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IMAGE MANIPULATION

This article addresses the problem of applying geometric transformations to digital images. The principle ideas
behind this form of image manipulation include sampling theory, reconstruction, and antialiasing. We will
review these topics and provide codes and examples to illustrate their use in image manipulation.

Sampling theory is central to the study of sampled-data systems, for example, digital image transforma-
tions. It lays a firm mathematical foundation for the analysis of sampled signals, offering invaluable insight
into the problems and solutions of sampling. It does so by providing an elegant mathematical formulation
describing the relationship between a continuous signal and its samples. We use it to resolve the problems of
image reconstruction and aliasing. Reconstruction is an interpolation procedure applied to the sampled data.
It permits us to evaluate the discrete signal at any desired position, not just the integer lattice upon which the
sampled signal is given. This is useful when implementing geometric transformations, or warps, on the image.
Aliasing refers to the presence of unreproducibly high frequencies in the image and the resulting artifacts that
arise upon undersampling.

Together with defining theoretical limits on the continuous reconstruction of discrete input, sampling
theory yields the guidelines for numerically measuring the quality of various proposed filtering techniques.
This proves most useful in formally describing reconstruction, aliasing, and the filtering necessary to combat
the artifacts that may appear at the output.

In order to better motivate the importance of sampling theory and filtering, we demonstrate its role with
the following examples. A checkerboard texture is shown projected onto an oblique planar surface in Fig. 1. The
image exhibits two forms of artifacts: jagged edges and moire patterns. Jagged edges are prominent toward
the bottom of the image, where the input checkerboard undergoes magnification. It reflects poor reconstruction
of the underlying signal. The moire patterns, on the other hand, are noticeable at the top, where minification
(compression) forces many input pixels to occupy fewer output pixels. This artifact is due to aliasing, a symptom
of undersampling.

Figure 1(a) was generated by projecting the center of each output pixel into the checkerboard and sampling
(reading) the value of the nearest input pixel. This point sampling method performs poorly, as is evident by
the objectionable results of Fig. 1(a). This conclusion is reached by sampling theory as well. Its role here is
to precisely quantify this phenomena and to prescribe a solution. Figure 1(b) shows the same mapping with
improved results. This time, the necessary steps were taken to preclude artifacts. In particular, a superior
reconstruction algorithm was used for interpolation to suppress the jagged edges, and antialiasing filtering
was carried out to combat the symptoms of undersampling that gave rise to the moire patterns.

Sampling Theory

Both reconstruction and antialiasing share the two-fold problem addressed by sampling theory:

(1) Given a continuous input signal g(x) and its sampled counterpart gs(x), are the samples of gs(x) sufficient
to exactly describe g(x)?

(2) If so, how can g(x) be reconstructed from gs(x)?
1
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Fig. 1. Oblique checkerboard: (a) unfiltered, (b) filtered.

Fig. 2. Spectrum G(f ).

The solution lies in the frequency domain, whereby spectral analysis is used to examine the spectrum of
the sampled data.

The conclusions derived from examining the reconstruction problem will prove to be directly useful for
resampling and indicative of the filtering necessary for antialiasing. Sampling theory thereby provides an
elegant mathematical framework in which to assess the quality of reconstruction, establish theoretical limits,
and predict when it is not possible.

Sampling. Consider a 1-D signal g(x) and its spectrum G(f ), as determined by the Fourier transform.

Note that x represents spatial position, and f denotes spatial frequency.
The magnitude spectrum of a signal is shown in Fig. 2. It shows the frequency content of the signal with

a high concentration of energy in the low-frequency range, tapering off toward the higher frequencies. Since
there are no frequency components beyond f max, the signal is said to be bandlimited to frequency f max.

The continuous output g(x) is then digitized by an ideal impulse sampler, the comb function, to get the
sampled signal gs(x). The ideal 1-D sampler is given as
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Fig. 3. Spectrum Gs(f ).

where δ is the familiar impulse function, and Ts is the sampling period. The running index n is used with δ to
define the impulse train of the comb function. We now have

Taking the Fourier transform of gs(x) yields

where f s is the sampling frequency, and ∗ denotes convolution. The above equations make use of the following
well-known properties of Fourier transforms:

(1) Multiplication in the spatial domain corresponds to convolution in the frequency domain. Therefore, Eq.
(3) gives rise to a convolution in Eq. (4).

(2) The Fourier transform of an impulse train is itself an impulse train, giving us Eq. (5).
(3) The spectrum of a signal sampled with frequency f s (Ts = 1/f s) yields the original spectrum replicated in

the frequency domain with period f s in Eq. (6).

This last property has important consequences. It yields spectrum Gs(f ) which, in response to a sampling
period Ts = 1/f s, is periodic in frequency with period f s. This is depicted in Fig. 3. Notice then, that a small
sampling period is equivalent to a high sampling frequency yielding spectra replicated far apart from each
other. In the limiting case when the sampling period approaches zero (Ts → 0, f s → ∞), only a single spectrum
appears—a result consistent with the continuous case.

Reconstruction

The above result reveals that the sampling operation has left the original input spectrum intact, merely
replicating it periodically in the frequency domain with a spacing of f s. This allows us to rewrite Gs(f ) as a
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sum of two terms, the low frequency (baseband) and high frequency components. The baseband spectrum is
exactly G(f ), and the high frequency components, Ghigh(f ), consist of the remaining replicated versions of G(f )
that constitute harmonic versions of the sampled image.

Exact signal reconstruction from sampled data requires us to discard the replicated spectra Ghigh(f ),
leaving only G(f ), the spectrum of the signal we seek to recover. This is a crucial observation in the study of
sampled-data systems.

Reconstruction Conditions. The only provision for exact reconstruction is that G(f ) be undistorted
due to overlap with Ghigh(f ). Two conditions must hold for this to be true:

(1) The signal must be bandlimited. This avoids spectra with infinite extent that are impossible to replicate
without overlap.

(2) The sampling frequency f s must be greater than twice the maximum frequency f max, present in the signal.
This minimum sampling frequency, known as the Nyquist rate, is the minimum distance between the
spectra copies, each with bandwidth f max.

The first condition merely ensures that a sufficiently large sampling frequency exists that can be used to
separate replicated spectra from each other. Since all imaging systems impose a bandlimiting filter in the form
of a point spread function, this condition is always satisfied for images captured through an optical system.
Note that this does not apply to synthetic images, for example, computer-generated imagery.

The second condition proves to be the most revealing statement about reconstruction. It answers the
problem regarding the sufficiency of the data samples to exactly reconstruct the continuous input signal. It
states that exact reconstruction is possible only when f s > f Nyquist, where f Nyquist = 2 f max. Collectively, these
two conclusions about reconstruction form the central message of sampling theory, as pioneered by Claude
Shannon in his landmark papers on the subject (1,2).

Ideal Low-Pass Filter. We now turn to the second central problem: Given that it is theoretically possible
to perform reconstruction, how may it be done? The answer lies with our earlier observation that sampling
merely replicates the spectrum of the input signal, generating Ghigh(f ) in addition to G(f ). Therefore, the act of
reconstruction requires us to completely suppress Ghigh(f ). This is done by multiplying Gs(f ) with H(f ), given
as

H(f ) is known as an ideal low-pass filter and is depicted in Fig. 4, where it is shown suppressing all
frequency components above f max. This serves to discard the replicated spectra Ghigh(f ). It is ideal in the
sense that the f max cut-off frequency is strictly enforced as the transition point between the transmission and
complete suppression of frequency components.

Sinc Function. In the spatial domain, the ideal low-pass filter is derived by computing the inverse
Fourier transform of H(f ). This yields the sinc function shown in Fig. 5. It is defined as
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Fig. 4. Ideal low-pass filter H(f )

Fig. 5. The sinc function.

The reader should note the reciprocal relationship between the height and width of the ideal low-pass
filter in the spatial and frequency domains. Let A denote the amplitude of the sinc function, and let its zero
crossings be positioned at integer multiples of 1

2 W. The spectrum of this sinc function is a rectangular pulse of
height A/2W and width 2W, with frequencies ranging from −W to W. In our example above, A = 1 and W =
f max, = .5 cycles/pixel. This value for W is derived from the fact that digital images must not have more than
one half cycle per pixel in order to conform to the Nyquist rate.

The sinc function is one instance of a large class of functions known as cardinal splines, which are
interpolating functions defined to pass through zero at all but one data sample, where they have a value of one.
This allows them to compute a continuous function that passes through the uniformly-spaced data samples.

Since multiplication in the frequency domain is identical to convolution in the spatial domain, sinc(x)
represents the convolution kernel used to evaluate any point x on the continuous input curve g given only the
sampled data gs:

Equation (10) highlights an important impediment to the practical use of the ideal low-pass filter. The
filter requires an infinite number of neighboring samples (i.e., an infinite filter support) in order to precisely
compute the output points. This is, of course, impossible owing to the finite number of data samples available.
However, truncating the sinc function allows for approximate solutions to be computed at the expense of
undesirable ringing, that is, ripple effects. These artifacts, known as the Gibbs phenomenon, are the overshoots
and undershoots caused by reconstructing a signal with truncated frequency terms. The two rows in Fig. 6
show that truncation in one domain leads to ringing in the other domain. This indicates that a truncated sinc
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Fig. 6. Truncation in one domain causes ringing in the other domain.

Fig. 7. Nonideal reconstruction.

function is actually a poor reconstruction filter because its spectrum has infinite extent and thereby fails to
bandlimit the input.

In response to these difficulties, a number of approximating algorithms have been derived, offering a
trade-off between precision and computational expense. These methods permit local solutions that require the
convolution kernel to extend only over a small neighborhood. The drawback, however, is that the frequency
response of the filter has some undesirable properties. In particular, frequencies below f max, are tampered, and
high frequencies beyond f max, are not fully suppressed. Thus, nonideal reconstruction does not permit us to
exactly recover the continuous underlying signal without artifacts.

Nonideal Reconstruction. The process of nonideal reconstruction is depicted in Fig. 7, which indi-
cates that the input signal satisfies the two conditions necessary for exact reconstruction. First, the signal
is bandlimited since the replicated copies in the spectrum are each finite in extent. Second, the sampling
frequency exceeds the Nyquist rate since the copies do not overlap. However, this is where our ideal scenario
ends. Instead of using an ideal low-pass filter to retain only the baseband spectrum components, a nonideal
reconstruction filter is shown in the figure.
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The filter response Hr(f ) deviates from the ideal response H(f ) shown in Fig. 4. In particular, Hr(f ) does
not discard all frequencies beyond f max. Furthermore, that same filter is shown to attenuate some frequencies
that should have remained intact. This brings us to the problem of assessing the quality of a filter.

The accuracy of a reconstruction filter can be evaluated by analyzing its frequency domain characteristics.
Of particular importance is the filter response in the passband and stopband. In this problem, the passband
consists of all frequencies below f max. The stopband contains all higher frequencies arising from the sampling
process.

An ideal reconstruction filter, as described earlier, will completely suppress the stopband while leaving the
passband intact. Recall that the stopband contains the offending high frequencies that, if allowed to remain,
would prevent us from performing exact reconstruction. As a result, the sinc filter was devised to meet these
goals and serve as the ideal reconstruction filter. Its kernel in the frequency domain applies unity gain to
transmit the passband and zero gain to suppress the stopband.

The breakdown of the frequency domain into passband and stopband isolates two problems that can arise
due to nonideal reconstruction filters. The first problem deals with the effects of imperfect filtering on the
passband. Failure to impose unity gain on all frequencies in the passband will result in some combination of
image smoothing and image sharpening. Smoothing, or blurring, will result when the frequency gains near
the cut-off frequency start falling off. Image sharpening results when the high frequency gains are allowed to
exceed unity. This follows from the direct correspondence of visual detail to spatial frequency. Furthermore,
amplifying the high passband frequencies yields a sharper transition between the passband and stopband, a
property shared by the sinc function.

The second problem addresses nonideal filtering on the stopband. If the stopband is allowed to persist, high
frequencies will exist that will contribute to aliasing (described later). Failure to fully suppress the stopband
in a condition known as frequency leakage. This allows the offending frequencies to fold over into the passband
range. These distortions tend to be more serious since they are visually perceived more readily.

In the spatial domain, nonideal reconstruction is achieved by centering a finite-width kernel at the position
in the data at which the underlying function is to be evaluated, that is, reconstructed. This is an interpolation
problem which, for equally spaced data, can be expressed as

where h is the reconstruction kernel that weighs K data samples at xk. Equation (11) formulates interpolation
as a convolution operation. In practice, h is nearly always a symmetric kernel; that is, h(−x) = h(x). We shall
assume this to be true in the discussion that follows.

The computation of one interpolated point is illustrated in Fig. 8. The kernel is centered at x, the location
of the point to be interpolated. The value of that point is equal to the sum of the values of the discrete input
scaled by the corresponding values of the reconstruction kernel. This follows directly from the definition of
convolution.

Reconstruction Kernels

The numerical accuracy and computational cost of reconstruction is directly tied to the convolution kernel
used for low-pass filtering. As a result, filter kernels are the target of design and analysis in the creation
and evaluation of reconstruction algorithms. They are subject to conditions influencing the tradeoff between
accuracy and efficiency. This section reviews several common nonideal reconstruction filter kernels in the order
of their complexity: box filter, triangle filter, cubic convolution, and windowed sinc functions.
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Fig. 8. Interpolation of a single point.

Fig. 9. Box filter: (a) kernel, (b) Fourier transform.

Box Filter. The box filter kernel is defined as

Various other names are used to denote this simple kernel, including the sample-and-hold function and Fourier
window. The kernel and its Fourier transform are shown in Fig. 9.

Convolution in the spatial domain with the rectangle function h is equivalent in the frequency domain to
multiplication with a sinc function. Due to the prominent side lobes and infinite extent, a sinc function makes
a poor low-pass filter. Consequently, this filter kernel has a poor frequency domain response relative to that
of the ideal low-pass filter. The ideal filter, drawn as a dashed rectangle, is characterized by unity gain in the
passband and zero gain in the stopband. This permits all low frequencies (below the cut-off frequency) to pass
and all higher frequencies to be suppressed.

Triangle Filter. The triangle filter kernel is defined as

Kernel h is also referred to as a tent filter, roof function, Chateau function, or Bartlett window.
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Fig. 10. Triangle filter: (a) kernel, (b) Fourier transform.

Fig. 11. Cubic convolution: (a) kernel (a = −.5), (b) Fourier transform.

This kernel corresponds to a reasonably good low-pass filter in the frequency domain. As shown in Fig.
10, its response is superior to that of the box filter. In particular, the side lobes are far less prominent, indi-
cating improved performance in the stopband. Nevertheless, a significant amount of spurious high-frequency
components continue to leak into the passband, contributing to some aliasing. In addition, the passband is
moderately attenuated, resulting in image smoothing.

Cubic Convolution. The cubic convolution kernel is a third-degree approximation to the sinc function.
It is symmetric, space-invariant, and composed of piecewise cubic polynomials:

where −3 < a < 0 is used to make h resemble the sinc function.
Of all the choices for a, the value −1 is preferable if visually enhanced results are desired. That is, the

image is sharpened, making visual detail perceived more readily. However, the results are not mathematically
precise, where precision is measured by the order of the Taylor series. To maximize this order, the value a =
−.5 is preferable. A cubic convolution kernel with a = −.5 and its spectrum are shown in Fig. 11.

Windowed Sinc Function. Sampling theory establishes that the sinc function is the ideal interpolation
kernel. Although this interpolation filter is exact, it is not practical since it is an infinite impulse response (IIR)
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Fig. 12. (a) Rectangular window, (b) Windowed sinc, (c) Spectrum, (d) Log plot.

filter defined by a slowly converging infinite sum. Nevertheless, it is perfectly reasonable to consider the effects
of using a truncated, and therefore finite, sinc function as the interpolation kernel.

The results of this operation are predicted by sampling theory, which demonstrates that truncation in
one domain leads to ringing in the other domain. This is due to the fact that truncating a signal is equivalent
to multiplying it with a rectangle function Rect(x), defined as the box filter of Eq. (12). Since multiplication
in one domain is convolution in the other, truncation amounts to convolving the signal’s spectrum with a sinc
function, the transform pair of Rect(x). Since the stopband is no longer eliminated, but rather attenuated by a
ringing filter (i.e., a sinc), the input is not bandlimited, and aliasing artifacts are introduced. The most typical
problems occur at step edges, where the Gibbs phenomena becomes noticeable in the form of undershoots,
overshoots, and ringing in the vicinity of edges.

The Rect function above served as a window, or kernel, that weighs the input signal. In Fig. 12(a),
we see the Rect window extended over three pixels on each side of its center, that is, Rect(6x) is plotted. The
corresponding windowed sinc function h(x) is shown in Fig. 12(b). This is simply the product of the sinc function
with the window function, i.e., sinc(x)Rect(6x). Its spectrum, shown in Fig. 12(c), is nearly an ideal low-pass
filter. Although it has a fairly sharp transition from the passband to the stopband, it is plagued by ringing.
In order to more clearly see the values in the spectrum, we use a logarithmic scale for the vertical axis of the
spectrum in Fig. 12(d). The next few figures will be illustrated by using this same four-part format.

Ringing can be mitigated by using a different windowing function exhibiting smoother fall-off than the
rectangle. The resulting windowed sinc function can yield better results. However, since slow fall-off requires
larger windows, the computation remains costly.

Aside from the rectangular window mentioned above, the most frequently used window functions are
Hann, Hamming, Blackman, and Kaiser. These filters identify a quantity known as the ripple ratio, defined as
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Fig. 13. (a) Hann window, (b) Windowed sinc, (c) Spectrum, (d) Log plot.

the ratio of the maximum side-lobe amplitude to the main-lobe amplitude. Good filters will have small ripple
ratios to achieve effective attenuation in the stopband. A tradeoff exists, however, between ripple ratio and main-
lobe width. Therefore, as the ripple ratio is decreased, the main-lobe width is increased. This is consistent with
the reciprocal relationship between the spatial and frequency domains; that is, narrow bandwidths correspond
to wide spatial functions.

In general, though, each of these smooth window functions is defined over a small finite extent. This is
tantamount to multiplying the smooth window with a rectangle function. While this is better than the Rect
function alone, there will inevitably be some form of aliasing. Nevertheless, the window functions described
below offer a good compromise between ringing and blurring.

Hann and Hamming Windows. The Hann and Hamming windows are defined as

where N is the number of samples in the windowing function. The two windowing functions differ in their
choice of α. In the Hann window, α = 0.5, and in the Hamming window α = 0.54. Since they both amount to
a scaled and shifted cosine function, they are also known as the raised cosine window. The Hann window is
illustrated in Fig. 13. Notice that the passband is only slightly attenuated, but the stopband continues to retain
high frequency components in the stopband, albeit less than that of Rect(x).
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Fig. 14. (a) Blackman window, (b) Windowed sinc, (c) Spectrum, (d) Log plot.

Blackman Window. The Blackman window is similar to the Hann and Hamming windows. It is defined
as

The purpose of the additional cosine term is to further reduce the ripple ratio. This window function is shown
in Fig. 14.

Kaiser Window. The Kaiser window is defined as

where I0, is the zeroth-order Bessel function of the first kind, α is a free parameter, and
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Fig. 15. (a) Lanczos2 window, (b) Windowed sinc, (c) Spectrum, (d) Log plot.

The Kaiser window leaves the filter designer much flexibility in controlling the ripple ratio by adjusting
the parameter α. As α is incremented, the level of sophistication of the window function grows as well. Therefore,
the rectangular window corresponds to a Kaiser window with α = 0, while more sophisticated windows, such
as the Hamming window, correspond to α = 5.

Lanczos Window. The Lanczos window is based on the sinc function rather than cosines, as used in
the previous methods. The two-lobed Lanczos window function is defined as

The Lanczos2 window function, shown in Fig. 15, is the central lobe of a sinc function. It is wide enough
to extend over two lobes of the ideal low-pass filter, that is, a second sinc function. This formulation can be
generalized to an N-lobed window function by replacing the value 2 in Eq. (19) with the value N. Larger N
results in superior frequency response.

Aliasing

If the two reconstruction conditions outlined earlier are not met, sampling theory predicts that exact recon-
struction is not possible. This phenomenon, known as aliasing, occurs when signals are not bandlimited or
when they are undersampled; that is, f s ≤ f Nyquist. In either case, there will be unavoidable overlapping of
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Fig. 16. Overlapping spectral components give rise to aliasing.

Fig. 17. Aliasing artifacts due to undersampling.

spectral components, as in Fig. 16. Notice that the irreproducible high frequencies fold over into the low fre-
quency range. As a result, frequencies originally beyond f max will, upon reconstruction, appear in the form of
much lower frequencies. Unlike the spurious high frequencies retained by nonideal reconstruction filters, the
spectral components passed due to undersampling are more serious since they actually corrupt the components
in the original signal.

Aliasing refers to the higher frequencies becoming aliased and indistinguishable from the lower frequency
components in the signal if the sampling rate falls below the Nyquist frequency. In other words, undersampling
causes high-frequency components to appear as spurious low frequencies. This is depicted in Fig. 17, where
a high-frequency signal appears as a low frequency signal after sampling it too sparsely. In digital images,
the Nyquist rate is determined by the highest frequency that can be displayed: one cycle every two pixels.
Therefore, any attempt to display higher frequencies will produce similar artifacts.

There is sometimes a misconception in the computer graphics literature that jagged (staircased) edges are
always a symptom of aliasing. This is only partially true. Technically, jagged edges arise from high frequencies
introduced by inadequate reconstruction. Since these high frequencies are not corrupting the low-frequency
components, no aliasing is actually taking place. The confusion lies in that the suggested remedy of increasing
the sampling rate is also used to eliminate aliasing. Of course, the benefit of increasing the sampling rate is that
the replicated spectra are now spaced farther apart from each other. This relaxes the accuracy constraints for
reconstruction filters to perform ideally in the stopband where they must suppress all components beyond some
specified cut-off frequency. In this manner, the same nonideal filters will produce less objectionable output.

It is important to note that a signal may be densely sampled (far above the Nyquist rate) and continue
to appear jagged if a zero-order reconstruction filter is used. Box filters used for pixel replication in real-time
hardware zooms are a common example of poor reconstruction filters. In this case, the signal is clearly not
aliased but rather poorly reconstructed. The distinction between reconstruction and aliasing artifacts becomes
clear when we notice that the appearance of jagged edges is improved by blurring. For example, it is not
uncommon to step back from an image exhibiting excessive blockiness in order to see it more clearly. This
is a defocusing operation that attenuates the high frequencies admitted through nonideal reconstruction.
On the other hand, once a signal is truly undersampled, there is no postprocessing possible to improve its
condition. After all, applying an ideal low-pass (reconstruction) filter to a spectrum whose components are
already overlapping will only blur the result, not rectify it.
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Antialiasing

The filtering necessary to combat aliasing is known as antialiasing. In order to determine corrective action, we
must directly address the two conditions necessary for exact signal reconstruction. The first solution calls for
low-pass filtering before sampling. This method, known as prefiltering, bandlimits the signal to levels below
f max, thereby eliminating the offending high frequencies. Notice that the frequency at which the signal is to
be sampled imposes limits on the allowable bandwidth. This is often necessary when the output sampling grid
must be fixed to the resolution of an output device, for example, screen resolution. Therefore, aliasing is often
a problem that is confronted when a signal is forced to conform to an inadequate resolution due to physical
constraints. As a result, it is necessary to bandlimit, or narrow, the input spectrum to conform to the allotted
bandwidth as determined by the sampling frequency.

The second solution is to point sample at a higher frequency. In doing so, the replicated spectra are spaced
farther apart, thereby separating the overlapping spectra tails. This approach theoretically implies sampling
at a resolution determined by the highest frequencies present in the signal. Since a surface viewed obliquely
can give rise to arbitrarily high frequencies, this method may require extremely high resolution. Whereas the
first solution adjusts the bandwidth to accommodate the fixed sampling rate, f s, the second solution adjusts f s
to accommodate the original bandwidth. Antialiasing by sampling at the highest frequency is clearly superior
in terms of image quality. That is, of course, operating under different assumptions regarding the possibility of
varying f s. In practice, antialiasing is performed through a combination of these two approaches. That is, the
sampling frequency is increased so as to reduce the amount of bandlimiting to a minimum.

Point Sampling. The naive approach for generating an output image is to perform point sampling,
where each output pixel is a single sample of the input image taken independently of its neighbors (Fig. 18). It
is clear that information is lost between the samples, and that aliasing artifacts may surface if the sampling
density is not sufficiently high to characterize the input. This problem is rooted in the fact that intermediate
intervals between samples, which should have some influence on the output, are skipped entirely.

The Star image is a convenient example that overwhelms most resampling filters due to the infinitely
high frequencies found toward the center. Nevertheless, the extent of the artifacts are related to the quality
of the filter and the actual spatial transformation. Figure 19 shows two examples of the moire effects that
can appear when a signal is undersampled using point sampling. In Fig. 19(a), one out of every two pixels in
the Star image was discarded to reduce its dimension. In Fig. 19(b), the artifacts of undersampling are more
pronounced as only one out of every four pixels are retained. In order to see the small images more clearly, they
are magnified using cubic spline reconstruction. Clearly, these examples show that point sampling behaves
poorly in high frequency regions.

Aliasing can be reduced by point sampling at a higher resolution. This raises the Nyquist limit, account-
ing for signals with higher bandwidths. Generally, though, the display resolution places a limit on the highest
frequency that can be displayed, and thus limits the Nyquist rate to one cycle every two pixels. Any attempt
to display higher frequencies will produce aliasing artifacts such as moire patterns and jagged edges. Conse-
quently, antialiasing algorithms have been derived to bandlimit the input before resampling onto the output
grid.

Area Sampling. The basic flaw in point sampling is that a discrete pixel actually represents an area,
not a point. In this manner, each output pixel should be considered a window looking onto the input image.
Rather than sampling a point, we must instead apply a low-pass filter (LPF) upon the projected area in order
to properly reflect the information content being mapped onto the output pixel. This approach, depicted in Fig.
20, is called area sampling, and the projected area is known as the preimage. The low-pass filter comprises the
prefiltering stage. It serves to defeat aliasing by bandlimiting the input image prior to resampling it onto the
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Fig. 18. Point sampling.

Fig. 19. Aliasing due to point sampling: (a) 1
2 and (b) 1

4 scale.

Fig. 20. Area sampling.

output grid. In the general case, prefiltering is defined by the convolution integral

where f is the input image, g is the output image, h is the filter kernel, and the integration is applied to all [u,
v] points in the preimage.

Images produced by area sampling are demonstrably superior to those produced by point sampling. Figure
21 shows the Star image subjected to the same downsampling transformation as that in Fig. 19. Area sampling
was implemented by applying a box filter (i.e., unweighted averaging) to the Star image before point sampling.
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Fig. 21. Aliasing due to area sampling: (a) 1
2 and (b) 1

4 scale.

Notice that antialiasing through area sampling has traded moire patterns for some blurring. Although there is
no substitute to high-resolution imagery, filtering can make lower resolution less objectionable by attenuating
aliasing artifacts.

Supersampling. The process of using more than one regularly spaced sample per pixel is known as
supersampling. Each output pixel value is evaluated by computing a weighted average of the samples taken
from their respective preimages. For example, if the supersampling grid is three times denser than the output
grid (i.e., there are nine grid points per pixel area), each output pixel will be an average of the nine samples
taken from its projection in the input image. If, say, three samples hit a green object, and the remaining six
samples hit a blue object, the composite color in the output pixel will be one-third green and two-thirds blue,
assuming a box filter is used.

Supersampling reduces aliasing by bandlimiting the input signal. The purpose of the high-resolution
supersampling grid is to refine the estimate of the preimages seen by the output pixels. The samples then
enter the prefiltering stage, consisting of a low-pass filter. This permits the input to be resampled onto the
(relatively) low-resolution output grid without any offending high frequencies introducing aliasing artifacts.
In Fig. 22, we see an output pixel subdivided into nine subpixel samples which each undergo inverse mapping,
sampling the input at nine positions. Those nine values then pass through a low-pass filter to be averaged into
a single output value.

Supersampling was used to achieve antialiasing in Fig. 1 for pixels near the horizon. There are two prob-
lems, however, associated with straightforward supersampling. The first problem is that the newly designated
high frequency of the prefiltered image continues to be fixed. Therefore, there will always be sufficiently higher
frequencies that will alias. The second problem is cost. In our example, supersampling will take nine times
longer than point sampling. Although there is a clear need for the additional computation, the dense placement
of samples can be optimized. Adaptive supersampling is introduced to address these drawbacks.

Adaptive Supersampling. In adaptive supersampling, the samples are distributed more densely in
areas of high intensity variance. In this manner, supersamples are collected only in regions that warrant
their use. Early work in adaptive supersampling for computer graphics is described in (3). The strategy is to
subdivide areas between previous samples when an edge, or some other high frequency pattern, is present.
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Fig. 22. Supersampling.

Two approaches to adaptive supersampling have been described in the literature. The first approach allows
sampling density to vary as a function of local image variance (4,5). A second approach introduces two levels of
sampling densities: a regular pattern for most areas and a higher-density pattern for regions demonstrating
high frequencies. The regular pattern simply consists of one sample per output pixel. The high density pattern
involves local supersampling at a rate of 4 to 16 samples per pixel. Typically, these rates are adequate for
suppressing aliasing artifacts.

A strategy is required to determine where supersampling is necessary. In (6), the author describes a
method in which the image is divided into small square supersampling cells, each containing eight or nine
of the low-density samples. The entire cell is supersampled if its samples exhibit excessive variation. In (4),
the variance of the samples are used to indicate high frequency. It is well-known, however, that variance is a
poor measure of visual perception of local variation. Another alternative is to use contrast, which more closely
models the nonlinear response of the human eye to rapid fluctuations in light intensities (7). Contrast is given
as

Adaptive sampling reduces the number of samples required for a given image quality. The problem with
this technique, however, is that the variance measurement is itself based on point samples, and so this method
can fail as well. This is particularly true for subpixel objects that do not cross pixel boundaries. Nevertheless,
adaptive sampling presents a far more reliable and cost-effective alternative to supersampling.

Prefiltering

Area sampling can be accelerated if constraints on the filter shape are imposed. Pyramids and preintegrated
tables are introduced to approximate the convolution integral with a constant number of accesses. This com-
pares favorably against direct convolution which requires a large number of samples that grow proportionately
to the preimage area. As we shall see, though, the filter area will be limited to squares or rectangles, and the
kernel will consist of a box filter. Subsequent advances have extended their use to more general cases with only
marginal increases in cost.

Pyramids. Pyramids are multi-resolution data structures commonly used in image processing and
computer vision. They are generated by successively bandlimiting and subsampling the original image to form
a hierarchy of images at ever decreasing resolutions. The original image serves as the base of the pyramid, and
its coarsest version resides at the apex. Thus, in a lower resolution version of the input, each pixel represents
the average of some number of pixels in the higher resolution version.
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Fig. 23. Mip Map memory organization.

The resolution of successive levels typically differs by a power of two. This means that successively coarser
versions each have one quarter of the total number of pixels as their adjacent predecessors. The memory cost
of this organization is modest: 1 + 1

4 + 1/16 + . . . = 4/3 times that needed for the original input. This requires
only 33% more memory.

To filter a preimage, one of the pyramid levels is selected based on the size of its bounding square box.
That level is then point sampled and assigned to the respective output pixel. The primary benefit of this
approach is that the cost of the filter is constant, requiring the same number of pixel accesses independent of
the filter size. This performance gain is the result of the filtering that took place while creating the pyramid.
Furthermore, if preimage areas are adequately approximated by squares, the direct convolution methods
amount to point sampling a pyramid. This approach was first applied to texture mapping in (8) and described
in (9).

There are several problems with the use of pyramids. First, the appropriate pyramid level must be
selected. A coarse level may yield excessive blur, while the adjacent finer level may be responsible for aliasing
due to insufficient bandlimiting. Second, preimages are constrained to be squares. This proves to be a crude
approximation for elongated preimages. For example, when a surface is viewed obliquely, the texture may be
compressed along one dimension. Using the largest bounding square will include the contributions of many
extraneous samples and result in excessive blur. These two issues were addressed in (10) and (11), respectively,
along with extensions proposed by other researchers.

Williams (10) proposed a pyramid organization called mip map to store color images at multiple resolutions
in a convenient memory organization. The acronym mip stands for multum in parvo, a Latin phrase meaning
many things in a small place. The scheme supports trilinear interpolation, where both intra- and inter-level
interpolation can be computed using three normalized coordinates: u, v, and d. Both u and v are spatial
coordinates used to access points within a pyramid level. The d coordinate is used to index and interpolate
between different levels of the pyramid. This is depicted in Fig. 23.

The quadrants touching the east and south borders contain the original red, green, and blue (RGB)
components of the color image. The remaining upper-left quadrant contains all the lower resolution copies
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of the original. The memory organization depicted in Fig. 23 clearly supports the earlier claim that memory
cost is 4/3 times that required for the original input. Each level is shown indexed by the [u, v, d] coordi-
nate system, where d is shown slicing through the pyramid levels. Since corresponding points in different
pyramid levels have indices which are related by some power of two, simple binary shifts can be used to
access these points across the multiresolution copies. This is a particularly attractive feature for hardware
implementation.

The primary difference between mip maps and ordinary pyramids is the trilinear interpolation scheme
possible with the [u, v, d] coordinate system. By allowing a continuum of points to be accessed, mip maps are
referred to as pyramidal parametric data structures. In Williams’ implementation, a box filter was used to
create the mip maps, and a triangle filter was used to perform intra- and inter-level interpolation. The value
of d must be chosen to balance the tradeoff between aliasing and blurring. Heckbert suggests

where d is proportional to the span of the preimage area, and the partial derivatives can be computed from the
surface projection (12).

Summed-Area Tables. An alternative to pyramidal filtering was proposed by Crow in (11). It extends
the filtering possible in pyramids by allowing rectangular areas, oriented parallel to the coordinate axes, to
be filtered in constant time. The central data structure is a preintegrated buffer of intensities, known as the
summed-area table. This table is generated by computing a running total of the input intensities as the image
is scanned along successive scanlines. For every position P in the table, we compute the sum of intensities of
pixels contained in the rectangle between the origin and P. The sum of all intensities in any rectangular area
of the input may easily be recovered by computing a sum and two differences of values taken from the table.
For example, consider the rectangles R0, R1, R2, and R shown in Fig. 24. The sum of intensities in rectangle
R can be computed by considering the sum at [x1, y1], and discarding the sums of rectangles R0, R1, and R2.
This corresponds to removing all areas lying below and to the left of R. The resulting area is rectangle R, and
its sum S is given as

where T[x, y] is the value in the summed-area table indexed by coordinate pair [x, y].
Since T[x1, y0] and T[x0, y1] both contain R0, the sum of R0 was subtracted twice in Eq. (23). As a result,

T[x0, y0] was added back to restore the sum. Once S is determined, it is divided by the area of the rectangle.
This gives the average intensity over the rectangle, a process equivalent to filtering with a Fourier window
(box filtering).

There are two problems with the use of summed-area tables. First, the filter area is restricted to rectangles.
This is addressed in (13), where an adaptive, iterative technique is proposed for obtaining arbitrary filter
areas by removing extraneous regions from the rectangular bounding box. Second, the summed-area table
is restricted to box filtering. This, of course, is attributed to the use of unweighted averages that keeps the
algorithm simple. In (14) and (15), the summed-area table is generalized to support more sophisticated filtering
by repeated integration.

It is shown that by repeatedly integrating the summed-area table n times, it is possible to convolve an
orthogonally oriented rectangular region with an nth-order box filter (B-spline). The output value is computed
by using (n + 1)2 weighted samples from the preintegrated table. Since this result is independent of the size
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Fig. 24. Summed-area table calculation.

of the rectangular region, this method offers a great reduction in computation over that of direct convolu-
tion. Perlin (14) called this a selective image filter because it allows each sample to be blurred by different
amounts.

Repeated integration has rather high memory costs relative to pyramids. This is due to the number of
bits necessary to retain accuracy in the large summations. Nevertheless, it allows us to filter rectangular or
elliptical regions, rather than just squares as in pyramid techniques. Since pyramid and summed-area tables
both require a setup time, they are best suited for input that is intended to be used repeatedly, that is, stationary
background scenes or texture maps. In this manner, the initialization overhead can be amortized over each
use.

Example: Image Scaling

In this section, we demonstrate the role of reconstruction and antialiasing in image scaling. The resampling
process will be explained in one dimension rather than two, since resampling is carried out in each axis
independently. For example, the horizontal scanlines are first processed, yielding an intermediate image which
then undergoes a second pass of interpolation in the vertical direction. The result is independent of the order:
processing the vertical lines before the horizontal lines gives the same results.

A skeleton of a C program that resizes an image in two passes is given below. The input image is assumed
to have INheight rows and INwidth columns. The first pass visits each row and resamples them to have width
OUTwidth. The second pass visits each column of the newly formed intermediate image and resamples them
to have height OUTheight
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Function resample1D is the workhorse of the resizing operation. The inner workings of this function will
be described later. In addition to the input and output points and dimensions, resample1D must be passed filter,
an integer code specifying which convolution kernel to apply. In order to operate on both rows and columns, the
parameter offset is given to denote the distance between successive pixels in the scanline. Horizontal scanlines
(rows) have offset = 1, and vertical scanlines (columns) have offset = OUTwidth.

There are two operations which resample1D must be able to handle: magnification and minification. As
mentioned earlier, these two operations are closely related. They both require us to project each output sample
into the input, center a kernel, and convolve. The only difference between magnification and minification is
the shape of the kernel. The magnification kernel is fixed at h(x), whereas the minification kernel is ah(ax), for
a < 1. The width of the kernel for minification is due to the need for a low-pass filter to perform antialiasing.
That filter now has a narrower response than that of the interpolation function. Consequently, we exploit the
following well known Fourier transform pair:

This equation expresses the reciprocal relationship between the spatial and frequency domains. Notice that
multiplying the spatial axis by a factor of a results in dividing the frequency axis and the spectrum values by
that same factor. Since we want the spectrum values to be left intact, we use ah(ax) as the convolution kernel
for blurring, where a > 1. This implies that the shape of the kernel changes as a function of scale factor when
we are downsampling the input. This was not the case for magnification.

A straightforward method to perform 1-D resampling is given below. It details the inner workings of
the resample 1-D function outlined earlier. In addition, a few interpolation functions are provided. More such
functions can easily be added by the user.
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There are several points worth mentioning about this code. First, the filter width fwidth of each of the
supported kernels is initialized for use in interpolation (for magnification). We then check to see if the scale
factor scale is less than one to rescale fwidth accordingly. Furthermore, we set fscale, the filter amplitude scale
factor to 1 for interpolation, or scale for minification. We then visit each of OUTlen output pixels and project
them back into the input where we center the filter kernel. The kernel overlaps a range of input pixels from
left to right. All pixels in this range are multiplied by a corresponding kernel value. The products are added in
an accumulator acc and assigned to the output buffer.

Note that the CLAMP macro is necessary to prevent us from attempting to access a pixel beyond the
extent of the input buffer. By clamping to either end, we are effectively replicating the border pixel for use with
a filter kernel that extends beyond the image.

In order to accommodate the processing of rows and columns, the variable offset is introduced to specify
the inter-pixel distance. When processing rows, offset = 1. When processing columns, offset is set to the width
of a row.

This code can accommodate a polynomial transformation by making a simple change to the evaluation
of r. Rather than computing u = x/scale, we may let u be expressed by a polynomial. The method of forward
differences is recommended to simplify the computation of polynomials (16).

The code given above suffers from three limitations, all dealing with efficiency.

(1) A division operation is used to compute the inverse projection. Since we are dealing with a linear mapping
function, the new position at which to center the kernel may be computed incrementally. That is, there
is a constant offset between each projected output sample. Accordingly, left and right should be computed
incrementally as well.
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(2) The set of kernel weights used in processing the first scanline apply equally to all the remaining scanlines
as well. There should be no need to recompute them each time. This matter is addressed in the code supplied
by (17).

(3) The kernel weights are evaluated by calling the appropriate filter function with the normalized distance
from the center. This involves a lot of run-time overhead, particularly for the more sophisticated kernels
that require the evaluation of a sin function, division, and several multiplies.

Additional sophisticated algorithms to deal with these issues are given in (16).

Research Issues and Summary

The computer graphics literature is replete with new and innovative work addressing the demands of sampling,
reconstruction, and antialiasing. Nonuniform sampling has become important in computer graphics because
it facilitates variable sampling density, and it allows us to trade structured aliasing for noise. Recent work
in adaptive sampling and nonuniform reconstruction is discussed in (18). Excellent surveys in nonuniform
reconstruction, which is also known as scattered data interpolation, can be found in (19), and (20). These
problems are also of direct consequence to image compression. The ability to determine a unique minimal set
of samples to completely represent a signal within some specified error tolerance remains an active area of
research. The solution must be closely coupled with a nonuniform reconstruction method. Although traditional
reconstruction methods are well-understood within the framework described in this article, the analysis of
nonuniform sampling and reconstruction remains challenging.

We now summarize the basic principles of sampling theory, reconstruction, and antialiasing that were
presented in this article. We have shown that a continuous signal may be reconstructed from its samples if
the signal is bandlimited and the sampling frequency exceeds the Nyquist rate. These are the two necessary
conditions for image reconstruction to be possible. Since sampling can be shown to replicate a signal’s spectrum
across the frequency domain, ideal low-pass filtering was introduced as a means of retaining the original
spectrum while discarding its copies. Unfortunately, the ideal low-pass filter in the spatial domain is an
infinitely wide sinc function. Since this is difficult to work with, nonideal reconstruction filters are introduced
to approximate the reconstructed output. These filters are nonideal in the sense that they do not completely
attenuate the spectra copies. Furthermore, they contribute to some blurring of the original spectrum. In
general, poor reconstruction leads to artifacts such as jagged edges.

Aliasing refers to the phenomenon that occurs when a signal is undersampled. This happens if the
reconstruction conditions mentioned above are violated. In order to resolve this problem, one of two actions
may be taken. Either the signal can be bandlimited to a range that complies with the sampling frequency,
or the sampling frequency can be increased. In practice, some combination of both options are taken, leaving
some relatively unobjectionable aliasing in the output.

Examples of the concepts discussed thus are concisely depicted in Figs. 25 through 27. They attempt
to illustrate the effects of sampling and low-pass filtering on the quality of the reconstructed signal and its
spectrum. The first row of Fig. 25 shows a signal and its spectra, bandlimited to .5 cycle/pixel. For pedagogical
purposes, we treat this signal as if it were continuous. In actuality, though, it is really a 256-sample horizontal
cross-section taken from a digital image. Since each pixel has 4 samples contributing to it, there is a maximum
of two cycles per pixel. The horizontal axes of the spectra account for this fact.

The second row shows the effect of sampling the signal. Since f s = 1 sample/pixel, there are four copies of
the baseband spectrum in the range shown. Each copy is scaled by f s = 1, leaving the magnitudes intact. In the
third row, the 64 samples are shown convolved with a sinc function in the spatial domain. This corresponds to
a rectangular pulse in the frequency domain. Since the sinc function is used here for image reconstruction, it
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Fig. 25. Sampling and reconstruction (with an adequate sampling rate).

must have an amplitude of unity value in order to interpolate the data. This forces the height of the rectangular
pulse in the frequency domain to vary in response to f s.

A few comments on the reciprocal relationship between the spatial and frequency domains are in order
here, particularly as they apply to the ideal low-pass filter. We again refer to the variables A and W as the
sinc amplitude and bandwidth. As a sinc function is made broader, the value 1

2 W is made to change since
W is decreasing to accommodate zero crossings at larger intervals. Accordingly, broader sinc functions cause
more blurring, and their spectra reflect this by reducing the cut-off frequency to some smaller W. Conversely,
narrower sinc functions cause less blurring, and W takes on some larger value. In either case, the amplitude
of the sinc function or its spectrum will change. That is, we can fix the amplitude of the sinc function so that
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Fig. 26. Sampling and reconstruction (with an inadequate sampling rate).

only the rectangular pulse of the spectrum changes height A/2W as W varies. Alternatively, we can fix A/2W to
remain constant as W changes, forcing us to vary A. The choice depends on the application.

When the sinc function is used to interpolate data, it is necessary to fix A to 1. Therefore, as the sampling
density changes, the positions of the zero crossings shift, causing W to vary. This makes the amplitude of
the spectrum’s rectangular pulse change. On the other hand, if the sinc function is applied to bandlimit, not
interpolate, the input signal, then it is important to fix A/2W to 1 so that the passband frequencies remain
intact. Since W is once again varying, A must change proportionately to keep A/2W constant. Therefore, this
application of the ideal low-pass filter requires the amplitude of the sinc function to be responsive to W.

In the examples presented below, our objective is to interpolate (reconstruct) the input, and so A = 1,
regardless of the sampling density. Consequently, the height of the spectrum of the reconstruction filter changes.
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Fig. 27. Antialiasing filtering, sampling, and reconstruction stages.

To make the Fourier transforms of the filters easier to see, we have not drawn the frequency response of the
reconstruction filters to scale. Therefore, the rectangular pulse function in the third row of Fig. 25 actually
has height A/2W = 1. The fourth row of the figure shows the result after applying the ideal low-pass filter. As
sampling theory predicts, the output is identical to the original signal. The last two rows of the figure illustrate
the consequences of nonideal reconstruction filtering. Instead of using a sinc function, a triangle function
corresponding to linear interpolation was applied. In the frequency domain, this corresponds to the square of
the sinc function. Not surprisingly, the spectrum of the reconstructed signal suffers in both the passband and
the stopband.

The identical sequence of filtering operations is performed in Fig. 26. In this figure, though, the sampling
rate has been lowered to f s, = .5, meaning that only one sample is collected for every two output pixels.
Consequently, the replicated spectra are multiplied by .5, leaving the magnitudes at 4. Unfortunately, this
sampling rate causes the replicated spectra to overlap. This, in turn, gives rise to aliasing, as depicted in the
fourth row of the figure. Applying the triangle function to perform linear interpolation also yields poor results.

In order to combat these artifacts, the input signal must be bandlimited to accommodate the low sampling
rate. This is shown in the second row of Fig. 27 where we see that all frequencies beyond W = .25 are truncated.
This causes the input signal to be blurred. In this manner, we have traded aliasing for blurring, a far less
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objectionable artifact. Sampling this function no longer causes the replicated copies to overlap. Convolving
with an ideal low-pass filter now properly isolates the bandlimited spectrum.
Glossary

Adaptive supersampling = Supersampling with samples distributed more densely in areas of high
intensity variance.

Aliasing = Artifacts due to undersampling a signal. This condition prevents the signal from being
reconstructed from its samples.

Antialiasing = The filtering necessary to combat aliasing. This generally requires bandlimiting the
input before sampling to remove the offending high frequencies that will fold over in the frequency
spectrum.

Area sampling = An antialiasing method that treats a pixel as an area, not a point. After projecting the
pixel to the input, all samples in the preimage are averaged to compute a representative sample.

Bandlimit = The act of truncating all frequency components beyond some specified frequency. Useful
for antialiasing, where offending high frequencies must be removed to prevent aliasing.

Frequency leakage = A condition in which the stopband is allowed to persist, permitting it to fold over
into the passband range.

Gibbs phenomenon = Overshoots and undershoots caused by reconstructing a signal with truncated
frequency components.

Nyquist rate = The minimum sampling frequency. It is twice the maximum signal frequency.
Passband = Consists of all frequencies that must be retained by the applied filter.
Point sampling = Each output pixel is a single sample of the input image. This approach generally

leads to aliasing because a pixel is treated as a point, not an area.
Prefilter = The low-pass filter (blurring) applied to achieve antialiasing by bandlimiting the input

image prior to resampling it onto the output grid.
Preimage = The projected area of an output pixel as it is mapped to the input image.
Pyramid = Multi-resolution data structures generated by successively bandlimiting and subsampling

the original image to form a hierarchy of images at ever decreasing resolutions. Useful for accelerating
antialiasing. Filtering limited to square regions and unweighted averaging.

Reconstruction = The act of recovering a continuous signal from its samples. Interpolation.
Stopband = Consists of all frequencies that must be suppressed by the applied filter.
Summed-area table = Preintegrated buffer of intensities generated by computed a running total of the

input intensities as the image is scanned along successive scanlines. Useful for accelerating antialiasing.
Filtering limited to rectangular regions and unweighted averaging.

Supersampling = An antialiasing method that collects more than one regularly-spaced sample per
pixel.
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