intensity
variation, and defined �I = Imax − Imin. With his interpretation of �I as a short-term intensity, he was able
to precisely test Weber’s law under conditions of masking. Thus Riesz’s experiment was the first to make the
important connection between critical-band masking and Weber’s law.

Second, unlike Wegel and Lane’s conclusion that I∗
p/Im is a constant (i.e., that Weber’s law holds), Riesz

found that �I/I is not exactly constant. In other words, upon careful scrutiny, he showed that Eq. (26) does not
hold exactly for the case of tones. Unfortunately it was almost 20 years before Riesz’s observations were fully
appreciated (4,8).
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Riesz’s JND Experiment. According to Eq. (21), �I = 0 when the temporal integration time T is long
relative to the time variations of ρnp(t) [Eq. (22)]. It is difficult to argue that �I is proportional to I (i.e., Weber’s
law) if �I = 0.

Riesz found a trivial resolution of this problem. He assumed that the ear averages over a short enough
interval that it can track the variations over time. This idea is obvious, because one can hear the slow beating
of two sine waves as their loudness slowly varies. From this point of view, Riesz defined his measure of JNDI
as

which is (Imax − Imin)/Imin. For small α, Riesz’s formula reduces to J ≈ 4α, which is similar to the first right-hand
term in Eq. (21). When Riesz reports J = 0.1, we have α∗ = 0.025.

If Riesz had ignored the beating and treated the two tones as independent, then �I would have been the
intensity of the two tones played together minus the intensity of the masking tone alone, and he would have
reported the Weber fraction as Ji = [(1 + α2) − 1]/1 = α2, which is the second term in Eq. (21). Thus given his
actual measure value of α∗ = 0.025, he would have reported Ji = 0.000625 rather than 0.1.

Intensity JND data have traditionally been expressed in many different ways, depending on the point
of view of the author (6, pp. 151–152). Because there have been so many different measures, there has been
a great deal of confusion as to exactly what the numbers mean. The Weber fraction was originally defined to
characterize the JND where the probe and masker are identical (ρnp = 1). When applied to maksing, J is a
measure that depends on the effective correlation ρe(t) and therefore on the temporal integration time. Until
we determine how to precisely define the temporal integration time, it seems more appropriate to quote the
experimental results in terms of α∗ rather than J, because α∗ does not depend on the independence assumption
and therefore on ρe(t).

Maximum Likelihood Formulation of Riesz’s Experiment. When two sine waves beat, Riesz’s measure �I
= Imax − Imin is a reasonable statistic. However, we need a more general measure when dealing with arbitrary
correlated critical-band signals. The method of maximum likelihood estimation is the natural way to do this
(54).

One could think of Riesz’s experiment either in terms of a two-hypothesis test where H0 is for α = 0 and
H1 is for α > 0, or as the detection of a 3 Hz sine wave in noise where H0 is N(0, σL) and H1 is the sine wave
plus the same noise used in H0. This is a modulation detection (MDI) task where the means are equal and the
variance changes. Thus when calculating the probability of a 75% correct response, we cannot use the de facto
rule d′ = 1, because this measure is always zero (because �L = 0).

When ρe = 0, a sufficient statistic is the ratio of the change in mean to the variance (i.e., d′), while for the
modulation detection case (ρe �= 0), it is the variance ratio (54). Given two normal distributions N(0, 1) and
N(0, σ), the probability of correct classification by a maximum likelihood classifier is 0.742 when σ = 3. For the
case of a sine wave in unit-variance noise [N(0, 1)], simulations show that α∗ ≈ 6.0. This then gives us a formal
mechanism for relating the 2-IFC JND measurements to the modulation detection measurements.

Noise-on-Tone Maskers. The masking due to a tone and that due to a subcritical bandwidth of noise
of equal intensity are very different. This difference has been called the asymmetry of masking. This asymmetry
is clearly evident in Fig. 5 (Ref. 5, Fig. 7), which compares a five-subject average masking pattern for a 90 Hz
narrow band of noise (solid curve) with the tone masking pattern. The intensity of both maskers is the same
(80 dB SPL, or 65 dB SL). Fletcher (Ref. 9, p. 205) showed that the loudness of a subcritical band of noise is
the same as the loudness of a pure tone having the same intensity. Even though the intensity and the loudness
are the same, from Fig. 7 the masked thresholds differ by about 20 dB at the masker frequency of 400 Hz, or
by about 18 dB on either side (e.g., at 380 Hz and 430 Hz).
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Figures 3 and 4 in Egan and Hake’s paper (5) show single-subject results at 430 Hz where I∗
p/Im =

(i.e., −30 dB) for the tone masker, and (i.e., −10 dB) for the noise masker, leading to a 10 log 10 = 20 dB
difference off the masker frequency. Their Figs. 5 and 6 provide data for a second subject at three intensities
as a function of frequency. At the masker frequency of 430 Hz the difference between the noise-masked and
the tone-masked threshold has a mean of 23 ± 1.6 dB.

We can use Eq. (24) to explain a significant portion of the asymmetry of masking. To do this we start with
our estimate of SNRL from Fig. 3. For a level of 80 dB SPL at 400 Hz, we have SNRL ≈ 40. Since γ ≈ 1

3 for tones,
from Eq. (18) we estimate SNRI to be about 13.3. From Eq. (24), with |ρe| = 1 (for tones), we have α∗ = 1/26.6,
or −28.5 dB. The difference between the 65 dB SL tone masker level in Fig. 5 and the dashed line at 400 Hz is
about −20 dB. The difference between −28.5 dB and −20 dB (−8.5 dB) represents the error in the prediction.

For the case of the noise masker, ρe = 0. From Eq. (24), α∗ = 1/ = 0.27, or −11.2 dB. The
corresponding value from Fig. 5 is the difference between the noise masker level of 65 dB SL and the 61 dB
level of the solid line near 410 Hz, which is −4 dB, resulting in a −7.2 dB error. The energy detector formula
gives a 28.5 − 11.2 = 17.3 dB difference between the tone and the narrowband-noise masker, compared to Egan
and Hake’s 20 − 4 = 16 dB difference. Thus while the absolute estimates of α∗ are too small by about a factor of
two (meaning either the estimate of the loudness SNR may be too large, or the subjects were underperforming),
the prediction of the asymmetry of masking is close to the measured value. There is some uncertainty in the
value of the slope γ, since for noise it is 1

4 , while for tones it is 1
3 .

We conclude that the correlation between the masker and probe has a dramatic effect on the threshold
signal gain α∗, with threshold intensity variations of up to 32.46 dB when SNRI ≈ 10 [i.e., from Eq. (24) with
ρe between −1 and 1].

The energy detector analysis clearly show the importance of the correlation between the probe and masker.
When a tone is added to a narrow band of noise of the same center frequency, the two signals move slowly in
and out of phase, reflecting the correlation and increasing the variance of the decision variable. We conclude
that a proper analysis of masking using a maximum likelihood analysis of the detection problem, applied in
the loudness domain, will result in excellent correlations with masking experiments.

The Loudness Model

When a single tone is presented to the cochlea, the energy is spread out along the cochlea, even though the
energy only exists at a single frequency. The function H(f , x) defines a family of complex filter functions.
Corresponding to every point x0 there is a filter function H(f , x0), and for every pure tone at frequency f 0,
the energy is spread along the basilar membrane according to |H(f 0, x)|2. Assuming the signal is above the
threshold at a given point x, the excitation at each point drives nerve fibers that innervate that patch of basilar
membrane. The total spike rate for that patch defines the partial loudness rate L tx(t, x). The total loudness is
given by a double integral over time and place:

where Es(t) is Munson’s (30) sensation integral, and the integral over x is normalized to unit length. The partial
loudness function L tx(t, x) is a nonlinear transformation of the energy along the basilar membrane, defined by
the bank of filters H(f , x) = F · h(t, x) [F · represents the Fourier transform, and h(t, x) is a family of impulse
responses].
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Some Basic Questions

Here are some basic questions that are begging for further investigation:

• Why is the critical ratio independent of level (9,25,57)?
• What is the relation between masking by narrow bands of frozen noise and the pure-tone JND?
• Are Weber’s law and the linear relation seen in narrowband and wideband maskers related?
• Why does the masked threshold track the masker intensity in a linear manner over such a large range of

intensities, given that the BM at CF is nonlinear? That is, why is σI ∝ I?
• Why do we find Weber’s law to hold for wideband noise (29)?
• What is the reason for the near miss to Weber’s law for tonal signals (6,29,44)?
• What is the source of the upward spread of masking (1,8,58)?
• Why is there a > 26 dB difference in the masking between a tone and a narrow band of noise (5)?
• What determines the ratio of the critical ratio to the ERB, and what is its true value?
• What are the relative contributions of internal and external noise in the masking of tones and narrow

bands of noise, as a function of the bandwidth and duration of the signal?
• Why is there such a close relation between the frequency JND and the ERB (8,9)?
• Does loudness add (18)?
• What is the loudness SNR for two equally loud tones that do not mask each other?
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